
eFLINT: a Domain-Specific Language for Executable
Norm Specifications

L. Thomas van Binsbergen
Centrum Wiskunde & Informatica
Amsterdam, The Netherlands
ltvanbinsbergen@acm.org

Lu-Chi Liu
University of Amsterdam

Amsterdam, The Netherlands
l.liu@uva.nl

Robert van Doesburg
Leibniz Institute, University of Amsterdam / TNO

Amsterdam, The Netherlands
robertvandoesburg@uva.nl

Tom van Engers
Leibniz Institute, University of Amsterdam / TNO

Amsterdam, The Netherlands
vanengers@uva.nl

ABSTRACT

Software systems that share potentially sensitive data are
subjected to laws, regulations, policies and/or contracts. The
monitoring, control and enforcement processes applied to
these systems are currently to a large extent manual, which
we rather automate by embedding the processes as dedi-
cated and adaptable software services in order to improve
efficiency and effectiveness. This approach requires such
regulatory services to be closely aligned with a formal de-
scription of the relevant norms.
This paper presents eflint, a domain-specific language

developed for formalizing norms. The theoretical founda-
tions of the language are found in transition systems and in
Hohfeld’s framework of legal fundamental conceptions. The
language can be used to formalize norms from a large variety
of sources. The resulting specifications are executable and
support several forms of reasoning such as automatic case
assessment, manual exploration and simulation. Moreover,
the specifications can be used to develop regulatory services
for several types of monitoring, control and enforcement.
The language is evaluated through a case study formalizing
articles 6(1)(a) and 16 of the General Data Protection Reg-
ulation (GDPR). A prototype implementation of eflint is
discussed and is available online.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
GPCE, Generatic Programming: Concepts & Experiences, 2020
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8174-1/20/11. . . $15.00
https://doi.org/10.1145/3425898.3426958

CCS CONCEPTS

• Software and its engineering→ Domain specific lan-

guages; • Computing methodologies→ Reasoning about
belief and knowledge; • Security and privacy → Privacy-
preserving protocols.

KEYWORDS

normative modeling, domain-specific language, policy en-
forcement, GDPR, executable specifications

ACM Reference Format:

L. Thomas van Binsbergen, Lu-Chi Liu, Robert vanDoesburg, and Tom
van Engers. 2020. eFLINT: a Domain-Specific Language for Exe-
cutable Norm Specifications. In Proceedings of the 19th ACM SIG-
PLAN International Conference on Generative Programming: Con-
cepts and Experiences (GPCE ’20), November 16–17, 2020, Virtual,
USA. ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/
3425898.3426958

1 MOTIVATION

Governmental institutions provide services to citizens and
companies that are primarily defined in laws and regula-
tions. However, in practice there is often no clear connec-
tion between the software systems that support or provide
these services and the laws and regulations that govern them.
Similarly, business processes are subjected to laws and (in-
ter)national regulations as well as internal policies, branch-
wide codes and contracts. In both government and business,
a direct connection between a software’s implementation
and the norms that govern the software’s operations is highly
desirable. A direct connection makes the software easier to
validate and increases the software’s maintainability with re-
spect to following changes in regulations and policies. More-
over, with a direct connection it is possible to explain the
actions taken within a software system to stakeholders in
terms of the relevant norms. Our approach is to automate
the required monitoring, control and enforcement processes,

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/351117856?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/3425898.3426958
https://doi.org/10.1145/3425898.3426958
https://doi.org/10.1145/3425898.3426958

GPCE, Generatic Programming: Concepts & Experiences, 2020 L. Thomas van Binsbergen, Lu-Chi Liu, Robert van Doesburg, and Tom van Engers

that currently are predominantly manual processes, as dedi-
cated and adaptable regulatory services. To improve trust,
the regulatory services are based on formal specifications of
the relevant norms that can be verified in isolation.
This paper presents eflint, a domain-specific language

(DSL) for formalizing norms as executable specifications.
Compared to existing languages, eflint is novel in several
respects and is most similar to languages based on the event
calculus such as Symboleo [28] and InstAL [20]. A significant
body of work exists concerning the formalization, analysis
and enforcement of specific kinds of norms [14] such as poli-
cies for access control [29], network policies [1] (e.g. firewall
configurations) and contracts [27, 28]. Instead, eflint is de-
signed for describing a wide variety of normative sources
such as laws, regulations, policies and contracts. Other for-
mal languages for expressing norms are based on deontic
logics [12], action logic [15] and defeasible logic [10, 18].
Some of these languages are not suited to capture some im-
portant aspects of norms such as the actors bound by the
norms and the activities regulated by these norms. An im-
portant aspect of eflint is that the language is action-based
and that the normative positions of actors are derived from
the actions they can perform (permissions) or are expected
to perform (duties) at a given moment in time. Moreover,
the language supports the legal concept of power – the abil-
ity to grant or remove permissions or duties to/of actors.
The benefit of the action-based approach is that checking
the compliance of a scenario or software implementation is
simplified because scenarios and software implementations
are inherently action-based. Together, these features enable
eflint for various types of applications requiring online or
offline compliance-checking, monitoring, traceability and
explainability.
This paper contributes by presenting eflint, discussing

its use in a variety of applications, reflecting on its design
and placing it in a wider context. The language is introduced
through an example in Section 3. In section 4 we explain how
eflint is used for offline and online compliance checking.
Section 5 formalizes the parts of articles 6 and 16 of the
GDPR (General Data Protection Regulation) that relate to
‘consent’ and the ‘right to rectification’ as a case study. After
a reflection on the features and design of the language, the
language is compared to relevant alternatives in Section 6.

2 LEGAL FOUNDATIONS

In this section we summarize the normative theory that un-
derpins eflint. The theory is explained in reference to legal
case analysis, involving the processes of interpretation, qual-
ification and assessment, visualized in Figure 1. The diagram
distinguishes between physical reality (left-hand side) and

sources
of norms

understanding
of norms

narrative/
scenario

actions,
events,
and objects

physical reality institutional reality

interpretation

assessment

qualification

Figure 1: Schematic overview of the processes of inter-

pretation, qualification and assessment.

the institutional reality of Searle’s social theory [26] (right-
hand side) as the reality in which actors interact physically
with objects and each other on the one hand, and certain
abstractions over that physical reality on the other hand.
The institutional abstractions are twofold: a general under-
standing of the norms relevant to a case (top right) and the
understanding of the case itself as a narrative (bottom right,
henceforth called scenario): a series of actions, events and
observations that may or may not be compliant.
The process of assessment determines whether a partic-

ular scenario is compliant with a particular understanding
of the norms. In order to assess a scenario, it is first neces-
sary to interpret the sources of norms one deems relevant to
the case (top left), such as legal documents, regulations and
policy descriptions. The process of qualification attributes
institutional meaning to certain actions performed by actors,
events and objects (bottom left). Such qualification is always
context-bound which makes the qualification process a sub-
tle interplay between the observations and the interpreted
norms applicable to those observations. For example, the ac-
tion of raising one’s arm is typically qualified as “requesting
permission to ask a question” in a classroom but as “placing
a bid” during an auction.
The normative aspect of eflint is based on the legal1

framework constructed by Hohfeld for analyzing courthouse
activities [13]. The first core aspect of Hohfeld’s framework is
the observation that the ‘normative position’ of an individual,
such as the individual being deemed to having a ‘duty’ or
‘power’, is always with respect to another individual. For
example, if person X has the duty to do A, then there is a
person Y having a ‘claim’ to A being done (and benefiting

1Although Hohfeld developed the framework for the analysis of courthouse
activities, we apply its concepts more generally and speak of “normative
positions” rather than “legal positions” and “normative relations” rather
than “legal relations” in this paper.

eFLINT: a Domain-Specific Language for Executable Norm Specifications GPCE, Generatic Programming: Concepts & Experiences, 2020

from A). In this example, X and Y are said to be in a duty-
claim relation with respect to action A. The second core
aspect of Hohfeld’s framework is the explicit consideration of
change caused by an actor exercising a ‘power’ (performing
a certain action), possibly having an impact on the actor with
the correlative ‘liability’ position. For example, if X and Y
are in a power-liability relation with respect toA, then X has
the power to do A and Y is liable to – in the sense of ‘being
bound to’ – the effects of A.
eflint sets itself apart from other formal languages for

norm specifications by integrating both core aspects of Ho-
hfeld’s framework, i.e. describing ‘normative relations’ rather
than individual positions and allowing normative relations
to change over time by the effects of actions and events.

3 LANGUAGE OVERVIEW

The dual nature of institutional reality is reflected in the
design of eflint. An interpretation2 is formalized as a collec-
tion of type declarations. A scenario is formalized as a series
of statements. The statements describe a trace in the tran-
sition system induced by the declarations of act-types and
event-types. Figure 2 gives the (simplified) abstract syntax of
eflint specifications as sequences of type declarations. The
operators that form Boolean expressions and instance expres-
sions3 have been omitted; they will be introduced alongside
the case study in Section 5. An example specification is given
by the listings in Figure 4. Both this example and the GDPR
specification of Section 5 are available and can be tested in
the web-interface for eFLINT [32]. The example captures the
norm that a child has the power to ask a legal parent (i.e. a
natural or adoptive parent) for help with their homework,
resulting in a duty for the parent to help. Types can be re-
defined by subsequent type declarations. This is convenient
from a perspective of reuse: a generic interpretation can
be used by several applications by letting each application
specialize certain types to the domain of the application.

Figure 3 gives the abstract syntax of scripts as sequences
of statements and queries. An example script is given by
the listings of Figure 5. In the example scenario, Alice is
a natural parent of Bob, Bob asks Alice for help, but Alice
only helps when the homework is already due, causing the
help-with-homework duty to be violated. For automatic case
assessment, it is convenient to use four input files: a file
containing the type-declarations of a generic model, a file
re-declaring types according to a concrete or specialized
domain, a file containing initialization statements and a file
that contains the statements of a scenario. This separation
across files is practical as there is a conceptual one-to-many
relation between these files (in the order listed above). For

2We use “interpretation” also for the result of the process of interpretation.
3An instance expression computes instances of declared types.

x ∈ type_ids ::= . . .
s ∈ strings ::= . . .
z ∈ Z ::= {0, 1, . . . ,−1,−2, . . .}
i ∈ instance_exprs ::= . . .
b ∈ boolean_exprs ::= . . .

δ ∈ domains ::= strings
| string_set(s1, . . . , sn)
| Z
| int_set(z1, . . . , zn)
| product(x1, . . . ,xn)
| . . .

fdc ∈ fact_decls ::= fdecl(x ,δ ,b?0)
adc ∈ act_decls ::= adecl(x0,x1,x2,x∗, c∗,b?0)
edc ∈ event_decls ::= edecl(x0,x∗, c∗,b?0)
ddc ∈ duty_decls ::= ddecl(x0,x1,x2,x∗,b∗,b?0)
c ∈ post_conditions ::= create(i) | terminate(i)
dc ∈ decls ::= fdc | adc | edc | ddc | . . .

specifications ::= dc∗

Figure 2: Abstract syntax of eflint specifications.

elems ::= s | z | tuple(v1, . . . , vn) | . . .
v ∈ instances = elems × type_ids
σ ∈ configs = P(instances)
t ∈ stmts ::= create(i) | terminate(i) | trigger(i)
q ∈ queries ::= query(b)

scripts ::= (t | q)∗

Figure 3: Abstract syntax of eflint scenarios.

example, many scenarios can start from the same initial state.

The declaration of a type determines the set of values (in-
stances) of that type, inherited either from an atomic type
(e.g. strings or integers) or a composite record-type (repre-
sented as tuples in the abstract syntax). Record-types define
relations over concepts (when they have two or more fields,
e.g. natural-parent) or establish predicates over a concept
(when they have one field, e.g. homework-due). An institutional
model of the physical world at a particular moment in time
is represented by the values, referred to as a facts, deemed
to hold true at that moment4. Sets of facts are the configura-
tions in the transition system induced by the specification. If
a record of type homework-due is in configuration σ , then the
person at the child field of the record is deemed to having
their homework due according to σ . The accuracy of this fact
depends on the accuracy of the qualifications that caused it
to hold, e.g. the +homework-due(Bob) statement in Figure 5.

4The facts of eflint are the fluents of the event calculus, see Section 6.

GPCE, Generatic Programming: Concepts & Experiences, 2020 L. Thomas van Binsbergen, Lu-Chi Liu, Robert van Doesburg, and Tom van Engers

Fact person Identified by String
Placeholder parent For person
Placeholder child For person
Fact natural -parent Identified by parent * child
Fact adoptive -parent Identified by parent * child
Fact legal -parent Identified by parent * child

Holds when adoptive -parent(parent ,child)
|| natural -parent(parent ,child)

Act ask -for -help
Actor child
Recipient parent
Creates help -with -homework(parent ,child)
Holds when legal -parent(parent ,child)

Fact homework -due Identified by child
Duty help -with -homework

Holder parent
Claimant child
Violated when homework -due(child)

Act help
Actor parent
Recipient child
Terminates help -with -homework(parent ,child)
Holds when help -with -homework(parent ,child)

Fact person Identified by Alice , Bob , Chloe , David

Figure 4: Type declarations capturing (normative) con-

cepts (top) and a domain of discourse (bottom).

+natural -parent(Alice , Bob).
+adoptive -parent(Chloe , David).

ask -for -help(Bob , Alice).
+homework -due(Bob). // homework deadline passed
?Violated(help -with -homework(Alice ,Bob)).
help(Alice ,Bob).

Figure 5: A script consisting of an initial state

(top) and a scenario with a query (bottom). Duty

help-with-homework is violated after homework is due.

Type declarations may have an optional derivation clause
(Holds when). A derivation clause is a Boolean expression5
(b?0 in the abstract syntax) that computes which instances
of the type hold true in a given configuration. The deriva-
tion clause of legal-parent determines that, for every par-
ent P and child C , legal-parent(P,C) holds true if and only if
adoptive-parent(P,C) or natural-parent(P,C) holds true. A fact-
type is either a ‘derived fact’ or ‘postulated fact’, depending
on whether it is declared with a derivation clause. To en-
sure consistency, only postulated facts can be created or
terminated by statements.

5This is a simplification. Derivation clauses are fully explained in Section 5.

act-, event- and duty-type declarations. Act-, event- and
duty-types are fact-types with additional meaning. An act-
type declaration consists of a performing actor-type (Actor), a
recipient actor-type (Recipient) and optional further related
types (Related to). An action6 – an instance of an act-type –
is a record value with a field for each of the associated types
(a tuple(v1, . . . ,vn)). An actionA is said to be enabled in σ if
A holds true according to σ , i.e. if A is a member of σ . If A is
enabled in σ , then the performing actor X and the recipient
actor Y are in a power-liability relation with respect to A
in σ . The post-conditions associated with an act-type (c∗ in
the abstract syntax) determine the effects its instances have
when executed by a statement. The effects are to create or
terminate facts, thus giving rise to a new configuration (and
possibly updated normative relations).
The institutional view on the world can also change by

physical actions for which there is no institutional counter-
part. For example, there is no direct institutional counterpart
to ‘changing address’ in the GDPR even though relocations
influence the accuracy of personal data. Moreover, the world
also changes due to natural events such as earthquakes, fires
and the passage of time. For these reasons, eflint distin-
guishes between actions and events. An event-type declara-
tion (not in the example) is essentially an act-type declaration
without a performing actor or recipient actor.

A duty-type declaration contains the type of the duty
holder, the type of the claimant and optional further related
types. A duty – an instance of a duty-type – is a record value
with a field for each of the types. A duty-type declaration has
zero or more violation-conditions (b∗ in the abstract syntax).
If a duty holds true in configuration σ , then the holder and
claimant of the duty are in a duty-claim relation in σ . The
holder of a duty is in violation of the duty (and the claimant
has a valid claim) according to σ if the duty holds true in
σ and if one of the violation-condition holds true in σ . To
avoid violating a duty, an actor must perform an action that
terminates the duty (e.g. help) before one of the violation
conditions holds.

transitions and compliance. In summary, a set of facts
forms a configuration representing an institutional view on
the physical world at a particular moment in time. For any
given configuration it is possible to determine the normative
relations between actors. Actions and events change configu-
rations when executed, potentially modifying the normative
relations between actors. Since actions and duties are also
facts, an actor may have the power to assign duties or to
grant powers to others. The post-conditions of action- and
event-types give rise to a transition system. The execution of
an action or event triggers a transition by removing and/or

6Instances of act-types are institutional actions. There is not necessarily an
institutional actions for every physical action or vice versa.

eFLINT: a Domain-Specific Language for Executable Norm Specifications GPCE, Generatic Programming: Concepts & Experiences, 2020

inserting facts from/to the current configuration. For exam-
ple, the statement ask-for-help(Bob,Alice). (trigger(i) in the
abstract syntax) executes the action ask-for-help(Bob,Alice),
causing the creation of a duty for Alice. Individual facts can
also be created and terminated (create(i) and terminate(i)
in the abstract syntax). For example, +homework-due(Bob) cre-
ates the fact that Bob’s homework is due (termination is
written with a minus symbol). The statements of a script
form a trace (sequence of transitions) in the transition sys-
tem. A query (e.g. ?Violated(help-with-homework(Alice,Bob)))
is a Boolean expression that is evaluated in the context of
the current configuration. The language also supports in-
variants: queries that have to hold true in every reachable
configuration. For example, the following fragment shows
an invariant declaration that captures that one cannot be
their own legal parent.

Invariant parentship:
Not(Exists person : legal -parent(person ,person))

Invariant violations are reported as soon as they arise in order
to discover inconsistencies in (applications of) specifications.

A trace may be action-compliant and/or duty-compliant. A
trace is action-compliant if every transition on the trace is
labeled with an event or action that is enabled in the source
configuration of the transition. A trace is duty-compliant
if no duties are violated in any of its configurations. These
notions are independent: a trace can be action-compliant,
duty-compliant, action- and duty-compliant or neither. As-
sessing a scenario is deciding whether it produces an action-
and duty-compliant trace, given an initial configuration. The
example scenario is action-compliant but not duty-compliant
as a violation occurs after the second statement.
A trace records the normative positions and relations of

all actors as they evolve over time and therefore provides
sufficient information to determine important details about
violations such as when they occurred and which actors were
responsible. This a crucial aspect: by recording traces, eflint
makes it possible to reproduce the entire decision making
process and to explain the decisions that have been made.

4 IMPLEMENTATION

The previous section explained eflint informally through
an example. This section gives an overview of the different
applications supported by the eflint prototype implementa-
tion at the time of writing. The implementation is available
online [31]. A simple web-interface for automatic case as-
sessment is available online as well [32]. The details of the ex-
pression language used by the eflint implementation have
been omitted in the previous section and are discussed along-
side the GDPR case study in the next section. The transition
system semantics of eflint depends only on the expression
language in that there are Boolean expressions and instance

expressions. Alternative expression languages can thus be
used by alternative implementations, e.g. using objects rather
than records to structure data. Similarly, our implementation
has integers and strings as atomic values, but other types of
atoms, such as floating points, are easily added.

automated assessment. One of the executables of the im-
plementation receives a specification and script and deter-
mines whether the scenario in the script is action- and duty-
compliant and whether all the queries are successful. The
output is a sequence of violations and failed queries or a
JSON object that also includes the produced trace. The JSON
output has been used to develop the aforementioned web-
interface [32]. Besides editing, the interface can be used to
analyze traces by inspecting the contents of, and the changes
to, configurations. The web-interface has been used in a
MSc-level course on ‘Policy Making and Rule Governance’
at the University of Amsterdam, with user-feedback feeding
directly into the design of the language. Automatic assess-
ment is an important tool during the development of eflint
specifications as it facilitates testing and debugging. Once
a specification has been adopted, the primary purpose of
automatic assessment is to analyze concrete cases that have
been observed or hypothetical cases that might arise. Both
are crucial, not only in the development of the specification,
but also as feedback to lawmakers and policymakers. As
part of future work we intend to add model checking to our
implementation, expanding the set of tools through which
confidence in the correctness of a specification is obtained.
As mentioned, eflint already has safety properties in the
form of invariants.

exploration. To further support the aforementioned use
cases, the eflint implementation also enables manually ex-
ploring the transition system induced by a specification. The
tool can run as a Read-Eval-Print Loop (REPL) loaded with a
specification and a script producing an initial state. At the
top-level, the REPL accepts declarations, queries and state-
ments, which can be mixed freely and produce immediate
feedback. It is also possible to delete or re-declare types, en-
abling on-the-fly updates to the specifications. After every
statement, the REPL reports violations of action- or duty-
compliance, changes to the current configuration and any
invariants that were not upheld. The user can backtrack to
a previously visited configuration to explore an alternative
scenario. An example interaction with the REPL is shown
in Figure 6. The REPL is loaded with the specification of
Figure 4. The interaction shows Chloe helping David in the
first explored branch. After backtracking, another branch is
explored in which homework is due before Chloe has helped.

During the first interaction in Figure 6, the REPL responds
with the information that the fact legal-parent(Chloe,David)
has been added to the configuration. This fact is derived

GPCE, Generatic Programming: Concepts & Experiences, 2020 L. Thomas van Binsbergen, Lu-Chi Liu, Robert van Doesburg, and Tom van Engers

Available commands:
:<INT > trigger action or event <INT >
:force <INT > force action or event <INT >
:revert <INT > revert to configuration <INT >
:display :d show the current configuration
:options :o show available actions & events
:help :h show these commands
:quit :q end the exploration

or just type a <PHRASE >
#0 > +natural -parent(Chloe ,David)
+legal -parent(Chloe ,David)
+natural -parent(Chloe ,David)
+ask -for -help(David ,Chloe)
enabled actions & events:
1. ask -for -help(David ,Chloe)
#1 > :1
+help(Chloe ,David)
+help -with -homework(Chloe ,David)
enabled actions & events:
1. ask -for -help(David ,Chloe)
2. help(Chloe ,David)
#2 > :2
-help(Chloe ,David)
-help -with -homework(Chloe ,David)
enabled actions & events:
1. ask -for -help(David ,Chloe)
#3 > ?Violated(help -with -homework(Chloe ,David))
query failed
#3 > :revert 2
enabled actions & events:
1. ask -for -help(David ,Chloe)
2. help(Chloe ,David)
#2 > +homework -due(David)
violated duty!: help -with -homework(Chloe ,David)

Figure 6: Example interaction with the eflint REPL.

from the fact natural-parent(Chloe,David) postulated by the
user. In order to make this derivation, the implementation
has enumerated all possible instances of legal-parent and
evaluated the derivation clause for each. Enumerating all
instances of types is possible when working with a small7,
finite domain. However, when checking the compliance of
a running system, an application discussed below, an open-
ended domain is typically required. The ability to redefine
and specialize types in eflint enables us to reuse specifica-
tions across applications in which some require a finite and
others an open-ended domain. In the example of Figure 4, an
open-ended domain (the declaration of person initially does
not list its instances) is replaced by a finite domain. Reusing
specifications in both types of applications is also made possi-
ble by the pragmatic design choice to give different behavior
to the enumeration operator (Foreach, introduced in the next
section) depending on whether it enumerates instances of
a finite or infinite type. In the latter case, the operator only
7In order not to suffer from combinatorial explosion.

enumerates the instances of the type that hold true in the
current configuration. Note that a domain is finite if all of
the atomic types have finite sets of instances, because then,
by induction, all record types are finite too.

normative actors. Benefiting from the principled approach
to REPLs presented in [33], the back-end of the REPL has
been reused to form the basis of a TCP server. The server
is loaded with a specification and waits for incoming decla-
rations, statements and queries on a given port. The server
is used to integrate eflint specifications in arbitrary soft-
ware systems. To develop and experiment with regulatory
services for enforcement, we use the Akka framework8 for
actor-oriented programming in Scala. Actor-oriented pro-
gramming can be used to develop or model complex, dis-
tributed systems. The components of a software system are
implemented as actors, with message-passing as the only
form of communication between them.

Central to our approach is the notion of a ‘normative actor’
that administers an eflint specification. A normative actor
is created with one or more files containing declarations and
statements and starts its own server instance. As the server
is loaded, the input files are executed in order, so that later
files may specialize types introduced by earlier files.
A survey of various software architectures that incorpo-

rate policy enforcement mechanisms [22, 23, 37, 38] has re-
vealed at least the four types of enforcement listed below.
Our implementation of normative actors in Scala enables
these four types of enforcement.

• Ex-ante enforcement of permissions: ensuring that an
actor has permission to execute a particular action
before it is performed and blocking the action if there
is no permission

• Ex-ante enforcement of positive duties: informing actors
of their duties to perform certain actions

• Ex-post enforcement of violations of prohibitions: apply-
ing some form of resolution to the observation that an
action has been performed which was not enabled

• Ex-post enforcement of violated duties: applying some
form of resolution to a violated duty

A normative actor responds to eflint statements and
queries received as messages. The response to a query is sim-
ply whether the query holds true. Actors can send queries
to normative actors to let the responses guide their behav-
ior. For example, an actor can ensure action-compliance by
checking whether an action is enabled before performing it.
Receiving a statement causes the normative actor to up-

date its internal state (a configuration) by executing the state-
ment. The resulting transition might impact other actors
in the system and they will be informed by the normative

8https://akka.io

https://akka.io

eFLINT: a Domain-Specific Language for Executable Norm Specifications GPCE, Generatic Programming: Concepts & Experiences, 2020

actor accordingly. If a duty is created or violated by the tran-
sition, the holder and claimant of the duty are informed.
Similarly, if an action is enabled by the transition, the per-
forming and recipient actor of the action are informed. If
the transition was triggered by a disabled action, the per-
forming and recipient actor of the action are informed of
this violation. The actors receiving such messages can re-
act in several meaningful ways. For example, the claimant
of a violated duty might have the power to notify an au-
thority that, in turn, has the power to place a penalty on
the holder of the violated duty. Another common use case
is for the claimant of a new (but not yet violated) duty to
start a timer that runs out when the claimant thinks the
duty should have been fulfilled (terminated). The example
of Figure 4 can be extended with a teacher that places the
complete-homework duty on children. When the timer expires,
the claimant (teacher) sends a message to the normative actor
to communicate this observation (in the form of a fact, e.g.
homework-due) possibly causing duties to be violated (e.g. the
duty complete-homework, but perhaps also help-with-homework).
In our experiments with GDPR, the event rectification-delay,
creating the fact undue-rectification-delay (both discussed in
Section 5), is an event triggered by the use of a timer.
The actor sending a statement to a normative actor may

be a neutral observer and, for example, not the performer
or recipient of an action. The normative actor responds to
the observer with a summary of the effects of the transition,
similar to the output produced by the command-line REPL.
Normative actors can thus be used in a variety of ways.
A system can have one or more monitoring actors mak-

ing qualifications based on the observed communication
between other actors. These qualifications are sent to nor-
mative actors that administer the norms considered by the
monitoring actor. In this use case, the communications of
normative actors can be restricted to monitoring actors only.
In a multi-agent system (MAS), normative actors can be

internalized by agents, playing the role of a (moral, social, or
legal) conscience. An agent communicates with its internal
normative actors to possibly update its beliefs, desires and
intentions. Every normative actor of an agent embodies the
particular interpretation of a set of norms adopted by the
agent. In this case, the communications of normative actors
should be restricted to their encompassing agent.

5 CASE STUDY: GDPR

The eflint specification developed in this section captures
the following aspects of the General Data Protection Regula-
tion (GDPR) [19]: the requirement to receive a data subject’s
consent prior to data processing and the subject’s ‘right to
rectification’. The purpose of this section is to dive deeper

into the details of the language, such as its expression lan-
guage, and to demonstrate its expressivity in connection to
a realistic case. The presented code snippets form the GDPR
component of a larger case study regarding the Know Your
Customer (KYC) requirements placed on financial institu-
tions. This case study is performed in collaboration with the
banks ABNAMRO and ING. In order to improve the accuracy
of customer risk assessment, the banks are willing to share
customer data under certain conditions. The banks wish to
keep certain data secret, e.g. if the data provides a compet-
itive advantage. Moreover, the banks want to demonstrate
compliance with the GDPR. The goal of the wider case study
is to experiment with architectures for regulated data shar-
ing systems. Academically, the case study is interesting in
that it requires reasoning about multiple norm specifications,
each with their own ontologies of concepts. Moreover, satis-
fying a duty in one policy might cause a violation in another,
demonstrating the need for priorities between norms.
The KYC case consists of three eflint specifications of

less than a 100 lines of code for which one or more nor-
mative actors (see previous section) are created. Besides
the GDPR specification, the case involves an internal pol-
icy specification and a sharing agreement. Every bank has
their own specialization of the internal policy. The eflint
specifications are kept small, formalizing only specific rules
and norms to focus on their interaction at the level of policy
design and the level of component behavior and implemen-
tation. The system consists of actors representing banks,
employees and clients. These actors communicate with nor-
mative actors loaded with instances of the three mentioned
eflint specifications. This communication is indirect and
happens via intermediate actors that convert domain knowl-
edge (about banks, employees and clients) to institutional
knowledge (about institutional facts, powers and duties) and
vice versa. These intermediate actors are derived from a high-
level specification (not shown here). An interesting aspect of
our approach is that normative actors are created for pairs
of interacting banks and clients, with each normative actor
loaded with a version of the GDPR specification specialized
to that bank and client. This specialized variant of the GDPR
specification can be seen as a contract between an individual
bank and an individual client, which is monitored by the
normative actor. The normative actor informs the bank and
the client of any duties and violations.

5.1 Concept definitions

The following code fragment below captures the GDPR con-
cepts ‘subject’ (a natural person) and ‘data’.
Fact subject
Fact data
Fact subject -of Identified by subject * data

GPCE, Generatic Programming: Concepts & Experiences, 2020 L. Thomas van Binsbergen, Lu-Chi Liu, Robert van Doesburg, and Tom van Engers

A fact-type declaration without an Identified by clause
defaults to Identified by String.

expressions. Consider the following expression.

(Exists subject: subject -of(subject ,data))

Expressions are literals, variables or operators and con-
structors applied to other expressions. Type names can occur
as variables in expressions, such as subject and data above.
Type names can also occur as constructors in expressions,
for example subject-of above. There is no ambiguity between
a type name occurring as a variable or as a constructor be-
cause only constructors are followed by (zero ormore) formal
arguments within parentheses.

Constructor application can be written in two styles. The
first style – familiar from functional and logic programming
– requires as many arguments as the number of fields of
the constructed record and the arguments must be writ-
ten in the same order as the fields are written in the type-
declaration. An example is subject-of(subject,data). In the
second style, field names are explicitly mentioned. For exam-
ple, in subject-of(subject=subject,data=data) the name subject
occurs as a field name on the left-hand side of the equal sym-
bol and as a variable on the right-hand side. In this style,
formal arguments can be written in any order and can also
be omitted. If a formal argument for field x is omitted, then it
defaults to x = x . The constructor application of this example
can thus be written as subject-of(). If the variable subject-of

is bound to a record, then subject-of.subject evaluates to the
value of the field subject of that record (projection).

accumulators. The example expression shows that eflint
is based on first-order logic with existential and universal
quantification via the Exists and Forall operators. The in-
ner expression of a quantifier, appearing behind the colon,
must be a Boolean expression. However, the sub-expression
subject-of(subject,data) of the example is an instance ex-
pression when taken out of context. The static semantics of
eflint rewrites this expression to the Boolean expression
Holds(subject-of(subject,data)). The Holds operator checks
whether the instance computed by its operand holds true in
the current configuration.

The example is expression is equivalent to the following:

Or(Foreach subject: subject -of(subject ,data))

The semantics of Foreach are to evaluate its inner expression
multiple times, each time binding its binders (the comma-
separated variables before the colon) to a different combi-
nation of instances of their respective types. For example,
when the above expression is evaluated, the inner expression
is evaluated once for every possible binding of the variable
subject to an instance of the type subject. The behavior of
Foreach differs depending on whether all its binders refer to

types with finite numbers of instances. If this is the case,
then the binders are bound to all possible combinations of
instances of their types. If one or more of the types does
not have a finite amount of instances, only the instances of
these types that hold true in the current configuration are
enumerated instead. As mentioned in the previous section,
this design decision has been made to simultaneously accom-
modate applications with finite and open-ended domains.
The Foreach operator is non-deterministic in that it com-

putes multiple values. However, non-deterministic expres-
sions are only allowed in certain places, such as in the post-
conditions of actions and as the operand of an accumulator.
An accumulator is an operator that reduces a sequence of
values to a single result (thus turning a non-deterministic
expression in a deterministic one). The Or accumulator evalu-
ates to True if any of its inputs is True. Similarly, And evaluates
to True if all its inputs are True. Occurrences of Exists and
Forall desugar to an application of Foreach inside an applica-
tion of Or or And respectively. Other examples of accumulators
are Count and Sum for counting instances and summing inte-
gers.

derivation clauses. The example expressionwas taken from
the following fact-type declaration with a derivation clause.

Fact personal -data Identified by data Holds when
(Exists subject: subject -of(subject ,data))

The derivation clause determines that data is personal data
if it has a subject, which closely resembles the definition of
“personal data” in Article 4(1) of the GDPR.

Derivation clauses come in two forms: a Holds when clause
with a Boolean expression or a Derived from clause with an in-
stance expression. The instance expression of a Derived from

clause produces all the instances of the type that are deemed
to hold true by the clause. Any variables not explicitly bound
by occurrences of Exists, Forall or Foreach in this instance
expression are implicitly bound by an outermost Foreach. A
Holds when clause is syntactic sugar for a Derived from clause.
The above fragment is equivalent to the following:

Fact personal -data Identified by data Derived from
(Foreach data: personal -data() When
(Exists subject: subject -of(subject ,data)))

The When operator is used in non-deterministic expressions
to filter out unwanted results. The operator evaluates to the
result of its first operand, but only if its second operand
evaluates to True.
In general, a Holds when clause with Boolean expression

[t] for a fact-type [x] with fields [a], [b] and [c] desugars to
Derived from (Foreach [a],[b],[c]: [x]() When [t]). A Holds

when clause can therefore only be part of a fact-type dec-
laration with a record type. The desugaring shows that the
expression of a Holds when clause is evaluated in the context

eFLINT: a Domain-Specific Language for Executable Norm Specifications GPCE, Generatic Programming: Concepts & Experiences, 2020

of a record instance to determine whether that instance holds
true. In the example, this is the instance personal-data(data

= data) for every instance of data.

5.2 Consent

This subsection formalizes Article 6(1)(b) on consent [19].
The following fragment defines the related concepts of data
controller, data processor, purpose and consent.
Fact controller
Fact processor
Fact processes Identified by

processor * data * controller * purpose
Fact purpose
Fact consent Identified by

subject * controller * purpose
Fact accurate -for -purpose Identified by

data * purpose

A controller is a legal entity collecting and processing the
data of a data subject. A processor is a legal entity storing or
processing data on behalf of a controller. An important aspect
of the GDPR is that a controller communicates the purpose
for which it is collecting and processing data and that the
subject gives explicit consent to processing9 the data for that
purpose. If the record of type consent that contains subject
S , controller C and purpose R holds true in a configuration,
then this means that S has given consent to C to collect
and process their data for purpose R. If the record of type
processes that contains processor P , controller C , data D and
purpose R holds true in a configuration, then this means that
P processes the data D on behalf of C for the purpose R.
The presented formulation abstracts over operations on

data by capturing all changes to data as replacements. When
the postal address of a bank’s client changes, the currently
held postal address is no longer accurate for the purpose of
building a KYC client profile. However, there is no definition
of an action for clients (subjects) to change their addresses
because relocation is not a GDPR notion. Instead, an instance
of the data-change event, defined below, is triggered when a
change in address is observed.
Event data -change
Related to data , new -data , purpose
When data != new -data

&& subject -of() && subject -of(data = new -data)
Terminates accurate -for -purpose(data ,purpose)
Creates accurate -for -purpose(new -data ,purpose)
Holds when accurate -for -purpose(data ,purpose)

Placeholder new -data For data

The When clause introduces an instance constraint (omitted
from the abstract syntax in Section 3), establishing a connec-
tion between the fields of the declared type. In this example,
9Consent is one of several grounds for lawfully processing personal data.

the constraint determines that the new data is indeed new
and has the same subject as the old data. An instance con-
straint keeps the Foreach operator from enumerating ‘invalid’
instances of the declared type.

The definition of data-change refers to multiple instances of
data. To support multiple such references, variables can have
‘decoration’ in the form of integer numbers or prime charac-
ters at the end of their name (e.g. data1, data2, and data'). The
user can also add their own variable names with a Placeholder

declaration. In the fragment above, the name new-data is in-
troduced as a placeholder for instances of the fact-type data.
Note that the constructor application subject-of() has data

as an implicit argument because this is the name of one of
its fields.

The act-type declaration of give-consent, shown below, de-
scribes the power of subjects giving consent to controllers.
The Related to clause reflects that consent is given for a spe-
cific purpose.

Act give -consent
Actor subject
Recipient controller
Related to purpose
Creates consent ()
Holds when !consent ()

The derivation clauses and post-conditions of an act-type are
evaluated in an environment that binds the field names of the
type. For example, to determine the effects of the instance
give-consent(Alice,Bank,KYC), the variable subject is bound to
Alice, the variable controller is bound to Bank and the vari-
able purpose is bound to KYC. These bindings are used as the
(implicit) arguments to the constructor application consent().
The derivation clause of give-consent prevents repeated ex-
ecution of the same instance of give-consent (although one
can argue that the power to give consent is unconditioned).

The act-type collect-personal-data given below determines
that consent must have been given by the subject for the
purpose for which the data is being collected and that the
data must be accurate for this purpose. If, in physical real-
ity, multiple processors process the collected data, then the
institutional action collect-personal-data is to be executed
multiple times, with different processor arguments.

Act collect -personal -data
Actor controller
Recipient subject
Related to data , processor , purpose

When subject -of()
Creates processes ()
Holds when consent () && accurate -for -purpose ()

5.3 The right to rectification

Article 16 of the GDPR states [19]:

GPCE, Generatic Programming: Concepts & Experiences, 2020 L. Thomas van Binsbergen, Lu-Chi Liu, Robert van Doesburg, and Tom van Engers

The data subject shall have the right to obtain from
the controller without undue delay the rectification
of inaccurate personal data concerning him or her.
[...]

The interpretation we formalize consists of:
(1) the power for the data subject to demand rectification

when the data processed by the controller is inaccurate
for the purpose it is processed

(2) a duty held by the controller to rectify the data without
undue delay when the subject demands it

(3) the power of the controller to terminate this duty once
their processors use accurate data

The fragment below formalizes (1) as an act-type.

Act demand -rectification
Actor subject
Recipient controller
Related to purpose
Creates rectification -duty()
Holds when (Exists data , processor:
subject -of() && processes () &&

!accurate -for -purpose ())

The action demand-rectification is enabled for a subject if
there is a processor that, on behalf of the controller, processes
inaccurate personal data of the subject. The effect of the
action is to place the duty (point (2) above) on the controller.

The duty is defined by the following duty-type declaration.

Duty rectification -duty
Holder controller
Claimant subject
Related to purpose
Violated when undue -rectification -delay()

Fact undue -rectification -delay Identified by
controller * purpose * subject

Since accuracy depends on purpose, the duty-claim relation
between controllers and subjects is related to a purpose.
Like the conditions of act-types, a violation condition is

evaluated in an environment binding the fields of the types.
The rectification-duty is violated whenever there is undue
delay in between the demand for rectification and the rec-
tification taking place. The usage of the term “undue delay”
in the article leaves room for discussion (deliberately). In
other words, potential cases of delay are subject to quali-
fication. The event rectification-delay, defined below, can
be triggered to indicate that the duty has been violated be-
cause of an undue delay. The fact undue-rectification-delay()
is only created if the rectification duty (still) exists.

Event rectification -delay
Related to controller , purpose , subject
Creates undue -rectification -delay()

When rectification -duty()

Events without an explicit derivation clause hold true by
default, i.e. they have an implicit clause Holds when True. Ac-
tions without a derivation clause are considered ‘postulated
facts’, i.e. they can be created or terminate by other actions.
The application of When in the creating post-condition of

rectification-delay shows that post-conditions can be non-
deterministic expressions evaluating to zero or more in-
stances. All instances computed for a creating (terminating)
post-condition are created (terminated). The post-condition
of rectification-delay computes zero or one instances of
undue-rectification-delay() depending on whether the ex-
pression rectification-duty() holds true. A post-condition
can evaluate to more than one instance by the implicit or
explicit use of Foreach. Any variables that are not bound in
a post-condition are bound by Foreach implicitly. Similarly,
any variables not bound in derivation clauses or violation
conditions are bound by Exists implicitly. If a creating post-
condition evaluates to an instance that already holds true,
then this instance is not added to the configuration a second
time (a configuration is a set). Conversely, if a terminating
post-condition evaluates to an instance that does not hold
true, then terminating this instance has no effect.
The controller can relieve itself of the rectification-duty

when its processors use accurate data for the given purpose.

Act rectified -personal -data
Actor controller
Recipient subject
Related to purpose
Terminates rectification -duty()

,undue -rectification -delay()
Holds when processors -accurate ()

The predicate processors-accurate determines whether all pro-
cessors that process data on behalf of a controller for a spe-
cific subject and purpose use accurate data:

Fact processors -accurate
Identified by controller * subject * purpose
Holds when (Forall processor , data :

accurate -for -purpose ()
When processes () && subject -of())

5.4 Reflections

The GDPR case study presented in this section demonstrates
that eflint can be used to formalize, rather concisely, norms
described in significant, real-world regulations. Although not
shown in this paper, the formalization can be used to assess
concrete cases and can be used to reason about the com-
pliance of running systems. The web-interface for eFLINT
provides an example scenario and demonstrates case assess-
ment with the GDPR specification [32]. In future work we

eFLINT: a Domain-Specific Language for Executable Norm Specifications GPCE, Generatic Programming: Concepts & Experiences, 2020

intend to give a comprehensive account of a generic data-
sharing architecture that involves normative actors for regu-
latory services, showing in particular how multiple eflint
specifications co-exist and how eflint is used to enforce
compliance of software with respect to multiple regulations,
policies and contracts.

In the design of eflint, focus has been on the possibility
to simultaneously use specifications in isolation – typically
with a finite domain – as well as in in running systems –
typically with an open-ended domain. To this end, the lan-
guage has a reactive, REPL-oriented design, based on [33],
supporting manual exploration and enabling external sys-
tems to trigger actions and events. This motivation guided
other design choices as well, such as the semantics of Foreach
and the ability to redefine types to form specialized domains.
The ability to redefine types makes it possible to reuse a
norm specification across different applications in which
certain concepts, such as data of the GDPR, are concretized
differently.
Omitting formal arguments in constructor applications

has significantly improved the brevity of the GDPR specifi-
cations. Moreover, by hiding the structure of data, clauses
of type declarations read almost like natural text and less
like programming instructions. For example, the derivation
clause Holds when consent() reads more natural than Holds

when consent(subject,controller,purpose). The downside is the
(mental) effort required to reproduce the full constructor
applications whenever a detailed reading of the code is nec-
essary. This effort can be greatly reduced with IDE support,
e.g. by showing the declaration of a type when holding the
cursor over a constructor.

The distinction between derived facts and postulated facts
is a crucial feature of eflint. Derivation clauses effectively
describe logical implications of the kind that are common
in logical programming. However, the consequents are not
limited to Boolean formulas. For example, in the following
code, the type wealth always has exactly one instance corre-
sponding to the sum of all people’s savings.

Fact person
Fact balance Identified by Int
Fact balance -of Identified by person * balance
Fact wealth Identified by Int Derived from

Sum(Foreach balance -of : balance -of.balance)

An important aspect of postulated facts is that their validity
is established externally. In the current implementation, facts
are proactively provided by an external system. However,
the implementation can be extended to support on-demand
requests. Determining the validity of a fact can then be del-
egated to a relevant authority, e.g. a health-care provider
confirming the validity of a receipt to support an insurance
claim. Further reflections are in comparison to related work.

6 RELATEDWORK

The aspects of norms automated by software are roughly
divided into structural aspects – such as production, instan-
tiation and publication – and dynamic aspects – such as
implementation, modification, termination, monitoring and
enforcement. On the structural side, standards have been
developed for the digital representation of contracts (e.g.
Oasis eContracts [6]) and for referring to sources of law
(e.g. MetaLex, Akomo Ntoso, Juriconnect and ECLI). Type-
declarations in eflint can easily be extended with references
to sources, e.g. using MetaLex [2], making it possible to re-
late components of traces in the transition system to sources,
further enhancing explainability. A predecessor of eflint
demonstrated this capability and has been used to discover
inconsistencies in sources of norms [34]. Natural language
processing can assist with the interpretation process, in-
troducing the necessary structure to allow contracts to be
analyzed by software [4, 35]. However, legal experts and pol-
icy makers are not all programmers, and certain information
required to compute with norms is not present in sources,
e.g. the structure of, and relations between, values. This ob-
servation has motivated and influenced the development of
eflint.

The computational theory underneath eflint is most sim-
ilar to event calculus [16] and its simplified variants [24]. In
the variants of [5, 21], time is represented as a sequence
of (distinct) time points. At each time point, certain flu-
ents are stated to hold true by the HoldsAt(f , t) predicate
(with f a fluent and t a time point). Events initiate or ter-
minate fluents at certain time points according to the predi-
cate Initiates(e, f , t) or Terminates(e, f , t) (with e an event).
The judgment Happens(e, t) states that event e takes place
at time t . A collection of axioms determines that initiated
fluents hold true until they are terminated, that terminated
fluents do not hold until they are initiated (again) and that
the correct fluents are initiated and terminated after events
happen. The facts of eflint correspond to the fluents of
the event calculus and time points can be seen as identi-
fiers for configurations, i.e. HoldsAt(f , t) states that fact f
is in configuration t . The creating and terminating post-
conditions of actions and events in eflint correspond to
judgments involving the Initiates and Terminates predicates
respectively (for every possible time point). The derivation
clauses of fact-type declarations introduce rules of the form
HoldsAt(f1, t) ∧ ... ∧ HoldsAt(fk , t) =⇒ HoldsAt(fk+1, t).
Expressions in eflint are thus interpreted as logical formu-
lae with Forall and Exists implying the usage of first-order
logic. Halpern and Weissman discuss the use of first-order
logic to describe and reason about policies, identifying in
particular a number of first-order languages with different
characteristics regarding the complexity of reasoning [11].

GPCE, Generatic Programming: Concepts & Experiences, 2020 L. Thomas van Binsbergen, Lu-Chi Liu, Robert van Doesburg, and Tom van Engers

A scenario in eflint corresponds to a set of concrete judg-
ments of the form Happens(e, t). However, Happens(e, t) can
be stated for multiple instances of e and the same t , i.e. mul-
tiple events can happen simultaneously, which is not true
for the actions and events of eflint. Perhaps eflint can
be extended with declarations of composite events for this
purpose. The notions of action-violation and duty-violation
used by eflint can be formulated as logical predicates. A
translation from eflint to answer set programming based on
the connection with the event calculus is being considered.
Several formal languages for norms are based on exten-

sions to the event calculus such as Symboleo [28] and In-
stAL [20]. Besides the event calculus, Symboleo and eflint
are also related in their Hohfeldian foundations. In Sym-
boleo obligations and powers are instantiated by ‘triggers’.
In eflint, derivation clauses can be used for this purpose.
However, in eflint expressions are always evaluated in the
current configuration, whereas Symboleo is true to the event
calculus in that expressions concern the entire timeline.
Significant work exists about the formalization, analysis

and enforcement of specific kinds of policies such as policies
for access control and network policies [1] (e.g. firewall con-
figurations), of which a survey is given by Jabal et al [14]. The
eflint language is instead used to describe a wide variety
of normative sources such as laws, regulations, policies and
contracts. The Margrave Policy Analyzer tool10 can be used
to reason about access control and firewall configurations,
supporting several formalisms such as the widely adopted
XACML for access control [29]. The tool implements several
types of reasoning, including Change-Impact Analysis [8].
Governatori et al. give a detailed overview on the inter-

pretation and lifecycle of contracts in [9]. In terms of the
elements described in [9], eflint is used to make interpreta-
tions explicit, including implied terms and norms that follow
from the integration of the contract in a wider context. With
the example of undue rectification delay and accuracy for
purpose, we have shown how open-textured terms are treated
by explicit qualification in eflint. The automated assessment
of scenarios, explained in Section 4, can assist with dispute
resolution. Section 4 also explains how normative actors can
be used formonitoring and enforcement. The implementation
also enables dynamic modification of contracts by removing
and redefining (act- and duty-) types on-the-fly. Several av-
enues are being considered to support the implementation of
contracts formalized in eflint, including smart contracts.
The idea of smart contracts was first introduced by Sz-

abo [30] as software (or hardware) that facilitates the ex-
changes of digital items of value between two or more par-
ties, with a security mechanism in place that ensures the

10http://www.margrave-tool.org/

exchange at a risk low enough for all parties. With the ad-
vent of blockchain technology [17], smart contracts are now
typically understood as scripts that facilitate the execution of
‘transactions’. The underlying blockchain technology forms a
distributed ledger establishing consensus between potential
witnesses about the history of transactions. A popular smart
contract language is Solidity [7], running on the Ethereum
platform [3, 36]. The Flint language (unrelated to eflint)
offers a safer alternative to Solidity for writing smart con-
tracts running on Ethereum [25]. The Marlowe DSL is used
to develop smart contracts at a higher level of abstraction
that run on the Cardano platform [27].

7 CONCLUSIONS

We have presented eflint, a novel domain-specific modeling
language for formalizing norms found in laws, regulations,
policies, contracts and (data-sharing) agreements. The action-
oriented nature of the language makes it possible to use the
language in a variety of ways, including case analysis and
monitoring the compliance of a running system. Pragmatic
design decisions have been made to allow specifications to
be reused for both types of reasoning and across applications.
In particular, the generic concepts encountered in laws and
regulations can be formalized at a high level of abstraction,
whilst applications of these formalizations can effortlessly
redefine the concepts to match the domain of the application.
Our approach involves the explicit qualification of physical
reality as institutional facts, actions, events and duties. The
normative positions of actors evolve over time as actions are
performed and events take place. The resulting traces can
be used to diagnose violations and to provide explanations
about the decisions made based on the norms.

Acknowledgements. The authors thank colleagues and re-
viewers for their comments and suggestions on earlier ver-
sions of this paper. This work is supported by the NWO
project (628.009.014) Secure Scalable Policy-enforced Dis-
tributed Data Processing (SSPDDP), part of the NWO re-
search program Big Data: Real Time ICT for Logistics.

REFERENCES

[1] E. S. Al-Shaer and H. H. Hamed. 2004. Modeling and Management of
Firewall Policies. IEEE Transactions on Network and Service Manage-
ment 1, 1 (2004), 2–10. https://doi.org/10.1109/TNSM.2004.4623689

[2] A. Boer, R. Hoekstra, E. De Maat, F. Vitali, M. Palmirani, and B. Ratai.
2010. Metalex (Open XML Interchange Format for Legal and Legisla-
tive Resources). Technical Report CWA, Vol. 15710:2010. European
Committee for Standardization (CEN).

[3] V. Buterin. 2018. Ethereum White Paper.
[4] I. Chalkidis, I. Androutsopoulos, and A. Michos. 2017. Extracting

Contract Elements. In Proceedings of the 16th Edition of the International
Conference on Articial Intelligence and Law (ICAIL 2017). ACM, 19–28.
https://doi.org/10.1145/3086512.3086515

http://www.margrave-tool.org/
https://doi.org/10.1109/TNSM.2004.4623689
https://doi.org/10.1145/3086512.3086515

eFLINT: a Domain-Specific Language for Executable Norm Specifications GPCE, Generatic Programming: Concepts & Experiences, 2020

[5] M. Charalambides, P. Flegkas, G. Pavlou, A. K. Bandara, E.C. Lupu,
A. Russo, N. Dulay, M. Sloman, and J. Rubio-Loyola. 2005. Policy
Conflict Analysis for Quality of Service Management. In 6th IEEE
International Workshop on Policies for Distributed Systems and Networks
(POLICY 2005), 6-8 June 2005, Stockholm, Sweden. IEEE, 99–108. https:
//doi.org/10.1109/POLICY.2005.23

[6] OASIS LegalXML eContracts TC. 2007. eContracts Version 1.0 Com-
mittee Specification.

[7] Ethereum. 2016. Solidity Documentation Online. https://solidity.
readthedocs.io. [Online, accessed 7 October 2020].

[8] K. Fisler, S. Krishnamurthi, L.A. Meyerovich, and M.C. Tschantz. 2005.
Verification and Change-Impact Analysis of Access-Control Policies.
In Proceedings of the 27th International Conference on Software Engi-
neering (St. Louis, MO, USA) (ICSE 2005). Association for Computing
Machinery, New York, NY, USA, 196–205. https://doi.org/10.1145/
1062455.1062502

[9] G. Governatori, F. Idelberger, Z. Milosevic, R. Riveret, G. Sartor, and
X. Xu. 2018. On legal contracts, imperative and declarative smart
contracts, and blockchain systems. Artificial Intelligence and Law 26, 4
(2018), 377–409. https://doi.org/10.1007/s10506-018-9223-3

[10] G. Governatori, M.J. Maher, G. Antoniou, and D. Billington. 2004. Argu-
mentation Semantics for Defeasible Logic. Journal of Logic and Compu-
tation 14, 5 (10 2004), 675–702. https://doi.org/10.1093/logcom/14.5.675

[11] J.Y. Halpern and V. Weissman. 2008. Using First-Order Logic to Reason
about Policies. ACM Transactions on Information and System Security
11, 4 (2008), 21:1–21:41. https://doi.org/10.1145/1380564.1380569

[12] H. Herrestad. 1993. Norms and Formalization. In Proceedings of the 3th
International Conference on Artificial Intelligence and Law (ICAIL 1993).
ACM, 175–184. https://doi.org/10.1145/112646.112667

[13] W.N. Hohfeld. 1913. Some Fundamental Legal Conceptions as Applied
in Judicial Reasoning. Yale Law Journal 23(1) (1913), 59–64.

[14] A.A. Jabal, M. Davari, E. Bertino, C. Makaya, S. Calo, D. Verma, A.
Russo, and C. Williams. 2019. Methods and Tools for Policy Analysis.
Comput. Surveys 51, 6, Article 121 (2019). https://doi.org/10.1145/
3295749

[15] A.J.I. Jones and M. Sergot. 1996. A Formal Characterisation of Insti-
tutionalised Power. Logic Journal of the IGPL 4, 3 (06 1996), 427–443.
https://doi.org/10.1093/jigpal/4.3.427

[16] R.A. Kowalski and M.J. Sergot. 1986. A Logic-based Calculus of Events.
New Generation Computing 4, 1 (1986), 67–95. https://doi.org/10.1007/
BF03037383

[17] S. Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash system.
(2008).

[18] D. Nute. 2003. Defeasible Logic. InWeb KnowledgeManagement and De-
cision Support, O. Bartenstein, U. Geske, M. Hannebauer, and O. Yoshie
(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 151–169.

[19] Council of the EU. 2016. General Data Protection Regulation.
[20] J. Padget, E. Elakehal, T. Li, andM. De Vos. 2016. InstAL: An Institutional

Action Language. Law, Governance and Technology Series, Vol. 30.
Springer Verlag, 101.

[21] A. Russo, R. Miller, B. Nuseibeh, and J. Kramer. 2002. An Abductive
Approach for Analysing Event-Based Requirements Specifications. In
Logic Programming, 18th International Conference, ICLP 2002, Copen-
hagen, Denmark, July 29 - August 1, 2002, Proceedings (LNCS, Vol. 2401),
P.J. Stuckey (Ed.). Springer, 22–37. https://doi.org/10.1007/3-540-
45619-8_3

[22] M. Ruta, F. Scioscia, S. Ieva, G. Capurso, A. Pinto, and E. Di Sciascio.
2018. A Blockchain Infrastructure for the Semantic Web of Things.
In Proceedings of the 26th Italian Symposium on Advanced Database
Systems (CEUR Workshop Proceedings, Vol. 2161). CEUR-WS.org.

[23] M. Ruta, F. Scioscia, S. Ieva, G. Capurso, and E. Di Sciascio. 2017.
Semantic Blockchain to Improve Scalability in the Internet of Things.
Open Journal of Internet of Things 3 (2017), 46–61.

[24] F. Sadri and R.A. Kowalski. 1995. Variants of the Event Calculus. In
Logic Programming, Proceedings of the Twelfth International Conference
on Logic Programming, Tokyo, Japan, June 13-16, 1995, L. Sterling (Ed.).
MIT Press, 67–81.

[25] F. Schrans, D. Hails, A. Harkness, S. Drossopoulou, and S. Eisenbach.
2019. Flint for Safer Smart Contracts. https://arxiv.org/pdf/1904.06534.
pdf.

[26] J.R Searle. 1996. The construction of social reality. Penguin Books.
[27] P.L. Seijas, A. Nemish, D. Smith, and S. Thompson. 2020. Marlowe:

implementing and analysing financial contracts on blockchain. In
Workshop on Trusted Smart Contracts (Financial Cryptography 2020).

[28] S. Sharifi, A. Parvizimosaed, D. Amyot, L. Logrippo, and J. Mylopoulos.
2020. Symboleo: Towards a Specification Language for Legal Contracts.
In 28th IEEE Int. Requirements Engineering Conf. (RE 2020). IEEE.

[29] OASIS Standard. 2013. eXtensible Access Control Markup Language
(XACML) Version 3.0. http://docs.oasis-open.org/xacml/3.0/xacml-3.0-
core-spec-os-en.html.

[30] N. Szabo. 1997. Formalizing and Securing Relationships on Public
Networks. First Monday 2, 9 (1997). https://doi.org/10.5210/fm.v2i9.548

[31] L.T. van Binsbergen. 2020. Haskell prototype implementation of the
eFLINT language. https://gitlab.com/eflint/haskell-implementation.
[Online, accessed 7 October 2020].

[32] L.T. van Binsbergen and G. Sileno. 2020. Web-interface for automatic
case assessment in eFLINT. http://ltvanbinsbergen.nl/publications/
eflint/online/gpce2020/. [Online, accessed 8 October 2020].

[33] L. T. van Binsbergen,M. VeranoMerino, P. Jeanjean, T. van der Storm, B.
Combemale, and O. Barais. 2020. A principled approach to REPL inter-
preters. In Proceedings of the 2020 ACM SIGPLAN International Sympo-
sium on New Ideas, New Paradigms, and Reflections on Programming and
Software (GPCE 2020). ACM. https://doi.org/10.1145/3426428.3426917

[34] R. van Doesburg, T. van der Storm, and T. van Engers. 2016. CALCULE-
MUS: Towards a Formal Language for the Interpretation of Normative
Systems. In AI4J Workshop at ECAI 2016 (AI4J 2016). 73–77.

[35] T. van Engers and R. van Doesburg. 2015. At Your Service, On the
Definition of Services from Sources of Law. In Proceedings of the 15th
International Conference on Artificial Intelligence and Law (ICAIL 2015).
ACM, 221–0225. https://doi.org/10.1145/2746090.2746115

[36] D.D. Wood. 2014. Ethereum: a secure decentralised generalised trans-
action ledger.

[37] H. Zhou, X. Ouyang, J. Su, C. de Laat, and Z. Zhao. 2019. Enforcing
trustworthy cloud SLA with witnesses: A game theory-based model
using smart contracts. Concurrency and Computation: Practice and
Experience (2019), e5511. https://doi.org/10.1002/cpe.5511

[38] M. Zichichi, M. Contu, S. Ferretti, and V. Rodríguez-Doncel. 2020.
Ensuring Personal Data Anonymity in Data Marketplaces through
Sensing-as-a-Service and Distributed Ledger. In Proceedings of the 3rd
Distributed Ledger TechnologyWorkshop Co-located with ITASEC (CEUR
Workshop Proceedings, Vol. 2580), F. Chiaraluce and L. Mostarda (Eds.).
CEUR-WS.org.

https://doi.org/10.1109/POLICY.2005.23
https://doi.org/10.1109/POLICY.2005.23
https://solidity.readthedocs.io
https://solidity.readthedocs.io
https://doi.org/10.1145/1062455.1062502
https://doi.org/10.1145/1062455.1062502
https://doi.org/10.1007/s10506-018-9223-3
https://doi.org/10.1093/logcom/14.5.675
https://doi.org/10.1145/1380564.1380569
https://doi.org/10.1145/112646.112667
https://doi.org/10.1145/3295749
https://doi.org/10.1145/3295749
https://doi.org/10.1093/jigpal/4.3.427
https://doi.org/10.1007/BF03037383
https://doi.org/10.1007/BF03037383
https://doi.org/10.1007/3-540-45619-8_3
https://doi.org/10.1007/3-540-45619-8_3
https://arxiv.org/pdf/1904.06534.pdf
https://arxiv.org/pdf/1904.06534.pdf
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html
https://doi.org/10.5210/fm.v2i9.548
https://gitlab.com/eflint/haskell-implementation
http://ltvanbinsbergen.nl/publications/eflint/online/gpce2020/
http://ltvanbinsbergen.nl/publications/eflint/online/gpce2020/
https://doi.org/10.1145/3426428.3426917
https://doi.org/10.1145/2746090.2746115
https://doi.org/10.1002/cpe.5511

	Abstract
	1 Motivation
	2 Legal foundations
	3 Language overview
	4 Implementation
	5 Case study: GDPR
	5.1 Concept definitions
	5.2 Consent
	5.3 The right to rectification
	5.4 Reflections

	6 Related work
	7 Conclusions
	References

