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Chapter 1

Introduction

This document serves as the documentation and specification of the Reowolf project, aiming to
provide connectors as a generalization of BSD-sockets for multi-party communication over the
Internet.

The Reowolf project started in November, 2019. It is supported by the Next Generation In-
ternet Privacy & Trust Fund (NGI-Zero PET), a fund established by NLnet with financial support
from the European Commission’s Next Generation Internet programme, under the aegis of DG
Communications Networks, Content and Technology under grant agreement No. 825310 (Hori-
zon 2020). NLnet Foundation is a non-governmental public benefits organization that “has been
financially supporting organizations and people that contribute to an open information society.
It funds those with ideas to fix the internet.”

1.1 Audience

Readers are expected to be somewhat familiar with Internet architecture and basic protocols
such as IP, ICMP, TCP, UDP; existing routing infrastructure and services such as DHCP, DNS;
systems programming using the C language with POSIX or UNIX-like operating systems; net-
work programming experience using sockets and application layer protocols such as HTTP,
FTP, SMTP, or any other application layer protocol typically implemented using sockets; and
experience using a programming language similar to C or Java.

Chapters whose contents build upon existing literature include a final section on bibliograph-
ical remarks, giving readers an entry point to understanding more technical details for those
missing relevant background knowledge.

1.2 Vision and Mission

As more Internet traffic is encrypted to enhance the privacy of its users, its nature is less insight-
ful to network operators. This might lead to inefficient routing of traffic, the inability to monitor for
abuse, and unfair networking practices. The vision of this project is to build new communication
methods that increase user privacy and trustworthiness of Internet infrastructure, aimed at sep-
arating private message contents from the description of network communication. In the end,
this might result in an alternative to deep packet inspection for network operators that better
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2 CHAPTER 1. INTRODUCTION

protects privacy for users, and higher performance of complex data streaming applications by
increasing throughput and decreasing latency.

Reowolf aims to replace BSD sockets with connectors for communication on the Internet.
Connectors generalize sockets, facilitating multi-party communication according to an explicitly-
expressed protocol description in Reowolf’s Protocol Description Language (PDL). The use
of these textual protocol descriptions allows applications to express their requirements on the
nature of the traffic to the underlying network communication infrastructure at a higher level
of abstraction. This abstract representation serves a dual purpose: (1) applications are able
to relegate the implementation of coordination logic to Reowolf itself, becoming more modular
and re-usable, and (2) protocol descriptions act as a vehicle for communicating the abstract
requirements and intent of communication sessions to humans and machines alike, allowing
for optimizations in middleware all along the network path, and the development of standard
libraries for protocols with useful, verified properties.

From a more practical point of view, Reowolf allows the implementation of application-
specific firewalls. In current practice, it is unknown to operating systems what network behavior
applications do expect and wish to handle normally, versus what network behavior is unwanted
or unsolicited. By using Reowolf, applications declare using the Protocol Description Language
all permitted interactions over one or more data streams; other behavior is explicitly disallowed.
Thus, traffic that does not conform to the protocol description is necessarily unwanted, and Re-
owolf implementations can use this information for increasing visibility in protocol violations that
may signal network intrusion or defects. Moreover, this inspection of traffic can happen also
within the network infrastructure, not only on the edge of the network. If applications apply this
technique, a more reliable network infrastructure in the long run may result.

1.3 Goals

The Reowolf project’s main objective is the design and implementation of connectors. We first
focus on functional aspects to establish a baseline for correctness and functionality. Specifically,
our core goals are:

1. designing the connector application programming interface (Chapter 3),

2. designing the protocol description language (Chapter 4),

3. defining and relating the semantics of protocols and connectors (Chapter 5),

4. designing and implementing a reference implementation, (Chapter 6),

5. demonstrating functionality through a number of detailed examples, (Chapter 10)

After we are effectively able to demonstrate functionality, we will focus on reliability, efficiency,
and backwards compatibility. What follows explores various avenues of performance optimiza-
tion and features for increased safety to demonstrate Reowolf’s potential. More specifically,
further goals are:

1. demonstrating prevention, detection and recovery from distributed peers deviating from
the configured protocol (Chapter 7)

2. demonstrating a number of optimization opportunities, possibly applicable to only a subset
of the full protocol description language. (Chapter 8),
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3. maintain backwards compatibility with existing Internet infrastructure, and existing socket-
based applications. (Chapter 9).

This project aims to produce a high-quality reference implementation to form the groundwork
for future research assignments and development efforts.

1.4 Milestones

This section presents an overview of the document as a collection of incremental deliverables,
categorized by the appropriate milestone.

Milestone Due Date Document Deliverable

1. Design of the API and
protocol language

02/12/2019 Chapter 2 provides an overview on the design of
connectors and protocols, and their relationship to
existing socket programming paradigms. Chapter 3
details API and usage of connectors for communica-
tion as presented to an application developer. Chap-
ter 4 defines Reowolf’s Protocol Description Lan-
guage (PDL), whose role as a semantics for com-
municating connectors is described in Chapter 5.

2. Naïve implementation 03/02/2020 Chapter 6 provides a textual description for the ref-
erence implementation for creation, management
and usage of connectors for communication and ex-
plains the workings of the implementation. This in-
cludes sections for elaborating the means by which
connectors identify and execute communication to
the satisfaction of all peers’ protocols (Section 6.1),
and distributed consensus and synchronization to
maintain a consistent distributed state. Chapter 10
demonstrates, through concrete examples in the
C language, the use of the implementation for net-
work communication.

3. Interoperability 03/08/2020 Chapter 9 explores extensions to the reference im-
plementation to facilitate interoperability with appli-
cations built atop BSD-style network sockets. It ex-
plains the so-called ‘socket sandwich’. Connectors
provide UDP mediator components for backwards-
compatible communications over UDP with hosts
on the network. This chapter describes the imple-
mentation of backwards compatibility, and provides
a concrete example of applications built on top of
pseudo-sockets in the C language.
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4. Deviation detection 30/03/2020 Chapter 7 expands upon the reference implementa-
tion from Chapter 6 to make connectors robust to
the deviations of individual networked peers from
the configured protocol. This includes detection
and removal of preventable deviations, and a roll-
back mechanism for recovering a consistent state
when conflicts between peers’ protocols cannot be
resolved within an arbitrary timeout.

5. Local optimization 03/04/2020 Chapter 8 describes improvements to the reference
implementation which optimizes the utilization of
resources supporting communicating components
within a shared memory space. This includes the
decoupling of logical and transport-layer channels,
and allows for more efficient transport and sharing
of message contents between components.

6. Middleware optimization 29/06/2020 Chapter 8 describes modifications and additions to
the reference implementation which facilitates the
detection and application of optimizations that arise
in the context of particular communication sessions.
Ultimately, these take the form of processes coordi-
nating efforts to share session information, and mu-
tating their internals to simplify and transform the
nature of the session in a fashion that has no ob-
servable effect on user programs.

7. Benchmarking 05/10/2020 Chapter 11 shows performance benchmarking of
the connector runtime implementation. This in-
cludes (a) a description of the experimental design
and methodology, with concrete code snippets, (b)
concrete measurements presented in plots, (c) an
objective interpretation of the measurements, and
(d) discussion of the relationship between observa-
tions, and properties of the implementation. The set
of tests are incremental in nature, teasing out prop-
erties in isolation first for simple connectors on a sin-
gle host, and then ranging up to large, complex con-
nectors spanning the internet. Finally, the effects
of session optimizations described in Chapter 8 are
exemplified, comparing session performance before
and after session transformations.
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8. Documentation 02/11/2020 The documentation is revised to provide a consis-
tent view of the final design and implementation,
with inconsistent, preliminary information retained in
the appendix to avoid confusion, while preserving
relevant, historical work. Chapter 10 gives an entry-
point for users, in the form of a bottom-up guide to
network programming with the connector API, and
protocol programming with PDL. The section pro-
vides concrete examples for essential protocols, ex-
pressed in PDL, exemplifies their usage, and rea-
sons about their behavior in the abstract. The chap-
ter also shows the correspondence between PDL
and its predecessor language, Reo, by comparing
and contrasting the two languages, and embedding
canonical Reo protocols in PDL. Finally, example
programs demonstrate the ways in which connec-
tors are able to inter-operate with sockets.
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Chapter 2

Design Overview

This chapter serves as a top-down overview of the project’s most essential concepts, and ubiq-
uitous terminology. The chapter introduces, and inter-relates concepts to be expanded upon in
other chapters in a bottom-up fashion.

2.1 Terminology

Reowolf sits at the union of the domains of discourse of computer networking, coordination
languages, and formal logic. By design, the conventions set by BSD-style sockets are followed.
Reowolf uses familiar terminology for concepts already present in each of its domains. However,
certain terms have a different meaning in each domain. To avoid such ambiguity, this section
enumerates the most essential terms and, for each, gives a short definition.

• Protocol

1. Physical protocol, protocols that enable electromagnetic signal exchange,
for example Fast Ethernet, Gigabit Ethernet and Wi-Fi.

2. Internet protocol, protocols that enable exchange of data on an established link,
for example Internet Protocol (IP) and Internet Control Message Protocol (ICMP).

3. Transport layer protocol, protocols that are implemented on top of the network layer,
for example Transmission Control Protocol (TCP), User Datagram Protocol (UDP).

4. Application layer protocol, protocols implemented on top of the transport layer,
for example HTTP, FTP, SMPT.

5. Logical protocol, a logical specification of the constraints on the observable behavior
of data streams, defined in Chapter 4.

• Port

1. Physical port, e.g. an Ethernet port as found on switching devices.

2. Transport layer port, e.g. as used in transport layer protocols TCP and UDP.

3. Logical port, a point of streaming data that can be constrained by a logical protocol.

4. Input port, a logical port from which a protocol may causally receive data.

5. Output port, a logical port to which a protocol may send data.

7



8 CHAPTER 2. DESIGN OVERVIEW

• Component

1. Physical component, such as an electrical or optical wire, antenna, or device.

2. Logical component, a contributor of logical behavior to a communication session in
the form of constraints over the session’s observable behavior. Owns a set of logical
ports.

3. Protocol component, a logical component whose behavior is declared in the form of
a logical protocol, acting as a behavioral specification (see Chapter 4).

4. Primitive component, a protocol component which participates in the session’s com-
munication by sending and receiving messages through its ports; primitive compo-
nents are not defined in terms of other components.

5. Composite component, a protocol component constructed as a composition from
other protocol components, possibly recursively defined (see Chapter 4).

6. Native component, a logical component of which the logical protocol is unknown.
Typically implemented by a process running one some host (see Chapter 3); each
connector facilitates a user’s application process assuming the role of a native com-
ponent in a communication. Like primitive components, native components are able
to participate in the session’s communication by exchanging messages.

• Node

1. Node, a vertex in a mathematical graph structure.

2. Physical node, a physical machine in a network.

3. Peer, the entity that is uniquely identified by an Internet address and reachable via IP.
A peer is not necessarily one physical machine, as the same physical machine can
have multiple IP addresses, and the same IP address can be allocated to multiple
physical machines (cf. DNS root server anycast).

4. Reo node, a logical component with variable number of input ports and variable num-
ber of output ports, such that at most one input port fires at a time and its data is
synchronously replicated to all output ports.

• Connector

1. Connector handle, a resource obtained by native applications when executing pro-
grams that make use of the application programming interface, defined in Chapter 3.

2. Connector, an abstraction of the communication session between a set of peers. The
behavior of a connector is prescribed by a logical protocol.

3. Connector component, a logical component. After a connector is fully connected, we
refer to the connector component to mean the composition of all configured logical
protocols. The connector component is unique after a connector is fully connected,
since all peers are known.

• Synchronous

1. Synchronous operations block until some return event has occurred.

2. Synchronous events occur within the same synchronous round of a connector.

3. Two components must synchronize as soon as a port that is channeled from one
component’s output to the other component’s input fires.
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• Imp

1. Interface Message Processor (historically) a distinct physical node used as a gateway
to the ARPANET network.

2. An entity that implements the interface between a native application and the rest of a
connector at run-time. The behavior of a connector is realized through communica-
tion among imps.

2.2 Connectors

For applications making use of BSD-style sockets, sockets represent both (a) the application’s
‘handle’ on the communication, and (b) one logical endpoint for two-party message exchange
with a networked peer. Applications that require multi-party communication or careful coordina-
tion between peers build this functionality into the application itself on top of sockets.

Reowolf introduces the connector as an application’s ‘handle’ on communication session in-
volving any number of networked peers, connected by any number of logical, two-party message
channels. Most essentially, connectors enable applications synchronously exchanging sets of
messages with their peers over the network. However, the real utility of connectors is their ex-
tensive configurability, communicated from application to connector as a protocol description,
expressed in Protocol Description Language (PDL), a purpose-built language, specific to the
domain of high-level protocol specification. These protocols allow an application to describe
their requirements of the session’s behavior, effectively (a) delegating the work of multi-party
coordination to the connector itself, and (b) explicitly, and unambiguously declaring their require-
ments in a form that can be shared between connectors, over the network and with middleware.
Connectors realize the session layer in the OSI model by realizing the communications of the
application-layer (‘above’) through the utilization of transport-layer resources (‘below’).

This section gives an overview of the relationship between the application and its connec-
tor, and their respective views on, and responsibilities to, realizing the communication session.
The connector API which exposes this functionality to user applications is explained in detail
in Chapter 3. Reowolf’s definitions of ‘protocol’, and ‘session’ are given precisely in Chapter 5,
while PDL, which expresses protocols which reason about these notions is defined in Chap-
ter 4. The implementation of connectors, facilitating the emergence of the session at runtime is
explained in Chapter 6.

Over their lifetime, connectors are in one of two states, corresponding to the sequence of
two phases of the session: setup and communication. To follow, the task of the connector in
each of these phases is explained in more detail.

2.2.1 Setup

The connector structure is initialized into the setup phase. For the duration of the phase, the
application developer incrementally (a) defines their local view on the session’s protocol, and (b)
acquire local resources for channel endpoints, along with annotations for how they are realized
as transport-layer channels. Both processes occur together by way of a builder pattern, allowing
the application to refine their session’s protocol piece by piece until they are ready to begin
communicating. The setup phase ends at the first synchronization barrier: connection, the
procedure which finalizes the prepared resources, and after which the session’s connectors
form the distributed connector runtime, a system of distributed, cooperating connectors.
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During the phase, the application incrementally provides the connector with configuration
data. This includes (a) a protocol description data structure, initially parsed from a textual form
in PDL, (b) annotations of the relationships between logical ports, forming logical channels, and
(c) annotations of the relationships between logical ports and transport-layer endpoints. At the
moment the connector connects, the configuration is realized all at once, through its participa-
tion in a sequence of distributed meta-control algorithms to establish a consistent distributed
state with the session’s other connectors.

2.2.2 Communication

A set of connectors enter the communication phase together, synchronously starting the com-
munication session. Henceforth, each connector mediates the communication between its ap-
plication, and the session at large.

In the communication phase, the distributed connector runtime works to advance the state
of the session by identifying and realizing message exchange such that (a) every peer has
a consistent view on every interaction, i.e., a message’s sender and recipient agree on the
message’s contents, and (b) interactions don’t conflict with the session’s protocol.

The role of the application in communication is simply to submit their requirements of the
session’s behavior, one round at a time. The role of the distributed connector runtime is to make
a best effort in identifying and realizing the progression of the session’s state one interaction at
a time, such that all peers’ requirements are satisfied. In this fashion, applications are free to
request any communication behavior at all, regardless of the session’s configuration in the setup
phase. When no satisfactory, consistent interactions can be found, the connector protects the
integrity of the session by rejecting the application’s most recent requests by raising an error,
allowing the application to try again. This relationship between an application and its connector
facilitates applications implemented in terms of their local view of the protocol, and trusting
the connector to protect the state of the session from all errors that would arise from outside
influences.



Chapter 3

Application Programming Interface

This chapter lays out the application programmer interface (‘API’) for the connector runtime
implementation, which provides connectors as a generalization of BSD-style sockets for network
communication. This interface exposes the functionality of the runtime, whose implementation
is first explained in Chapter 6, and expanded with additional features in Chapters 7, and 9.
Examples of how this API is used by an application for communications are given in Chapter 10.

Over its development, the connector API has been revised to reflect the development of
the implementation. This includes simplification and streamlining of the essential functionality,
and extensions to expose features added late in the development cycle of the project. The
preliminary API design can be found in Chapter B in the Appendix.

3.1 C Connector API

This section lays out and explains the connector API for the C programming language, reflecting
the state of the implementation at the end of the project. A connector is the bridge between a
user’s application and the session, potentially spanning the network. The design of the connec-
tor API is designed to mirror the behavior of protocol components, whose abstract definition in
relation to sessions is given in Chapter 5, and whose definition is the syntax of PDL is described
in Chapter 4.

The header file which exposes the connector API is provided in Section 3.1.1; its contents
are explained in Sections 3.1.2 and 3.1.3, approximately partitioning procedures according to
state of the connector in which they enable the construction and set-up of the session, and the
user’s communications, respectively.

Note that the connector API follows the C idiom of encoding error information using signed in-
teger return codes. For all procedures for which this is the case, the return result of RW_TL_ERR
indicates that a textual description of the error was written to the thread-local buffer, whose
contents are readable via a pointer acquired by reowolf_error_peek. The precise value of
RW_TL_ERR is defined in Section 3.1.1 to follow.

3.1.1 Connector Header File

This sections lays out the header file for the C language API in its entirety, for reference in the
sections to follow.

11
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#ifndef REOWOLF_HEADER_DEFINED
#define REOWOLF_HEADER_DEFINED

#include <stdarg.h>
#include <stdbool.h>
#include <stdint.h>
#include <stdlib.h>

#define RW_BAD_FD -5
#define RW_BAD_SOCKADDR -8
#define RW_CLOSE_FAIL -4
#define RW_CONNECT_FAILED -6
#define RW_LOCK_POISONED -3
#define RW_OK 0
#define RW_TL_ERR -1
#define RW_WOULD_BLOCK -7
#define RW_WRONG_STATE -2

typedef struct Arc_ProtocolDescription Arc_ProtocolDescription;
typedef struct Connector Connector;
typedef uint32_t ConnectorId;
typedef uint32_t U32Suffix;

typedef enum {
EndpointPolarity_Active,
EndpointPolarity_Passive,

} EndpointPolarity;

typedef enum {
Polarity_Putter,
Polarity_Getter,

} Polarity;

typedef struct {
ConnectorId connector_id;
U32Suffix u32_suffix;

} PortId;

typedef struct {
uint8_t ipv4[4];
uint16_t port;

} FfiSocketAddr;

const uint8_t *reowolf_error_peek(uintptr_t *len);

// protocol descriptions
Arc_ProtocolDescription *protocol_description_parse(const uint8_t

*pdl, uintptr_t pdl_len);↪→
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Arc_ProtocolDescription *protocol_description_clone(const
Arc_ProtocolDescription *pd);↪→

void protocol_description_destroy(Arc_ProtocolDescription *pd);

// connector: setup + miscellaneous
Connector *connector_new(const Arc_ProtocolDescription *pd);
Connector *connector_new_with_id(const Arc_ProtocolDescription *pd,

ConnectorId connector_id);↪→

Connector *connector_new_logging(const Arc_ProtocolDescription *pd,
const uint8_t *path_ptr, uintptr_t path_len);↪→

Connector *connector_new_logging_with_id(const
Arc_ProtocolDescription *pd, const uint8_t *path_ptr, uintptr_t
path_len, ConnectorId connector_id);

↪→

↪→

void connector_add_port_pair(Connector *connector, PortId
*out_putter, PortId *out_getter);↪→

int connector_add_net_port(Connector *connector, PortId *port,
FfiSocketAddr addr, Polarity port_polarity, EndpointPolarity
endpoint_polarity);

↪→

↪→

int connector_add_udp_mediator_component(Connector *connector, PortId
*putter, PortId *getter, FfiSocketAddr local_addr, FfiSocketAddr
peer_addr);

↪→

↪→

int connector_add_component(Connector *connector, const uint8_t
*ident_ptr, uintptr_t ident_len, const PortId *ports_ptr,
uintptr_t ports_len);

↪→

↪→

int connector_connect(Connector *connector, int64_t timeout_millis);

void connector_destroy(Connector *connector);
void connector_print_debug(Connector *connector);

// connector: communication
int connector_get(Connector *connector, PortId port);
int connector_put_bytes(Connector *connector, PortId port, const

uint8_t *bytes_ptr, uintptr_t bytes_len);↪→

intptr_t connector_next_batch(Connector *connector);
intptr_t connector_sync(Connector *connector, int64_t

timeout_millis);↪→

const uint8_t *connector_gotten_bytes(Connector *connector, PortId
port, uintptr_t *out_len);↪→

#endif /* REOWOLF_HEADER_DEFINED */

3.1.2 Setup

Communications in a persistent session necessitate some steps be taken to prepare the con-
nector for its role in the session before communications can begin. New connectors are initial-
ized given a Arc_ProtocolDescription structure, facilitating their configuration. As such,
the first procedure a user is likely to call is protocol_description_parse, allowing the
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initialization of a protocol description structure, given a textual protocol description; for more
information about PDL, the textual language for describing protocols, refer to Chapter 4.

Connector structures are initialized using connector_new, provided a protocol descrip-
tion; the connector begins in the setup state. Note that this procedure is provided alongside
variants which allow for some minor meta-configuration of the connector; for example, con-
nector_new_logging will create a connector which will dump logging information to a file
created with the given path.

As with all components, the native component corresponding to the user’s application, owns
a set of ports, i.e., ends of logical communication channels with components in the session.
During the setup phase, the user is able to add channels and components to the session, such
that they begin communication in sync with the native component itself. Initially, the native has
an empty set of owned ports, but has some procedures available for acquiring ownership of
newly-created ports (equivalently, we say ports are added to the native’s interface):

1. connector_add_port_pair
A pair of ports, joined by a newly-created logical channel are created, and their identifiers
written via out-pointer to the user’s provided variables. If the user provides NULL out-
pointers, the respective identifier is not written, but the channel is nonetheless created.
Both ports are added to the interface of the native. The polarities of both ports are output,
input, in the order they appear in the function declaration. Figure 3.1 shows the result of
this procedure for a newly created connector.

native native

P0

P1

Figure 3.1: Component graph before (left) and after (right) the application
uses connector_add_port_pair to initialize ports P0 and P1, linked by
a logical channel, with output and input polarities respectively.

2. connector_add_net_port
A single port is created, and written to the user-provided variable via out-pointer, unless
the pointer is NULL, in which case it is not written to. This procedure facilitates up to two
connectors to cooperate in the creation of a logical channel backed by a network chan-
nel, by providing both ends separately. To facilitate their rendezvous, the call requires
additional transport-layer information, including a socket address (IP address and port in-
teger), as well as the ‘role’ of the connector in this rendezvous, determining whether the
underlying transport channel will be created via a connect or accept call with the pro-
vided socket address. Lastly, the caller can specify which polarity they wish the port to
have (input or output). The new port is added to the native component’s interface. Note
that the transport channel backing the newly-created port is created until the setup pro-
cedure ends with connector_connect; as such, any malformation of the transport- or
logical-channel will not be detected until then. Figure 3.2 shows the result of this proce-
dure for a newly created connector.

3. connector_add_udp_mediator_component
This procedure initializes an intrinsic udp mediator component (whose functionality is de-
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native native ?

P0 ?

Figure 3.2: Component graph before (left) and after (right) the application
uses connector_add_net_port to initialize port P0, linked with a logi-
cal channel to some unknown peer, to be discovered through a transport
channel. In this case, the user requests that P0 has output polarity.

scribed in Chapter 9), along with two logical channels for sending messages to, and re-
ceiving messages from the new component. Per channel, one of the two new ports is
added to the interface of the native component, and returned to the user via whichever
subset of the user-provided out-pointers’ values are not NULL. Figure 3.3 shows the result
of this procedure for a newly-created connector.

native native UDP mediator

P0 ?

?P1

Figure 3.3: Component graph before (left) and after (right) the application
uses connector_add_udp_mediator_component to initialize an intrin-
sic UPD mediator component, linked to the native by a pair of newly-created
logical channels, returned to the user as the pair of ports P0 and P1 with
output and input polarities respectively.

The real strength of connectors is in the way they facilitate their participants configuring the
behavior of the session to follow by instantiating protocol components. As far as an application
developer is concerned, this can be understood as connectors providing a means for the injec-
tion of ‘actors’ into the session, managed by the connector, and drawing their behavior from the
protocol configuration provided in connector_new by calling connector_add_component.
This procedure mirrors the new keyword in PDL, which allows protocol components to create
other protocol components, and likewise, connector_add_component accepts a set of the
calling component’s ports whose ownership should be moved to that of the newly-created com-
ponent. Furthermore, the procedure requires the user to provide the identifier of the protocol
component, as it occurs in the protocol provided as the connector’s configuration (as an ASCII-
encoded string). Figure 3.4 shows the result of this procedure in the case of a native component
with interface port set {P0, P1}, creating a component with identifier ‘foo’, as it appears in the
protocol description, and instantiated such that ownership of the native port {P1} is moved to
the new component.

The setup procedure ends when connector_connect completes successfully, indicating
that the connector has transitioned to the communication phase, and that all port and compo-
nent resources initialized during the setup phase were completed successfully.
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native native foo

P0

P1

P0 P1

Figure 3.4: Component graph before (above) and after (below) the applica-
tion uses connector_add_component to initialize a component with iden-
tifier ‘foo’, and move ports {P1} from the interface of the native to the newly-
created component.

Regardless of the connector’s phase, it can be destroyed with connector_destroy to
free the structure’s resources, and to exit the session if it was previously connected. If any of a
session’s participating connectors is destroyed, the other connectors can no longer succeed in
any new communications, but they can still access their connectors; as such, they each must
be destroyed on their own to avoid leaking memory.

Protocol descriptions passed to connectors are moved to the connector’s internals, and
must not be destroyed. Otherwise, protocol descriptions can be explicitly destroyed using pro-
tocol_description_destroy. In the event the application would like to instantiate several
connectors with the same protocol configuration, Arc_ProtocolDescription structures can
be replicated safely using protocol_description_clone; the returned clone must be de-
stroyed independently of the original. Note that this procedure performs a ‘shallow’ copy, relying
on atomic reference counting to decouple the lifetimes of the replicas; as such, it is advisable
to prefer cloning protocol descriptions in this manner to repeatedly parsing the same textual
description (which results in a larger memory footprint).

3.1.3 Communication

Once in the communication phase, the connector serves to facilitate the participation of the
native component in a sequence of synchronous rounds until the session ends. In each round,
the native is able to exchange up to one message (a variable-length byte sequence) through
each port in the native’s interface (i.e., through each port the native owns). The centerpiece
of the communication phase is the procedure connector_sync, which is the only procedure
involving distributed synchronization, and with each successful completion, pushes the state of
the session forward one round. All other procedures can be understood as occurring ‘between’
rounds, and involve either (a) preparing message exchange operations to be performed in the
next round, or (b) reflecting on the result of the previous round.

Calls preceding connector_sync work to modify the state of the connector using the
builder pattern, to incrementally specify the behavior permitted of the ports in the native’s in-
terface in the round to follow. This state is encoded as a set of synchronous batches, stored
by the connector. The initial state of the batches is a single batch (with index zero) containing
zero port operations, and after every connector_sync, this initial state is reset. The meaning
of the batches is the expression of a set of options, permitting the connector runtime to realize
the outcome as the result of a non-deterministic choice; as such, offering a singleton batch set
offers only one possible outcome, and two or more batches ensure that the message exchange
operations of at most one batch’s operations will succeed, i.e., the success of port operations
within different batches is mutually-exclusive, making it safe to alias message data if and only
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if the aliasing occurs across batches. The following procedures permit the user to modify the
connector’s batches:

1. connector_get
Given the identifier to an input port p in the native component’s interface, express the
requirement that p receives a message in the next round. If successful, p is added to
the batch with the largest index. The call fails if the native component does not own a
port identified with p, p has output polarity, or the batch with the largest index already
contains p.

2. connector_put_bytes
Given the identifier to an output port p in the native component’s interface, express the
requirement that p sends a given message in the next round. If successful, p is added to
the batch with the largest index. The call fails if the native component does not own a port
identified with p, p has input polarity, or the batch with the largest index already contains p.

3. connector_next_batch
A new, empty batch is added to the set of batches, given an index i+1 where i is the current
maximal batch index. Effectively, this ‘finalizes’ the contents of the batch with index i , and
makes it such that subsequent calls to connector_get and connector_next_batch
modify batch i + 1 until the next call to connector_next_batch or connector_sync.

The connector_sync procedure, provided an optional timeout duration (in milliseconds),
blocks the caller thread until the round succeeds or fails. The timeout duration expresses an
urgency to return control to the caller once the timeout has elapsed; however, the consistency
of the distributed session is prioritized over this urgency, and so the successful, prompt return
of control flow is subject to the behavior of the session’s other peers. The return result of the
call is an integer, for which non-zero values encode success, and the index of the batch that
succeeded. Negative return values express the occurrence of an error, whose precise nature
depends on the integer (see the header file for the precise definitions of the error variants). Note
that one connector returns an error to some round if and only if all connectors return an error to
the same round, though not necessarily the same error. In the event of a recoverable error, the
state of the session was successfully rolled back, as if the call had not occurred at all, such that
it can be retried. The contents of the batches, however, are not restored.

3.2 C Pseudo-Socket API

Section 3.1.2 defined the procedure connector_add_udp_mediator_component for use in
the setup of sessions in which communications cross the boundary between connectors and
sockets. To facilitate the use case of connectors being used in place of sockets in a user’s
application, connectors expose the pseudo socket API, provided as a separate header file,
pseudo_socket.h; Chapter 9 explains these features in detail, along with how they are im-
plemented:

#include <sys/socket.h> // defines {sockaddr, socklen_t}
int rw_socket(int domain, int type, int protocol);
int rw_connect(int fd, const struct sockaddr *address, socklen_t

address_len);↪→

int rw_bind(int socket, const struct sockaddr *address, socklen_t
address_len);↪→
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int rw_close(int fd);
ssize_t rw_send(int fd, const void * message, size_t length, int

flags);↪→

ssize_t rw_recv(int fd, void * buffer, size_t length, int flags);



Chapter 4

Protocol Description Language

This chapter defines Protocol Description Language (PDL) in a bottom-up fashion, oriented
around the structure of its syntax. Section 4.3 and onward, the definition of well-formedness
criteria for protocols is introduced. In Chapter 5 to follow, the semantics of protocols is explained
in relation to that of connectors, laying the groundwork for the definition of a correct connector
implementation.

PDL draws inspiration from general-purpose programming languages C and Java, both per-
vasively known, and used in the domain of network programming. It is also largely based
on Reo, drawing inspiration from its compositional, interaction-based model of concurrency.
As such, the reader may wish to refer to the cited specifications or standards for C [ISO18],
Java [JSGB00], and textual Reo (‘Treo’) [DA18].

4.1 Notation

For specifying syntactical structure we employ two notation formats: one for specifying the
lexical grammar, another for specifying the abstract syntax tree.

Augmented Backus-Naur Form (ABNF) is a context-free grammar specified in RFC5234. It
is used for specifying the lexical grammar of the Protocol Description Language. ABNF consists
of a number of production rules. Each production rule is given a case-insensitive name and a
defining expression.

Expression in ABNF are simple or complex. Simple expressions are formed by a terminal
value or by a name of a production rule. Complex expressions are formed by the operations:
concatenation or alternative of two expressions, repetition with optional minimum and maximum
occurrences, grouping an expression in parentheses, or an optional expression.

CRLF = CR LF
; Concatenation of CR and LF rules

HTAB = %x09
; Horizontal tab (encoded value)

LF = %x0A
; Line feed

CR = %x0D
; Carriage return

SP = " "

19
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; Space character (literal value)
VCHAR = %x21-7E

; Visible characters in 7-bit ASCII
WSP = SP / HTAB

; Alternative of SP and HTAB rules
ALPHA = %x41-5A / %x61-7A

; Value range for letters A-Z or a-z
DIGIT = %x30-39

; Value range for digits 0-9

The terminal values are given either directly (e.g. %x09) or by specifying a value range
(e.g. %x21-7E). The above example shows rules which are commonly used in ABNF. The sen-
tence following a semicolon are comments that describe what the expression above it matches
as terminal value.

We specify the abstract syntax tree using pseudo-code that should feel familiar to readers
who have seen Java, C++ or the Interface Description Language (IDL) published by Object
Management Group (OMG) before. We focus on specification in an object-oriented manner:
elements in the abstract syntax tree are objects. Using this pseudo-code, we define interfaces
which may inherit from (multiple) other interfaces, and (abstract) classes that may extend one
super class and inherit from (multiple) interfaces, and have methods that provide access to its
attributes.

interface InputPosition {
String getFilename();
int getLine();
int getColumn();
int getOffset();

}
class Element {}
class SyntaxElement extends Element {

InputPosition getPosition();
}

Above is an example interface and two classes. These represent the position of a source
file, and a syntactical element that has a position in a source file. The first interface, InputPo-
sition, has four attributes: filename, line number, column number, and absolute offset. The
second interface, SyntaxElement, has one attribute: a reference to an object that implements
the first interface. We shall assume that we treat returned objects as immutable, not to be
modified by users of these interfaces and classes.

In some superficial way, our interface definitions can also be seen as a context-free grammar.
Each interface or class is a production rule. Inheritance specifies alternative choices. Interface
attributes are the names of the concatenation of other productions.

4.2 Context-Free Grammars

4.2.1 Lexical Analysis

The lexical analysis of the Protocol Description Language consists of two conceptual layers:
lower-level character input handling and higher-level syntax grammar. Processing of these two
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layers can happen in separate phases, or at the same time. We specify the lexical analysis
by defining a grammar. Our goals in specifying this grammar are: unambiguous parsing and
keeping implement to a minimum.

Input Handling

The following rules are used mainly to process character input data, filtering out comments and
white space. We assume the input data is consumed per octet (8 bit). Input data matching
these rules is ignored and not significant.

; The following terminals are ignored by the parser
cwb = cw

; cwb must match a word boundary
cw = comment / WSP / newline
comment = line-comment / block-comment
newline = CRLF / LF

; Special treatment of new lines
line-comment = "//" *(WSP / VCHAR) newline
block-comment = "/*" *block-no-eob "*/"

; A block comment may contain anything except "*/"
block-no-eob = "*" (%x00-2E / %x30-FF)

/ (%x00-29 / %x2B-FF)
; Content of block may include non-visible characters

The difference between rule cwb and cw is that the former rule is a marker that serves as a
reminder that we expect a word boundary; both rules consume the same terminals. Note that
cw stands for comment or whitespace, but a newline is also accepted.

We treat new lines specially. We accept either a line feed, or a carriage return immediately
followed by a line feed. Input handling also accepts just carriage returns as new line, but must
greedily consume a line feed if it is immediately following a carriage return. With respect to the
position in the input data, all three forms result in the line count to increase by one, and the
column to be reset to zero.

A comment is either a line comment that is followed only by visible characters in the ASCII
range, or a block comment that may contain arbitrary binary data except for the "*/" sequence
that marks the end of the comment. A line comment ends after the end of line is encountered.

; Common symbols
binry-operator = "||" / "&&" / "|" / "^" / "&" / "==" /

"!=" / "<=" / ">=" / "<" / ">" / "<<" /
">>" / "+" / "-" / "*" / "/" / "%"

assgn-operator = "=" / "*=" / "/=" / "%=" / "+=" / "-=" /
"<<=" / ">>=" / "&=" / "^=" / "|="

unary-operator = "++" / "--" / "+" / "-" / "~" / "!"

; Common tokens
char-constant = "'" 1*(SP / %x21-26 / %x28-7E) "'"

; Character literals are arbitrary length
int-constant = DIGIT *(DIGIT/"a"/"b"/"c"/"d"/"e"/"f"/"x")

; Integer literals are arbitrary length
ident = 1*ALPHA *(ALPHA / DIGIT / "_")
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; An identifier is an alphanumeric sequence
; that starts with an alphabetical character.

We commonly recognize certain characters as binary operators, assignment operators or
unary operators. Later syntactic structures make sure to specify operator precedence and as-
sociativity. Remark that "+" and "-" can be confused, as both are binary and unary operators.

We also recognize constants and identifiers. Character constants may appear as at least
one character, enclosed within single quotes and restricted to the visible characters in the ASCII
range except for the single quote itself. Similarly, integer constants are recognized whenever
a digit is encountered and hexadecimal constants such as 0xEA and octal constants such as
076 can be recognized: but processing of the constant value itself happens later. Identifiers,
representing names within a protocol description, must start with an alphabetic character, but
may be followed by any alphanumeric sequence of characters including underscores.

keywords = "import" / "composite" / "primitive" / "in" / "out" /
"channel" / "msg" / "boolean" / "byte" / "short" /
"int" / "long" / "null" / "true"/ "false" /
"if" / "else" / "while" / "break" / "continue" /
"synchronous" / "return" / "assert" /
"goto" / "skip" / "new"

builtin = "put" / "get" / "fires" / "create"

We recognize keywords and built-in functions. Keywords are used to structure definitions,
parameters, types and statements. The important keywords are "composite", "primitive"
and "synchronous". Built-in functions are special. When displaying protocol descriptions,
keywords and built-ins are typically shown in a boldface type.

type = "in" / "out" / "msg" / "boolean" /
"short" / "int" / "long" / ident

; A type is a keyword or an identifier
method = builtin / ident

; A method is a built-in or symbolic
field = "length" / ident

; A field is length or an identifier

We further distinguish three classes of identifiers, each permitting different keywords. A type
is either an input, output, message, boolean, integer of various sizes, or otherwise identified.
A method is either a built-in function or symbolic: the meaning of the latter depends on its
context, and can refer either to a symbolic function or a component. A field is an identifier, but
we recognize "length" as a special field. "length" is not a keyword, however.

Besides the specified keywords and built-ins, identifiers should not be equal to other key-
words or built-ins to avoid confusion. The grammar does not explicitly formulates this require-
ment, but a parser must avoid keywords or built-ins to be used as identifiers.

Syntax Structure

Parsing a protocol description begins with the file production rule.

file = *cw *(pragma *cw) *(import *cw) 1*(symbol-def *cw)
; A file comprises one or more definitions
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pragma = "#" [VCHAR *(WSP / VCHAR)] newline
; Pragma until end of line

import = "import" 1*cw (ident *("." ident)) *cw ";"
; Import declarations

Each file consists of a number of pragmas that begin with "#". These are used to convey
version information of the Protocol Description Language, to allow for future language changes.
Following the pragmas, zero or more imports of qualified identifiers, being identifiers separated
by dots. A reverse domain name convention for imports is used, similar to Java packages. An
application may register PDL files using these qualified identifiers, as a basic module system for
protocol descriptions. Imports that are starting with the std identifier are reserved for predefined
standard imports, and cannot be registered.

symbol-def = fun-def / component-def
; Symbol definition

fun-def = type-annot 1*cw ident *cw fparams *cw block
component-def = composite-def / primitive-def

; Component definition is either composite or primitive
composite-def = "composite" 1*cw ident *cw fparams *cw block
primitive-def = "primitive" 1*cw ident *cw fparams *cw block

The rest of a protocol description consists of symbol definitions. Every symbol definition
consists of an identifier (the symbol), formal parameters, and a block. There are two kinds of
symbol definitions: function definitions and component definitions. A function definition addition-
ally consists of a return type. A component definition is either composite or primitive. Identifiers
of symbol definitions must not be equal to built-ins.

type-annot = type [*cw "[]"]
var-decl = type-annot 1*cw ident

; Variable declaration (optionally an array)
fparams = "(" *cw [var-decl *(*cw "," *cw var-decl)] *cw ")"

; Formal parameter list

The formal parameters of a symbol definition are given as a list within parentheses. Each
formal parameter is of some type. Each formal parameter declares a variable that is in the
scope of the block of a symbol definition. Types may be arrays, as indicated by "[]" following
the type, but arrays of arrays are not allowed.

block = "{" *(*cw (channel-decl/mem-decl)) *(*cw stmt) *cw "}"
channel-decl = "channel" 1*cw ident *cw "->" *cw ident *cw ";"
mem-decl = type-annot 1*cw ident *cw "=" *cw expr

*(*cw "," *cw ident *cw "=" *cw expr) *cw ";"

A block consists of zero or more local declarations, followed by zero or more statements.
A local declaration is either a channel declaration or a memory declaration. Channel declara-
tions start by the "channel" keyword, followed by two identifiers separated by an arrow "->".
Memory declarations start by a type annotation, followed by one or more identifiers with an ex-
pression that designate the initial value of the memory. The local variable declarations declare
variables that are in scope of the statements and expressions in the same block.
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stmt = block
/ ident *cw ":" *cw stmt
/ "if" *cw pexpr *cw stmt [*cw "else" *cwb stmt]
/ "while" *cw pexpr *cw stmt
/ "break" *cwb [ident *cw] ";"
/ "continue" *cwb [ident *cw] ";"
/ "synchronous" *cw (fparams *cw stmt / block)
/ "assert" *cwb expr *cw ";"
/ "return" *cwb expr *cw ";"
/ "goto" 1*cw ident *cw ";"
/ "skip" *cw ";"
/ "new" 1*cw method-expr *cw ";"
/ expr *cw ";"

A statement is either a block, a skip statement, a labeled statement, an if statement, a
while statement, a break statement, a continue statement, a synchronous statement, a return
statement, an assert statement, a goto statement, a new statement or an expression. Except for
blocks, labels and expressions, the first keyword designates the kind of statement. The "else",
"break", "continue", "synchronous", "return" and "assert" keywords must be at a
word boundary, to prevent matching a following keyword or identifier without white space in
between. To prevent confusion between variable declarations and expressions, synchronous
statements without formal parameters are always followed by a block statement.

A statement may be labeled so break, continue and goto statements can refer to the label.1

These statements are collectively refered to as control flow disruption statements. Not all control
flow disruptions are valid. Labeled break and continue statements are also found in Java. The
labeled goto statement is found in C.

There is an explicit skip statement, in contrast to languages such as C, C++ and Java,
because in PDL empty blocks are not allowed. The else-branch of an if statement is optional,
but is eagerly associated to avoid ambiguity.

if(true) if(true) put(x); else put(y);
if(true){if(true) put(x); else put(y);}
if(true){if(true) put(x);}else put(y); // !!!

if(i<j) if(j<k) if(k<n) put(x); else put(y); else put(z);
if(i<j){if(j<k){if(k<n) put(x); else put(y);}else put(z);}
if(i<j){if(j<k){if(k<n) put(x);}else put(y);}else put(z); // !!!

Above example consists of two triples of similar statements. The first two statements are
parsed in the same way, but this differs from the third statement. Eager association of the else-
branch means that inner if-statements associate to the else branch; accolades can be used to
change the standard grouping, as is done in the third statement.

pexpr = "(" *cw expr *cw ")"
expr = assgn-expr
assgn-expr = cond-expr [*cw assgn-operator *cw expr]
cond-expr = concat-expr [*cw "?" *cw expr *cw ":" *cw expr]
concat-expr = lor-expr *(*cw "@" *cw lor-expr)
lor-expr = land-expr *(*cw "||" *cw land-expr)

1See the Structured Programming with goto Statements article by Donald E. Knuth (1974) for technical discussion.
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land-expr = bor-expr *(*cw "&&" *cw bor-expr)
bor-expr = xor-expr *(*cw "|" *cw xor-expr)
xor-expr = band-expr *(*cw "^" *cw band-expr)
band-expr = eq-expr *(*cw "&" *cw eq-expr)
eq-expr = rel-expr *(*cw ("=="/"!=") *cw rel-expr)
rel-expr = shift-expr *(*cw ("<="/">="/"<"/">") *cw shft-expr)
shift-expr = add-expr *(*cw ("<<"/">>") *cw add-expr)
add-expr = mul-expr *(*cw ("+"/"-") *cw mul-expr)
mul-expr = unary-expr *(*cw ("*"/"/"/"%") *cw unary-expr)
prefix-expr = *(unary-operator *cw) postfix-expr
postfix-expr = primary-expr *(*cw postfix)
postfix = "++" / "--" / index / select
index = "[" *cw expr [*cw ":" *cw expr] *cw "]"
select = "." *cw field
primary-expr = pexpr/constant-expr/method-expr/array-expr/ident
constant-expr = int-constant/char-constant/"null"/"true"/"false"
method-expr = method *cw "(" *cw [expr *(*cw "," *cw expr)] *cw ")"
array-expr = "{" *cw [expr *(*cw "," *cw expr)] *cw "}"

An expression is a C-like expression. Some expressions are surrounded by parentheses,
but this is to avoid ambiguity or to override operator precedence. An assignment expression
allows assignment of right-hand side expressions to left-hand side variables. A conditional
expression tests some expression, and has a true expression after "?" and a false expression
after ":". We consider, generally speaking, binary expressions and unary expressions. The
binary expressions consists of a binary operator and left and right operand expressions, the
unary expressions of a unary operator and an operand expression. Index expressions and slice
expressions represent array access and select expressions represent field access.

See also Table 4.1 for operator precedence and associativity.2 The arity of an operators
determines the number of operands. Operators with a higher precedence are parsed as the
operands of operators with a lower precedence. For example, 1+2*3 is parsed as 1+(2*3),
where the expression 2*3 is an operand of the addition operator, since multiplication has a
higher precedence than addition.

Conditional operators are parsed specially. The true expression of a conditional expression
is parsed as if surrounded by parentheses. Otherwise, it is right-to-left associative. For example,
x?y?z:w:w is parsed as x?(y?z:w):w, and x?y:z?w:w is parsed as x?y:(z?w:w) and not
as (x?y:z)?w:w.

Constant expressions, method expressions, array construction expressions and variable ex-
pressions are primary expressions. Method expressions are parsed specially. A method con-
sists of an identifier m followed by parentheses in which zero or more comma-separated argu-
ment expressions occur. Array construction expressions also consists of zero or more comma-
separated element expressions, but surrounded by accolades instead of parentheses. Array
constructions are used to give variable number of method arguments.

Harmless ambiguities

The statement if (x) {} is ambiguous, as it can be parsed either as an if statement with
variable x as test expression and an empty block statement as true body, or with an expression
statement as true body that is an array construction expression without any elements. A parser

2Compare with https://en.wikipedia.org/wiki/Operators_in_C_and_C++#Operator_precedence

https://en.wikipedia.org/wiki/Operators_in_C_and_C++#Operator_precedence


26 CHAPTER 4. PROTOCOL DESCRIPTION LANGUAGE

Operator Name Fixity Arity Level Associativity
(_) parentheses circumfix unary 1 n/a
_++ increment postfix unary 2 n/a
_-- decrement postfix unary 2 n/a
_[_] array indexing suffix binary 2 left-to-right
_._ field access infix binary 2 left-to-right
++_ increment prefix unary 3 n/a
--_ decrement prefix unary 3 n/a
+_ positive prefix unary 3 n/a
-_ negative prefix unary 3 n/a
!_ logical not prefix unary 3 n/a
~_ bitwise not prefix unary 3 n/a
_*_ multiplication infix binary 4 left-to-right
_/_ division infix binary 4 left-to-right
_%_ remainder infix binary 4 left-to-right
_+_ addition infix binary 5 left-to-right
_-_ subtraction infix binary 5 left-to-right
_<<_ bitwise shift left infix binary 6 left-to-right
_>>_ bitwise shift right infix binary 6 left-to-right
_<=_ less or equal infix binary 7 left-to-right
_<_ less than infix binary 7 left-to-right
_>=_ greater or equal infix binary 7 left-to-right
_>_ greater than infix binary 7 left-to-right
_==_ equal infix binary 8 left-to-right
_!=_ not equal infix binary 8 left-to-right
_&_ bitwise and infix binary 9 left-to-right
_ˆ_ bitwise xor infix binary 10 left-to-right
_|_ bitwise or infix binary 11 left-to-right
_&&_ logical and infix binary 12 left-to-right
_||_ logical or infix binary 13 left-to-right
_?_:_ conditional mixfix ternary 14 special
_=_ assignment infix binary 14 right-to-left
_*=_ multiplied " infix binary 14 right-to-left
_/=_ divided " infix binary 14 right-to-left
_%=_ remained " infix binary 14 right-to-left
_+=_ added " infix binary 14 right-to-left
_-=_ subtracted " infix binary 14 right-to-left
_<<=_ shifted left " infix binary 14 right-to-left
_>>=_ shifted right " infix binary 14 right-to-left
_&=_ bitwise and’d " infix binary 14 right-to-left
_ˆ=_ bitwise xor’d " infix binary 14 right-to-left
_|=_ bitwise or’d " infix binary 14 right-to-left

Table 4.1: Operator arity, precedence, and associativity. Shown in ascend-
ing level. A lower level means a higher precedence and vice versa. The
underscores are operands and can be complex expressions or simple ex-
pressions: a constant or variable.



4.2. CONTEXT-FREE GRAMMARS 27

prefers the first alternative, but the second alternative is harmless as the array construction
expression is side-effect free and has the same behavior as an empty block statement.

Other ambiguous language constructs may be present but currently unknown.

4.2.2 Abstract Syntax Tree

During the parsing of input data, an abstract syntax tree is constructed. The resulting tree does
not correspond 1-to-1 to the production rules of the grammar given in Section 4.2.1, and some
information originally present is removed (such as parentheses and implicit precedence).

class Element {}
class SyntaxElement extends Element {

InputPosition position;
}
class ExternalElement extends Element {

Import external;
}

We shall describe the hierarchy of elements of the abstract syntax tree. Certain elements in
the syntax tree are imported from an external source. Each element is either present from the
original source at some position (see Section 4.1) or external.

interface Identifier {
String getValue();

}
class ExternalIdentifier extends ExternalElement
implements Identifier {

String value;
}
class SourceIdentifier extends SyntaxElement
implements Identifier {

String value;
}

Identifiers are either externally provided or present in the source file. An externally provided
identifier results from importing symbol declarations. If an identifier is present in the source file,
it has a position through inheritance from syntactical element. This pattern appears for other
elements too.

interface Type {
byte TYPE_INPUT = 1;
byte TYPE_OUTPUT = 2;
byte TYPE_MESSAGE = 3;
byte TYPE_BOOLEAN = 4;
byte TYPE_BYTE = 5;
byte TYPE_SHORT = 6;
byte TYPE_INT = 7;
byte TYPE_LONG = 8;
byte TYPE_SYMBOLIC = -1;
byte getSort();
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}
interface SymbolicType extends Type {

Identifier getIdentifier();
}
class BasicType implements Type {

byte sort;
}
class SourceType extends SyntaxElement implements Type {

byte sort;
}
class ExternalSymbolicType extends ExternalElement

implements SymbolicType {
ExternalIdentifier identifier;

}
class SourceSymbolicType extends SourceType

implements SymbolicType {
SourceIdentifier identifier;

}

There are ten types, the first nine are types with a corresponding keyword. The tenth type is
symbolic and has the additional identifier attribute.

interface TypeAnnotation {
Type getType();
boolean isArray();

}
class BasicTypeAnnotation implements TypeAnnotation {

Type type;
boolean array;

}
class SourceTypeAnnotation extends SyntaxElement

implements TypeAnnotation {
SourceType type;
boolean array;

}

In variable declarations, such as local variable declarations and formal parameter declara-
tions, a type annotation is provided that specifies the type and whether the variable is an array.

abstract class Constant extends SyntaxElement {}
class NullConstant extends Constant {}
class TrueConstant extends Constant {}
class FalseConstant extends Constant {}
class CharacterConstant extends Constant {

String value;
}
class IntegerConstant extends Constant {

String value;
}
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Constant expressions, as present in the source, are either a Boolean constant, a character
constant, or an integer constant. The value attribute of the latter is the raw character string
from the input file: its integer value has to be calculated later. Not all character strings are valid
constants: for example, 093 would be accepted by the parser but is an invalid octal number.

abstract class Method extends SyntaxElement {}
class BuiltinMethod extends Method {

final static byte METHOD_PUT = 0;
final static byte METHOD_GET = 1;
final static byte METHOD_FIRES = 2;
final static byte METHOD_CREATE = 3;
byte sort;

}
class SymbolicMethod extends Method {

SourceIdentifier identifier;
SymbolDeclaration declaration;

}

There are two kinds of methods as they appear in the source: built-ins and symbolic meth-
ods. The terminology of method refers to either a function or a component, depending on its
context in which it is used. The declaration a symbolic method refers to is resolved after parsing
and applying grammar rules.

class ProtocolDescription extends SyntaxElement {
List<Pragma> pragmas;
List<Import> imports;
List<SymbolDefinition> symbolDefinitions;
List<SymbolDeclaration> symbolDeclarations;

}
class Pragma extends SyntaxElement {

String value;
}
class Import extends SyntaxElement {

String value;
}

The root element of a protocol description consists of three attributes: a list of pragmatics, as
they appear at the beginning of the file, a list of qualified imports, and a list of symbol definitions.
The import value attribute is the qualified identifier. After resolving the imports, all symbol
declarations are known, relative to which symbolic methods are resolved.

interface SymbolDeclaration {
Identifier getIdentifier();
List<TypeAnnotation> getParameterTypes();

}
interface ComponentDeclaration extends SymbolDeclaration {}
interface FunctionDeclaration extends SymbolDeclaration {

TypeAnnotation getReturnTypeAnnotation();
}
abstract class ExternalSymbolDeclaration extends ExternalElement
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implements SymbolDeclaration {
ExternalIdentifier identifier;
List<TypeAnnotation> parameterTypes;

}
class ExternalComponentDeclaration extends ExternalSymbolDeclaration
implements ComponentDeclaration {}
class ExternalFunctionDeclaration extends ExternalSymbolDeclaration
implements FunctionDeclaration {

TypeAnnotation returnTypeAnnotation;
}
abstract class SymbolDefinition extends SyntaxElement
implements SymbolDeclaration, VariableScope {

SourceIdentifier identifier;
List<FormalParameter> formalParameters;
BlockStatement block;

}
class FunctionDefinition extends SymbolDefinition
implements FunctionDeclaration {

SourceTypeAnnotation returnTypeAnnotation;
}
abstract class ComponentDefinition extends SymbolDefinition
implements ComponentDeclaration {}
class CompositeDefinition extends ComponentDefinition {}
class PrimitiveDefinition extends ComponentDefinition {}

A symbol declaration consists of an identifier and a signature, being a list of type annotations
of the parameters. A symbol declaration is either a component declaration or a function decla-
ration. Function declarations moreover have a return type annotation. Symbol declarations are
either imported from some external source, or are given in the source by a symbol definition.
Symbol definitions consists of formal parameters, which includes the names of parameters. The
signature of a symbol definition is obtained by stripping the formal parameter names, leaving
only their types.

interface VariableScope {
VariableScope getParent();
List<? extends VariableDeclaration> getVariableDeclarations();

}
abstract class VariableDeclaration extends SyntaxElement {
}
class FormalParameter extends VariableDeclaration {

SourceTypeAnnotation typeAnnotation;
SourceIdentifier identifier;

}
class LocalVariableDeclaration extends VariableDeclaration {}
class ChannelDeclaration extends LocalVariableDeclaration {

SourceIdentifier from_identifier;
SourceIdentifier to_identifier;

}
class MemoryDeclaration extends LocalVariableDeclaration {

SourceTypeAnnotation typeAnnotation;
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SourceIdentifier identifier;
Expression initial;

}

A variable declaration consists of a type annotation and a name. Formal parameters and
local variable declarations are variable declarations. There are two local variable declarations:
channel declarations, and memory declarations. The former consists of two identifiers, rep-
resenting each channel end. The latter consists of an initialization expression that gives the
memory its initial value. Moreover, we have the notion of variable scope: a symbol definition
and a block statement introduce a new variable scope. A variable scope has an optional parent
variable scope, and consists of a list of the variable declarations declared in that scope.

interface LabelScope {
BlockStatement getParentBlock();

}
abstract class Statement extends SyntaxElement {}
class BlockStatement extends Statement
implements VariableScope, LabelScope {

List<LocalVariableDeclaration> locals;
List<Statement> statements;
VariableScope parent;
List<LabeledStatement> labels;

}
class SkipStatement extends Statement {}
class LabeledStatement extends Statement {

SourceIdentifier label;
Statement body;

}
class IfStatement extends Statement {

Expression test;
Statement trueBody;
Statement falseBody;

}
class WhileStatement extends Statement {

Expression test;
Statement body;

}
class BreakStatement extends Statement {

SourceIdentifier label;
WhileStatement target;

}
class ContinueStatement extends Statement {

SourceIdentifier label;
WhileStatement target;

}
class SynchronousStatement extends Statement
implements VariableScope {

List<FormalParameter> formalParameters;
Statement body;
BlockStatement parent;
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}
class ReturnStatement extends Statement {

Expression expression;
}
class AssertStatement extends Statement {

Expression expression;
}
class GotoStatement extends Statement {

SourceIdentifier label;
LabeledStatement target;

}
class NewStatement extends Statement {

MethodCallExpression expression;
}
class ExpressionStatement extends Statement {

Expression expression;
}

A statement is either a block statement, a skip statement, a labeled statement, an if state-
ment, a while statement, a break statement, a continue statement, a synchronous statement,
a return statement, an assert statement, a goto statement, a new statement, or an expression
statement.

A block statement consists of a list of local variable declarations and a list of statements. The
parent variable scope in which the block statement is situated is either a symbol declaration, a
synchronous statement or another block statement. The parent block of a block statement is
nothing if the parent variable scope is a symbol declaration, just the block statement if that is its
parent variable scope, or the parent variable scope of the synchronous statement if that is the
blocks parent variable scope. Moreover, a block consists of a list of labeled statements that are
directly nested under it. A block statement can have zero or more directly nested statements.

A skip statement can be used in place of an empty block statement.
An if statement consists of a test expression and a true body statement or a false body

statement.
A while statement consists of a test expression and a body statement.
Break and continue statements have an optional label; by label resolution the while state-

ment that they refer to is resolved.
A synchronous statement is a variable scope, as it may introduce zero or more formal choice

parameters. A synchronous statement always has a block statement as its parent variable
scope (see Section 4.3.1), not to be confused with the fact that synchronous statements are not
necessarily directly nested under a block statement.

A return statement consists of an expression that describes the return value; and, an assert
statement consists of an expression checked for truth.

A goto statement consists of a label, and the labeled statement it refers to is resolved by
label resolution. In contrast to break and continue statements, goto statements may point to
labeled statements that are in label scope.

A new statement consists of a method call expression; its corresponding symbol declaration
is resolved by method resolution.

An expression statement consists of an expression.

abstract class Expression extends SyntaxElement {
}
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enum AssignmentOperator {
SET, MULTIPLIED, DIVIDED, REMAINED, ADDED, SUBTRACTED,
SHIFTED_LEFT, SHIFTED_RIGHT, BITWISE_ANDED, BITWISE_XORED,
BITWISE_ORED

}
class AssignmentExpression extends Expression {

Expression leftExpression;
AssignmentOperator operator;
Expression rightExpression;

}
class ConditionalExpression extends Expression {

Expression test;
Expression trueExpression;
Expression falseExpression;

}
enum BinaryOperation {

CONCATENATE, LOGICAL_OR, LOGICAL_AND, BITWISE_OR, BITWISE_XOR,
BITWISE_AND, EQUALITY, INEQUALITY, LESS_THAN, GREATER_THAN,
LESS_THAN_EQUAL, GREATER_THAN_EQUAL, SHIFT_LEFT, SHIFT_RIGHT,
ADD, SUBTRACT, MULTIPLY, DIVIDE, REMAINDER

}
class BinaryExpression extends Expression {

BinaryOperation operation;
Expression leftExpression;
Expression rightExpression;

}
enum UnaryOperation {

POSITIVE, NEGATIVE, BITWISE_NOT, LOGICAL_NOT, PRE_INCREMENT,
PRE_DECREMENT, POST_INCREMENT, POST_DECREMENT

}
class UnaryExpression extends Expression {

UnaryOperation operation;
Expression expression;

}
class IndexingExpression extends Expression {

Expression subject;
Expression index;

}
class SlicingExpression extends Expression {

Expression subject;
Expression fromIndex;
Expression toIndex;

}
class SelectExpression extends Expression {

Expression subject;
SourceIdentifier field;

}
class ConstantExpression extends Expression {

Constant value;
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}
class ArrayConstructExpression extends Expression {

List<Expression> elements;
}
class MethodCallExpression extends Expression {

Method method;
List<Expression> arguments;

}
class VariableExpression extends Expression {

SourceIdentifier identifier;
VariableDeclaration declaration;

}

An expression is either an assignment expression, a conditional expression, a binary ex-
pression, a unary expression, an array indexing expression, an array slicing expression, a se-
lect expression, a constant, an array construction expression, a method call expression or a
variable.

An assignment expression assigns the left-hand side expression the value described by
the right-hand side expression. The assignment operator employed may be either setting or
modifying. A set assignment operator indicates that the value of the right-hand side is stored
to what the left-hand side expression describes, discarding the old value of that left-hand side
expression. A modifying assignment operator moreover takes into account the old value of the
left-hand side expression. A multiplied assignment takes the old value of the left-hand side and
multiplies it by the value of the right-hand side; the result is stored to what the left-hand side
expression describes. In a similar way, we have divided (stores the result of dividing the old
value by the right value), remained (stores the remainder of dividing the old by the right value),
added, subtracted, shifted left, shifted right, performing a bitwise AND operation, bitwise XOR
operation, or bitwise OR operation.

A conditional expression consists of a test expression, and a true and false expression.
The truth of the value described by the test expression determines whether the conditional
expression evaluates the true or the false expression.

A binary expression consists of a binary operator and takes a left and a right expression.
The value that a binary expression describes is determined by the value of its directly nested ex-
pressions. The binary operations are: array concatenation, logical and short-circuit OR, logical
and short-circuit AND, bitwise OR, bitwise XOR, bitwise AND, equality or inequality, arithmetic
comparison operations, bitwise shift operations, and the usual arithmetic operations.

A unary expression consists of a unary operator and an expression. The value of a unary
expression is determined by the value of its directly nested expression. The unary operators are:
numerical positive, numerical negative, bit flipping, logical negation, increment and decrement
either giving back the old or the new value.

An array indexing expression takes a subject array and an index. It describes looking up
the value of the subject array at the offset described by the index. An array slicing expression
takes a subject array, and gives as result another array limited between the from index and the
to index. The from index is inclusive, the to index is exclusive, meaning that the length of the
resulting slice is to − from.

A select expression selects a field of its subject. Fields are identifiers. A good example is
the lenght field of an array, indicating the number of elements of the array.

A constant expression describes the value that its constant represent.
An array construction expression takes a list of directly nested expressions and constructs an

array out of it. A method call expression takes a method and a list of directly nested expressions
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as arguments. The method is either a built-in or a symbolic method. In the latter case, the
corresponding symbol declaration is resolved by method resolution.

A variable expression consists of a variable identifier. As the result of variable resolution, the
variable declaration corresponding to the variable is linked to the variable expression.

4.3 Grammar Rules

After lexical analysis an abstract syntax tree is constructed. However, the parsing process is not
yet completed: we check a number of rules to determine the well-formedness of the protocol
description. Moreover, we perform symbol resolution by processing the imported symbol decla-
rations and resolving symbolic references. In a similar manner, but local to each definition, we
also perform variable resolution for variable declarations. Finally, we perform type checking.

One can make use of a general recursor for traversing the abstract syntax tree. The recursor
is specialized to implement each rule. As the recursor traverses the tree it maintains a state,
based on which a decision can be made to explore the tree further, or to raise a syntax error.

4.3.1 Well-formedness

The first list of rules that we check is well-formedness of the protocol description. These rules
are checked in the order as given here, so later rules can assume that the protocol description
is well-formed according to the previous rules. Some checks are semantically motivated: the
protocol description may have no clear meaning if these checks are not performed.

Nested synchronous statements

In the block of every composite definition or function definition, no synchronous statements
may occur either directly or nested under other statements. Within a primitive definition, no
synchronous statement occurs either directly or nested under any other synchronous statement.
The example below demonstrates three violations of this rule:

composite main(in a, out b) {
new other(a,b);
synchronous skip; // illegal

}
int fun(int x) {

synchronous skip; // illegal
return x;

}
primitive other(in a, out b) {

while (fun(1) > 1) {
synchronous { // legal

synchronous skip; // illegal
} } }
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Invalid variable declarations

Node declarations must not occur within function definitions or primitive definitions. A formal
parameter of a synchronous statement of input or output type is invalid. The example below
demonstrates a violation:

primitive dir(in a, out b) {
while (true) {

channel x -> y; // illegal declaration
synchronous skip;

} }

Function return statement

Primitive and composite definitions do not have a return statement. The block statement of a
function definition must return. A statement returns if it is a return statement, or if it is a goto
statement, or if it is a block statement where its last statement returns, or if it is an if statement
where both branches returns, or if it is a while or labeled statement where its statement returns.
All other statements do not return. The following example demonstrates a complex function that
does not return:

int myfun(int x) {
if (x > 0) {

while (x > 0) {
x--;
if (x == 0) skip; // illegal
else return x;

}
} else {

int y = 0;
label:
if (y >= 0) {

goto label;
} else {

y = 5;
return myfun(x + 1);

} } }

Valid occurrences of built-ins

Except for create are built-ins not allowed outside of synchronous blocks. This implies that
these built-ins are not allowed inside composite or function definitions, since they do not have
synchronous blocks.

primitive main(in a, out b) {
int x = 0;
msg y = create(0); // legal
while (x < 10) {

y = get(a); // illegal
synchronous {
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y = get(a); // legal
} } }

Invalid assignment expressions

The left-hand side of an assignment expression must be an assignable expression. A vari-
able expression is assignable. An indexing expression is assignable. A slicing expression is
assignable. A field expression is assignable. All other expressions are not assignable.

Invalid indexing and slicing expressions

The subject of an indexing expression must be an indexable expression. The subject of a
slicing expression must also be an indexable expression. A variable expression is indexable.
A concatenation expression is indexable. An array construction expression is indexable. A
slicing expression is indexable. A select expression is indexable. A method call expression is
indexable. A conditional expression is indexable if its true and false expressions are indexable.
All other expressions are not indexable.

Invalid select expressions

The subject of a field selection expression must be a selectable expression. A variable expres-
sion is selectable. A concatenation expression is selectable. An array construction expression
is selectable. A slicing expression is selectable. An indexing expression is selectable. A select
expression is selectable. A method call expression is selectable. A conditional expression is se-
lectable if its true and false expressions are selectable. All other expressions are not selectable.

4.3.2 Resolution

There are three kinds of resolution that link identifiers to declarations. The first kind of resulotion
is method resolution that links method call expressions to corresponding symbol declarations:
symbol definitions or imported external symbol declarations. The second kind of resolution is
variable resolution that links variable expressions to corresponding variable declarations: formal
parameters or local variable declarations. The third kind of resolution is label resolution that links
identifiers of control flow statements to labeled statements.

Imports

A protocol description can import zero or more qualified identifiers. Each qualified identifier is
either registered, or is a standard import. Below, we list standard imports and what symbol
declarations are imported.

• std.reo — standard Reo connectors:
component sync(in, out)
component syncdrain(in, in)
component syncspout(out, out)
component asyncdrain(in, in)
component asyncspout(out, out)
component merger(in[], out)
component router(in, out[])
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component consensus(in[], out)
component replicator(in, out[])
component alternator(in[], out)
component roundrobin(in, out[])
component reonode(in[], out[])
component fifo(in, out)
component xfifo(in, out, msg)
component nfifo(in, out, int)
component ufifo(in, out)

• std.buf — functions for manipulating message buffers in network byte-order:
function byte writeByte(msg, short, byte)
function short writeShort(msg, short, short)
function int writeInt(msg, short, int)
function long writeLong(msg, short, long)
function byte readByte(msg, short)
function short readShort(msg, short)
function int readInt(msg, short)
function long readLong(msg, short)

Method resolution

Occurrences of imports and symbol definitions result in a list of declarations per protocol de-
scription. Each method expressions that occurs anywhere in a protocol description must refer
to a listed symbol declaration. Otherwise, it is unclear what the method refers to. The process
of checking whether every method expression refers to a known declaration is called method
resolution. It proceeds by listing external and source declarations of composite, primitive and
function definitions. After listing all declarations, method expressions are linked to the external
or source declarations they refer to.

Every symbol declaration consists of a signature. A signature consists of a list of type
annotations, one for each corresponding parameter. A signature is either a component signature
or a function signature. A function signature furthermore has a return type annotation.

Uniqueness of symbol declarations

Every listed declaration, being a source declaration resulting from a symbol definition or an
external declaration from an import, must have a unique identifier.

Valid method call occurrences

Every method call expression must refer to a symbol which is declared. The result of resolving
methods is that each such expression is linked to the corresponding symbol declaration. Within
any symbol definition, no method call expression must refer to a component declaration, except
for method call expressions that occur in a new statement. Moreover, new statements must
only occur in composite definitions, and its method call expression must refer to a component
declaration.
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Variable resolution

In component and function definitions, formal parameters are declared. In block statements,
local variables are declared. In synchronous statements, formal parameters are declared. Each
variable expression must refer to a variable declaration or a formal parameter that is in variable
scope. Otherwise, it is unclear what the variable refers to. The process of checking whether
every variable refers to a variable declaration is called variable resolution. The first step in
variable resolution is to link every scope to its parent scope. Component and function definitions
have no parent scope. A variable is in scope whenever it is declared in any of its surrounding
block statements, or occurs as a formal parameter of a surrounding synchronous statement or
symbol definition. It proceeds by linking every variable occurrence to a variable declaration in
one of its parent scopes.

Block statements can be nested to declare additional local variables. Only statements that
occur within a block can refer to its declared local variables. Outside of the block, those variable
declarations are inaccessible because they are out of scope. It is possible to have two sibling
block statements that declare the same local variable; these are different variable declarations.
In other words, the scope of a block statement is restricted to its nested statements only.

Similar for synchronous statements: only statements that occur within a synchronous state-
ment can refer to its formal parameters. Two sibling synchronous statements may declare the
same formal parameter; these are different variable declarations.

Uniqueness of variable declarations

In every scope, every variable declaration must have a unique identifier. This implies that every
formal parameter must be unique. Every local variable declaration in a block statement must
be unique. Every formal parameter of a synchronous statement must be unique. Moreover,
every variable declaration cannot overshadow identifiers already declared before by a formal
parameter or a local variable.

composite main(in a, out a) { // illegal
new lossysync(a, a);

}
composite main2(in a, out b) {

channel a -> c; // illegal
new lossysync(a, b);

}
primitive lossysync(in a, out b) {

while (true) {
synchronous (int a) { // illegal

if (fires(a) && fires(b)) {
msg x = get(a);
put(b, x);

} else if (fires(a)) {
msg x = get(a);

} else assert !fires(b);
} } }

In above example, formal parameters with the same identifier are illegal. Variable decla-
rations that overshadow a variable already in scope are illegal. Sibling blocks that declare a



40 BIBLIOGRAPHY

variable with the same identifier, as seen in the two cases where both msg x is declared, is al-
lowed. Although the identifier is the same, the two separate blocks declare a different variable.

Label resolution

Occurrences of labeled statements result in a list of labels per block statement. Similar to vari-
able resolutions, labeled statements are bound to their label scope. The scope of the label of
a labeled statement is its surrounding block statement. Each control flow disruption statement
that occurs in a symbol definition must refer to a label that is in scope. The process of check-
ing whether every disruptive statement refers to a label is called label resolution. We already
assume that block statements are linked to a parent variable scope. Thus, for every statement,
it is possible to find its surrounding block statements. We collect the labeled statements that
occur within a block statement.

Uniqueness of labels

In every label scope, every label must have a unique identifier. It is possible for two sibling
blocks to contain labeled statements with the same identifier, but these labels are considered
different.

int main() {
while (true) {

dupl: skip;
}
dupl: goto dupl;

}

In above example the duplicated label is illegal.

Valid control flow disruption statements

A goto statement must refer to a label in scope. A break or continue statement has an op-
tional label. If a label is provided, that label must be in scope and attached directly to a while
statement. If no label is provided, there must be a surrounding while statement.
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Chapter 5

Protocol State Representation

This chapter gives meaning to protocol descriptions, whose syntax is detailed in Chapter 4.
Section 5.1 introduces the table model for executions in discrete, synchronous time steps. Sec-
tion 5.2 provides an informal semantics of PDL, and relates it to an ideal definition of protocol
execution as a set of infinite tables. Section 5.3 introduces semantics for the execution of a
connector, relating it to that of protocols, and ultimately defining a correctness criterion to serve
as the foundation for evaluating the correctness of connector implementations.

5.1 The Table Model

We introduce the table model for reasoning about stateful execution in PDL components and
connectors. First and foremost, a table is a structure with a set of columns, each with a unique
label, and a set of rows, labeled with a whole number. Every combination of column and row
intersects at a table cell, which holds a value.

We say a table corresponds to the run through a primitive component if it wholly represents
the primitive’s values in an observation that can be explained by a trace through its control flow.
The primitive’s local variables (including port variables) are reflected in columns, and the rows
reflect observations of these values in agreement with its definition, one synchronous round at
a time at the end of a synchronous block (see Chapter 4). The semantics of PDL expressions,
statements, etc., are provided more concretely in Section 5.2 to follow. One such table runs
from its initial state in the first row, advancing downward through table rows one at a time. In
a run whose primitive’s control flow reaches the end of the component’s definition, the table
propagates the values of local variables and blocks all its ports (they have the no-message
value) for synchronous rounds forevermore.

The table of a composite component is defined as the combination of the tables of its con-
stituent components, with columns renamed as necessary to avoid unintentional overlap in
variable or port names. As reflected in PDL, composite components are able to fuse a pair of its
constituent components’ ports (one input and one output port) by creating a channel between
them. This fusion is reflected in the composed table if, for every row, the fused columns have
equivalent values. Often, we refer to this as ‘overlapping’ the ports’ columns, and imagine them
as a single, new column. By construction, rows of constituent components are kept ‘in sync’ by
being mapped by the same whole number. The restrictions of the control flow of all constituent
primitives, complete with local variables, are retained in the composite table.
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Conceptually, a protocol description denotes a set of infinite tables, each denoting a unique
execution of the protocol component where there are infinite rows and infinite columns. In
practice, we often reason about particular runs, or finite prefixes of an infinite table. For example,
a practical definition of termination is that a given infinite table has only inactivity (silent port
behavior) in all rows after a finite prefix of activity (non-silent port behavior).

5.2 Protocol Semantics

We shall use the framework of denotational semantics for giving a compositional semantics of
protocol descriptions. The semantics of composite and primitive component definition differ: the
former is declarative, the latter is imperative. The definition of the semantics of components is
given last.

In giving this semantics, we shall assume there are no divergences: the programmer is
assumed to be an expert to ensure that all function definitions and synchronous statements are
terminating. This, obviously, simplifies the presentation of the semantics. In practice, one would
likely count the resources such as space and time consumed, and halt after a certain threshold
has been reached (out of memory, out of time).

5.2.1 Internal Language

We shall restrict ourselves to a subset of the protocol description language. This restricted sub-
set is called the internal language. Conceptually, one can translate the full protocol description
language into this restricted subset, without losing any of the intended meaning. In fact, the
meaning of the full protocol description language is precisely the meaning of its image under
this translation in the semantic definition that follows.

The purpose of the internal language is to allow for a simpler semantic definition than when
working with the full language. The internal language has the following properties:

• Modified assignment statements, e.g. x += 5, are translated into assignment expres-
sions, e.g. x = x + 5.

• Side-effectful expressions are assignments and calls to built-ins. All other expressions are
side-effect free if they do not contain any nested side-effectful expression. In the internal
language, there are two different expressions occurring in expression statements: assign-
ment of a built-in and assignment of a side-effect free expression. Expression statements
that involve only a built-in call or a side-effect free expression can be assigned to a dummy
local variable.

• Statements such as if, while, return and assert have side-effect free expressions.

• During translation, local variable declarations are introduced where necessary, using fresh
local variable identifiers that do not clash with other identifiers in scope. For example, the
statement x = y = 5; is translated into two statements y = 5; x = y.

• Statements consisting of disruptive control flow statements are translated into a statement
where no disruptive control flow statement occurs. That is, no break, continue or goto
statements appear, and there are no labeled statements.

• The block statement directly under the symbol definition is the only one to have non-zero
number of local variables declarations. All nested declarations are transformed by moving
them up in scope, possibly renaming the identifiers if clashes would occur.
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We shall, for now, leave out the details of how this translation is defined. The reader may
consult existing literature on the topic for a more detailed discussion. More importantly, the
translation of the full protocol description language into the internal language must preserve its
well-typedness.

5.2.2 Denotation

Values of the Boolean domain are true and false. We assume standard Boolean operations.
Just like in Java, the primitive types byte, short, int, and long, are signed integers of finite bit
width of 8-bit, 16-bit, 32-bit, and 64-bit, respectively. Bitwise, logical and arithmetical operations
on these domains are defined as usual.

Arrays of non-array values are values, i.e. there are no arrays of arrays. The domain of
the elements of an array is uniformly fixed, i.e. we have byte arrays and int arrays, but not
arrays of mixed bytes and integers. Every array has a fixed length, of the 32-bit signed integer
domain. The domain of byte arrays is included in the domain of messages, i.e. every message
can be treated as a byte array. Moreover, the domain of messages includes the null message,
representing the absence of a message.

A frame is an assignment of formal parameters (of a function declaration or the component
declaration that are not of input or output type) to values. Frames are treated in such way to
remain constant for the duration of a function or a component, and in particular are not updated.
Moreover, for each function definition, we assume there is a corresponding function, that maps
frames to return values.

A store is a mapping from memory variables to values. As usual, stores can be updated
to overwrite the value of a variable. An oracle is a mapping of port variables to a value of the
message domain. We say that a port fires (with respect to an oracle or the head of an infinite
sequence of oracles) iff its value is not the null message, i.e. a message is present.

For giving the semantics of a component, we assume we are given an infinite sequence
of oracles. Conceptually, every time we synchronize an oracle is taken from the stream. This
oracle is used to give the values of port variables, for the duration of synchronization. Before,
in between, and after synchronization, no oracles are used and port variables are inaccessible
(see Section 4.3.1).

During execution of a component, we record an input/output history. This history is a se-
quence of events. An event is either a get event, a put event, a tick event, or an inconsistency
event. The purpose of keeping track of a history is to determine the consistency of an execution.
A get event records a port and a message value that is received; a put event records a port and
message value that is sent. A tick event records that the synchronous round finishes, and an
inconsistency event records an impossible execution.

We consider the state of a component to be represented by a triplet of some store, an
infinite sequence of oracles, and an input/output history. The store is variant and represents
the current values of the local variables and parameters. The head of the infinite sequence
of oracles represents the current values of the ports, i.e. the parameters of input or output
type. The tail of the infinite sequence of oracles represent all future values of ports. Since time
progresses one step after completing a synchronous statement, the infinite sequence of oracles
is also variant. The input/output history tracks the past events.

We start at the lowest level of the abstract syntax tree and work upwards: first we give
meaning to side-effect free expressions, secondly to statements, and thirdly to the primitive
component definition.
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Expressions

As usual, the meaning of an expression is obtained through evaluation. Evaluation of an ex-
pression takes a state. Evaluating an expression either results in a value, a divergence, or
an inconsistency. Evaluation is defined inductively on the structure of expressions, as usual.
For example, a variable expression denotes the value of that variable in the store. The built-in
methods of get, avail and ready, however, denotes the value that the head oracle assigns to
the port supplied as argument to these methods. Only the put built-in method can cause an
inconsistency during evaluation, namely when the value assigned by the head oracle and the
value denoted by its second argument expression are different.

Other expressions, such as binary expressions and unary expressions, are defined in the
usual way. Without being too precise, we intend to mimic the semantics of C for evaluation of ex-
pressions. Method call expressions in primitive definitions always refer to function declarations;
we evaluate a function call by creating a frame out of the values obtained from evaluating the
arguments and applying it to the denotation of the function definition to obtain the resulting value
or a divergence. Other than function calls, in no way can expressions in primitive definitions lead
to divergence.

Statements

The meaning of a statement is a state transformer, viz. a mapping from state to state. The
meaning of statements is defined inductively in a standard way. For example, sequential com-
position of two statements is function composition of the state transformers of the comprised
statements. We make the following remarks:

• The meaning of a synchronous statement is defined as follows: take the state transformer
of the nested statement, and take a state. We apply the state to the given state transformer
to obtain another state. In the latter state, we replace the infinite stream of oracles by its
tail. This ensures that after a synchronous statement completes, we progress to the next
oracle. We further record in the input/output history a tick.

• A state is inconsistent if its history has a recorded inconsistency event. The meaning of
statements on inconsistent states is undefined, i.e. any further next state is related to an
inconsistent state.

• For an expression statement, there are two cases: an assignment of a side-effect free
expression or an assignment of a built-in call. In the former, the side-effect free expres-
sion never cause an inconsistency, and the evaluated value of the expression is used to
update the store. In the latter case, encountering a built-in call, we additionally record
the call and its argument values in the input/output history. If the expression evaluates
to an inconsistency, we record an inconsistency event (thus making the resulting state
inconsistent).

• For an assert statement, if the evaluation of the test expression is false, an inconsistency
event is generated.

We consider operational consistency and causal consistency of histories. Operational con-
sistency is the lack of any inconsistency events. Causal consistency of a history means that
messages being send and received correspond to each other, i.e. there is no received mes-
sage that was never sent.
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Operationally Consistent Executions

An execution of a primitive component starts with some initial state and proceeds by following
the state transformer that the main block statement induces. During this process, the infinite
sequence of oracles is consumed, and a history of input/output events generated. The resulting
execution is operationally consistent if (1) the history of input/output events does not contain
an inconsistency event, (2) in each round where an input port fires according to the oracle
a corresponding get event is recorded, and (3) in each round where an output port fires, a
corresponding put event is recorded.

In other words, if an input port fires, there must be at least one get operation in the same
synchronous round. If an output port fires, there must be at least one put operation in the same
synchronous round. And as a consequence of composition, when two primitive components
share a port, such that one has access to the input side and the other has access to the output
side, if the port fires then at least one put and at least one get operation must be recorded in
the input/output history of the composed component.

Causally Consistent Executions

Causal dependency is a relation defined between component states. Within the execution of a
component, every state transition is caused by a statement. We informally consider the causal
dependency relation, by looking at how statements are causally related. A statement x is
causally related to another statement y in the same primitive if x has a value which y observes.
For example, x=5;y=x; where y = x is causally related to x = 5. A statement containing a get
expression of the value of a port P is causally related to all put statements of port P occurring
within any synchronous blocks occurring in the same synchronous round. Note that this also
introduces causal relations between primitives. The causal relation is transitively closed. Exe-
cutions are causally consistent if for each synchronous round the dependency graph is acyclic.
This captures the intuitive causal ‘flow’ of data from putters to getters; we prohibit protocol de-
scriptions where the value of a message is caused by itself. Preserving causal consistency has
a desirable consequence: any given message can be traced to definitive origins, which must be
either (1) being put into the protocol at a boundary port, or (2) a message valuation provided by
an oracle.

5.2.3 Protocol Behavior

The ideal meaning of a protocol is a set of infinitely long tables. This set characterizes the
behavior of a protocol. For each protocol description, we interpret it as describing such a set.
The meaning of a protocol description is the set of infinite tables induced by consistent exe-
cutions of its main component. A consistent execution of a component is an execution that is
both operationally consistent and causally consistent. An infinite sequence of oracles can be
treated as an infinite table, where each oracle provides the valuation of the ports of the table. A
set of consistent executions induces a set of infinite tables as follows: take for each consistent
execution the infinite sequence of oracles and collect them in the induced set of infinite tables.

A protocol is consistent if it consists of at least one infinite table, i.e., there exists at least one
consistent execution.
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5.3 Connector Semantics

This section defines the semantics of connectors. Intuitively, connectors instantiate a partic-
ular communication session with respect to a configured protocol. As such, the semantics of
protocols and connectors are tightly related.

5.3.1 Setup Phase

In Chapters 2 and 3, it was explained that connectors are configured with a protocol description,
that describes a set of executions. Ports of connectors are then bound, by either giving applica-
tions access to native ports, or passively or actively bind them over the Internet. At connection
time, a set of peers is gathered, until the connector is fully connected.

During connection time connectors exchange configured protocol descriptions, composing
the protocol descriptions. In the end, the connector consists of a single, shared protocol de-
scription that is composed out of the protocol descriptions submitted locally by each application.
After the connector is fully connected, no further peers can join. Thus the meaning of the shared
protocol description becomes fixed, and the communication phase can begin.

There is an important distinction between no protocol behavior, and silent protocol behavior.
A connector has no protocol behavior if always eventually runs into an inconsistent execution.
An inconsistent execution is not continued; there does not exists a next synchronous round after
encountering an inconsistency. However, silent protocol behavior indicates that ports are always
silent: further synchronous rounds can be constructed but every port blocks. Idealistically, silent
protocol behavior consists of a single infinite table where all ports block, whereas no protocol
behavior is an empty set.

5.3.2 Communication Phase

A connector runs through connector states while collecting constraints from native applications.
A run is a sequence of connector states alternated by a constraint. The constraint is provided
by the participating applications. A connector state consists of a finite table it has constructed
so far.

The only permissible runs of a connector are those where its table is a prefix of one infinite
table in the behavior of its associated protocol. In other words, a run consists of a finite table
that must be a prefix of some infinite table specified by the composed protocol description. The
infinite table is an ideal object, and the run is its finite approximation. As a connector runs
through an execution, it maintains a state and records its past observations reflecting the run.
Sometimes a choice can be made in which execution to follow through: two executions that are
allowed by the protocol might share a common prefix with the current run of the connector.

Connectors are also restricted by native applications: its choices must not only be consistent
with some behavior of the protocol, it must also be consistent with the constraints put forward
by the native applications. Native applications submit constraints using the Application Pro-
gramming Interface, which has an effect on the run. In Chapter 3 we further explained how the
application does this, and how it is related to data flowing in and out of the connector.

An application’s mode of operation with its connector defines how the connector organizes
the application’s submitted batches into synchronous rounds.

1. In Cooperative Mode, the connector guarantees a one-to-one correspondence between an
application’s sync invocations and synchronous rounds. The connector cannot proceed
to the next synchronous round without the cooperation of the application.
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2. In Preemptive Mode, the connector imposes delay insensitivity on the application; the ap-
plication’s constraints per sync are applied to synchronous rounds in the same order as
in cooperative mode, but the connector is permitted to inject rounds in-between in which
it presumes the application blocks all its ports. This mode can be viewed as an optimiza-
tion, allowing the connector to progress its state if the application is slow. However, the
application loses the ability to reason about the current round the connector is in.

In this work, we presume all connectors are in cooperative mode. This is motivated by it
being ‘conservative’, with fewer possible executions for the given behavior. In fact, an imple-
mentation may also not implement preemtive mode. Observe that an application in cooperative
mode is able to simulate one in preemptive mode by calling sync with empty an batch, i.e. a
batch where all native ports block, and retrying to synchronize if the empty batch was selected.
This, however, may starve the application of control.

5.3.3 Correctness

We distinguish two notions of connector correctness: total correctness and partial correctness.
Total correctness of a connector means that the finite table of the last state of every run of
a connector must be a prefix of a consistent execution of its corresponding protocol. Partial
correctness of a connector means that the finite table of the last state of every run must be a
consistent prefix of an execution of its corresponding protocol.
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Chapter 6

Implementation

This chapter details the implementation of connectors, delving into their internals to explain how
they implement the API defined in Chapter 3. The design of the implementation revolves around
facilitating the communication phase, which realize the essential distributed communication be-
havior that is their purpose. As such, the chapter begins with Section 6.1, explaining how this
communication is realized, taking the initialization and setup of the connectors for granted. Sec-
tion 6.2 follows up with a detailed look at the in-memory representation of connector structures,
and how this data is initialized and setup during the setup phase.

6.1 Synchronization Procedure

This section explains how connectors realize the communication that users expect when calling
connector_sync, defined in Section 3.1.3 as realizing the user’s prepared message exchange
operations. During this procedure, control flow is temporarily diverted to the management of the
connector’s internals, where it coordinates with other connectors in the session in a distributed
effort to find an interaction between the session’s components which satisfies the configured
protocol. Control flow is returned once the state of the session has been updated to reflect the
interaction’s completion.

Even a naïve implementation of the synchronization procedure is complicated, as it necessi-
tates distributed consensus, and abstract reasoning about protocol behavior. As such, it is nec-
essary for substantive explanation of the implementation to be both digestible, but not to omit
important details. A balance is struck by its explanation being provided in two sections, where
Section 6.1.1 provides a ‘top-down’ explanation, prioritizing brevity. Section 6.1.2 provides the
complementary ‘bottom-up’ explanation, prioritizing the thorough inclusion of examples, and
motivation for the design decisions made.

6.1.1 Overview

When seen as a system whose distributed connectors cooperate toward a coherent distributed
task, the distributed connector runtime works each round to identify, and reach consensus on
the interaction that characterizes the synchronous message exchanges between components.
Once found, the session’s state is updated, such that components’ local actions are consistent
with the interaction.
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In a nutshell, the procedure works through the cooperation of two inter-related systems, both
of which involve tasks distributed over the session’s connectors:

1. Speculative component execution
The session’s components are speculative executed, exploring the possible outcomes of
the synchronous round, i.e., incrementally exploring the set of possible interactions.

2. Consensus procedure
The set of distributed connectors exchange and aggregate control information about their
components’ progress toward realizing an interaction until the designated leader connec-
tor decides in favour of the first interaction is concludes satisfies the session’s protocol,
whereupon the announcement of the decision is disseminated to the other connectors.

Figure 6.1 gives a graphical representation an example session, where connectors and com-
ponents are shown as vertices, and their relationships driving procedures (1) and (2) are shown
with solid and dashed arrows respectively.
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Figure 6.1: An example session with three connectors (diamonds), partition-
ing the management of a set of five components (circles), with the position-
ing, color, and naming of components agreeing with that of their respective
manager. Dashed arrows show edges of the solution tree, from child to
parent. Solid arrows show logical message channels between components
(with ports on either end), facilitating the transmission of speculative mes-
sages, such that the speculative executions of the sender component can
inform that of the recipient component.

6.1.2 Incremental Explanation

This section lays out a feasible design process behind the final implementation of the synchro-
nization procedure, such that ultimately, we arrive at a design consistent with the overview in
Section 6.1.1 above, and with its example session shown in Figure 6.1.
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Before immediately delving into the specifics which come together to realize the implemen-
tation of connector_sync in its final form, it is helpful to clarify the problem the distributed con-
nector runtime must solve. As it was described in Chapter 5, Reowolf reasons about the behav-
ior of a session being a sequence of rounds, in which each of the session’s ports exchange up
to one message. It is accurate to think of the task of the distributed connector runtime as, each
round, solving an instance of the distributed constraint satisfaction (‘DCS’) problem [YDIK98],
where (a) the solution is the assignment of an (optional) message value to every port, and (b)
the session’s protocol provides a constraint on the set of satisfactory solutions. With this in
mind, we henceforth consider terms ‘interaction’ and ‘solution’ to be synonymous.

The remainder of the section describes the implementation’s approach to solving these DCS
problems each round. The solution is best understood by approaching it incrementally, starting
from the most naïve solution, which is easy to understand, but whose other properties make it
infeasible in practice.

Exhaustive Solution Search

To begin, we outline the most essential approach to solving constraint satisfaction problems,
achieving simplicity by (a) reasoning at a monolithic level, i.e., not distributed, (b) assuming
we have a means of checking whether a given candidate satisfies the protocol, and (c) com-
pletely disregarding performance characteristics such as efficient utilization of time and network
bandwidth.

With these simplifications, we may envision a conceptually simple, and functional implemen-
tation: the runtime enumerates all conceivable solution candidates in arbitrary order, and selects
one to be the solution if it satisfies every components’ constraints. Given that our message do-
main is finite (i.e., messages have a maximum permitted length), and the number of ports is
finite, then there is always a finite solution space to search. Ergo, this approach eventually
identifies a satisfactory solution, if it exists.

To clarify this description by way of an example, consider the constraint satisfaction problem
which corresponds to identifying a satisfactory interaction for some round of a session with two
ports, {p, g}. The solver enumerates candidates of the form {p 7→ Mp, g 7→ Mg}, where Mp and
Mg are port values. After considering, and rejecting some 65 failed candidates, the candidate
where Mp = Mg = [22, 22] is found to satisfy the protocol, whereupon it is selected as the
solution. The round ends with all components’ states updated to reflect the completion of the
round where ports p and g exchange the two-byte message, [22, 22]. Henceforth in this section,
we represent message values using sequences of hexadecimal-encoded bytes in this fashion,
and use ∗ to represent the special port value that is the absence of a message, distinct from the
zero-length message, [ ].

Distributing the Solution Search

Our algorithm is still far from feasible, however. The most obvious problem is that it isn’t suited
for a distributed setting, in which every connector has only a partial view of the constraints; e.g.
applications express their requirements in terms of synchronous batches to their local connector
(see Section B.2.2). To proceed, we distribute connectors over the network, such that each has
its own local memory, and can only communicate with its peers through the explicit exchange of
control messages over the network. Furthermore, we distribute the set of components over the
set of connectors, assigning one manager for each; as such, every connector manages a set of
components.
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Adapting our algorithm for use in our distributed system requires addressing two resulting
complications:

1. How can we check whether a given candidate solution satisfies the protocol’s constraints,
when it is defined in terms of components distributed over the set of components?

2. In cases where the candidate space contains multiple solutions, how do we ensure that
the connectors reach consensus on which solution is selected as the solution?

Toward solving problem (1), recall that Reowolf’s protocols are compositional, with the be-
havioral constraints of composite components expressed in terms of the composition of their
constituent component’s constraints. We lean on this compositionality to enable the efforts
of checking whether candidate solution satisfies the session’s protocol, despite the session’s
components being distributed over the connectors’ memory: a candidate solution satisfies the
solution’s protocol if and only if it satisfies the constraints contributed by all components. In other
words, the compositionality property of PDL allows us to reason about the session’s constraints
on satisfactory solutions piece-wise, with one piece per component.

Toward solving problem (2), we introduce the consensus tree, a network (specifically, a
tree) overlaid on that provided to connectors already in the form of transport-layer channels be-
tween connectors; concretely, the consensus tree is a directed, acyclic graph, whose nodes are
connectors, and whose edges are a subset of the edges corresponding to transport channels
between the connectors. The imposition of this tree structure breaks the symmetry between the
connectors, simplifying their cooperation on tasks that require making choices. The root node
of the consensus tree, in particular, is assigned a special role, and is thus given a special name:
the leader1. Finally, we establish local tasks for connectors to perform, specialized to their situa-
tion in the consensus tree, allowing a coherent, distributed task to emerge from the coordinated
efforts of the connectors, which we call the consensus procedure: suggestion messages travel
‘down’ the tree (toward the leader), each encoding a candidate solution, x , whenever x satisfies
the constraints of all components managed by all connectors in the solution sub-tree rooted at
the child. What emerges is a ‘filtering’ of candidates down the tree; at every level, connectors
work to inform their parents of candidates that they have found to satisfy all components in the
sub-tree of which they are the root. Consensus with this approach is achieved easily. Only the
leader is permitted to decide on any solution in particular; as long the leader takes care to do
so only once per round, the round’s decision event is unique. All non-leader connectors are
informed of the decision from their parent, in the form of an announcement message. Note that
edges in the consensus tree carry suggestion and announcement messages in fixed, opposite
directions, for the entirety of the session.

To demonstrate our distributed algorithm, Figure 6.2 exemplifies a session of connectors
A, B, and C, managing sets of components {Ax}, {Bx , By , Bz}, and {Cx} respectively. Once
B has received some candidate solution m from A, it knows that all components managed
by connectors in the sub-tree rooted at A would be satisfied with m as a solution, without B
even having to know what those sets of components and connectors are. Once B identifies
some candidate n which satisfies all its managed components, and has been received in control
messages from both A and C, n is a solution, eligible for the leader’s decision.

1The leader is named to reflect its selection through an election algorithm [Fok13]; see Section 6.2.3 for more details.
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Figure 6.2: An example session with three connectors (diamonds), partition-
ing the management of a set of five components (circles), with the position-
ing, color, and naming of components agreeing with that of their respective
manager. Edges of the consensus tree are shown as dashed arrows from
child to parent.

Candidate predicates

Our distributed algorithm is functional, but suffers from an incredibly large candidate space; in
some cases, the solution would only be found after exchanging and comparing an indefeasibly
large set of rejected candidates.

Our next modification to the algorithm is an optimization that allows connectors to reason and
communicate about candidates in aggregate. We introduce the candidate predicate, a structure
which represents a set of candidate solutions. By taking advantage of the combinatorial nature
of our solution space, we design a predicate encoding that predicates over the values of port
values separately. Concretely, each predicate is stored as a partial map of port variables to
port values; missing mapping effectively abstract over all possible port values. For example, for
a session with port set {p, q}, the predicate {p 7→ [00, 5e, ff ]} includes all candidates with the
particular message value [00, 5e, ff ] for port p, but for any value for q. To take advantage of
such an encoding, it is fruitful for connectors to structure their search of the candidate space,
such that highly generic predicates can be aggregated and transmitted over the network. As a
trivial example, consider the case of a session with connectors and components arranged as
shown in Figure 6.2, previously, where every candidate is a solution; A would only need to send
a single, extremely terse control message to B: the trivial predicate, {}.

Component Speculation

Until now, our approach has glossed over two important steps: (1) how precisely we check
whether a given component is satisfied by a given solution, and (2) how a connector structures
its exploration of the candidate space.
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We clarify our algorithm by introducing a structured means of computing, for every compo-
nent, the set of all candidate predicates which the component would accept. To preserve the
locality of components, we imagine this task is performed by the component’s manager con-
nector. Accordingly, we introduce the solution tree, a super-tree of the consensus tree, which
captures the flow of candidate solutions to the leader from start to finish; leaf nodes correspond
to components, which enumerate the set of candidate predicates they accept, to their parent
(their manager). All internal nodes of the solution tree are connectors, which work to aggre-
gate the predicates received from their children, updating their parent (if they exist) with control
messages. Figure 6.3 shows the solution tree for our running example session; observe how all
leaves are components, all internal nodes are connectors, and B is still the leader.

A
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Bx

By

Bz

Cx

Figure 6.3: An example session with three connectors (diamonds), partition-
ing the management of a set of five components (circles), with the position-
ing, color, and naming of components agreeing with that of their respective
manager. Edges of the solution tree are shown as dashed arrows from child
to parent; note that leaves are components, and internal nodes are connec-
tors.

In the case of native components (i.e., components corresponding to the user’s application),
the connector has no insight into the component’s behavior. Instead, the component’s require-
ments on the session’s behavior during the round are provided explicitly, a priori, stored in the
connector as batches (see Section B.2.2). As such, the set of predicates accepted by the native
component are simply computed eagerly, at the start of the round.

The interesting case is for protocol components, components whose states are managed by
the connector itself, and whose deterministic behavior as a function of the runtime environment
is explicitly defined as part of their configuration a priori. For these components, the connec-
tor drives the exploration of its satisfactory predicates through the speculative execution of the
protocol component in a safely encapsulated environment, forking the search with branches in
control flow, and computing the candidate predicate resulting from every control flow path that
reaches (speculatively) the end of the component’s next synchronous block (see Section 5.1.
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This approach complements the structured representation of candidate predicates, as protocol
components are only able to express constraints on their ports’ values one port at a time, al-
lowing for the incremental refinement of candidate predicates, one port-variable-mapping at a
time.

For a simple example, consider some protocol component token_spout, which offers to
send a zero-length ‘token’ message out through its only port, p. Figure 6.4 shows how this
component ends up submitting two candidates into the solution tree: {p 7→ ∗}, and {p 7→ [ ]}.

Figure 6.4: Branching, speculative execution path for a component instanti-
ated with the token_spout protocol. Starting at the beginning of the syn-
chronous block with the trivial predicate with speculative assignments, {},
the execution branches in response to reflection of an indeterminate specu-
lative variable in expression fires(p), enumerating the speculative values
in {false,true}. The resulting two branches distinguish their behavior
before both reaching the end of the synchronous block, whereupon they
submit candidate solutions {p 7→ ∗} and {p 7→ [ ]}.

Speculative Messaging & Lazy Speculation

The approach described thus far works well for components such as token_stream, whose
behavior permits a very small set of candidate solutions. However, this component tends to
be the exception to the rule; components tend to be particularly flexible to their environmental
constraints when reasoned about in isolation. For example, consider generating the candidate
set for the msg_sink component; it would enumerate all predicates of the form {i 7→ x , o 7→ x}.
The definition of msg_sink is given in Figure 6.5.

The observation is that our current approach results in many candidates being generated in
the leaves of the solution tree, only to be filtered out higher up in the tree, as a result of not being
shared by other components. As a simple example, imagine the token_stream component
defined previously, connected such that its output feeds into the input of a msg_sink; despite
the latter generating a deluge of candidate solutions, in composition with the former, all candi-
dates are filtered out, but those for which g 7→ ∗ or g 7→ [ ]. The current algorithm lacks a way to
guide the exploration of the candidate space as a function of the available protocol information.

We modify our algorithm to delay the exploration of every new branch, speculatively assign-
ing port value m to input-port variable x , until there has been an exploration which assigns
m to output-port x ′, where x and x ′ are two ends to the same logical channel. As x and x ′

may belong to different components, potentially managed by altogether different connectors,
this information may require the exchange of a speculative message over the network, between
connectors. The resulting runtime behavior is surprisingly intuitive: a component calling get
really does block until the receipt of a message from another component calling put. An im-
portant consequence of this change is that the runtime will not find solutions whose sessions
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contain cyclic causal dependencies between message contents; Reowolf’s definition of causal
dependency is precisely defined in Section 5.2.2, but here it suffices to say that it captures
the intuition that we are only interested in solutions where there is some causal ordering on
messages sent as part of a synchronous interaction, excluding interactions where messages’
contents are defined in terms of themselves. To aid with the reader’s intuition, this direct com-
munication of otherwise concurrently-executed components bears many similarities to the actor
model, a well-understood model of concurrent computation [Hew10].

With this modification, the speculative execution of msg_sink blocks for control messages
rather than speculating about the message received by port g. Figure 6.5 shows the branching
path of the speculative execution of a round for the msg_sink; observe that branch that calls
get blocks, awaiting control messages. If the component owning the counterpart to port g never
sends any messages, this component never considers candidates that receive messages at g.

Figure 6.5: Branching, speculative execution path for a component instan-
tiated with the msg_sink protocol. Starting at the beginning of the syn-
chronous block with the trivial predicate with speculative assignments, {},
the execution branches in response to reflection of an indeterminate spec-
ulative variable in expression fires(p), enumerating the speculative val-
ues in {false,true}. While the false branch reaches the end of the
synchronous block, submitting candidate {g 7→ ∗}, the latter branch blocks
rather than speculating about the message received at port g.

To demonstrate two components’ speculative executions cooperating in their exploration
of the candidate space, consider a session comprised of components token_stream and
msg_sink, connected by a single logical channel. Figure 6.6 shows the speculative execution
of the latter component blocks until it receives a control message from the former component,
triggering the exploration of a branch with g 7→ [ ]. Ultimately, both components submit candi-
dates, such that the round is decided in favor of the solution {p 7→ [ ], g 7→ [ ]}.

All together, the refined algorithm has two complementary systems working in tandem to
solve the DCS problem each round: (1) the branching, speculative execution of the session’s
components, with speculative control messages passing speculative message information be-
tween components, submitting candidate predicates into the solution tree, and (2) the aggrega-
tion and collection of candidate predicates filtering down the solution tree toward the leader, who
chooses the first predicate found to satisfy all components as the round’s solution. Figure 6.1
gives an updated illustration of our running example session.

Symbolic Predicates

Our final modification addresses the representation of candidate predicates. As they are cur-
rently described, they encode a partial mapping from port variables to port values, such that
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Figure 6.6: The branching speculative execution paths of components to-
ken_spout and msg_sink on the left and right, respectively, in a session
where their respective ports are connected by a logical channel. The spec-
ulative execution of the latter component blocks at get until the receipt of
a control message send by the former at put, triggering the continued ex-
ploration of the blocked branch with the provided message value. Ultimately,
each component has two branches reaching the end of the synchronous
block, and submitting a candidate predicate.

an example of a predicate for a session with ports {a, b, c, d} is {a 7→ ∗, c 7→ [e2, f2], d 7→ [ ]}.
The observation is that this encoding of predicates results in frequently-performed operations’
costs scaling with the size of port values (which can be vary large indeed). For example, as part
of the consensus procedure, predicate p = {a 7→ m}, where m is some 1000-byte message,
the repeated transmission of p down the solution tree, and repeated comparison of p to other
predicates may incur significant overhead as a consequence of the size of its representation.

To remedy this problem, we modify candidates and predicates to reason about solutions to
a symbolic DCS problem, solving the assignment of speculative variables to speculative values
rather than port variables to port values. To make this modification useful, we also require a
correspondence between solutions to the symbolic DCS problem (decided by the leader) to
solutions of the ‘real’ DCS problem, determining the messages exchanged at the session’s
ports. The idea is that it suffices for symbolic solutions to define, for each of the session’s
protocol components, the path they took in their speculative execution from the start to end of
their synchronous block. The assumption is that there are far fewer paths through a components’
synchronous block, than there are elements in the domain of port values, and yet the former
determines the latter in a given round.

Detailed example of one synchronous round

Bringing it all together, we walk through the progress of a particular synchronous round, depicted
in Figure 6.7, whose components’ protocols and branching speculative executions are depicted
in Figures 6.4 and 6.5. The round is solved through the completion of the following three tasks,
completed concurrently but for their explicitly described inter-dependencies:

• Speculative execution of token_spout
The speculative execution of the token_spout completes two branches unhindered, as
neither branch is causally dependent on other components’ branches; ultimately, two can-
didate predicates are submitted into the solution tree, rendered as {V 7→ 0} and {V 7→ 1}
respectively. Here, V is some speculative variable, encoding the result of fires(p), i.e.,
‘whether port p fires, sending some message’, this being sufficient to uniquely distinguish
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Figure 6.7: An example session with two connectors (diamonds), partitioning
the management of a set of two components (circles), with token_spout
managed by A and msg_sink managed by B. Edges of the solution tree
are shown as dashed arrows from child to parent; note that leaves are com-
ponents, and internal nodes are connectors.

the two branches; as Vp has a boolean domain, it theoretically requires only one bit2 of
space to represent its value in the predicate.

Upon reaching put, the latter branch transmits a speculative message, with message [ ]
from this component to msg_sync, carrying with it an annotation of the candidate pred-
icate {V 7→ 1}, such that the latter component can recognize the speculative context in
which the message is sent, i.e., which speculative assumptions were made by the branch
of token_stream that sent the message.

• Speculative execution of msg_sink
It, too, forks into two branches, annotated with predicates {V 7→ 0} and {V 7→ 1} re-
spectively. The latter speculative branch of msg_sync blocks on get, aware that it awaits
some message, but unwilling to speculate on the message’s contents.

At some point, the speculative message sent from the token_stream component arrives;
by inspecting the predicate it carries, the blocked speculative branch of msg_sync adopts
the message, unblocking get. Ultimately, msg_sync submits two candidate predicates:
{V 7→ 0} and {V 7→ 1}.

• Consensus procedure
Candidate predicates {V 7→ 0} and {V 7→ 1} are submitted independently at the solution
tree’s leaf nodes, token_spout and msg_sink. Y determines that all of its children (just
msg_sink) have candidates consistent with {V 7→ 0} and {V 7→ 1}, and so it forwards

2In practice, the implementation uses variable-length integer encoding ubiquitously, representing these small integers
as one byte each. Section 12.2.11 describes future work toward a denser predicate encoding.
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them to its parent, X , using control messages. The two predicates race to X over the
network. {V 7→ 1} happens to arrive and be processed by X first.

X recognizes that all its children have a predicate consistent with {V 7→ 1}; lacking a
parent, X decides this predicate to be the solution, announcing it to all child connectors,
{Y}, and discontinuing the consideration of further solutions. The round ends, with X and
Y consensing on {V 7→ 1} as the symbolic solution.

Note that the speculative execution of both components use the same speculative variable
V to distinguish their branches. This is because, in this particular session, the two ports, p
and g, actually share the same logical channel, and thereby, speculations of one port’s value
correspond with speculations of the other.3

As we expect, this session has two solutions: predicate {V 7→ 0} for the solution in which
neither component sends nor receives a message, and predicate {V 7→ 1} for the solution
where the former sends the message [ ] to the latter. The presence of multiple solutions is
indicative of a session whose behavior is the result of a non-deterministic choice, left for the
connector runtime itself to decide; the leader makes this choice by greedily selecting the first
solution it finds, effectively prioritizing solutions that are more easily computed. The chosen so-
lution is meaningless in isolation, but it suffices that all the session’s components can interpret
its meaning, such that they can recognize which of their branches contributed to the selected
solution; concretely, they select their branch whose predicate, b meets the following require-
ment, given candidate predicate s: b ⊆ s. As the round ends, the effects of the round commit ;
all protocol components’ states collapse down to that of the appropriate branch persistently, and
control flow returns to the user having completed connector_sync.

6.2 Data Structure and Setup

This section gives a detailed view of the internals of the connector, by laying out the definitions of
the Connector structure and its most important sub-structures (Section 6.2.1), and by walking
through the initialization and modification of its fields throughout the setup phase (Sections 6.2.2
and 6.2.3), from the moment it is initialized, to the moment it transitions to the communication
phase, where it is able to participate in the synchronization procedure, described previously in
Section 6.1.

6.2.1 Persistent Connector Data

When using connectors, control flow is passed back and forth between the user’s application,
and the procedures defined in the connector API, detailed in Chapter 3. For there to be a contin-
uous communication session that persists between calls, it is necessary to define a Connector
structure, for storing the necessary, persistent state information, and encapsulating it in a form
that facilitates the implementation of these procedures in a fashion that encapsulates the inter-
nal complexities safely from the user. This section lays out the type definitions which ultimately
comprise the contents of Connector.

The implementation of the distributed connector runtime is was done in the Rust systems
programming language, chosen for its focus on safety, and efficient inter-operability with the
C programming language. The remainder of this section lays out the type definitions of the

3This approach ensures that the decided interaction always has the same values for putter- and getter-ports sharing
a logical channel. An equivalent approach would use separate speculative variables for representing whether or not
each port fires, and simulate the constraints of an implicit sync channel for every logical channel.
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Connector and its most important sub-structures. This serves to allow a more concrete un-
derstanding of how connectors realize sessions, as is explained in Section 6.2.1 to follow.

Protocol Data

Protocols and protocol components have a one-to-many relationship in sessions; while proto-
col components may be instantiated repeatedly per session, and may differ from one another
in state, their protocol descriptions never change. This immutability of a protocol definition
throughout the session makes it practical for connectors to alias protocol definitions, enabling
a one-to-many relationship between protocol configurations and connectors also. This is fa-
cilitated by the ProtocolDescription being exposed as its own structure, for the user to
initialize, destroy, and use for configuring newly-created connectors.

The internals of the ProtcolDescription encodes a linked, decorated abstract syntax
tree, corresponding more or less to the structure of the PDL description from which they are
parsed:

struct ProtocolDescription {
heap: Heap,
source: InputSource,
root: RootId,

}
struct Heap {

protocol_descriptions: Arena<Root>,
pragmas: Arena<Pragma>,
imports: Arena<Import>,
identifiers: Arena<Identifier>,
type_annotations: Arena<TypeAnnotation>,
variables: Arena<Variable>,
definitions: Arena<Definition>,
statements: Arena<Statement>,
expressions: Arena<Expression>,
declarations: Arena<Declaration>,

}

A noticeable property is the bulk of their contents being stored by the Heap structure in var-
ious, typed Arena containers, whose elements are accessed by element IDs such as RootId.
The use of arenas and keys enables their contents to represent cyclic graphical structures, while
still being (de)serializable, such that protocol descriptions can be exchanged over the network
without requiring that they be repeatedly parsed. Section 6.2.1 describes the distributed setup
procedures which require the exchange of protocols over the network.

Connector Data

Below, the definitions of the Connector itself is provided, along those of its most important
constituent sub-structures:

struct Connector {
unphased: ConnectorUnphased,
phased: ConnectorPhased,

}
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struct ConnectorUnphased {
proto_description: Arc<ProtocolDescription>,
proto_components: HashMap<ComponentId, ComponentState>,
logger: Box<dyn Logger>,
ips: IdAndPortState,
native_component_id: ComponentId,

}
enum ConnectorPhased {

Setup (Box<ConnectorSetup>),
Communication(Box<ConnectorCommunication>),

}
struct ConnectorSetup {

net_endpoint_setups: Vec<NetEndpointSetup>,
udp_endpoint_setups: Vec<UdpEndpointSetup>,

}
struct ConnectorCommunication {

round_index: usize,
endpoint_manager: EndpointManager,
neighborhood: Neighborhood,
native_batches: Vec<NativeBatch>,
round_result: Result<Option<RoundEndedNative>, SyncError>,

}
struct IdAndPortState {

port_info: PortInfoMap,
id_manager: IdManager,

}
struct EndpointManager {

poll: mio::Poll,
events: mio::Events,
delayed_messages: Vec<(usize, Msg)>,
undelayed_messages: Vec<(usize, Msg)>,
net_endpoint_store: EndpointStore<NetEndpointExt>,
udp_endpoint_store: EndpointStore<UdpEndpointExt>,
io_byte_buffer: IoByteBuffer,

}
struct Neighborhood {

parent: Option<usize>,
children: VecSet<usize>,

}

The data stored by a connector roughly falls into three categories, corresponding with the
OSI layers with which connectors are concerned:

1. Application Layer ‘Above’
Once the session has begun, the connector allows the application to play the part of a
native component during the synchronization procedure. Between synchronous rounds,
the application can call the connector to either (a) prepare data for the synchronous round
to follow, or (b) inspect the result of the previous synchronous round. Both of these cases
require the connector to store data for the application to access. These fields for these



62 CHAPTER 6. IMPLEMENTATION

two purposes are visible in the definition of the ConnectorCommunication struct, as
fields native_batches and round_result respectively.

2. Transport Layer ‘Below’
Both in setup and communication phase, the connector must manage transport-layer re-
sources, used for communicating control information with other connectors over the net-
work.

While the connector is in the setup phase, these transport resources have not yet been
created, and instead, exist purely in the form of annotations, to be realized as network
connections later. They are visible as all the contents of the ConnectorSetup structure.

While the connector is in the communication phase, the connector manages a set of TCP
endpoints, for sending and receiving control messages. To support the features described
in Chapter 9, the connector also manages a set of UDP endpoints, for use in message
communication accross the boundary between the connector-managed session, and the
outside world. To facilitate the sending and receiving of messages in an asynchronous
programming style (where the availability of network resources determines the order in
which message exchanges occur), the EndpointManager structure stores endpoints
along with several auxiliary fields. This includes poll and events, for facilitating the
receipt and iteration over asynchronous I/O events, io_byte_buffer, a buffer for read-
ing and writing serialized data, and other fields for buffering control messages that arrive
through endpoints until the runtime is ready to handle them.

3. Session Layer
The remaining fields are all concerned with functionality that facilitates the continuation of
the distributed communication session. The session’s configured protocol description is
stored behind an atomically-refence-counted pointer in field proto_description, and
is repeatedly accessed in a read-only manner during the synchronization procedure. The
persistent states of protocol components are stored in proto_components, while the
logical relationships between ports, other ports, endpoints, and components are managed
by the port_info field. Safe management of ports and components is made possible
by the management of identifiers by the id_manager. The neighborhood field realizes
this connector’s view on its role in the consensus tree, as described in Section 6.1.2,
organizing its participation in various distributed control algorithms.

As is the convention in the Rust programming language, the implementation ubiquitously
enforces the Resource Acquisition Is Initialization (‘RAII’) pattern, ensuring that this Connector
structure, as well as all of its constituent fields are always in a valid, initialized state from the
moment it is first returned as the result of connector_new, defined in the connector API.

This section details the internal view of the initialization and setup of the connector data
structure, including all setup steps necessary to get the connector into the state where it is
enters the communication phase, ready to participate in the synchronization procedure as it is
described in Chapter 6.1.

6.2.2 Incremental Configuration

A connector is initialized into the setup state, already given a particular protocol description,
from which it will draw the definitions of its protocol components. While in this state, the applica-
tion is able to incrementally refine its configuration of the session, including the set of protocol
components, and logical channels between components.
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As described from the user’s perspective in Section 3.1.2, this incremental setup is modeled
as a game of port ownership management; the application creates new ports and adds them
to the interface of their native component. These ports can be subsequently moved into the
interface of newly-created protocol components. Internally, the connector is able to ensure that
the session is always in a well-formed state, by tracking the ownership relation between ports
and components, prohibiting attempts by the user to move ports which the native component
does not own.

As new ports and components are created (and as appropriate, their identifiers returned),
the connector modifies its internal state to initialize and retain the states of the associated re-
sources, beyond the control of the user. The allocation of fresh port and component identifiers is
performed by the IdManager structure, visible in the listing in Section 6.2.1 as one of the con-
nector’s fields, id_manager. It is essential to the synchronization procedure that all ports and
components be provided unique identifiers, such that there is no ambiguity in the interpretation
of control messages. Connectors ensure that the identifiers they allocate are unique by struc-
turing them as the tuple, (a, b), where a is the identifier of the connector itself, and b is a unique
suffix, whose allocation management is the sole responsibility of one id_manager. Effectively,
identifiers are kept unique by leveraging the uniqueness of connectors’ identifiers per session.
Previous work, concisely presented by Wan Fokkink [Fok13] for a subclass of the possible net-
work configurations of connectors, is shown to be an essential requirement of the consensus
procedure necessary in such a distributed algorithm (concretely, shown in the literature as the
impossibility of election in anonymous rings). The connector API affords two means of select-
ing connector identifiers: (a) users can provide their own identifier upon connector initialization,
relying on the user to ensure a unique selection, or (b) the connector will use the system’s ran-
dom number source to guess a unique connector identifier, relying on the overwhelmingly small
probability of two random guesses colliding in the same session, on account of the large space
of available connector identifiers.

6.2.3 The Connect Procedure

Once the application invokes connector_connect, the connector works to finalize the ses-
sion’s currently-configured state. The remainder of this section describes the task of the con-
nector within this procedure, returning only in the case of error, or with the successful creation of
a session. The descriptions to follow repeatedly refer to the sub-structures of the Connector,
as defined in Section 6.2.1.

Finalizing Logical Channels

The first step is to realize all of the sessions logical and transport channels, making the net-
work traversible, and finalizing the last logical resources present at the session’s start. The
result is the initialization of the EndpointManager, establishing the set of transport endpoints,
registering them with the poller, and receiving the first setup control messages through the
newly-created endpoints to finalize the coupling of logical channels that span the network. This
step results in the failure of the connect procedure if not all transport endpoints are connected
successfully before the user-specified timeout duration has elapsed.

Subsequent steps depend on the EndpointManager to enable the connector exchanging
messages with its peers in the network. Through the use of the I/O event poller and event buffer,
this can be done using asynchronous message operations, such that send and receive opera-
tions can be completed in the order they become available using only one thread of control.
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Consensus Tree Construction

Once all channels have been initialized, the task of the connector is to establish its relationship
with neighboring connectors to ultimately situate itself in the consensus tree, as it is defined in
Section 6.1.2. The result is the initialization of the connector’s Neighborhood.

The construction of the consensus tree is a distributed task, built atop a sequence of two
distributed algorithms.

First, the leader (i.e., root of the tree) is elected through the use of the echo algorithm
with extinction [Fok13], resulting in the connector with the maximal ID being elected as the
leader. In a nutshell, this algorithm works by every connector initializing a wave (a broadcast
of messages which ‘bounces’ off the edges of the network, returning to the initiator), tagged
with their own identifier, and awaiting an acknowledgement from each neighbor. Upon learning
of a wave whose initiator has a larger identifier, the connector abandons their current wave,
and propagates the new wave. By relying on the requirement that all connectors have unique
identifiers, the result is a unique connector whose wave completes, completing the election.

Second, the tree is constructed by the leader initiating a new wave, announcing their identity
to the rest of the connectors. The first time a connector receives this announcement from a
neighbor, they consider the sender their parent, reply with a ‘you are my parent’ message,
forward the announcement to all other neighbours. All that remains is to partition its non-parent
neighbours into children and strangers (i.e., the channel between strangers is omitted from
the consensus tree). From every non-parent, a connector awaits one message, determining
whether theirs is a parent-child relationship: children reply ‘you are my parent’, while strangers
send the announcement. In other words, strangers recognize their relationship by learning that
neither considers the other their parent.

Session Optimization

At this point, the session is in a state where it is possible to consider the connect procedure
complete. However, a final distributed procedure is performed, allowing connectors to modify
their internal states to facilitate session optimization. In summary, this results in the mutation of
the connector’s initial configuration, affecting fields protocol_components, port_info, and
protocol_description. The details of this procedure are provided in Section 8.1.
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Chapter 7

Deviation Detection

This chapter extends the description of the connector runtime implementation of Chapter 6,
focusing on its safety properties. As formal verification of these properties is out of scope of the
project, it is left for future work, and argued informally for now.

Section 7.1 describes how session is realized as network communications such that the
configured protocol is always preserved, assuming that all participating processes are using
the provided connector implementation. Section 7.2 follows up by exploring the consequences
of erroneous connectors, or malicious processes masquerading as connectors, participating in
sessions with legitimate connectors.

7.1 Session Protocol Deviation

This section explores the safety and liveness properties on which participants in sessions can
rely, assuming that the session is comprised only of legitimate connectors, using the connector
runtime implementation described in Chapter 6.

Section 7.1.1 explains that, given enough time and memory, and assuming the network
remains intact, the runtime will eventually advance the session’s state such that its protocol is
preserved. Section 7.1.2 explains how applications are in control of the time they are willing to
spend attempting to advance the state of the session, guaranteed by their connector through
the use of a distributed timeout. Section 7.1.3 explains how, regardless of whether the attempt
to advance the session’s state is successful, the session is always in a consistent state.

7.1.1 The Protocol is Preserved

Given enough time, the task of the synchronization procedure is to identify and realize one in-
teraction, and update the state of the session accordingly. While, the workings of this procedure
are detailed in Section 6.1, we argue that the following property is preserved by the proce-
dure: the session’s behavior does not deviate from that permitted by its configured protocol. We
orient our reasoning around the interaction decided upon, and subsequently realized, by the
synchronization procedure.
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The interaction per round is unique

For reasoning about the interaction per round to be sensible, it is necessary for the interaction
to be unique. Generally, in a distributed system, it is a non-trivial matter of consensus for the
distributed processes to have a coherent view on such a value. The implementation achieves
this by relying on two other properties: (1) each session has one leader, who is unique in their
ability to decide, and (2) the leader’s decision is unique per round.

Property (1) is established during the setup phase, through the construction of a consistent
solution tree overlay network atop the sessions connectors, whose root is the leader. Sec-
tion 6.2.3 describes in more detail the specifics of the distributed connect procedure, which
ends the setup phase only once this tree is constructed. In a nutshell, one of the first steps is for
the session’s connectors to reach consensus on the identity of the leader by way of a distributed
election algorithm.

Property (2) is trivially enforced by the leader itself. Upon making a decision within some
round with index N, the leader increments the value of a persistent local variable tracking N,
and ending their synchronization procedure (after announcing their decision, cleaning up and
so on). Henceforth, any decisions made by the leader will be for rounds whose index is strictly
greater than N.

As only the leader of the session can decide, and the leader cannot decide repeatedly in the
same round, we conclude that the decision per round is unique. Furthermore, as each decision
encodes one particular interaction, the interaction per round is unique.

Only protocol-adherent interactions are decided upon

Next, we argue that the connector runtime only makes ‘good’ decisions, i.e., the interaction
associated with a given decision will result in behavior that does not deviate from the session’s
protocol. Ultimately, it suffices for the leader connector, to discover a ‘good’ interaction, if it
exists, and recognize it as such. Much of the reasoning in this section is inductive, driven by
the inductive definition of trees. Particularly, on the solution tree, defined in Section 6.1.2 as a
structure overlaid atop the session’s connectors and components. For clarity, Figure 7.1 depicts
an example of a solution tree of some session, previously shown in Section 6.1.2.

For brevity in the subsections to follow, let a sub-tree S of the solution tree be said to satisfy
property P if and only if the root of S is able to recognize the set interactions which satisfy the
behavioural constraints of all components in S.

1. Session protocol constraints are compositional
Rather than reasoning about the session’s protocol at large, the leader can instead reason
whether a given interaction adheres to the behavioral constraints of all of the session’s
components. Essentially, we reason about the session protocol indirectly, by reasoning
about the protocols of the session’s constituent components directly, and relying on the
compositionality of protocols for the two to coincide; see Chapter 5 for a deeper look at
our notion of compositionality.

2. Base case: components satisfy P
Components only occur as leaves in the solution tree. The speculation of a component
eventually discovers all of the interactions which would satisfy the component’s protocol,
and to which state the component would advance if the interaction were realized.

In the case of native components, this procedure is very simple; the speculation begins
with the user application having explicitly enumerated the outcomes which they permit.
Concretely, the connector stores a set of batches (see Section B.2.2), which enumerate
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Figure 7.1: A depiction of a solution tree for a session with three connectors
(diamonds) and five components (circles). Edges of the solution tree are
shown as dashed arrows from child to parent; note that leaves are compo-
nents, and internal nodes are connectors.

the outcomes the native permits as sets of data structures, each representing a single
message exchange operation at one of its owned ports.

In the case of protocol components, its speculative execution explores the set of accept-
able behaviors by exploring the paths through their protocol’s control flow, as it is defined in
PDL. Throughout the execution, branches are annotated by a candidate predicate, keep-
ing track of the branch’s requirements of the interaction whose effects are being simulated.
Forks in the path are realized as forks in the components speculative execution, forking
both the annotated candidate predicate, and the local variable store that encodes the com-
ponent’s local state. Ultimately, the set of predicates which satisfy the constraints of the
component’s protocol are recognized as all those satisfying the constraints of some spec-
ulative branch’s candidate predicate. Note that, once forked, continued speculation of one
branch has no impact on any other, as their actions are safely encapsulated to the spec-
ulative environment, and to their unique local variable store replica. For more information
about speculation, see Section 6.1.2.

By case distinction, we conclude that all components satisfy P.

3. Induction step: connectors satisfy P
Connectors occur at internal nodes in the solution tree. By induction, their children in
the tree are roots of sub-trees, each satisfying P. For the connector to satisfy P itself,
it satisfies for it to compute the intersection of the interaction sets known by its children.
Section 6.1.2 explains how candidate predicates are the vehicle for communication of
information from children to their parents in the solution tree. These structures define a
procedure for computing a new predicate encoding the intersection of the interaction sets
encoded by two given predicates. In a nutshell, it is driven by computing the union of
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both constituent predicates’ constraints. As new information arrives from its children, a
connector is able to update a local storage of candidate predicates. In effect, connectors
incrementally populate a local replica of the candidate interactions found by all nodes in
the sub-tree of which they are the root.

We conclude that all connectors satisfy P.

Ultimately, the leader (the root of the solution tree) is shown to satisfy P. As the root of the
entire solution tree, it recognizes the set of interactions that satisfy the behavioural constraints of
all components, i.e., the behavioral constraints of the session’s protocol. Eventually, if such an
interaction exists, the leader will recognize it as such. By holding off the decision until this time,
the runtime is certain to decide only upon an interaction that adheres to the session’s protocol.

The session’s state reflects the interaction

Once decided, the nature of the interaction to realize is announced to all of the session’s con-
nectors using a wave of control messages, originating at the leader, and propagated at each
node to all child connectors. Concretely, the announcement encodes a candidate predicate
whose constraints are sufficiently specific to uniquely identify a candidate. Section 7.1.1 ex-
plains why this candidate is also a solution, corresponding to an interaction certain to result in
behavior that adheres to the session’s protocol; as such, we refer to it henceforth as the solution
predicate.

All that remains is for the state of the session (distributed over the connectors) to be updated
to reflect the intended interaction. This is achieved by each connector updating the states of
the components it manages to reflect the interaction’s effects. For both native and protocol
components, this relies upon the connector having retained the information generated during
speculation, i.e., the connector ‘remembers’ which candidate predicates it previously submitted
into the solution tree.

In the case of native components, the observable effects of the realization of the round’s
interaction are only (a) storage of the batch index, facilitating the application’s reflection on
which of their batches was successfully incorporated into the interaction, and (b) the storage
of all received messages, such that the application may subsequently read the contents of
messages received at their ports.

In the case of protocol components, the existence of a solution predicate guarantees that
they have already computed (and retained) their local state, reflecting the effects of the corre-
sponding interaction. Recall that the speculative execution of a protocol component explores
all possible, distinct outcomes of the synchronous round, by exploring paths through the control
flow of the component’s protocol. The branches encoding successfully completed synchronous
rounds are retained, such that their updated component state may be used to ‘commit’ the
effects of the interaction by overwriting the component’s previous (persistent) state.

We conclude that the round ends with all the session’s components’ states being updated to
reflect the effects of the decided interaction.

7.1.2 Applications are not Starved of Control

It is a core design principle of Reowolf’s notion of ‘protocol’ that a component’s behavioral con-
straints be meaningful without knowledge of the component’s session environment. Users and
their applications rely on this property, enabling them to focus on the behavior of their native
components’ ports alone. By design, the behavioral constraints on the session at large may
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correspond with very difficult constraint satisfaction problems, more complex than any one ap-
plication may realize, and as such, may require a significant amount of time for the runtime to re-
alize the next synchronous interaction. If left unchecked, this has the undesirable consequence
of applications having to relinquish control to their connectors for an indeterminate amount of
time before the round is over. Regardless of whether this truly blocks the application (or, in-
stead, uses an asynchronous style, where the round’s completion is confirmed asynchronously
at a point arbitrarily far in the future), it is undesirable for applications to be able to unwittingly
deadlock the session’s progress without any recourse.

The connector implementation is extended, such that the application’s call to facilitate the
next synchronous round (connector_sync in the API) is parameterized with a timeout dura-
tion. Accordingly, the synchronization procedure is extended to take this timeout into considera-
tion. As a result, the runtime’s behavior is modified such that synchronous rounds end with one
of two outcomes: (a) success, where the session’s state has advanced to reflect the effects of
some interaction, or (b) failure, where some application, participating in the session, has raised
a timeout event before the round’s interaction could be realized.

Supporting this feature leverages the control structures already in place to facilitate the syn-
chronization procedure. Only two changes are made to the implementation:

1. Timeout requests are forwarded to the leader
As part of its normal operation of their synchronization procedure, connectors block to
await the progress of their network endpoints. This step is modified to bound the time
spent blocked; upon un-blocking, the connector checks if the timeout duration has elapsed,
since the start of the synchronous round.

The first time (per round) a non-leader connector raises or receives a timeout request,
they forward it to their parent in the solution tree.

2. The leader decides on either failure or success
The first time (per round) the leader receives a timeout request prior to a decision being
made, they decide on a failed round. As for the case of success, the result is a wave
of announcement, that propagates from parent to child connector down the solution tree.
The decision event per round is still unique, ensuring that the session’s connectors will
reach consensus on the result of the round, successful or otherwise.

This feature ensures that, while the runtime cannot guarantee that the session will always
make progress, it can guarantee that an ‘impatient’ application will not, itself, be stuck awaiting
the success of a round it would rather abandon. In the result of failure, applications have an
opportunity to alter their behavior, and try something else. In the worst-case scenario, where
an application is unwilling to try again, they have the ability to abandon the session, potentially
forming another one in a new initial state.

The distributed nature of timeout events means that applications are subject to the impa-
tience of the session’s least-patient application. Malicious applications can inhibit progress by
supplying an exceptionally short timeout duration. This is not a new problem, simply mani-
festing as the requirement that all components are satisfied by the interaction realized every
round; a malicious application can prevent progress just the same by expressing unsatisfiable
requirements. Section 12.1.3 describes future work toward removing this property.

7.1.3 The Session is Always Consistent

Section 7.1.1 shows that, per round, at most one interaction occurs, and Section 7.1.2 shows
that, regardless, the synchronous round ends with all connectors reaching consensus on the
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round’s interaction, including the absence of an interaction (in the event the round fails, as a
result of a timeout event).

The states of the session’s connectors can be understood as (partial) replicas of the ses-
sion’s state at large, as rounds facilitate information from one connector being distributed to
others. We argue that, regardless of whether the round ends successfully or otherwise, the
session always has a consistent state, i.e., the connectors’ local replicas of the session are all
mutually consistent.

In the case of the round’s failure, the safe encapsulation of the connector’s speculation
ensures that there are no side effects; the connector’s internal state is preserved, unaffected
by the work performed during the failed round. Equivalently, the connector’s state ‘rolls back’ to
that at the start of the round.

In the case of a successful round, Section 7.1.1 ensures that the announcement of the cor-
responding, decided interaction is unique. As a result of (a) the consideration of all components’
behavioral requirements being taken into account for every component, and (b) every connector
managing at least the native component, we can see that it isn’t possible for two connectors’ ap-
plications to be outside the synchronization procedure, such that they have observed a different
number of interactions. As a result, at any time two connectors’ natives are not participating in
the synchronization procedure, their connector have realized the same sequence of interactions
since the start of the session.

We conclude that regardless of whether rounds end successfully or otherwise, the session’s
connectors expose mutually-consistent views of the session’s state to their applications.

7.2 Control Protocol Deviation

In this section, we reason about the security of the connector implementation’s control algo-
rithm. It is out of the scope of the project for this analysis to be rigorous; instead, this section
provides informal reasoning, aiming to provide greater insight into the implicit relationships be-
tween a connector and its network peers, providing a deeper understanding of the nature of the
implementation, and laying the groundwork for rigorous security analysis and refinement in the
future work outlined in Section 12.2.13.

For brevity, we introduce some new terminology:

• Bad connectors
We say a connector is bad if its participation in the session could be observed by an om-
nipresent observer to deviate from the connector control algorithms, described in Chap-
ter 6; we refer to this act of deviation as bad behavior. Bad connectors may arise either
as a result of an innocent implementation error, or as the result of malicious intent, where
some process masquerades as a good connector in a session.

• Trust relation
A component or connector A trusts a connector B if A’s continued observation of protocol-
adherent session behavior is threatened by B being bad. As connectors affected by bad
behavior may, in turn, act erroneously, we can understand the trust relation to be transitive.
A trusts B to be good, both by acting according to the control algorithm correctly, but also
not to trust any bad connectors.
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7.2.1 Communication

We reason about the effects of including bad connectors in well-formed sessions, i.e, sessions
which have been set up with a well-formed solution tree, throughout the communication phase.

A component trusts its manager

Connectors are given free reign over the states of the components they manage, and are given
sole responsibility to represent their interests in the synchronization procedure. Obviously, an
application written atop a bad connector cannot rely on the connector behaving as specified.
This is also the case for protocol components; in general, we can understand that a bad con-
nector has the ability to behave as though they managed any set of components at all.

As an example, a user application relying on a bad connector is subject to observing any
conceivable behavior at their native components’ ports, regardless of the session. This includes
(a) their connector under-representing their behavioral constraints, resulting in the completion
of unsatisfactory interactions, (b) the connector misrepresenting the outcome of the round, such
that the user’s view of the interaction is inconsistent with that of other components.

A connectors trusts its parent

During the synchronization procedure, parents in the solution tree are tasked with aggregat-
ing information from their children, and forwarding it to their parent (if they exist) or deciding
accordingly (otherwise).

Leading up to the decision, bad connectors cannot be trusted to relay their children’s be-
havioral constraints toward the leader. By abusing this trust, bad connectors may (1) under-
represent their children’s behavioral constraints, potentially resulting in decision of an unsat-
isfactory interaction, (2) over-represent their children’s behavioral constraints, preventing the
realization of a satisfactory interaction, potentially inhibiting the session’s progress, or (3) fail to
relay a child’s timeout request, potentially delaying the moment an application regains control
for an arbitrary duration.

Bad parents who aren’t the leader may also abuse their children’s trust by misrepresenting
the result of the synchronous round, potentially leading to them having an inconsistent view
of the session’s state. This occurs whenever the bad parent forges the leader’s decision an-
nouncements. For example, a bad parent can misrepresent the leader’s decision, leading their
children to believe that the round ended unsuccessfully when it did not, or successfully with a
forged solution interaction when it did not.

7.2.2 Setup

The correct setup of the session is robust to failures to initialize channels, implemented such
that failed channel creations abort the connect procedure. The only danger of bad behavior is
during the latter steps of the connect procedure, described in Section 7.2.1.

1. Tree construction
Correct control communications rely on connectors reaching consensus on their role in
the consensus tree (the sub-tree of the solution tree consisting only of connectors). Ulti-
mately, bad behavior in the formation of this control structure boil down to ways in which
bad behavior can cause a partitioning in the consensus tree. This occurs when the set of
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connectors fail to preserve the uniqueness of their connector identifiers, either by one con-
nector forging others’ messages, or by multiple connectors claiming identifiers determined
to belong to the leader.

All other misbehavior during tree construction cannot do more harm than causing the
session’s setup to fail (i.e. achieving the same result as being absent). For example, a
bad connector can misbehave by failing to participate in another connector’s election; this
behavior is essentially indistinguishable from an exceptionally slow network link, and will
ultimately be treated as such by the session’s components, resulting in timeout.

2. Session transformation
The session transformation procedure is vulnerable in the same cases as the synchro-
nization procedure, as they have in common that they are built atop the solution tree, with
child nodes trusting their parents. In the case of session transformation, bad parents can
misrepresent control messages flowing in either direction, at the expense of their children.

The presence of a bad connector is perhaps particularly dangerous; in addition to their
ability to modify session information as described above, they may be able to read ses-
sion information that could be sensitive. Currently, this is not a concern, as protocols and
connector states are not considered to be sensitive information. If this changes in future
work, care should be taken to minimize the information a (good) connector provides to
its children. For example, once the leader performs the session transformation on the
SessionInfo map structure (see Section 8.1), parents can partition session information
such that children receive only information relevant to the connectors in their sub-tree of
the consensus tree, rather than parents simply broadcasting the entire session’s informa-
tion indiscriminately.

7.2.3 Malformed or Inappropriate Messages

Generally, the connector runtime is robust to the receipt of control messages that are mal-
formed, or arrive when they are in an inappropriate state, or from an unexpected neighbor. For
this reason, it is generally not dangerous for the session to include bad connectors unless they
are trusted by good connectors, in the manner described the previously.

In cases where a good connector receives malformed or in appropriate messages that can
be explained as a result of delays in the network, such messages are silently discarded without
any harm (e.g. speculative messages from round N arriving once the connector has entered
round N + 1). Otherwise, the implementation relies on the ordering and integrity guarantees of
the TCP transports to conclude that the sender is a bad component, raises an error message,
and terminates the session. For example, in the event a connector receives a leader’s decision
announcement during the setup phase, they can conclude that some connector is behaving
erroneously; a decision should be impossible without their prior participation in the round, which
is impossible while the connector is in the setup phase.



Chapter 8

Session Optimization

This section goes into greater detail about the properties of the connector implementation that
aim to improve its performance characteristics, particularly during the communication phase.
The effectiveness of these optimizations is tested in Chapter 11.

Section 8.1 describes the session optimization procedure, in which the set of connectors
transform their internal representation of the session in its initial state, such that its work in the
communication phase is more efficiently performed. Section 8.2 describes particularities of the
ways connector manage the message payloads passed between components to facilitate cheap
in-memory movement and replication.

8.1 Session Transformation Procedure

The performance of an application using connectors for communications depends on the par-
ticulars of the work performed during the synchronization procedure (see Section 6.1), which
realizes the user’s communications. Until the results of this procedure are finalized, connectors
generate and aggregate speculative data, and great care is taken to avoid these tasks ‘leaking’
to the user. Consequently, the user program cannot observe the majority of this speculative
work, with the exception being the resources utilized to complete it, such as wall time, and sys-
tem memory. The observation is that many sessions with different internals and performance
characteristics ultimately expose the same observable behavior to the user. We define observ-
able behavior as the messages the user’s application sends and receives through its interface
ports, as this is its only defined means of participating in the session’s interactions.

This section describes the session transformation procedure, in which the set of a session’s
connectors transform their initial configuration without affecting its observable behavior. Con-
cretely, this is realized by the addition of an extra, final step to the connect procedure (see
Section 6.2.3), involving the exchange, aggregation, transformation and redistribution of config-
uration data between the session’s connectors. Generally, we are interested in using session
transformations to optimize the session’s runtime characteristics, such as reducing the time
necessary to complete the synchronization procedure, or reducing overall network traffic.

Figure 8.1 gives a simple example of two sessions with different initial configurations, but
whose x and y components observe identical behavior. Presuming the latter session can com-
municate more efficiently than the former, (on account of having a simpler configuration, requir-
ing fewer resources), an effective session transformation would enable sessions provided the
complex configuration to have the performance characteristics of the simpler one.

73
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Figure 8.1: Component graph of two sessions (above and below). Despite
the sessions differing in the number and arrangement of ports and compo-
nents, they have identical observable behavior with respect to x and y .

The session optimization takes advantage of the consensus tree overlay network (see Sec-
tion 6.1.2) already available. In a nutshell, the procedure revolves around connectors exchang-
ing information about their local, initial configuration via a (de) serializable structure: Ses-
sionInfo. The distributed procedure emerges from each connector process participating the
following sequence of steps:

1. Gather
Each connector process receives a session information message from each of its children
in the overlay network, aggregates it, and sends the result to its parent if they exist.

2. Transform
The leader, characterized by the lack of a parent in the overlay network, interprets the
session information message as a snapshot of the entire system. It traverses and modifies
the contents of the snapshot. This step is responsible for identifying opportunities for
optimizations, and applying them to the session.

3. Scatter
Until it has the modified session information, the connector process awaits its arrival from
their parent, whereupon it forwards1 the information to each of its children.

4. Apply Transformations
Each connector process interprets the modified session information, and applies modifi-
cations to their internals as appropriate. For fully serializable structures (e.g. persistent
protocol data seen in Section 6.2.1), this can be as simple as overwriting the connec-
tor’s existing structure. Other structures require that the session information communicate
modifications to be applied as symbolic instructions (E.g. the session information may
instruct a particular connector process to create a set of new transport-layer endpoints
given the relevant setup information such as a remote IP address).

While all other steps facilitate the centralization of this distributed procedure, the work of
the leader in the aforementioned ‘transform’ step realizes the session transformation. While
a robust and generically-applicable transformation procedure is left for future work, described

1The scattering of session information takes the form of a broadcast in this version of the implementation, effectively
giving all connector processes a snapshot of the entire system’s state at the end of the setup phase. If desired, this
procedure can be modified to narrow down the contents of the scatter messages, such that a subset of the entire
system’s information reaches each connector process (as long as it suffices for them to transform their local internals).
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fully in Section 12.2.1, we provide a proof-of-concept for the power of the session transformation
procedure in the form of several examples and corresponding benchmark in Section 11.2.

8.2 Local Optimization

This section details the implementation and workings of local optimizations, not realized explic-
itly through the session optimization procedure described in Section 8.1. Rather, these opti-
mizations are a result of the systemic properties of connectors encapsulating the behavior that
would otherwise be spread over several transport endpoints, for example, in the case of TCP
sockets. These optimizations are concerned with mitigating the costs of movement and replica-
tion of large messages, as this is the only task that connectors and sockets have in common,
motivating the use of sockets as a point of reference.

Section 11.1 shows examples, and performs benchmarking experiments to demonstrate the
effectiveness of these local optimizations.

8.2.1 Lightweight Local Message Passing

To span the network between distributed components, there is no getting around the use of the
OSI transport layer for logical message exchange. However, where the notions of ‘transport
channel endpoint’ and ‘logical channel endpoint’ coincide in BSD-style sockets, this is not so
for connectors. Applications and protocol components alike are able to create logical chan-
nels without the added costs associated with network messaging. Applications in particular
can achieve this either implicitly (by creating both ends of a channel separately with connec-
tor_add_net_port), or, more conveniently, explicitly with connector_add_port_pair.
Messages exchanged between components managed by the same connector are done so sym-
bolically, i.e., by reference, with the contents of the message kept in-place, exploiting the bene-
fits of shared memory whenever possible. Concretely, the byte buffer storing a message’s con-
tents is allocated on the heap, and its movement through the connector’s internals are achieved
by moving a reference, with the heap allocation left in-place.

8.2.2 Lightweight Local Message Replication

Many component networks with interesting behavior express their work in terms of very many
message passing operations. If messages are large, a naïve implementation might require
very many memcpy operations to replicate and move messages between components safely.
Generally, it is unsafe for logically-distinct messages to be represented as aliases to the same
message contents without introducing the kind of subtle and deadly bugs that result from cir-
cumstantial race conditions.

The implementation makes use of a memory- and thread-safe mechanism for reference-
counted message passing. Building on the functionality described in Section 8.2.1 above, the
message structures passed between components are small, symbolic representations to atomic
reference counted message contents kept in-place. Replicas of the same message contents
can be created and discarded cheaply, aliasing the contents without introducing data races.
Components can pass around these replicas repeatedly, only duplicating the message contents
when the contents of the replicas diverge, i.e., using a copy-on-write pattern.

Currently, serialization and transmission of these aliased messages is a barrier to this opti-
mization, but Section 12.2.2 discusses a generalization without this limitation.
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Chapter 9

Backwards Compatibility

This chapter explores extensions to the reference implementation to facilitate ergonomic in-
teroperability with applications built atop BSD-style network sockets. Although many forms of
sockets exist, some of which do not even concern network programming, this work focuses pri-
marily on UDP. For now, this serves as a practical decision; implementation effort is minimized
by focusing on only a subset of the available kinds of socket. Furthermore, in works to follow,
the choice of UDP translates more directly to an implementation built atop the network layer,
sending and receiving IP packets in kernel mode.

In the grand scheme of things, the goal of Reowolf is to replace BSD-style sockets with
connectors for message passing over the internet. This is no small task, as sockets have been
deeply entrenched into existing software, and into the minds of programmers for decades. As
such, our approach is to support backwards-compatibility with sockets, such that connectors
may be adopted into new and existing codebases with minimal friction. This chapter describes
an impmentation of an idea referred to as the ‘socket sandwich’, where connector sessions are
built atop sockets in the transport layer below, while also exposing an API which mimics that
of sockets to the application layer above. The goal of future work is for these pseudo-socket
connectors to detect fellow connectors in the network, regardless of their users’ API, and to
compose into distributed connector sessions.

The complementary halves of the socket sandwich are described in complementary sec-
tions. Section 9.1 describes UDP mediator components, components employed to mediate
communications over a UDP channel with some remote peer. Section 9.2 describes the pseudo-
socket API, which allows applications to use connectors as they would use conventional UDP
sockets for network programming.

The usages of these features is demonstrated in Section 10.3 to follow, concretely, giving
examples of C programs making use of these various APIs for network communications with
one another.

9.1 UDP Mediator Components

This section explains UDP mediator components, the ‘connectors atop sockets’ half of the
socket sandwich, allowing connectors to communicate with networked peers via UDP channels.
To avoid confusion, this section distinguishes the terminology used when referring to different
notions of ‘message’:
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• Datagrams are variable-length message sent over a UDP channel in the transport layer,
corresponding closely (but not identically) to packets over IP in the network layer.

• User messages are variable-length byte sequences, send and received over the network.
Users of both UDP sockets and connector components reason about the exchange of
these messages over the network.

• Control messages are messages used internally by the by the distributed connector run-
time to drive various distributed algorithms that facilitate synchronization, consensus and
so on, described in Chapter 6. These messages may facilitate the exchange of user mes-
sages, but they need not correspond 1-to-1.

This relationship is similar to that between the (user-facing) byte stream of TCP, which
is facilitated by the exchange packets over IP annotated with control information such as
sequence numbers and checksums.

• Speculative messages are the kind of control message which Section 6.1 explains as
being the connector runtime’s vehicle for exchanging speculative port information. After
consensus is reached, it is determined whether or not each speculative message encodes
a user message.

Naturally, all these forms of message are related. In the case of programs written atop sockets,
each datagram’s message payload encodes a user message. A program written atop connec-
tors might exchange a sequence of user messages, which the connector runtime realizes as a
set of control messages, some of which are also speculative messages.

9.1.1 User View

The connector API is extended to include new_udp_mediator_component, which allows for
the initialization of a UDP mediator component given a pair of socket addresses to characterize
both endpoints of a UDP channel. During the communication phase, such components partici-
pate in synchronous message exchange through their ports in the usual fashion. The behavior
of the component itself is that all messages passing through are simply forwarded either into
or from its UDP socket. In this fashion, UDP mediator components may be used to communi-
cate with the world beyond the connector. An example of a session topology including a UDP
mediator component is depicted in Figure 9.1.

native native UDP mediator

P0 ?

?P1

Figure 9.1: Component graph of a session with a native component able
to communicate accross the connectors’ session boundary via ports to the
UDP mediator component, which manages a UDP endpoint.
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9.1.2 Connector View

UDP mediator components have in common with native components that they represent the in-
terface between the distributed connector runtime and the outside world. Realizing the behavior
of a UDP mediator component requires the connector runtime to perform message translation
tasks in two directions: translating incoming datagrams / data messages into control messages,
and vice versa.

Translating control messages to datagrams

Recall from Chapter 6 the connector runtime works to shield native components from its in-
ner speculation procedures. Control messages representing speculative data messages are
buffered until the round’s completion, whereafter the system has reached consensus on the
oracle that determines the new consistent distributed state, including the data messages that
were synchronously exchanged at ports. Protecting the component is relatively straightforward,
as all the necessary information is retained in the control message; speculative messages are
buffered until the moment of consensus, whereafter the set of user messages is determined.

This is the case for UDP mediator components also. They differ from native components
only in what happens to this set of user messages. For native components, they are accessible
for reading via the connector API’s read_gotten procedure. For UDP mediator components,
these user messages are wrapped into datagrams, and sent over the network.

Translating datagrams to control messages

Where translation of control messages to datagrams is a lossy procedure (as it represents the
collapse of control information), translation of datagrams to control messages necessitates the
injection of absent control information. Fortunately, UDP has very few reliability guarantees to
preserve, such that many distinct implementations are all equally correct. For example, as UDP
provides no guarantees on the ordering or arrival time of datagrams, it suffices for connectors
to associate incoming datagrams with any round number no smaller that of the round in which
they are received. For simplicity, the reference implementation uses the number of the round in
which the datagram is received.

The reference implementation has a limitation that prevents UDP mediator components from
translating UDP traffic in the most straightforward manner. Namely, ports can transport at most
one user message per synchronous round. Chapter 12 describes future work that aims to
remove this limitation. For now, the reference implementation abuses UDP’s lack of delivery
guarantees by discarding all but the first datagram received.

An interesting alternative is an implementation that buffers all datagrams received during the
synchronous round, and for each, creates a mututally-exclusive speculative message; the result
of this approach is a UDP mediator component which appears to ‘guess’ satisfactory incoming
messages, with any others silently discarded, as if they never arrived at all. This implementation
is correct also, as the resulting datagram loss is permissible UDP behavior.

Another interesting implementation is achieved with a minor adjustment on the former: every
round, the UDP mediator component creates a set of mutually-exclusive speculative messages,
one for every datagram received during the session. The resulting behavior is a UDP mediator
that replays whichever data message is opportune for the round reaching consensus, at the
cost of introducing message duplication above and beyond that already introduced by the UDP
channel itself.



80 CHAPTER 9. BACKWARDS COMPATIBILITY

9.2 Pseudo-socket API for Connectors

This section details the pseudo-socket API connectors expose to application programmers, pro-
viding the ‘sockets atop connectors’ half of the socket sandwich. This API aims to mimic that
of conventional BSD-style UDP sockets, such that application developers may swap out their
sockets for connectors with minimal modification of their program logic. For now, this serves to
demonstrate the feasibility of replacing existing socket programming logic with that of connec-
tors. More importantly, this lays the groundwork for connectors being employed transparently,
where Reowolf-enabled peers instantiate connectors in place of sockets, gaining access to the
features of connectors on demand. Until these optimizations are in place, the effects of using
the pseudo-socket API are straightforward: every created socket creates the connector shown
in Figure 9.1.

9.2.1 Behavioral Differences Between Connectors and UDP Sockets

Building socket behavior from connectors necessitates reconciling the differences between the
ways they behave, and the ways their functionality is represented in their API. In this section,
these differences are examined in a structured manner, such that they may serve as reference
for the sections to follow:

1. UDP sockets are not strictly connection-oriented
The UDP transport protocol is essentially stateless, oriented around the sending and re-
ceipt of datagrams between endpoints. Sockets used in this way might make frequent use
of procedures such as sendto, where one specifies the recipient peer’s socket address
on a case-by-case basis.

To address a frequent use case of UDP, the socket API facilitates connection-oriented
usage through procedures connect, send and recv. The former specifies the peer ad-
dress of all future communications, such that messages can be sent and received without
a given or returned peer address.

It is important to note that the socket allows users the ability to make partial use of the
connection-oriented paradigm; UDP sockets can be connected at any time, and can be re-
connected repeatedly to overwrite the peer address for subsequent sends and receives.
This is not the case for connectors, for which put and get are always sent over com-
munication channels whose connection persists implicitly. Components do not have the
authority to arbitrarily change the network address or identity of their ports’ peers.

2. Users identify sockets with file descriptions
The reference implementation stores and manages its connector structures in user space,
relying on the operating system to drive the exchange of control messages through trans-
port layer endpoints. Consequently, the connector API accesses connectors via pointer.

In contrast, the bulk of sockets’ functionality is provided by the operating system, which
manages and stores socket structures itself, and allows users in the application layer
access via file descriptors, integer identifiers used as keys to the appropriate socket data
structure in a storage managed by the operating system.

3. Socket operations are completed by the operating system
As sockets are implemented primarily in the operating system kernel, the user’s thread
plays only a small part in managing the resources of the socket. This is not obvious while
sockets are used in blocking mode, where the loss of control flow may as well be a result
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of the user thread performing the work itself. By contrast, connectors are implemented
in user space, and thus the caller thread does indeed perform a significant portion of
managing the state of the connector (safely encapsulated within the sync call). This
difference between the way sockets and connectors are implemented becomes clear when
sockets are used in non-blocking mode, which allows the user to regain control of their
thread while message exchange operations are completed by the operating system.

4. The socket API is thread safe at runtime
The connector API is specialized to the task of synchronized network communications, us-
ing structures in user space. As such, mutually exclusive access per connector is achieved
trivially, requiring conscious effort to circumvent with users employing multi-threading. As
such, the connector API relies on users to employ their own mutual exclusion solution for
these exceptional cases.

In contrast, sockets are protected by locks to make resource access via file descriptor
threadsafe in general, which includes access of resources available to all host processes,
such as files in the file system.

5. The unit of synchronization and the message channel coincide in sockets
For connectors, there is a meaningful grouping of isolated actions into interactions; we say
the actions within each interaction are synchronous. This is reflected in the connector API
in the distinction between actions at the granularity of ports, (e.g. put), and interactions
at the granularity of the connector (e.g., sync). In contrast,we say that sockets are asyn-
chronous, because every message exchange operation is part of its own singleton set of
synchronized actions. For this reason, procedures in the socket API require the user only
to identify the message channel, with which the unit of synchronization coincides.

Note that our usage of the term ‘synchronous’ in this context should not be confused with
another usage relevant in the context of network programming. To clarify, blocking socket
operations may also be considered synchronous, in that the user’s send or recv proce-
dure is synchronized with the operating system’s completion of the message exchange.

9.2.2 Limitations of the Pseudo-Socket API

This section addresses conscious choices to limit the pseudo-socket API, minimizing its com-
plexity, and ensuring that its implementation is sound and in service of the goals of the milestone.

Connection-less message operations are not supported

Recall from the previous section that the socket API allows for a mix of connection-oriented and
connection-less usage. The pseudo-socket API supports only a connection-oriented usage of
UDP sockets, such that their behavior is more in line with the behavior of connectors’ ports: an
opaque endpoint able to send or receive payloads over a message channel.

Facilitating a connection-less API efficiently and accurately would require the development
of features currently planned for the follow-up project to Reowolf, described in Section 12.1.1.
For example, a pseudo-socket re-connecting to a new peer between message exchanges may
be realized as the creation of a new network port, with a new peer. This ability to extend the
participants of the session introduce problems for the reference implementation, which is built
around a session-wide logical clock, for which the addition of new participants is not supported.
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Message operations are blocking

UDP sockets in non-blocking mode have in common with connectors that initiation of message
exchange operations does not block; i.e., neither send with a non-blocking socket, nor put
with a connector’s port will ever block the user thread. They also have in common that their
respective APIs offer a blocking call for awaiting the completion of message exchanges, polling
with some selector for the former, and sync for the latter. For the sake of simplicity, henceforth
we refer specifically to the epoll selector system, available to platforms Linux, Solaris and
Android, and offering epoll_wait as the canonical means of blocking the caller thread until
message operations have been completed.

The pseudo-socket API cannot trivially mimic rw_epoll_wait, the pseudo-socket equiv-
alent to epoll_wait out of invocations to sync. The problem is the result of two factors:
(a) sync drives the message exchanges of a single connector’s ports, while rw_epoll_wait
accepts an arbitrary set of pseudo-sockets whose message operations complete in parallel, and
(b) sync is blocking, as the caller’s thread itself drives the progress of message exchanges.

As is often the case, there are multiple approaches to building non-blocking behavior from
blocking primitives, each approximating the ideal result differently; here are some examples:

1. Subdivide the timeout duration over sync calls
The user’s thread can invoke sync for the relevant set of connectors in turn, returning
an event once a call successfully completes a synchronous round. The work of synchro-
nizing connectors can be multiplexed over the available timeout duration. This approach
runs into the problem of imposing an ordering on the connectors, such that an expensive
synchronization may impede the success of successful synchronization of those after it.
Users may perceive rw_epoll_wait as slow and unreliable.

2. Call sync in parallel using worker threads
The prior example’s problem of introducing an undesirable ordering can be circumvented
by creating a pool of worker threads such that each connector is sychronized by a dedi-
cated worker in parallel. The problem with this approach is that the entire procedure must
wait for its slowest worker; where epoll_wait returns early if message operations are
completed, just one slow worker’s thread would be stuck in their sync call, possibly until
the end of the timeout duration. As with the previous approach, the resulting implemen-
tation is slow, particularly in cases where users expect very little overhead, for which the
work of creating or managing a threadpool will dominate the work time.

3. Circumvent sync
As the blocking nature of sync is the common denominator for problems with supporting
non-blocking polling, an effective approach forgoes the usual connector synchronization
procedure for one designed with non-blocking polling in mind. However, this approach fails
to provide meaningful interoperability between connectors and sockets in the spirit of the
milestone. Taken to the extreme, this customized implementation might as well access the
UDP sockets contained within the connectors’ UDP mediator components and poll them
to a selector with epoll_wait.

Ultimately, non-blocking pseudo-sockets are best realized with a future connector API able
to drive session communications without blocking the caller thread. Most likely, this will be
achieved in a manner similar to that of sockets today, where the completion of message ex-
change operations is performed by the operating system. This development is scheduled for
future work in the follow-up to the Reowolf project, and is described further in Section 12.2.8.
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9.2.3 Pseudo-Socket Implementation

This section details the pseudo-socket implementation in detail, explaining how it can be used,
and how it builds the behavior of UDP sockets from that of connectors.

Data structure and thread safety

For historical reasons, file descriptors are often smaller than machine words, prohibiting a
scheme that trivially represents connectors with file descriptors by ‘stuffing’ each with a con-
nector pointer.

The implementation of the pseudo-socket API mimics the role of the operating system in
conventional sockets, introducing CC_MAP as a manager of file descriptor allocations, and a
mapping from allocated file descriptors to connector complex, a connector bundled along-
side some metadata. CC_MAP is protected by a coarse-grained readers-writer lock, for which
mutual exclusion is only necessary in order to allocate and free mappings and file descriptors.
Mutual exclusion per connector complex is achieved with another fine-grained lock. Conse-
quently, pseudo-socket operations are thread-safe, and operations on different pseudo-sockets
can occur concurrently.

As this storage is subject to change in the follow-up to the Reowolf project, it was decided
to focus on simplicity and correctness in favour of performance optimization. Section 12.2.7
describes future work toward ‘pushing’ the connector implementation into the operating system’s
kernel, which would result in a re-design of the storage structure for connectors.

Avoiding namespace conflicts

The pseudo-socket API defines a set of procedures which mirror those useable for UDP sockets,
primarily1 defined in sys/socket.h, a C header file considered canonical for systems-level
network programming. Recall that connectors themselves are currently built atop sockets. As
such, it is not possible to replace the definitions of essential socket operations such as socket
and send without breaking the connector implementation.

Our approach populates the namespace with identifiers for socket procedures and their
pseudo-socket counterparts, where those of the latter are distinguished from those of the former
only by the addition of a rw_ prefix (‘rw’ for ‘Reowolf’). As a result, the connector implementa-
tion continues to work using conventional sockets, but users are able to switch from the socket
and pseudo-socket API by use of a simple string replacement macro which prepends rw_ to
the identifiers of socket procedure calls.

Pseudo-socket procedures

As is the case for connectors, pseudo-sockets begin in the setup phase, and transition to the
communication phase once their configuration is complete. In addition to a small set of con-
stants for the purposes of error-handling, the pseudo-socket API is comprised of a set of proce-
dures, with identifiers, declarations and behaviors mirroring those of the socket API:

#include <sys/socket.h> // defines {sockaddr, socklen_t}
int rw_socket(int domain, int type, int protocol);

1The close procedure is defined in unistd.h, as it is used for closing file descriptors in general, and not just those
representing network sockets.
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int rw_connect(int fd, const struct sockaddr *address, socklen_t
address_len);↪→

int rw_bind(int socket, const struct sockaddr *address, socklen_t
address_len);↪→

int rw_close(int fd);
ssize_t rw_send(int fd, const void * message, size_t length, int

flags);↪→

ssize_t rw_recv(int fd, void * buffer, size_t length, int flags);

Conveniently, all of the implemented procedures can be partitioned, such that each part
consists of a reciprocal pair of procedures.

The first part allows pseudo-sockets to be created and destroyed:

• rw_socket
A writer lock is acquired on CC_MAP, allocating a new file descriptor key and initializing
a new trivial connector, which remains in the setup phase until it is both connected and
bound to socket addresses. If the given file descriptor is already in use for a connector
complex, an error is returned.

• rw_close
A writer lock is acquired on CC_MAP. If a mapping is associated with the given file de-
scriptor, the associated connector complex is destroyed and its resources freed. If the
connector is in the connected phase, its UDP mediator socket is destroyed, and its UDP
socket is closed. If no mapping is associated with the file descriptor, an error is returned.

The second part consists of procedures for configured pseudo-sockets in their setup phase:

• rw_bind
A reader lock is acquired on CC_MAP. If the given file descriptor is unmapped, an error
is returned. Otherwise, the mapped connector complex is locked. If the connector is not
yet in the communication phase, the given local socket address is stored, otherwise an
error is returned. If both local and peer addresses are available, the connector transitions
to the communication phase, bound to a single UDP mediator component in the config-
uration depicted in Figure 9.1. The putter and getter ports linking the connector’s native
component to the UDP mediator are stored in the connector complex.

• rw_connect
This procedure is identical to that of rw_bind, except for storing the given socket address
as the peer address. Consequently, these two procedures can be called in any order, and
the connector will complete its setup once both addresses are provided.

The third part exposes message exchange procedures, only available to pseudo-sockets in the
communication phase:

• rw_send
A reader lock is acquired on CC_MAP. If the given file descriptor is unmapped, an error is
returned. Otherwise, the mapped connector complex is locked. If the connector is still in
the setup phase, an error is returned. Otherwise, the connector attempts to complete a
single synchronous round, with the native component providing only the option of putting
the user-supplied message into the stored putter port. As the connector’s session is known
to correspond with that depicted in Figure 9.1, the synchronous round always succeeds,
with the result connector’s single UDP mediator component emitting the user’s message
into the network in the form of a datagram.
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• rw_recv
As its dual, rw_recv is implemented similarly to rw_send, differing only in that rather
that including a put using the stored putter port, it includes a get with the stored getter
port. The sync call is given no timeout, and the only permitted solution requires the
native component to receive a message. The effect is rw_recv blocking until it succeeds,
whereafter the contents of the message are accessed in the usual fashion, and copied
into the user’s supplied message buffer; as is the case for recv, in the event the buffer is
too small to contain the entirety of the message, it is truncated to fit.
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Chapter 10

Examples and Usage

This chapter provides an ‘external’ view of the contributions of the Reowolf project. This in-
cludes a bottom-up approach to writing application and protocol code for building sessions,
given in Section 10.1. Section 10.2 expands on protocol programming in PDL, and showing
its correspondence with PDL’s predecessor language: Reo. Finally, Section 10.3 shows how
connectors can mimic sockets, enabling application programmers to incrementally port their
applications written in terms of connection-oriented UDP sockets to connectors piece by piece.

10.1 Programming with Connectors

This section gives application developers an entry point into network programming with connec-
tors and PDL, starting with simple use cases of local and two-party communications, to complex
cases, which make use of synchronous, multi-party communications, and protocol components.

10.1.1 Interaction-Based Message Passing

The most fundamental primitive for communication of messages is provided by sync, the syn-
chronous channel, which transmits a message from a source to a destination in a manner
similar to that of IP or UDP. Omitting only the necessary import directives, the following example
in the C programming language demonstrates an application creating a connector with a single
synchronous channel, exposed as two ports, one for each channel endpoint.

void main() {
// create, configure, connect
Arc_ProtocolDescription * pd = protocol_description_parse("", 0);
Connector * c = connector_new(pd);
PortId x, y;
connector_add_port_pair(c, &x, &y);
connector_connect(c, -1);

}
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Two distinct processes can cooperate in the creation of a shared session by cooperating
in the creation of at least one synchronous channel by creating and connecting its endpoints
separately. The following example shows two procedures, one for each process, sharing a
session in which they are spanned by a single synchronous channel.

void amy() {
Arc_ProtocolDescription * pd = protocol_description_parse("", 0);
Connector * c = connector_new(pd);
PortId port;
connector_add_net_port(c, &port,

// network binding info...
(FfiSocketAddr) {{127, 0, 0, 1}, 8000},
Polarity_Putter, EndpointPolarity_Passive);

connector_connect(c, -1); // -1 for infinite timeout
}

void bob() {
Arc_ProtocolDescription * pd = protocol_description_parse("", 0);
Connector * c = connector_new(pd);
PortId port;
connector_add_net_port(c, &port,

// network binding info...
(FfiSocketAddr) {{127, 0, 0, 1}, 8000},
Polarity_Getter, EndpointPolarity_Active);

connector_connect(c, -1); // -1 for infinite timeout
}

Unlike IP, communication occurs between participants in an explicitly constructed session,
such as that used by TCP. The session is maintained by the runtime, and all endpoints and
channels are localized to the session, and maintained until it is shut down. During the session,
applications may have their connector structure prepare and complete message exchange ac-
tions to facilitate message passing.
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void amy() {
/* setup of connector `c` and port `port` omitted */
connector_put_bytes(c, port, "hello", 5);
connector_sync(c, -1); // -1 for infinite timeout

}

void bob() {
/* setup of connector `c` and port `port` omitted */
connector_get(c, port);
connector_sync(c, -1); // -1 for infinite timeout
// connector_gotten_bytes(c, port, 0) returns "hello"

}

The runtime shares with Reo its focus on interaction-based communication; all message
exchange actions succeed only if they are part of a well-formed distributed interaction. Most
essentially, this guarantees that messages are sent if and only if they are also received. For
maximal flexibility, applications may contribute actions on-the-fly, and rely on the runtime’s best
effort to identify and realize well-formed interactions just in time. For a simple example, an appli-
cation may offer a message to an unknown peer, and reflect on whether the action succeeded
afterward.

void amy() {
/* setup of connector `c` and port `port` omitted */
connector_put_bytes(c, port, "hello", 5);
int err = connector_sync(c, -1);
// `err` returns a negative integer (indicating an error).
// No interaction succeeded!

}

void bob() {
/* setup of connector `c` and port `port` omitted */
// bob does NOT call connector_get(...);
int err = connector_sync(c, -1);
// `err` returns a negative integer (indicating an error).
// No interaction succeeded!

}

Even without making significant use of components defined in PDL, applications may be
configured with any number of ports, enabling message exchange through any number of dis-
tinct message channels. In this fashion, any number of hosts can participate in multi-party
communication sessions.
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void main() {
// create, configure, connect
Arc_ProtocolDescription * pd = protocol_description_parse("", 0);
Connector * c = connector_new(pd);
PortId p0, p1;
connector_add_net_port(c, &p0,

(FfiSocketAddr) {{127, 0, 0, 1}, 8000},
Polarity_Getter, EndpointPolarity_Passive);

connector_add_net_port(c, &p1,
(FfiSocketAddr) {{127, 0, 0, 1}, 8001},
Polarity_Getter, EndpointPolarity_Active);

connector_connect(c, -1);

// Get a message through `p0`
connector_get(c, p0);
connector_sync(c, -1);

// Get a message through `p1`
connector_get(c, p1);
connector_sync(c, -1);

}

Sets of messages may be explicitly synchronized, ensuring that either they all succeed as
part of the same interaction, or not at all, allowing applications to participate in interactions that
involve any number of participants. The following application synchronizes the sending of two
messages through two distinct ports, such that they succeed or fail together.

void main() {
/* setup of connector `c` and ports {`p0`, `p1`} */
connector_put(c, p0, "former", 6);
connector_put(c, p1, "latter", 6);
connector_sync(c, -1);

}

Applications can express non-deterministic choice by delimiting the boundaries between
‘batches’ of message operations, expressing that the operations of exactly one batch should
succeed. Offering more options facilitates a larger set of potential interactions to the connec-
tor runtime, potentially enabling the system to progress even when some actions cannot be
arranged into an interaction. For a simple example, consider how an application offering an op-
tional message facilitates the system to progress regardless of whether their peer accepts the
message. The application can reflect on the return value of connector_sync to determine (by
index) which of their batches succeeded, and thus, whether their message was exchanged.
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void amy() {
/* setup of connector `c` and port `port` omitted */
connector_next_batch(c); // ZERO actions in batch 0

connector_put_bytes(c, port, "hello", 5);
int err = connector_sync(c, -1); // ONE actions in batch 1
// if err==0, no message was sent
// if err==1, "hello" was sent

}

The combination of synchrony and non-determinism is sufficient for the solution of various
high-level problems oriented around constraint satisfaction. In a sense, applications can employ
the connector runtime as a constraint solver by encoding the satisfaction of their problem as the
well-formedness of a communication interaction. For example, consider the all-pairs matching
problem: a graph of N vertices connected by an arbitrary is satisfied by a solution, a sub-
graph containing all vertices such that all vertices have one incident edge; this sort of problem
pairs the set of vertices with edges, considering only the edges given, which can be applied to
matchmaking of any kind, including online two-player games, dating websites and so forth. The
following C program shows one component’s expression of their local constraints; the result of a
synchronous round encodes the solution to the corresponding distributed constraint satisfaction
problem:

void main() {
PortId ports[3];
Connector c;
/* setup omitted */
connector_get(c, port[0]);
connector_next_batch(c);

connector_get(c, port[1]);
connector_next_batch(c);

connector_get(c, port[2]);
int err = connector_sync(c, -1);
// err result in {0,1,2} encodes the identity of my peer

}

10.1.2 Making Explicit the Protocol

The previous examples demonstrate the essence using connectors to facilitate interaction-
based communication over the internet. An essential tenet of Reo-style coordination is ex-
ploiting the constraints on achievable communication made possible by having access to an
explicit protocol. The connector runtime enables the expression of such a protocol piecemeal,



92 CHAPTER 10. EXAMPLES AND USAGE

as the creation of protocol components, which participate in the communication through ports
in a manner defined by their given protocol, expressed in PDL. This approach to concurrent
programming is similar to the actor model; in both cases, units of work are expressed as the
tasks of actors, related through messages they exchange. During either setup or communica-
tion phases, the application may instantiate new protocol components defined in their config-
ured protocol. These new components accept a set of ports moved from the interface of the
application’s component; in this way, new protocol components are ‘threaded’ into the session.

In the following example, the application threads a component instantiating the user-defined
force protocol, which specifies the component’s behavior such that it forwards a message
from its output to its input each round. By including this protocol component, the set of possible
interactions permitted in this session at runtime is constrained to just those in which a message
flows through the channel.

char g_pdl[] =
"primitive force(in a, out b) { "
" while(true) synchronous { put(b, get(a)); }"
"} ";
void main() {

Arc_ProtocolDescription * pd =
protocol_description_parse(g_pdl, sizeof(g_pdl));

Connector * c = connector_new(pd);
PortId p0, p1, p2;
connector_add_port_pair(&p0, &p1);
connector_add_net_port(c, &p2,

(FfiSocketAddr) {{127, 0, 0, 1}, 8000},
Polarity_Putter, EndpointPolarity_Active);

/* [main]
p0 p1 p2---->(network)
| ^
`---` */

connector_add_component(c, "force", (PortId[]){p1, p2}, 2);
/* [main]

p0
|
`-->p1 [force] p2----> (network) */

connector_connect(c, -1);
}

Owing to its high-level nature, work expressed as PDL components is expressed at a level
suitable to the task of distributed, interaction-based coordination, such that tasks may be ex-
pressed more intuitively. Consider the example of a three-party system, in which one host
generates messages always replicated to the remaining two peers. At runtime, the connector
runtime will guarantee that all components participate protocol-adherent behavior.

In the following example, the application instantiates a replicator2 component as an
intermediary between p0, the only port retained for the application’s use, and ports p2 and p3,
which traverse the network to some anoymous peer(s). The topology of the channels and the
definition of the protocol guarantees that the remote peers will certainly always receive identical
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messages, regardless of the implementation of the application itself. Note that replicator2
is not visible in the C source, as it is defined by default in Reowolf’s standard library.

primitive replicator2(in a, out b, out c) {
while(true) synchronous {

if(fires(a)) {
msg m = get(a);
put(b, m);
put(c, m);

}
}

}

void main() {
Arc_ProtocolDescription * pd = protocol_description_parse("", 0);
Connector * c = connector_new(pd);
PortId p0, p1, p2, p3;
connector_add_port_pair(&p0, &p1);
connector_add_net_port(c, &p2,

(FfiSocketAddr) {{127, 0, 0, 1}, 8000},
Polarity_Putter, EndpointPolarity_Active);

connector_add_net_port(c, &p3,
(FfiSocketAddr) {{127, 0, 0, 1}, 8001},
Polarity_Putter, EndpointPolarity_Active);

/* [main]
p0 p1 p2 p3
| ^ | |
`---` V V

(network) */
connector_add_component(c, "replicator2",

(PortId[]){p1, p2, p3}, 3);
/* [main] [replicator2]

p0-------->p1 p2 p3
| |
V V

(network) */
connector_connect(c, -1);

}

In cases of more complex protocols, the usage of components instantiated with a predeter-
mined protocol description may represent a significant reduction in implementation effort on the
part of the application developer. The delegation of coordination logic to the definition of the
protocol encourages a sanitary programming style, in which coordination logic is extracted out
of user applications, and relegated to the protocol definition, making clearer the separation of
concerns between distributed coordination, and local computation. The definitions of the appli-
cation and its protocol(s) can be separated further by defining them in separate source files to
be loaded at runtime.
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In the the following example, a simple application may exhibit complex behavior at runtime,
without its implementation itself being complex. The definition of protocol bigtask can be
determined later, and managed separately.

char * load_pdl(char file_path) {
/* omitted */

}
void main() {

Arc_ProtocolDescription * pd = load_pdl("bigtask.pdl");
Connector * c = connector_new(pd);
PortId p0;
connector_add_net_port(c, &p0,

(FfiSocketAddr) {{127, 0, 0, 1}, 8000},
Polarity_Putter, EndpointPolarity_Active);

/* [main]
p0 -------------> (network) */

connector_add_component(c, "bigtask", &p0, 1);
/* [main] [bigtask]

p0 -----> (network) */
connector_connect(c, -1);

}

The protocol description language is designed for symbiosis with the internals of the connec-
tor runtime. As such, it is able to express complex branching behavior intuitively as branching
speculations. The language is designed to afford decision-making as a function of synchronized
data before it is committed, while containing the resulting effects safely, such that the runtime’s
guarantees are preserved. For example, the following protocol determines how to route a given
message synchronously, based on the message contents.

primitive route_by_contents(in a, out longer, out shorter) {
while(true) synchronous {

if(fires(a)) {
msg m = get(a);
if(m.length > 16) put(longer, m);
else put(shorter, m);

}
}

}

In this fashion, protocol components can express a greater class of transactional interac-
tions, whose behavior is unfolded lazily by the connector runtime as needed, and where tran-
sient violations of protocols are safely contained, and not leaked to the applications.

For example, consider this two-party consensus protocol, which enforces synchronous re-
ceipt of two equivalent messages on its inputs. This protocol can be used for two mutually-
untrusting peers who wish to check whether they share a secret. While the protocol component
is able to inspect the incoming messages speculatively, no causally related actions can succeed
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if the assertion fails, preventing any information leaking to applications. In this particular case,
the result is a kind of ‘backpressure’ on mismatching secrets, preventing the messages from
being sent at all, such that neither is revealed.

primitive msg_consensus(in a, in b) {
synchronous { assert(get(a) == get(b)) }

}

By relying on the predictable way a given protocol will affect the behavior of a communica-
tion session at runtime, protocols provide a rich and reliable expression of a session’s safety
properties. This allows for a modular approach to safety verification in large and complicated
distributed systems, as the properties of protocols are inherently preserved regardless of their
environment. Furthermore, as seen earlier, the application itself is alleviated of the burden of
enforcing the needed requirements, instead being able to trust the connector itself to preserve
the session’s protocol once it is configured.

Consider how an application processing messages received through components instanti-
ated with the following protocol can safely assume that all messages received have a length of
300 bytes.

primitive sync_300(in a, out b) {
while(true) synchronous {

msg m = get(a);
assert(m.length == 300);
put(b, m);

}
}

Protocols are designed to make reasoning about communication behavior possible for ma-
chines as well as humans. Section 8.1 demonstrates how application developers can employ
automated tools to apply circumstantial optimizations to their session’s implementation in a
fashion more just-in-time and verifiably safe than is possible for humans to do.

Care must be taken when writing protocols to bear in mind the causal dependencies the
protocol descriptions express. The runtime won’t find any solutions that require a message to
be sent before it is received! The following sync_eq protocol consumes pairs of equivalent
messages from inputs x and y and forwards them to its output z. Note that the way it is defined,
the output is causally dependent on the receipt of a message through input x , as it precedes it
in the control flow; this is not the case for y , which instead follows the output. In many sessions,
this asymmetry between the inputs is not important. However, when instantiated in a session
where x in turn depends on z (e.g., the output of z is synchronously routed back into x), the
result is a cyclic causal dependency, prohibiting the realization of any behavior which requires
x and z to transmit messages. Below, a simple session is demonstrated. The definition of this
protocol component is provided below alongside a C application to instantiate it in a session
which fails to transmit their message as the programmer might have expected.
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primitive sync_eq(in x, in y, out z) {
msg mx = null;
msg my = null;
while(true) synchronous {

if(fires(z)) {
mx = get(x);
put(z, mx);
my = get(y);
assert(mx == my);

} } }

Arc_ProtocolDescription * pd = protocol_description_parse(pdl,
pdl_len);↪→

Connector * c = connector_new(pd);
PortId x, yp, yg, z;
connector_add_port_pair(c, &z, &x ); // sync channel z -> x
connector_add_port_pair(c, &yp, &yg); // sync channel yp -> yg
connector_add_component(c, "sync_eq", 7, (PortId[]){x, yg, z});
connector_connect(c, -1);

connector_put_bytes(c, yp, "Hi", 2);
int code = connector_sync();
assert(code<0); // negative code indicates error: no solution found.

Intuitively, we may understand that there can be no solution in which both x and y causally
depend on the output, we may wish to correct this asymmetry between sync_eq’s input ports.
We can define a protocol component that finds solutions in which either of its inputs may be
causally dependent on its output, not just x . This is simply achieved by injecting an additional
speculative branch; effectively, we let the component speculate about which of its two input
messages to receive first. In the current implementation, protocol components must express
speculative branching in terms of port variables (Section 12.1.1 describes future work, aimed
at removing this cumbersome limitation). As such, our component may employ a dummy port,
whose only purpose is to facilitate the extra speculative fork. The new implementation for the
sync_eq is provided below, complete with the relaxation of the causal relationship between
x and z such that the previous example of a user’s session would result in a successful syn-
chronous round.
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composite eq(in x, in y, out z) {
// hides the creation of the dummy port
channel dummyo -> dummyi;
new eq_inner(x, y, z, dummyo, dummyi);

}
primitive eq_inner(in x, in y, out z, out dummyo, in dummyi) {

msg ma = null;
msg mb = null;
while(true) synchronous {

if(fires(z)) {
if(fires(dummyi)) {

// Dummy fires: x first
mx = get(x);
put(z, mx);
my = get(y);

// use dummy to avoid inconsistency
put(dummyo, ma);
get(dummyi);

} else {
// Dummy silent: y first
my = get(y);
put(z, my);
mx = get(x);

}
assert(mx == my);

} } }

10.2 Canonical Reo Protocols in PDL

Reowolf’s PDL is largely based on the Reo coordination language. Existing literature provides
a comprehensive look at Reo’s design philosophy at high level [Arb11, Arb16], and the details
of the language [Arb04]. Note that in abstract applications, Reo protocols are often shown
visually. For this work, to make for a simpler comparison with PDL, Reo protocols are defined
in treo, [DA18] Reo’s textual syntax.

This section compares and contrasts the two languages, and demonstrates how PDL is
able to encode Reo circuits. In designing PDL, the intention was to facilitate cross-compilation
between Reo and PDL, such that developments in one can carry over to the other.

10.2.1 Primitive Reo Connectors

Most essentially, Reo and PDL share the emphasis on compositional protocol definitions, such
that complex protocols are defined in terms of simpler ones. The simplest protocols, which
cannot be subdivided, are referred to as primitive, reflected in PDL by the primitive keyword.
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In both languages, the most essential, primitive is the sync protocol, also referred to as the
sync channel to reflect its primitive, end-to-end nature. They forward incoming messages to
their output synchronously. They are idempotent, with individual instances interchangeable with
arbitrarily long chains of sync channels without influencing the system’s behavior.

Aside from superficial syntactic differences (E.g., treo marks the input/output polarity of ports
with ? and !, rather than in and out respectively), the most significant difference is Reo’s
declarative style, which is stateless by default, with each protocol defining a set of guarded
rules, defining it’s behavior during each synchronous round. Conversely, PDL draws inspiration
from imperative languages (such as C) for (in addition to superficial syntax such as curly-braced
block expressions, and typed variable declarations), making use of an implicit control flow top
to bottom, overridden by conventional control flow statements such as while and if. Fur-
thermore, Reo’s syntax draws more direct inspiration from its roots in constraints on timed data
streams (for more information, see [Arb04]), such that PDL’s variable assignment corresponds
to Reo’s equality constraint, both of which are rendered syntactically as =. Consider the similar-
ities and differences in how both languages define the sync protocol, which endlessly forwards
an incoming message to the output if it exists.

sync(a?, b!){
#RBA
{a,b} a=b

}

primitive sync(in i, out o) {
while(true) synchronous {

if(fires(i)) put(o, get(i));
}

}

The lossy channel is similar to the sync channel, but for each incoming message, makes
a binary nondeterministic choice of whether the message is forwarded or lost. In the case of
Reo, this behavioral branch is made explicit as the inclusion of two rules, the former guarded
by the condition messages flow through both ports, resulting in the message being forwarded,
and the latter guarded by the condition that a message flows through the input, but not through
the output. In the case of PDL, this behavioral branch is the result of reflecting on fires(o), a
speculative boolean variable whose value is determined by the environment at runtime, where-
after the control flow diverges to include or exclude the consequent of the if statement.
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lossy(a?, b!){
#RBA
{a, ~b} true
{a, b} a=b

}

primitive lossy(in i, out o) {
while(true) synchronous {

if(fires(i)) {
msg m = get(i);
if(fires(o)) put(o, m);

}
}

}

Reo’s syntax prioritizes brevity, enabling users to reason about the values of data, whose cor-
responding message-flow behavior includes the implicit replication of messages as necessary,
which, in the case of two output ports, is equivalent to the insertion of the the replicator2
component shown below. By contrast, PDL enforces the strict, unique ownership of ports, re-
quiring such replication behavior to be expressed explicitly, as routed through a replicator2
component.

replicator2(a?, b!, c!){
#RBA
{a, b, c} a=b=c

}

primitive replicator2(in a, out b, out c) {
while(true) synchronous {

if(fires(a)) {
msg m = get(a);
put(b, m);
put(c, m);

}
}

}

Similarly, Reo messages routed through an output port from multiple input ports are implicitly
merged, as if routed through an intermediary component, instantiated with merger2. As before,
PDL has no such implicit behavior, requiring the use of a merger2 component to explicitly
merge the messages of two input ports into an output port.
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merger2(a?, b?, c!){
#RBA
{a, b} a=b
{a, c} a=c

}

primitive merger2(in a, in b, out c) {
while(true) synchronous {

if (fires(b)) put(b, get(a));
else if(fires(c)) put(c, get(a));

}
}

The fifo1 channel is canonical for forwarding messages asynchronously through the use of a
single buffer slot. The storage of a value facilitates a meaningful persistence of states between
synchronous interactions; as such, fifo1 connectors are often used as the building block for
more complex, stateful protocols.

In this case, Reo’s manipulation of state is made explicit as reads and writes of a memory
cell identified as m. Where the distinction between the ‘new’ value of a mutated cell must be
distinguished from ‘old’ values, the identifier is suffixed by an apostrope ’, once again, drawing
inspiration from timed data streams, where identifiers can look ahead to values at the ‘next’
timestamp using ’.

As is typical for imperative languages, a protocol’s state in PDL changes implicitly with the
control flow, and explicitly with mutations of local variables. In the case of the fifo1 connector,
the only meaingful state to persist between synchronous rounds is the value of variable m, which
serves to store either one message, or null.

fifo1(a?, b!) {
#RBA
{a, ~b} $m = null, $m' = a
{~a, b} $m != null, b = $m, $m' = null

}

primitive fifo1(in a, out b) {
msg m = null;
while(true) synchronous {

if(m == null) {
if(fires(a)) m = get(a);

} else {
if(fires(b)) put(b, m);
m = null;

}
}

}
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(a) Reo (b) Visual PDL

Figure 10.1: Visual representation of the composite sequencer3 protocol, as
expressed by treo and PDL respectively.
(a) Vertices are port nodes. rectangles over arrows are fifo1 or
fifo1_full components. Dangling arrows are boundary ports.
(b) Vertices are components, whose shapes correspond to their protocol:
rectangles are fifo1 or fifo1_full, trapezia are replicator. Arrows
are channels with one or two ports on either end.

10.2.2 Composite Reo Connectors

Some protocols occur often enough that they are canonical to Reo, despite not being primitive.
The first example is the sequencer, which emits signals (messages with no contents) out of

its output ports, one at a time, in a cyclical fashion. For simplicity, we focus on the sequencer3,
for which the period is three in particular. Both languages achieve this by three fifo1 channels
cycling a single token message. Each time the token moves, a replica of the token is emitted
by one of the three output channels, starting with port a. The state of this protocol is contained
entirely by its fifo1 channels, one of which begins filled with a signal message.

PDL renders this protocol as a composition of six primitive protocols, three fifo1 chan-
nels, and three replicators. These primitives are connected into a ring by six freshly-created
sync channels, each exposed as an input and ouput port pair. This explicit rendering of PDL
places the burden of preserving the linear ownership of ports by protocol components onto
the programmer. This is depicted visually in Figure 10.1b. This representation expedites in-
terpretation at runtime, by preserving the linearity of ports from their creation to consumption
by a child protocol. For example, g is created in line channel f -> g; and moved in line
new fifo1(g, h);.

Reo’s rendering is simplified through the use of implicit replication for data flow from identified
nodes to multiple outputs. Otherwise, its representation of the protocol is much the same.
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sequencer3(a!, b!, c!) {
sync(xa, a)
sync(xb, b)
sync(xc, c)
fifo1full(xc, xa)
fifo1(xa, xb)
fifo1(xb, xc)

}

composite sequencer3(out a, out b, out c) {
channel d -> e;
channel f -> g;
channel h -> i;
channel j -> k;
channel l -> m;
channel n -> o;

new fifo1_full(o, d);
new fifo1(g, h);
new fifo1(k, l);
new replicator(e, f, a);
new replicator(i, j, b);
new replicator(m, n, c);

}

Our final example is xrouter, which routes incoming messages to one of two output ports
non-deterministically.

Figure 10.2 shows the protocol’s Reo definition graphically. All consistent protocols are all
primitives: lossy synchronous channel (dashed arrow), synchronous channel (single unbroken
arrow) and synchronous drain (two colliding arrows). The protocol works by constraining the
flow of messages such that only the desired behavior is possible while satisfying all constituent
protocols: whenever a message arrives from a, a message is emitted from b or from c but
not both. The synchronous drain channel between s and m can be understood as expressing
‘a message flows through s if and only if a message flows through m’, effectively ensuring at
least one of the outputs will emit a message, while node m is defined to include an implicit non-
deterministic merger of messages from xb and xc, effectively ensuring that at most one of the
outputs will emit a message.

The expression of this protocol in PDL corresponds closely to that of textual Reo, but as is
the case for sequencer3, must bear the burden of explicitly expressing components expressed
implicitly by Reo’s nodes. Reo nodes xb, s, and xc all make use of implicit replication, corre-
sponding to instances of replicator2 in the PDL definition. Furthermore, m makes an implicit
use of a non-deterministic merger of multiple incoming channels, corresponding to an instance
of merger2 in the PDL definition.
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syncdrain(a?, b?) {
#RBA
{a, b} true

}
xrouter(a!, b!, c!) {

sync(a, s)
sync(xb, b)
sync(xc, c)
lossy(s, xb)
lossy(s, xc)
sync(xb, m)
sync(xc, m)
syncdrain(s, m)

}

primitive sync_drain(in a, in b) {
while(true) synchronous {

if(fires(a)) {
get(a);
get(b);

}
}

}
composite xrouter(in a, out b, out c) {

channel d -> e;
channel f -> g;
channel h -> i;
channel j -> k;
channel l -> m;
channel n -> o;
channel p -> q;
channel r -> s;
channel t -> u;

new lossy(e, l);
new lossy(i, j);
new sync_drain(u, s);
new replicator(a, d, f);
new replicator(g, t, h);
new replicator(m, b, p);
new replicator(k, n, c);
new merger(q, o, r);

}
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(a) Reo

(b) Visualized PDL

Figure 10.2: Visual representation of the composite xrouter protocol, as ex-
pressed by treo and PDL respectively.
(a) Vertices are port nodes. rectangles over arrows are fifo1 or
fifo1_full components. Dangling arrows are boundary ports.
(b) Vertices are components, whose shapes correspond to their protocol:
rectangles are lossy_sync, trapezia are replicator when gray and
merger when red, and the bowtie is a sync_drain. Arrows are channels
with one or two ports on either end.

10.3 Connector-Socket Inter-Operability

This section compares the usages of connectors and sockets for exchanging UDP datagrams
over the network. This includes the use of both the connector API and pseudo-socket API for
connectors. For the sake of brevity, this section includes examples are chosen to demonstrate
their message exchange funtionality, and as such, they do very little else. Realistic usages
will often be more sophisticated, but their interaction with the (pseudo-)sockets is essentially
the same, while being otherwise cluttered with details irrelevant to the demonstrations, such as
manipulations of the contents of datagrams. For example, the pseudo-socket API can support
the implementation of a DNS client whose usages of the pseudo-socket boil down to a sequence
of procedure calls similar to those shown in the examples to follow.

To begin, we consider a simple C program which uses conventional UDP sockets in blocking
mode to receive a single datagram, and print the contents of the received messages as a
hexadecimal string. The UDP socket is used in a connection-oriented fashion, locally bound to
localhost port 8000, and communicating with a peer at localhost port 8001:

#include <netinet/in.h> // definies socketaddr_in
#include <stdio.h> // defines printf
#include <stdlib.h> // defines malloc, free
#include <unistd.h> // defines close
#include <arpa/inet.h> // defines inet_pton
#define BUFSIZE 128
int main() {

// --- setup ---
struct sockaddr_in addrs[2];
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addrs[0].sin_family = AF_INET;
addrs[0].sin_port = htons(8000);
inet_pton(AF_INET, "127.0.0.1", &addrs[0].sin_addr.s_addr);
addrs[1].sin_family = AF_INET;
addrs[1].sin_port = htons(8001);
inet_pton(AF_INET, "127.0.0.1", &addrs[1].sin_addr.s_addr);
int fd = socket(AF_INET, SOCK_DGRAM, 0);
bind(fd, (const struct sockaddr *)&addrs[0], sizeof(addrs[0]));
connect(fd, (const struct sockaddr *)&addrs[1],

sizeof(addrs[1]));↪→

// --- communication ---
char * buffer = malloc(BUFSIZE);
size_t msglen, i;
msglen = recv(fd, (void *)buffer, BUFSIZE, 0);
for(i=0; i<msglen; i++) {

printf("%02X", buffer[i]);
}

// --- cleanup ---
close(fd);
free(buffer);
return 0;

}

The same program is shown below, re-implemented in terms of the pseudo-socket API. In
this case, no macros are employed to hide the injection of the rw_ prefix on the identifiers
of pseudo-socket procedures. Otherwise, the only difference from the program above is the
inclusion of the pseudo-socket header file, whose contents are provided in Section 9.2.3.

#include <netinet/in.h> // definies socketaddr_in
#include <stdio.h> // defines printf
#include <stdlib.h> // defines malloc, free
#include <unistd.h> // defines close
#include <arpa/inet.h> // defines inet_pton
#include "pseudo_socket.h"
#define BUFSIZE 128
int main() {

// --- setup ---
struct sockaddr_in addrs[2];
addrs[0].sin_family = AF_INET;
addrs[0].sin_port = htons(8000);
inet_pton(AF_INET, "127.0.0.1", &addrs[0].sin_addr.s_addr);
addrs[1].sin_family = AF_INET;
addrs[1].sin_port = htons(8001);
inet_pton(AF_INET, "127.0.0.1", &addrs[1].sin_addr.s_addr);
int fd = rw_socket(AF_INET, SOCK_DGRAM, 0);
rw_bind(fd, (const struct sockaddr *)&addrs[0],

sizeof(addrs[0]));↪→
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rw_connect(fd, (const struct sockaddr *)&addrs[1],
sizeof(addrs[1]));↪→

// --- communication ---
char * buffer = malloc(BUFSIZE);
size_t msglen, i;
msglen = rw_recv(fd, (void *)buffer, BUFSIZE, 0);
for(i=0; i<msglen; i++) {

printf("%02X", buffer[i]);
}

// --- cleanup ---
rw_close(fd);
free(buffer);
return 0;

}

Finally, the following is an example of a usage of the connector API to communicate with
both of the prior programs through the use of two UDP mediator components. To avoid duplicate
bindings, the pseudo-socket and connector API programs use a UDP channel whose endpoints
are bound to localhost 8002 and 8003 respectively. In the resulting system, the sending of the
two user messages Hello, socket! and Hello, pseudo-socket! occur synchronously,
but the synchrony does not propagate through each message’s respective UDP channel to the
recipients.

#include "reowolf.h"
int main() {

// --- setup ---
Arc_ProtocolDescription * pd = protocol_description_parse("", 0);
Connector * c = connector_new(pd);
PortId putter_a, putter_b;
FfiSocketAddr addresses[4] = {

{{127, 0, 0, 1}, 8000},
{{127, 0, 0, 1}, 8001},
{{127, 0, 0, 1}, 8002},
{{127, 0, 0, 1}, 8003},

};

// putter_a to UDP mediator (getter id discarded)
// bound to addresses[0], connected to addresses[1]
connector_add_udp_mediator_component(c, &putter_a, NULL,

addresses[1], addresses[0]);↪→

// putter_b to UDP mediator (getter id discarded)
// bound to addresses[2], connected to addresses[3]
connector_add_udp_mediator_component(c, &putter_b, NULL,

addresses[3], addresses[2]);↪→

connector_connect(c, -1);

// --- communication ---
// synchronous put of 14- and 21-byte messages
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connector_put_bytes(c, putter_a, "Hello, socket!", 14);
connector_put_bytes(c, putter_b, "Hello, pseudo-socket!", 21);
connector_sync(c, -1);

// --- cleanup ---
protocol_description_destroy(pd);
connector_destroy(c);
return 0;

}
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Chapter 11

Performance Benchmarks

This chapter complements the usage and examples of Chapter 10 by facilitating a more thor-
ough understanding of the way connectors work. We explore the way the properties of the user’s
session affect the connector runtime implementation. Of primary focus is the performance of
the synchronization procedure, exposed to the user as connector_sync in the connector API
for driving the session’s communications. This procedure is involved with every facet of the
implementation, and is most likely to be performance-critical to application developers. The
chapter also serves to complement the descriptions of previous chapters, including the design
of connectors (Chapters 2) and the explanation of the implementation (Chapter 6) with concrete
examples as experimental test cases. Wherever possible, redundancy is kept to a minimum by
re-using protocols presented in Chapter 10. The observations resulting from the benchmarks
motivate directions for future work, presented in Chapter 12.

The measurements represented in this chapter are the result of measurements of runtime
on a the test machine, whose technical specifications are laid out in Table 11.1. All figures to
follow show measurements of runs for connectors setup, and then completing N synchronization
rounds before exiting; runtimes reflect the duration elapsed between the start of the first and end
of the last round. N is chosen on a case-by-case basis to result in a total runtime between 1
and 120 seconds, and N ≥ 1000, for all non-trivial benchmarks (large enough to gather a
good sample size, small enough to expedite the testing process); for example, all figures up
to and including Figure 11.7 as they appear chronologically, were run with N = 106. Tests
with significant variability in runtime between runs (e.g. those involving real networks) were
entirely repeated 3–5 times, with each measurement either shown in the figure as a distinct
measurement (with a × symbol) or represented in the plot as the mean value.

Architecture Intel x86 64-bit
Operating System Windows 10 Pro (2004) build 19041.508
Processor Intel i7-7700 @ 4.2 GHz with 4 physical / 8 logical cores. Caches

L1: 8x32KB, L2: 4x256KB, L3: 8MB
Memory 16GB DDR4 @ 3200MT/s
Storage 500GB (512MB cache) 3d v-nand (TLC) NVMe SSD with inter-

face 4x PCI Express 3.0

Table 11.1: Technical specification of the test machine, used in this section
for performance benchmarking.

109
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Chapter 10 starts with the simplest possible sessions, systematically complicating the con-
figuration to explore the properties of the session’s configuration on its runtime. Section 11.2
exemplifies the utility of session optimization, introduced in Section 8.1.

11.1 Baseline Synchronization Performance

This section benchmarks the performance of the connector’s connector_sync procedure, as
it drives the message exchange, as well as the distributed control algorithms that facilitate it.

By design, connectors have an immense configuration space, making it infeasible to perform
a sufficiently diverse set of benchmarks such that the performance of any realistic use case is
represented. Instead, our approach teases out the performance characteristics of connec-
tor_sync as a function of the most essential properties of the configuration, such that one can
form an understanding of how the essential properties of any connector configuration influences
the runtime performance of the connector.

11.1.1 Configuration Complexity

Before introducing the overhead that follows from management of a distributed system, this sec-
tion explores the runtime overhead of the connector’s synchronization procedure as a function
of its session configuration.

Trivial Synchronization Procedure

The most essential baseline benchmark measures the cost of a connector_sync with the
most trivial configuration, which exchanges an empty set of messages. As the runtime is not
optimized to check for this degenerate case, the synchronization procedure prepares all of the
internal bookkeeping state in preparation for a consensus procedure which is immediately re-
solved. The following code snippet in the C programming language shows the experimental
setup for this test, which shares its essential structure with all the experiments to follow. On the
test system, this program finishes in 1.225 seconds, allowing us to conclude that the mean du-
ration of a single connector_sync was 1.225 µs. This result is very consistent between runs,
in part owing to the computation being deterministic, except for the management of underlying
system resources (e.g. memory layout) which plays a small enough role not to influence the
result.
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#include <time.h>
#include "reowolf.h"
int main(int argc, char** argv) {

Arc_ProtocolDescription * pd = protocol_description_parse("", 0);
Connector * c = connector_new(pd);
connector_connect(c, -1);
clock_t begin = clock();
int i;
for (i=0; i<1000000; i++) {

connector_sync(c, -1);
}
clock_t end = clock();
double time_taken = (double)(end - begin) / CLOCKS_PER_SEC;
printf("Time taken: %f\n", time_taken);
return 0;

}

Ports

Next, we establish the cost of maintaining a set of N unused ports. Concretely, the previous test
is repeated, but with addition of ports into the interface of the protocol component. This exper-
iment was repeated with ports created in either of the two ways available to the programmer:
(a) as a pair of ports, connected through a memory channel, or (b) a pair of individual ports,
forming two halves of a network channel over the transport-layer. The results of this test are
shown in Figure 11.1, plotted over the number of silent interface ports.

We see that the runtime duration in microseconds R of connector_sync is a good fit for
the linear function of the number of interface ports P given by R = 1.2 + 0.13 · P, shown in
the figure in solid gray. Clearly, there is not a significant difference between the ports with and
without an underlying network channel. This linear cost is explained by the relationship between
a component’s interface port set, and the solution which encodes the successful result of the
round, which ultimately specifies constraints for all the system’s ports, in this case, predicating
silence.

Protocol Components

Recall that application developers are able to instantiate protocol components, delegating the
task of maintaining their states to the connector runtime. This test establishes the baseline cost
of maintaining a set of N identically protocol components, each owning zero ports, and doing no
work other than (trivially) participating in each synchronous round. Without including a session
optimization step, the runtime works to retain the states of these components, despite them
having no effect on the system’s observable behavior. The behavior of these components is
given by the following protocol, expressed in PDL:
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Figure 11.1: Runtime of connector_sync as a function of the number of
silent ports in an otherwise trivial connector configuration. Lines distinguish
measurements for runs where ports are created with underlying memory
channels, or transport-layer network channels. The gray underline illustrates
a linear fit.

primitive trivial_loop() {
while(true) synchronous{}

}

The runtime performance of connector_sync is plotted over the number of these trivial
protocol components in Figure 11.2. In all cases, such protocol components are more expensive
to maintain than the same number of silent ports. It comes as no surprise that components are
at least as expensive as ports, as both encumber the discovery of a solution in a similar manner;
the solution constrains the message flowing through each ports, and a solution necessitates the
composition of a set of predicates, one from each component.

The relationship in the figure appears to be almost linear, but becoming superlinear in excess
of approximately 13 components. The added cost is explained by the significantly larger and
more complex storage structures necessary to maintain these protocol components. The su-
perlinear relationship is explained by this storage growing to the extent that the machine makes
less effective use of caching.
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Figure 11.2: Runtime of connector_sync as a function of the number of
trivial protocol components in an otherwise trivial connector configuration.
The gray underline shows a linear extrapolation fitting the leftmost samples
to clarify the threshold beyond which the relationship is superlinear.

Protocol Component Interpretation

Protocol components perform work between and during synchronous rounds in accordance
with their protocol specification. This next experiment attempts to quantify the cost of adding
computation work to the definition of the instantiated protocol components to be performed at
runtime by the connector runtime’s interpreter. The protocol components used are defined in the
following PDL description, differing from the definition of the previous trivial protocol descriptions
by the addition of a (small) sequence of operations that read and write the component’s local
variable store, and jumps in control flow.

primitive presync_work() {
int i = 0;
while(true) {

i = 0;
while(i < 2) i++;
synchronous {}

}
}
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The prior experiment is repeated, comparing the runtimes with presync_work components
with their trivial counterparts in Figure 11.3. We see that the new components consistently
result in significantly more expensive synchronization, despite the new components performing
only a very small local task each synchronous round. We conclude that the cost of interpretation
of these local memory manipulations has a considerable impact on performance. Furthermore,
we see some chaotic stratification of runtimes into two distinct bands. Runs with the exact same
initial configuration can be seen to fall into either stratum unpredictably; this stratification being
observable through each measurement representing the cumulative runtime of a million runs
suggest that whatever property determines the runtime persists for the duration of the run. As
the synchronization work is still entirely deterministic, the most likely candidate is the memory
layout of the protocol component’s storage resulting in more or less effective use of caching.

Figure 11.3: Runtime of connector_sync as a function of the number of
protocol components in an otherwise trivial connector configuration. Run-
times are distinguished by the protocol used to define the components.

Ports and Components Together

The previous experiments teased out the relationships of ports or components to the duration of
the synchronization procedure independently. This section examines the effects of combining
the inclusion of ports and trivial components in the same run. Figure 11.4 gives two views on
runtimes measured from combinations of the two parameters in question. As before, compo-
nents are consistently more costly to maintain than an equivalent number of ports. However,
the figure shows that configurations with many ports and many components can expect to be at
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Figure 11.4: Runtime of connector_sync as a function of the number of
silent ports and trivial protocol components in an otherwise trivial connector
configuration.

least nominally more expensive than the sum of their parts. Figure A.1 in the appendix provides
another view of these measurements as a heatmap.

User Message Routing

The experiments from this point on require messages to be exchanged between components.
As a first step, we measure the performance cost of the cheapest form of message routing:
routing through in-memory channels.

This experiment involves a connector always configured with 13 sync protocol components,
and 28 ports, such that every component (including the native component) owns precisely one
input and one output port. The test routes the message "Hello, world!" through a ring
of components, starting and ending with the native component, through a chain of N sync
components, while the other 13 − N sync components excluded from the ring, thus routing no
message.

Figure 11.5 shows that while all runs have a baseline cost in common to maintain the same
set of components (shown as the area under the gray line), the runtime cost of routing the
message through the ring scales linearly with the length of the ring. Note that this includes the
cost of the routing itself, as well as the cost of mutating the states of protocol components that
send and receive the message, which is a cost that can unfortunately not be isolated.

Native Component Speculation

Recall that all components have some power to speculate, expressing the results of nondeter-
ministic choice, relying on the runtime to prune conflicting options, and decide the outcome such
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Figure 11.5: Runtime of connector_sync as a function of the number of
sync components included in the ring through which a single message is
sent, starting and ending at the native component. In all cases, the connector
is configured to include 13 sync components; runs differ only in the way
components are connected to one another.

that all components’ constraints are satisfied. Native components (the role the user application
plays in the communication session) can distinguish mutually exclusive options as batches, in-
crementally building them with repeated invocations of procedures in the connector API.

The connector runtime drives the search for satisfactory solutions by searching for con-
sistent combinations of partial solutions, contributed by components. In the case of native
components, these local solutions correspond one-to-one with batches, and as they cannot be
causally dependent on anything else, the runtime starts by eagerly unfolding them before the
main synchronization loop begins.

This test measures the performance cost of connector_sync as a function of the number
of batches, with which the number of connector API calls, and batches processed eagerly by
the runtime scales linearly. The results shown in Figure 11.6 confirm this expectation, showing
linear growth with the number of batches above a constant, which represents the work constant
over the number of batches, shown with a gray guideline.

Protocol Component Speculation

Each protocol components can speculate too, searching the space of potential local solutions.
However, the connector runtime unfolds their speculative computation lazily, in response to the
availability of new speculative information. This process can be understood as lazily unfolding
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Figure 11.6: Runtime of connector_sync as a function of the number of
speculative branches the native component explores.

the exponential domain of possible solutions in response to message exchanges that may result
in a component finishing the round.

This test presents a protocol configuration designed to force the speculation of solutions to
unfold the options as far as possible, resulting in the runtime managing a growing set of potential
solution combinations. Every round succeeds with the native component sending a message
whose payload is a single null byte through a chain of forward components to a recv_zero
component on the end. This component’s definition is provided in PDL below, and can be
understood simply as a component that always enforces the receipt of a message containing a
single null byte through its only port:

primitive recv_zero(in a) {
while(true) synchronous {

msg m = get(a);
assert(m[0] == 0);

}
}

The trick is in the native component offering a set of M potential messages through the chain,
all but one of which the recv_zero component will ultimately reject, but not before each is
transmitted through the chain of N forward components, creating, for each, a new speculation
about the message flowing through its input and output ports. To control for the order of these
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options being a factor, each run represents the index of the ‘correct’ choice cycled, such that
the choice of index is evenly distributed over the options.

Figure 11.7 shows the runtime performance of this connector in response to different choices
for parameters M and N. We expect runtime to scale with a value somewhere between N (if the
cost of managing N components dominates) and M ∗N (if the cost of managing the speculative
branches and partial solutions dominates). What we see is something to that effect, with the
usual gentle curve upward for runs requiring a larger memory footprint.

Figure 11.7: Runtime of connector_sync as a function of the length of the
chain of forward components between the native component at the head,
and the recv_zero component at the tail. Different lines show a different
choice for the number of messages the native component offers, only one of
which results in a solution.

11.1.2 Distributed Coordination

This section explores the overhead that follows from the connector runtime being meaningfully
distributed over several hosts.

Multi-party Consensus

The moment several applications want to share a communication session, connector_sync
must employ a non-trivial distributed consensus procedure. Section 6.2.3 describes how this
is achieved by leveraging the consensus tree, a logical overlay network built during connect,
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imposing a hierarchy on the participating connectors in the way they accumulate control infor-
mation.

This test sets up the simplest possible case for a multi-party session: a set of N applications
(each with its own process, and own connector structure) forming a continuous chain with the
leader at one end, as depicted in Figure 11.8. For now, we concentrate on using localhost
as the transport, representing the ‘smallest’ step up from local memory synchronization seen
thus far. Figure 11.9 shows the runtime resulting from all connectors synchronizing without
exchanging any messages. The runtime scales almost linearly with (N − 1), as this represents
the number of ‘hops’ in the chain, where each round results in a wave of consensus from the
(single) leaf node, up to the leader, and a wave of acknowledgement back. The gray guideline
aids in recognizing the relationship as marginally superlinear; as a result of control messages
scaling with the number of ports in the session.

native sync sync ... sync
P0

P1
P2

P3
P4

P5
Q1

Q0

Figure 11.8: Component graph of a session with one native, connected such
that it sends messages through a chain of sync components.

Figure 11.9: Runtime of the leader’s connector_sync for a chain of N
connectors connected by ports which transport messages over the localhost
network, plotted over N. Runtimes are shown as crosses, with the line con-
necting the mean of each choice of N. The gray guidelines shows a linear
interpolation for means of runtimes for runs with 1 and 8 processes.

Note that runtime of a session with participants linked in such a ‘chain’ with the leader at
once end is the worst case scenario for the performance of the consensus algorithm, as the
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wave of consensus must bounce from the end of the chain and back again, every synchronous
round. Figure 11.11 plots the results of repeating the experiment with the chain connected
with an extra network channel at the ends to form a ring, as depicted in Figure 11.10. Despite
these runs having strictly more ports than in the case of the chain topology, we observe that
in nearly all cases, the runtime has decreased, and that the duration of particular runs with the
same configuration have diverged (where before they were very consistent). This is the result
of the ring topology affording numerous constructions of the session’s internal consensus tree,
whose topology is determined by the result of control messages racing one another during the
setup procedure. In all runtimes measured for 3 or more processes, the consensus tree has a
shorter ‘height’ the number of hops from the root to its most distant leaf, where a smaller height
corresponds to a more balanced tree. In these runs, where the networking latency delaying the
consensus procedure predominates the overhead, there is a nearly linear relationship between
the measured runtime, and the height of the consensus tree.

native

sync sync

...

syncsync

P0

P1

P2
P3

P4

P5

Q5

Q4

Q3
Q2

Q1

Q0

Figure 11.10: Component graph of a session with one native, connected in
a ring of sync components.

Network Latency

When sessions span vast geographic regions, the completion of the distributed consensus pro-
cedure is inhibited by the latency of the underlying network transport. Fiture 11.12 shows the
runtimes of a chain of N connectors reaching trivial consensus, i.e., the same configuration as
that shown in Figure 11.9. In this case, the transport channels are configured to traverse the
internet through the use of a proxy server; ultimately, IP packets are bounced between Amster-
dam (Netherlands) and Les Escaldes (Andorra), resulting in channel links predicted by the ping
network utility to require a round-trip time of of 15 milliseconds. We observe a linear relationship
between the length of the chain and the mean duration of connector_sync once again, but
this time at a significantly larger scale (note that runtimes are now measured in milliseconds),
and with a chaotic stutter as a consequence of the chaotic fluctuations in latency introduced
by the internet transport. As the latency of this internet transport is inherently noisy, we cannot
draw any definitive conclusions about the contributions to runtime in this session; however, given
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Figure 11.11: Runtime of the leader’s connector_sync for a ring of N
connectors connected by ports which transport messages over the localhost
network, plotted over N. Runtimes are shown as crosses, with the colored
line connecting the mean of each choice of N. The gray guideline compares
these results to those shown in Figure 11.9.

the findings of the previous experiments, it seems safe to conclude that the runtimes measured
here are predominated by the network latency.

Causal Dependency

The connector runtime works to decide valuations for the messages passing through ports
such that all the configured protocol’s constraints are satisfied. Previously, Section 11.1.1 ex-
plained that the runtime drives the speculation of these messages’ contents lazily, unfolding the
possibilities as information becomes available. More concretely, the runtime traces the causal
dependency from the get actions on a port to the put action on its peer, on the other end of
the channel. Effectively, instead of enumerating all the messages that might arrive at a port, the
runtime will ‘play out’ the effects of receiving a message when concrete messages are specu-
latively sent. The cost of this approach is introducing a delay before the message received by a
get action is determined. This has an effect on the runtime of the synchronization procedure.

We examine the test case depicted in Figure 11.13, which attempts to understand the con-
tributions of causal dependencies between the actions that make up the interaction completed
by connector_sync. Two connectors, A and B, form a shared session, separated by a high-
latency connection over the internet (estimated by ping to have a round-trip time of 15 millisec-
onds). Every round, NA, the native component of A, sends a set of X messages, ultimately
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Figure 11.12: Runtime of the leader’s connector_sync for a chain of N
connectors connected by ports which transport messages over the internet
between Les Escaldes and Amsterdam, plotted over N. Runtimes are shown
as crosses, with the colored line connecting the mean of each choice of N.

received by NB, the native component B. However, all messages are looped from follower to
leader and back again before arriving at their destination Y times. This ‘looping’ of each mes-
sage is achieved by the channel being routed through a pair of forward protocol components,
who work to bounce incoming messages over the internet and back again.

Figure 11.14 shows the mean duration of the leader’s connector_sync procedure for com-
binations of the parameters X and Y ; note that these results feature noise, characteristic of
runtimes subject to the ever-changing latency of a real internet connection. As was seen in Fig-
ure 11.4 previously, runtime consistently increases with large combinations of many ports and
components, representing the overhead of managing more states, reasoning about a larger
solution space, and transmitting larger control messages. The growth over the two input pa-
rameters make clear that sessions which include longer chains of causal dependency (having
more loops) increase the time needed to complete the synchronous round, above and beyond
a constant baseline duration of approximately 20 milliseconds to complete the synchronization
procedure. Figure A.2 in the appendix provides another view of these measurements as a
heatmap.

Message Size

Transporting message data between components is an important task for all communication
protocols. This next experiment attempts to tease out the effect of the size of these messages



11.1. BASELINE SYNCHRONIZATION PERFORMANCE 123

nativeA nativeB

forward

forward forward

forward

A0

B0

B1
A1

A2

B2

B3
A3

A4

B4

Figure 11.13: Component graph of a session with connectors A and B (left
and right respectively), where the native component of the former sends X
messages each round to the native component of the latter, via a chain of
forward components distributed such that messages loop back from B to
A to B again Y times. The figure depicts the case where X = 1 and Y = 2.

on the runtime of the synchronization procedure. The test scenario has the native components
of each of two connectors exchange a single message. Three network configurations are tested,
sampling the space of network latencies that can be expected: (a) for ‘localhost’, the connectors
share a host, (b) for ‘localnet’, the connectors are reachable via a local area ethernet connection,
and (c) for ‘internet’, the two hosts are reachable by a network channel over the internet whose
round-trip time is estimated by ping to be 15 milliseconds. This plot features values for input
and output variables over orders of magnitude, and so features logarithmic x and y axes with
axis ticks denoting successive multiples of two.

Figure 11.15 plots the runtime as a function of message size for each of our three network
configurations. In all three cases, there was no significant difference in response to varying the
message size until the size exceeded some threshold. For these runs, the majority of runtime
is a consequence of waiting for control messages, and manipulating control data structures,
which are not affected by message length. The three network configurations have vastly differ-
ent baselines, which follows from the vastly different times taken for their consensus algorithm
to exchange messages over the network link. However, as messages approached their maxi-
mum allowed size, runtimes increased such that they trended toward a linear relationship with
message length, suggesting that eventually, the cost of reading, writing, sending and receiving
message contents predominates the runtime.

Figure 11.16 shows the results of Figure 11.15 again, but with runtimes scaled to a propor-
tion of the runtimes for the 1-byte message runs of their respective network configuration. In this
plot, it is clearer to see the threshold beyond which the increasing length of exchanged mes-
sages makes a significant difference. Sessions communicating over lower-latency transports
have lower overhead overall, and thus, can be seen to experience a significant slowdown for
even moderately sized messages.
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Figure 11.14: Runtime of connector_sync as a function of the session’s
configuration, plotted against combinations of parameters: (a) the number of
messages exchanged in parallel from leader to follower, and (b) the number
of times each message is looped from follower via the leader back to the
follower. Note the logarithmic x and y axes.
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Figure 11.15: Runtime of connector_sync of the ‘leader’ in a two-
connector system where the leader sends the follower a single message
each synchronous round.

In anticipation of frequent moves and replications of messages, the reference implemen-
tation stores payload data on the heap, and moves them through components and ports by
reference. Our final experiment shows that protocol components managed within the same
connector can exchange large messages without incurring cost dependent on the message
length. Figure 11.17 shows runtime measurements for a single-connector session, where the
native component synchronously send and receives a same message, first sent through a loop
of forward components hosted locally. The component graph of this session corresponds with
that shown in Figure 11.10 previously, but note that, this time, protocol components are instan-
tiated with protocol forward. The plotted runtime measurements are distinguished by the size
of the message sent and received. Observe that while message size and the number of for-
ward components each contribute to the runtime cost, they do so independently; successive
exchanges of the same message between locally-managed protocol components don’t incur
the cost of moving the message contents repeatedly.

Note: Transport Strategy

The connector runtime must exchange control messages with peers over a network as part
of its various control algorithms. Realizing conceptual message passing concretely requires
making many design decisions pertaining to the specifics. In such cases, it is often not clear a
priori which choices are superior to others, bringing rise to several permissible strategies. Here,



126 CHAPTER 11. PERFORMANCE BENCHMARKS

Figure 11.16: Runtimes of Figure 11.15, for each network configuration, plot-
ted as a multiple of the respective configuration’s runtime for the case of
sending a 1-byte message. Note that the x axis is logarithmic, and the y
axis is linear.

we focus on three strategies for the translation of outgoing control messages into TCP byte
sequences for transport over the network.

1. nagle
Control message structures are serialized into the TCP stream, with each incremental
sub-structure written eagerly with a system call. The TCP socket is configured to use the
default socket configuration, which uses Nagle’s algorithm for combining small outgoing
TCP segments into larger ones.

2. eager
Control message structures are serialized into the TCP stream, with each incremental
sub-structure written eagerly with a system call, each of which eagerly sends the data ‘on
the wire’ as a TCP segment.

3. buffered
Control message structures are serialized into a byte buffer incrementally. Once the se-
rialization is complete, the entire buffer’s contents are sent ‘on the wire’ as a single TCP
segment with one system call.

Figure 11.18 examines a test scenario where two hosts connected by a set of 16 channels
in either direction, backed by transport channels with approximately 1 millisecond of latency,
exchange N messages in parallel. The figure distinguishes mean runtimes for runs employing
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Figure 11.17: Runtime of connector_sync of the only connector in a ses-
sion where the native component sends itself a message, after it is forwarded
through a ring of forward protocol components. Runtimes are shown as a
function of the number of components in the ring, with runs distinguished by
the size of the message sent (in bytes).

each of the three strategies. ‘greedy’ can be seen to scale poorly with the number of control
messages exchanged, as more messages result in very many TCP segments, resulting in im-
mense transport-layer overhead, often requiring entire TCP headers to transport a single byte
of control data. ‘nagle‘ scales well with the number of control messages, but results in the
operating system waiting extended periods of time to aggregate control data, resulting in con-
sistent, yet low throughput. ‘buffered’ results in fewer, larger TCP segments sent very quickly,
but requires an extra step of moving bytes out of the incrementally-populated byte buffer.

Overall, it is clear that ‘buffered’ by far outperforms the other two strategies. Clearly the
overhead of the added buffering step is worthwhile. As such, it is used in the final version of the
connector runtime.

11.1.3 Summary

The experiments in this section clarify the relationship between a session configuration and the
performance that users can expect of their programs during communication.

As is the case in general, the most significant contributor to slowdown in the latency of the
network transport itself. This is certainly true for sessions spanning the internet between na-
tions and continents, but is also likely to hold even on a moderately-sized local area network
with the typical millisecond or two of latency. The effects of such latency are offset by the execu-
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Figure 11.18: Runtime of connector_sync as a function of the number
of speculative messages sent, results for each of the three strategies are
shown for rendering outbound control messages are tested. The right figure
mirrors the left, but with a logarithmic y-axis. Note that all results but for
those of ‘buffered’ were made using a variant of the runtime implementation,
and as such, are not reproducible using the publicly available source code.
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tion of tasks in parallel, which is generally achievable for actions within the same synchronous
round, inhibited primarily by the presence of causal dependencies between the actions. For
example, two applications in a local area network can expect to exchange five small indepen-
dent messages in less time than it takes to bounce a single small message from one host to
the other and back again. Sections 12.2.6 and 12.1.1 describe the potential to relax the no-
tion ‘synchrony’, enabling the exploration of multiple rounds’ actions in parallel, with the goal of
increasing throughput.

There is generally no significant difference in the cost of transporting messages less than
a thousand bytes in length. The cost of transporting longer messages only becomes signifi-
cant once they contain several dozen kilobytes of data, and then in those cases, the cost of
repeated message movement are limited to the cases in which messages traverse the bound-
aries between connectors, over the network. Section 12.2.2 describes future work to improve
the performance of speculative messaging over the network. Section 12.2.4 describes future
performance optimizations of the handling of incoming network messages. Section 12.2.8 de-
scribes changes to the connector API that will afford more efficient expression of behavior on
behalf of the user, affording clear and efficient deduplication of API calls.

Generally, the cost of synchronization of a session scales with the complexity of its protocol
configuration in the sense that ‘you pay for what you use’. Complex protocols involve a large
set of ports, a large set of components, protocol components defined to perform length compu-
tations, and protocol components that perform extensive speculation of the possible behaviors.
The most complex sessions involve many of these factors at the same time, such that the com-
plexities are compounded, E.g, a session with multiple components, each performing significant
speculation. Sections12.2.5 and 12.2.3 describe changes to PDL and the connector implemen-
tation, respectively, which promise to optimize the runtime performance of protocol components.
Section 12.1.5 describes a scheme for relaxing restrictions on the number of messages trans-
missible through ports per synchronous round, in some cases reducing the number of ports
needed to express a given abstract protocol. Nevertheless, in the cases of realistic protocols,
the performance impact of the session’s protocol is overshadowed by network delays by several
orders of magnitude (a matter of microseconds versus milliseconds).

11.2 Effects of Session Optimization

Chapter 8 introduced session optimizations as a distributed procedure for mutating the initial
configuration of the distributed connector runtime during the setup phase. In most cases, the
utility of this procedure its its ability to replace the session’s internals such that the resulting
session is more efficiently executable than it would have been otherwise, but without altering its
behavioral specification.

This section exemplifies the sorts of session optimizations available to connectors, giving
a glimpse into their efficacy by selecting simple, concrete example cases, and comparing the
runtimes of the session with and without the optimization. It is beyond the scope of this work to
perform an exhaustive exploration of the kinds of optimizations possible, or to make subjective
recommendations of which optimizations are best suited to any particular use case. Rather,
the goal is to simply illustrate the space of possible optimizations such that it may be more
systematically explored in future work.

For the sake of brevity in the sections to follow, if not otherwise specified, user messages
exchanged at ports have a length of 1000 bytes.
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11.2.1 Collapsing Idempotent Component Chains

As is the case for the sync component in Reo, sync components in PDL are unique, in that they
have a symmetry with the synchronous channels through which components exchange mes-
sages. Despite this apparent redundancy, sync components are very useful when programming
in PDL, primarily of a way to join an existing input and output port together. Perhaps the most
essential session optimization is the collapse of a sync component (with its input and output
ports) such that the two incident channels are unified. Without this optimization, the runtime
dutifully manages the sync component as any other, incurring all the associated overhead.

Figure 11.19 shows runtime measurements of a simple connector, in which a session is
configured to redirect an application’s messages back again. A reasonable implementation of
this setup is given below in the C programming language; concretely, the native’s messages are
routed back to itself via a single sync component:

#include <time.h>
#include "reowolf.h"
int main(int argc, char** argv) {

Arc_ProtocolDescription * pd = protocol_description_parse("", 0);
Connector * c = connector_new(pd);
PortId p0p, p0g, p1p, p1g;
connector_add_port_pair(c, &p0p, &p0g);
connector_add_port_pair(c, &p1p, &p1g);
connector_add_component(c, "sync", 4, (PortId[]){p0g, p1p}, 2);
connector_connect(c, -1);
/* communication goes here */
return 0;

}

Figure 11.19 shows the mean duration of a communication round for a session with this con-
figuration; without any optimization the sync component is kept as-is, incurring a cost of 12.15µs
whenever a message of 1000 bytes is sent. However, if the connect procedure includes an
optimization pass to remove the sync component, this is shaved down to 2.62µs. This 4.63-
fold speedup may make a considerable difference to the performance of the user’s program if it
features in a critical loop. consecutive occurrences of sync components may arise in practice,
particularly as the result of other session transformations; the figure includes runtimes for longer
chains of consecutive components, showing how, with each collapse, runtime is incrementally
reduced.

This same optimization can be applied to any chain of components that are ‘idempotent’,
in that a chain of length 1 has the same behavior as a chain of length > 1. For another ex-
ample, consider the class of components that filter incoming messages, before synchronously
forwarding them to their output.

11.2.2 Localizing Components

Findings in Section 11.1.2 make clear the costs of causal dependencies between components
managed by distributed hosts, as it requires extra time for the control information to propagate
over the network than within shared memory. This next optimization shows an exploitation
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Figure 11.19: Runtime of connector_sync in a single-connector session
comprised only of the native component connected as part of a ring of sync
components. Runtimes are distinguished for rounds in which a kilobyte mes-
sage of user data is sent around the ring or not. Results are plotted against
the number of sync components in the ring.

of an optimization opportunity that is only possible at session time: two hosts join over the
network, and the result of the transformation is for one to adopt the work of the other, such
that the session as a whole is more efficient. Concretely, our example involves two applications
(equivalently, native components) A0 and A1 with connectors C0 and C1 respectively, which
interface via a pair of network channels, one in either direction. A1 retains ownership of its two
ports, while C0 passes them to an instantiated sync component. The result is a session where
A1 receives their own messages by bouncing them off C0. Figure 11.20 visualizes this session
before and after this optimization as a pair of component graphs. The implementations of the
setups of A0 and A1 are given below:
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Arc_ProtocolDescription * pd = protocol_description_parse("", 0);
Connector * c = connector_new_with_id(1);
PortId ports[2];
EndpointPolarity ep = EndpointPolarity_Active;
connector_add_net_port(c, &ports[0], addr, Polarity_Putter, ep);
connector_add_net_port(c, &ports[1], addr, Polarity_Getter, ep);
connector_connect(c, -1);

Arc_ProtocolDescription * pd = protocol_description_parse("", 1);
Connector * c = connector_new_with_id(0);
PortId ports[2];
EndpointPolarity ep = EndpointPolarity_Passive;
connector_add_net_port(c, &ports[0], addr, Polarity_Getter, ep);
connector_add_net_port(c, &ports[1], addr, Polarity_Putter, ep);
connector_add_component(c, "sync", 4, ports, 2);
connector_connect(c, -1);

native0 sync native1

P0 P1

P2P3

native0 sync native1

P0 P1

P2P3

Figure 11.20: Before (above) and after (below) applying an optimization to
localize the communications between the native component of connector 0
with a sync component initialized by connector 1.

Without any further optimizations, this implementation is perfectly functional, but suffers
slowdown as a result of the connectors not taking advantage of the available information; C1
still awaits the outcome of C0 performing its work every round, despite the fact that this work
can be more cheaply performed locally, saving both connectors the effort.

It is out of the scope of this project to define a robust implementation of a session optimiza-
tion that recognizes and optimizes for this particular case; the distributed control algorithm for
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(a) Connectors span a local area network with
round-trip time estimated by ping to be 1 mil-
lisecond.

(b) Connectors reside on the same host, and use
the localhost network for connectivity.

Figure 11.21: Runtime of connector_sync of a session with two connec-
tors, where one ‘bounces’ a user message off the other each round. Each
subfigure shows the effect of a session optimization which localizes the sync
component which bounces the messages. Subfigures show different net-
work environments; note the different scales of their y-axes.

session optimization is in place, but is not smart enough to perform the transformation. Instead,
we provide a proof-of-concept by testing the effects of a handcrafted session optimization which
moves the sync component from C0 to C1. The exact implementation is provided in the fol-
lowing snippet, taken from the (temporary) implementation of this hardcoded transformation,
written in the Rust programming language:

// move the only protocol ccomponent from info0 to info1
let (cid, component) = info0.proto_components.drain().next().unwrap();
info1.proto_components.insert(cid, component);

// update info1's ports to route locally, rather than via the network
for port_info in info1.port_info.map.values_mut() {

port_info.route = Route::LocalComponent;
}

The results of this optimization are shown in Figure 11.21. The resulting speedup varied in
response to the latency in the network; in the case with higher latency, the result is a greater
decrease in runtime but a lower proportional decrease in runtime (i.e. lower speedup); the
un-optimized runtimes are likely benefitting from latency hiding, as the speculative control mes-
sages of round N traverse the network partially in parallel with the consensus control messages
of round N − 1. In either case, the effect of the optimization is a significant speedup. Also note
that the resulting network becomes eligible for the ‘sync collapse’ optimization described in the
previous section, enabling further speedup.
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11.2.3 Composite to Primitive

There are many ways of expressing the same observable behaviors as protocols in PDL, some
of which are terser than others. It is fruitful to recognize these behavioral equivalence classes,
such that instances of them in the session can be swapped out for whichever member of the
class has the most desirable runtime characteristics. For example, we consider examples of
canonical Reo protocols expressed in Section 10.2.2 as composite components, i.e., protocols
defined in terms of simpler protocols.

The following primitive component definitions of sequencer3 and xrouter are equivalent
their respective composite components definitions. However, they both result in the creation of
far fewer components and ports:

primitive sequencer3(out a, out b, out c) {
int i = 0;
while(true) synchronous {

out to = a;
if (i==1) to = b;
else if(i==2) to = c;
if(fires(to)) {

put(to, create(0));
i = (i + 1)%3;

}
}

}

primitive xrouter(in a, out b, out c) {
while(true) synchronous {

if(fires(a)) {
if(fires(b)) put(b, get(a));
else put(c, get(a));

}
}

}

Figure 11.23 shows the effects of optimizing the xrouter in the simplest case: a single
connector receives signals from the protocol component, which is used as a generator of signal
messages through one of three ports in a cyclic fashion, where all channels transport messages
in shared memory. The only change observable by the user is the 4.55-fold speedup. The
configuration of this session is depicted in Figure 11.22.

For the case of the xrouter component, measurements are more complicated, as its effects
on runtime performance depend on the behavior of the session, as it expresses a nondetermin-
istic choice in how its input message is routed. Figure 11.24 shows the effects of replacing
the composite definition of xrouter with a primitive. Figure 11.24a shows the results grouped
by the native component’s behavior, making it easier to see the speedup of applying the opti-
mization in either of three example usage cases: (a) ‘left’ the native component always receives
messages from the left port, (b) ‘right’, where the native component always receives messages
from the right port, and (c) ‘cyclic’, where the native component cycles between receiving from
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native sequencer3

P0
P1

P2P3

P4
P5

Figure 11.22: Component graph of a single-connector session where a na-
tive component receives token messages generated by a sequencer3 pro-
tocol component through three logical channels.

Figure 11.23: Runtime of connector_sync in a single-connector session
where the native component receives signal messages from a sequencer3
protocol component through a sequence of ports in circular, alternating fash-
ion, one per round. Bars distinguish mean runtime with and without a session
optimization to swap-in a primitive definition for sequencer3.

the left and right ports. Speedup is shown to range from 7.04 to 8.06. Figure 11.24b shows
the same results grouped by whether or not the optimization has been applied; in this plot, its
clear to see that aside from consistent speedup, the primitive definition results in a runtime less
dependent on the native component’s behavior. When defined as a composite component, the
resulting session is comprised of a large network of interlinked primitives, where the specula-
tions of one, results in the others speculating also, which comes at a cost.

11.2.4 Specialization

Nondeterministic branching allows a component to express flexibility to a particular outcome,
enabling other components, or the runtime environment itself to make the choice. In cases
where one component’s flexibility is consistently constrained by a neighbor, the result is spec-
ulation on outcomes that will never be involved in accepted solutions. When such a case is
identified during the session optimization step, its possible to replace the affected components
with others that don’t bother considering the doomed options. This is referred to as specializa-
tion, as it results in the same general-purpose protocols being distinctly specialized as a function
of their environment.
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(a) Grouped by native behavior (b) Grouped by protocol definition

Figure 11.24: Runtime of connector_sync of a session with a single con-
nector, whose native component receives their own message each round
through a xrouter2 component. The native decides which way the mes-
sage is routed by choosing which of the two available ports it receives from,
either always receiving from the left port, always from the right port, or cy-
cling between them. Runtimes are distinguished by whether the xrouter is
provided a composite or primitive definition.
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Figure 11.26a shows the results of replacing a sync component with a forward when its
outputs are passed to another forward. This is a case where the sync would explore a non-
deterministic choice (it either does or does not receive a message from its input) needless in
the greater context of its environment. Making this replacement has the effect of a moderate
speedup of 1.17. However, more importantly, this transformation facilitates other replacements
whose results can compound to result in even greater speedup. Concretely, a next step can
collapse the chain of forward components into a singleton as was seen in the example sync
components in Section 11.2.1.

Figure 11.26b shows the more considerable speedup achieved by removing two compo-
nents’ non-deterministic choices, whose outcome is always irrelevant to the rest of the session’s
components. As depicted in Figure 11.25, a xrouter component routes incoming messages
to one of its output ports as the result of a non-deterministically. Likewise, a merger component
accepts up to one message through either of its input ports as the result of a non-deterministic
choice, and forwards them to its output. Together, this cluster has the same interface and
observable behavior as a single instance of sync; messages that go into the only input, syn-
chronously come out the only output. To make the fairest case for the session’s performance
‘before’ the optimization, the definition for xrouter is given the more efficient primitive definition
shown previously in Section 11.2.3.

xrouter

native

merger

P0

P1

P2

P3

P4

P5

P6

P7

native sync

P0 P1

P6P7

Figure 11.25: Component graphs showing the result of a single-connector
session where a native component send and receives their own messages,
passed through a coupled replicator-merger component pair, before
(above) and after (below) an optimization to remove the unnecessary non-
deterministic branching.

Both of these test cases are relatively unaffected by changes to the user’s message size.
This is expected, as the optimization removes only speculative branches which deal with aliases
of messages in shared memory; as discussed in Section 11.1.2, within shared memory, duplica-
tion of user messages is done by reference, incurring a small cost independent of its message.
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(a) Components sync and forward, connected
in series, replaced by forward and forward

(b) Components xrouter and merger joined by
two channels replaced by single sync

Figure 11.26: Runtime of connector_sync of a session with a single con-
nector, where a cluster of components are specialized to their session con-
text, replaced by another cluster with the same observable behavior, but
facilitating more efficient execution.

11.2.5 Minimizing Network Traffic

In some cases, protocol components handle messages flowing from one connector to another.
For these cases, it is more difficult to reason about which connector should manage the compo-
nent’s state; either way, the network will have to be traversed somewhere in the message path.
This section shows examples of fruitful session transformations in cases by moving components
to connectors in such a way that network traffic is reduced overall.

A very simple example which facilitates a very obvious benefit in the best-case scenario,
involves a filtering component, initially configured to filter messages from connectors A to B on
B’s side (the incoming side). By moving the component to be managed by A (on the outgoing
side), messages filtered out are not needlessly sent over the network. This optimization is
depicted in Figure 11.27. The definition of filter is provided below:

primitive filter(in i, out o) {
while(true) synchronous() {

msg m = get(i);
if(m[0] == 0) put(o, m);

}
}

Figure 11.28 shows the effects of applying this optimization; the speedup is greatest when
there is less network latency, and larger messages, as these cases cause the act of repeated
control message transmission to take up the largest proportion of the runtime; the test with the
best result achieves a 1.7-fold speedup.

Just as significant is the reduction in bytes exchanged over the network overall per round,
shown in Figure 11.29 to trend towards half as message sizes grow; this matches our intuition,
which says that in the event the message isn’t received by receiver, the sender’s message need
not be communicated over the network. The total number of bytes sent over the network in a
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native0 filter native1

P0 P1 P2 P3

native0 filter native1

P0 P1 P2 P3

Figure 11.27: Before (above) and after (below) applying an optimization to
move a filter component closer to the source of its incoming messages.

given round for sessions with this configuration is given by R:

R =
RS + RF

2
RS = 2BS + BA + BP

RF = BS + BA + N · BP
BS = 7 + 3SS

BA = 7 + 3 ∗ 3
BP = 4 + 3 ∗ SS + BM + BBM

SS = 1 + N

(11.1)

where the values of the variables can be understood as follows:

RS Total bytes exchanged during the round in the event the user message succeeds
in passing the filter

RF Total bytes exchanged during the round in the event the user message fails to
pass the filter

BS Byte-size of a ‘suggestion’-type control message, sent from connector B to A as
part of the consensus procedure

BA Byte-size of a ‘announcement’-type control message, sent from connector A to B
as part of the consensus procedure

BP Byte-size of a ‘send-payload’-type control message, sent from connector A to B
as part of the speculation procedure

BM Byte-size of the user message traveling from applications of connectors A to B
BBM Byte-size of the variable-length encoding of BM .
SS Number of speculative variable assignments in ‘suggest’-type control messages
N acts as a flag, having value 1 if the session optimization is NOT applied
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(a) connectors share a localhost (b) connectors share a local area network

Figure 11.28: Runtime of connector_sync of a session with two connec-
tors, where connector A sends a message toward B, which the filtered out
by a filter component. Plots show runtimes before and after an opti-
mization which relocates the filter from B to A. Note the logarithmic x-axes,
showing the runtime responding to choices of message length. Sub-figures
distinguish measurements by the network configuration.
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From the equations, it is more clear precisely how this session optimization affects network
traffic, by examining both occurrences of the variable N. Once enabled, (a) no ‘send-payload’-
type control message is sent in the event the user message fails to pass the filter, and (b) a
minor, incidental contribution is the reduction in the number of speculative variable assignments
included in ‘suggestion’-type control messages from B to A as a side-effect of one channel being
moved from B to A along with the filter component. It also becomes clear how to generalize total
runtime or network latency as a function of P, the proportion of rounds in which the user mes-
sage passes through the filter. The effect of this optimization is really to achieve 1

1−P speedup
as the size of the message trends toward infinity, with our test runs performed with P = 1

2 .

Figure 11.29: Mean network traffic per synchronous round for the results
shown in Figure 11.28.

Our final experimental case once again involves a session with two connectors, A and B.
This time, the latter receives a message through each of the two network channels bridging the
connectors. An optimization presents itself when A threads a replicator component onto its
ports toward B, such that B always receives a pair of replicas of a single message sent by A’s
native component. This time, the opportunity for optimization presents itself as the possibility
to move the replicator closer to its destination, such that messages are replicated in their path
after they have traversed the network. This optimization is visualized in Figure 11.30.

We expect a result similar to that of the previous experiment, as we expect the number
of overall network messages to be halved by applying the optimization. More specifically, we
expect the overall runtime of the synchronous round trends towards half as a result of applying
the optimization as the message size increases. Figure 11.31 shows that this is indeed the
trend, but it does not converge as quickly as in the previous example. This is the result of another
significant overhead not being halved this time: latency as the result of a causal dependency
over the network. In sessions with this configuration, with or without the optimization, connector
B doesn’t reach a satisfactory solution until the user message(s) complete their transport over
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native0 replicator native1

P0 P1 P2 P3

P4 P5

native0 replicator native1
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Figure 11.30: Before (above) and after (below) applying an optimization
which moves the replicator component over the network, closer to the
destination of its outgoing messages, such that there is an overall halving of
messages being sent over the network.

the network; in the before-case where there are two messages, latency hiding occurs, as the
time taken for each message to traverse the network overlaps.

The proportion of remaining network traffic as a result of applying the optimization also
trends to half as the size of the user message increases. As this is unaffected by any latency-
hiding effect, the effects are observed far sooner, with the sum of all other forms of control
messaging always resulting in less than a hundred bytes of control data per synchronous round.
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(a) connectors share a localhost (b) connectors share a local area network

Figure 11.31: Runtime of connector_sync of a session with two connec-
tors, where connector B receives two replicas of some message sent by A.
Plots show runtimes before and after an optimization which relocates the
replicator from A to B. Note the logarithmic x-axes, showing the runtime
responding to choices of message length. Sub-figures distinguish measure-
ments by the network configuration.
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Chapter 12

Future Work

This section presents a collection promising directions for future work on PDL and the connec-
tor runtime implementation. Section 12.1 is primarily concerned with developments that make
fundamental changes to PDL and the observable behaviors of sessions. Section 12.2 is pri-
marily concerned with refining the internals of the connector runtime to improve its robustness,
flexibility, and performance.

12.1 PDL Developments

This section describes promising future work oriented around the refinement or expansion of
PDL, changing the set of protocols that can be expressed, or changing their realization in the
implementation.

12.1.1 Unbounded Non-deterministic Choice

The expression of non-deterministic choice is essential to both Reo and PDL for defining be-
havior flexible to the constraints of the environment. In PDL, components are able to describe
branching behavior as a function of speculative variables, functioning as entry points for the
runtime’s branching speculative search. Currently PDL offers only fires as an expression
(parameterized by a port variable) whose evaluation describes a binary speculative branch enu-
merating at most the values true and false. This proved to be a sensible design choice, as
it allows for an intuitive means to both (a) fork the speculative execution in two, and (b) con-
strain the permitted value of a port variable. Currently, protocol components lack a means of
doing the former, without also doing the latter. The example protocol sync_eq in Section 10.1.2
demonstrates how the absence of this functionality can result in cumbersome workarounds.

We conceive of a future extension to PDL to support arbitrary non-deterministic choice. As
an example, consider a new intrinsic procedure choose, which is evaluated to an integer within
a given range. In the following example, the component sends one of two distinct one-byte
messages, as a function of the expression choose(2) evaluating to either 0 or 1 at runtime.

145
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primitive foo(out p) {
synchronous {

msg m = create(1);
if(choose(2)==0) m[0]=42;
else m[0]=100;
put(p, m);

}
}

Alternatively, choose is a keyword decorating a block of N statements, expressing that
exactly one statement be chosen non-deterministically for execution at runtime.

primitive foo(out p) {
synchronous {

msg m = create(1);
choose {

m[0] = 42;
m[0] = 100;

}
put(p, m);

}
}

In future, it should be investigated how to provide the flexibility that choose provides, with-
out creating an undesirable redundancy arising from the overlap between the functionalities of
fires and choose. Perhaps fires could be eliminated altogether, with its work done by a
combination of choose (to introduce a branch) and assert (to constrain a port value).

12.1.2 Unifying Primitive and Composite Components

PDL enforces a strict dichotomy between primitive and composite components; the former are
able to participate in synchronous rounds by communicating, and the latter are able to create
new ports and components.

The current implementation of the connector runtime only requires a weaker property: ev-
ery component must perform composite-only work between synchronous blocks, and perform
primitive-only work within synchronous blocks. This is because the only real limitation is the lack
of support for creating and destroying components while speculation is underway, as the former
modifies the structure of the solution tree, which is used to drive the latter.

In future, the benefits from the added flexibility of blurring the lines between these two cat-
egories of component may be found to outweigh the detriments. Syntactically, this may be as
simple as removing the primitive and composite keywords altogether, and permitting these
unified connectors to act like composites and primitives whenever, as long as its without and
within synchronous blocks respectively.
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12.1.3 Relaxing Synchrony to Atomicity

Recall how the semantics of PDL are based on the Table Model, which lays out the observable
behavior of a system at runtime as a table, with ports for columns, round numbers for rows, and
the cells at their intersection containing the messages exchanged at a port during a round (for
more details, refer to Section 5.1). This approach can be understood as orienting the timing of
message exchange for all the connectors’ components to some shared clock. Aside from being
easy to understand, this approach gives the power to components to control the timing of their
actions, which manifests in PDL as the predictable relationship between the occurrences of the
synchronous keyword, and the sequence of interactions that have been realized at runtime.
With this approach, the session at large makes progress if and only if every component makes
progress. This is a double-edged sword, as both (a) components can rely on the runtime’s
efforts to realize interactions preventing the component’s starvation, but also (b) the session
cannot progress if any component cannot progress.

Future work could explore the effects and feasibility of removing this property by weaken-
ing our current notion of synchrony. Components would no longer be in control of how their
actions are grouped into the session’s interactions. Taking inspiration from previous work on
the Reo language, we could envision components reasoning about the atomicity of their actions
instead, grouping them into blocks with atomic keywords, much as they do with synchronous
keywords now. Behavior contained within an atomic block expresses the necessity for it to all
occur as an indivisible unit, i.e., succeeding together as part of a single interaction. In a nutshell,
where synchrony allows components to control in precisely which round each of their actions
will be observed, atomicity allows components to group their actions into the same interactions,
but have no control over which. In a nutshell, atomicity takes control away from components,
and gives it to the runtime.

As an example of atomicity in action, consider a session with two components, mutually
linked by three logical channels, whose ports each component agrees are called a, b, and c.
Despite the protocols grouping their local actions differently, their session may nevertheless
realize their behavior as a single interaction in which the zero-length message is sent through
all three channels:

primitive foo(in a, in b, in c) {
atomic { get(a); get(b) }
atomic { get(c); }

}

primitive bar(out a, out b, out c) {
msg m = create(0);
atomic { put(a, m); put(b, m); put(c, m); }

}

Sessions built from components unable to control how their actions are synchronized may
be desirable, because (a) no component has the inherent power to inhibit the session’s progress
at large, and (b) the connector runtime implementation may enjoy better throughput as a con-
sequence of being freed of strict synchrony requirements.
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12.1.4 Consensus Tree Reconfiguration

A limitation of the current implementation, is the inflexibility of the consensus tree, the overlay
structure imposed atop connectors during the connect procedure, described in Section 6.2.3.
This inflexibility has consequences for the connector, as an inflexibility of the relationships be-
tween connectors, particularly prohibiting the addition or removal of connectors once communi-
cation has begun.

Ideally, future work would investigate the addition of new, robust control algorithms that
enable the reconfiguration of the consensus tree once the session has started. Such devel-
opments are conceivable, in the best case utilizing an efficient distributed algorithm exist for
various manipulations of trees. In the worst case, the implementation could simply be extended
with functionality that results in the distributed tear-down of the current session’s tree, such that
it can be newly constructed. Given this capability, new session behavior becomes possible; for
example:

1. Interleaving setup and communication
A significant portion of the user-facing connector functionality is already available in ei-
ther the setup or communication phase. For example, applications are able to inject new
protocol components into their sessions both during the setup phase, and in-between par-
ticipation in synchronous rounds. The primary limitation is the inability to create new ports
over the network, as this would otherwise include synchronous communications with a
connector not yet included in the consensus tree. In future, this functionality would be per-
mitted by re-configuring the consensus tree to include any newly-reachable connectors.

In the event this new channel is created between two connectors already in the communi-
cation phase, the result may be the merging of their sessions (and consensus trees).

2. Removing connectors without ending the session
Currently, sessions only continue while all connectors remain present. Permitting connec-
tors to leave arbitrarily between synchronous rounds requires the reconfiguration of the
consensus tree to ‘cut out’ their node without resulting in a partition.

A clue for a means of approaching this feature is recognizing that connectors with no
children (i.e., leaves in the consensus tree) are able to leave without partitioning the tree.
Thus, it would suffice to introduce a control algorithm which moves a connectors leaves
to become the children of its parent. While simple in theory, correctly implementing this
functionality in a large distributed system robustly is no trivial task.

Taken a step further, the ability to reconfigure the solution tree (the super-tree of the con-
sensus tree which has component leaves), in the middle of the synchronous round, enabling
the addition and removal of components while speculation is in progress. This feature would be
particularly useful if combined with that described in Section 12.1.2. This is likely a very difficult
problem, and may instead be better solved by a novel approach that makes more essential,
systemic changes, such that the runtime may do away with the solution tree altogether.

12.1.5 Unbounded Messaging per Round

Currently, components are able to use a port for the exchange of up to one message per interac-
tion. This is a limitation shared by Reo, the language on which PDL is based. As a consequence
of this limitation, the complexity of an interaction is bounded by the number of ports.

Future work could investigate the effects of removing this limitation, allowing each port to
send or receive a sequence or set of messages per interaction. The resulting behavior would be
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comparable to allowing components to create extra ports on-the-fly on a round-to-round basis.
In the case of message sequences, this added functionality may not require any changes to the
syntax of PDL, but simply permitting behaviour that is currently prohibited. For example, the
following foo protocol would be interpreted as receiving a sequence of two, distinct messages:

primitive foo(in a) {
synchronous { get(a); get(a); }

}

Supporting this functionality requires changes to the synchronization procedure, and the
representation of candidate predicates. For example, rather than speculating on whether a port
fires, they can speculate on the number of firings per port; perhaps predicates constraining
the number of messages sent by a putter port would incrementally raise a lower bound of this
number, while for getter ports, they would lower an upper bound, such that particular solutions
tighten both bounds to some particular number of messages sent and received.

12.1.6 Extended PDL Backwards Compatibility

During the work which resulted in Chapter 9, the functionality of connectors was extended to
support the creation of intrinsic components able to interface with a remote peer over UDP,
exposed as an input/output port pair for use in the session. The result is the ability to involve
peers in communication sessions, without declaring the behavior of the hosts across the UDP
channel; this is similar to the way that native components allow user applications written in a
language such as C to participate in communications without declaring their behavior in detail.

In future, connectors may be able to represent an larger set of low level system resources in
this explicit manner. Taken to the extreme, existing network protocol stacks can be implemented
in PDL such that their protocol descriptions look nearly indistinguishable from C. This reveals
the first advantage to supporting this paradigm: a large body of legacy implementations are
more easily ported into PDL, and usable as part of sessions for connector communications.
The extension of PDL must be handled delicately, as this trend might encourage the expression
of protocols at a low level, which is more difficult for humans and automated tooling to reason
about. However, if done well, a larger share of the network stack can be included into the
connectors themselves, making possible more extensive and subtle session optimizations, and
allowing for reasoning about safety properties to extend deeper into the protocol stack.

As a concrete goal, a future work might pursue the developments necessary to make it
possible to express a working DNS client in PDL.

12.2 Implementation Developments

This section describes potential future work oriented around refining and optimizing the internals
of the connector runtime. These can be understood as changes that impact the user’s experi-
ence in terms of runtime performance or ease of use, without making a significant change to
the conceptual design of PDL.
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12.2.1 Rule-based Session Transformation

Future work could develop the connectors’session transformation procedure, introduced in Sec-
tion 8.1. Currently, the foundation for extensive transformations is in place, but lacks a robust
and automatic means of reasoning about the available session information. These transfor-
mations can take inspiration from the example ‘proof of concept’ transformations, showcased
alongside their effects on runtime performance in Section 11.2. Ideally, these ideas would be
taken a step further, to the extent that user-defined protocols would be reasoned about in terms
of their abstract properties.

For example, rather than identifying chains of sync components, and replacing them with a
singleton, a generic session transformation may search for chains of any identical components
identified as having ‘idempotent’ effects on the messages they transmit.

A scheme such as patch graph rewriting [OE20] shows promise for driving such a session
transformation procedure, providing a systemic approach to pattern-matching and transform-
ing the session’s components piece-wise by reasoning about patch transformations about a
connector graph.

If the runtime cost of reasoning about sessions and protocols becomes a concern in future,
such work is complemented by a sheme to ‘offload’ reasoning and transformation work offline.
We can envision a paradigm of the connector runtime ‘looking up’ safe session transformations
from a persistent database, populated through the offline verification of canonical protocols, or
verification of generic protocol properties.

12.2.2 Session-Wide Symbolic Message Passing

Described in Section 8.2.1, the runtime implementation move messages between connectors
very efficiently within a single connector’s shared memory. This optimization was introduced to
address the most prevalent cause of message duplication: speculative branching; a component
with a large set of user messages in its store, or having a large set of messages on its input ports
results in significant message replication when its state is forked to explore exclusive speculative
branches. However, Section 8.2.2 goes on to explain that the benefits of this approach are con-
ferred to other situations also; cases of message replication within a single speculative branch
are cheap also. The most obvious example is within the replicator protocol. Section 11.1.2
demonstrates this optimization’s influence on runtime performance, including its applicability to
messages within shared memory only.

Future work may investigate the benefits of extending the current system to allow for safe
message replication without this limitation. For example, we can envision a scheme where
every connector will reason about the uniqueness of incoming messages, aliasing an existing
replica whenever possible, regardless of the source of the message. To see how the current
system can be generalized, consider how the current scheme effectively introduces an (implicit)
identifier to the contents of messages, realized as the pointer to the memory location where
the contents are stored. When a message is replicated in memory, the replica is ultimately a
reference to this memory location. The problem is simply the failure to resolve this memory
location for incoming network messages, and thus, being forced to resort to copying and storing
the contents redundantly.

One approach is to introduce an identifier space for payloads, which aims to minimize (ide-
ally, to one) the set of identifiers used for any given message regardless of where it originates.
A practical approach may be to rely on a hash function, and message-content storage struc-
ture per connector, where messages stored by components and transmitted over the network
represent their contents symbolically: the hash of their contents. Taken to the extreme, this en-
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tirely decouples the transmission of messages from the transmission of their contents; perhaps
the latter could be circumstantially avoided altogether? Consider and example session, with
messages of one connector, A, ‘bounced’ to another connector B, and back again. If B never
inspects the message’s contents, the message contents never need to traverse the network at
all, as their hash value suffices to identify the message. Some problems remain, left as future
work, such as: (a) How can one avoid the hash values of arbitrarily large message values col-
liding without control messages having to transport the message contents? (b) How can one
make efficient use of the decoupling of messages from their contents? E.g., should connectors
eagerly transport message hashes, and only request message contents from the source lazily,
at the moment they realize that access to the contents is needed locally?

12.2.3 Specialized Component Storage Data Structure

Aside from the latency incurred by the time taken for messages to propagate over the network,
the connector runtime’s most time-consuming task is querying, modifying and reasoning about
the states of speculative component structures.

In future, the storage of component structures can be further optimized, specialized for the
tasks most frequently used during the synchronous round: (a) lookup by speculative predicate,
and forking to further the search through the tree of speculative oracles. For more details on
these processes, refer to Section 6.1.2. Here it suffices to know that the connector runtime
stores and manipulates a (potentially) large set of small component data structures to represent
the state of the session.

As is the case in general, developing a data structure specialized for optimal performance
requires extensive experimentation and careful performance benchmarking, which is left as an
exercise for future work. Here, we lay out some initial approaches whose likely suitability is
based on idiomatic approaches for optimizing these kinds of use cases.

The storage for this structure is currently implemented as a hash map, with predicates acting
as keys. This is appropriate for its common usages, as it guarantees that (a) component lookup
is fast, given a predicate, and that (b) for every unique predicate, there is a unique component
structure. However, this fails to take advantage of the structure inherent to predicates them-
selves. Below, two promising designs for the speculative component storage are suggested,
having in common that they store the component structures themselves contiguously, and rely
on a secondary data structure which annotates the components, such that they can be queried
given an oracle predicate.

1. Optimize for cache locality
The more terse the annotation structure, the more effectively it can be cached, resulting in
fast traversal. Recall from Section 6.1.2 that oracle predicates can effectively be thought
as a mapping from the domain of port variable identifiers to a ternary domain with values
corresponding to {fires,¬fires, unspecified}. Given a fixed sequences of port variables,
this means that each component can be annotated by a predicate represented a sequence
of pairs of bits (two bits are sufficient for distinguishing the three possible values). Queries
of the connector storage can be encoded as bitwise operations, allowing multiple port
variables’ values to be checked in parallel. Copying a component structure is also cheap,
as the cheapness of copying its predicate annotation is guaranteed by virtue of its bit-
representation being small.

For example, a system with port identifiers {a, b, c} might encode the key-value storage
of some component structure with predicate {a = ¬fires, b = ¬fires, c = unspecified} with
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the annotation bit-sequence of 101000, where 10 and 00 encode ¬fires and unspecified
respectively, and valuations of port identifiers are shown in the order a, b, c.

2. Optimize for traversibility
In practice, there may often be very many port variables active in a session at a time,
while the number of port variables meaningfully assigned (given value fires or ¬fires in
the predicate) is usually far smaller. This sparsity calls for a structured data structure,
which queries the set of matching components in the storage structure by focusing only
on those meaningfully assigned by the query predicate, and ignoring the rest as much as
possible. Many conceivable structures are possible, but one example is that of a ternary
tree, for which internal nodes distinguish the three possible valuations for port variables
(in {fires,¬fires, unspecified}), and roots point to component storages associated with the
predicate encoded in the path from the root of the annotation tree to the leaf node.

For example, the storage of a component structure with predicate annotation {a = fires, b =
unspecified , c = unspecified} could be represented by a single-edge path from the anno-
tation tree’s root, assigning b to fires (and leaving all other ports implicitly unspecified).
Later, when another structure is added with predicate annotation {a = fires, b = fires, c =
unspecified}, the annotation tree acquires a new leaf node, which shares the first edge
encoding a = fires with the existing leaf, but reachable by the next step b = fires, where the
existing leaf is reached through b = unspecified . Note how the complexity of performing
these queries remains unchanged regardless of what port identifiers aside from a and b
are used in the session.

12.2.4 Contiguous Incoming Messages Buffer

The current implementation of the connector runtime relies on TCP channels for its internet
control messaging transport. As is often the case, the transmission of discrete messages, i.e.,
UDP-style datagrams, over TCP’s bytestream requires the recipient to buffer and re-assemble
datagrams on their end. Rather than reach read call writing precisely one datagram’s contents
into the buffer, many datagrams may arrive together, or they may arrive partially. Management of
the partially-populated input buffer becomes complex when the receipt of such partial messages
becomes interleaved as a result of managing several TCP streams.

The solution currently employed is simply to manage a unique buffer per TCP stream, such
that the partially-received datagrams of one do not interfere with the storage of the partially-
received datagrams of another. The biggest downside of this approach is the potentially large
memory footprint of connectors, and the resulting sub-optimal use of the cache.

Assuming that a future implementation continues to use TCP as its control message trans-
port, a future implementation may instead investigate a scheme optimized for minimizing mem-
ory footprint and memory copying by employing a scheme of bump allocation within a single,
large byte buffer per connector. This is possible if even partially-received datagrams have a
known size, achievable by datagrams carrying their size as a prefix. If done well, nearly all
reads and writes of datagram bytes for the entire connector will be from the same memory
region, making efficient use of the cache.

12.2.5 Further Specialize PDL for Runtime Execution

PDL was introduced as a variant of the Reo language, such that it may be specialized for the
task of runtime interpretation by the connector runtime. As evidenced by its comparison to the
Reo language, seen in Section 10.2, PDL protocols still adhere closely to their Reo equivalents.
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A future implementation may rely on a representation of PDL further specialized for the task
of runtime interpretation. Taken to the extreme, the Reo language itself can be used for reason-
ing (by humans or machines), while PDL becomes more terse and explicit. In this future, the
relationship between Reo and PDL can be similar to that between Java and Java’s bytecode
language, relying on tools to convert from one form to the other as needed. The most obvious
benefit of specializing PDL in this manner is making interpretation at runtime more efficient.
However, there may be benefits simply in abandoning human readability as a design goal, al-
lowing other design goals to be prioritized, perhaps resulting in the addition of powerful features
that would not be considered for PDL in its current form.

12.2.6 Unbounded Speculative Depth

The connector runtime works to find satisfactory interactions one round at a time to advance
the state of the session and facilitate communication without violating its configured protocol.
Recall from Section 6.1.2 that this is achieved through the interplay between two complementary
procedures: speculation and decision. The former is the search for the next interaction that
satisfies the connector’s protocol. The latter decides a some such interaction in particular,
and commits to it, finalizing its effects and ending the synchronous round. As it stands, this
decision is made by the leader, some elected connector host, at the moment it finds the first
satisfactory interaction each round. As both processes begin and end within the round, the
current implementation can be understood to have a speculative depth of one, meaning that
it will consider the effects of interactions one round into the future before making its decision.
Consequently, users can rely on the runtime not to decide on an interaction which will lead to a
protocol violation within one round, i.e., immediately after taking effect.

The processes of speculation and decision may be further decoupled as a result of future
work, such that the implementation is able to make decisions for interactions based on a spec-
ulation of the session’s state multiple rounds into the future. Decisions can only be based on
information about the future which is certain not to change after the fact. This may limit the abil-
ity of the runtime to rely on decisions relying on behavior in the distant future, particularly when
the session contains many unpredictable components. Making the feature useful would require
that even native components are able to suggest several rounds’ worth of speculative behavior,
with a promise that once the decision is made, the behavior in question cannot be undone or
avoided. For example, in combination with the the developments explained in Section 12.1.3,
components that reason only about atomicity and not synchrony guarantee that they are willing
to participate in any number of interactions to which they will contribute no actions.

12.2.7 Kernel Level Implementation

Currently, the boundary between the user- and kernel- levels for an application running atop
connectors is between the connector and its transport endpoints; i.e., connectors use system
calls to act on the transport endpoints they manage internally.

In future work, the connector runtime could be implemented deeper in the kernel, such that
the interface between user- and kernel-levels exists between the application and its connec-
tor(s). There are many potential benefits to such a change.

In complex sessions, connectors need to make extensive use of the transport layer to send
very many control messages. If implemented in the kernel, there is less overhead incurred
as the connector does this work, with added opportunities to make use of network resources
more directly. For example, in kernel mode, it becomes practical for the connector runtime
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to manage control messages at the level of IP packets, taking control over the necessary re-
transmission and ordering control logic itself, using its knowledge of the session’s protocol to
make better-informed decisions. Taken to the extreme, the connector could make its willingness
to re-transmit a speculative message a function of its estimation that the message will be neces-
sary for the success of the interaction. In general, we might investigate any such opportunities
for low-level system control to become informed by the session’s protocol.

12.2.8 Asynchronous Automaton Connector API

Recall that communication sessions are composed of a network of components connected by
ports. User programs are able to participate in these sessions, each represented as a native
component which sends and receives messages through its ports one synchronous round at
a time, as does any other component. The connector API is responsible for exposing this
functionality to the user such that it can be incorporated into their application code. Whatever
the specifics, the connector API must facilitate the delivery of constraints on the communication
in the round to come from the user application, and deliver the results of the round back again.

Currently, the connector API is designed to be as familiar as possible to socket programmers,
offering procedures for initiating the sending or receipt of a message. Alone, this is insufficient
for expressing the desired inter-message relationships. As such, additional procedures are
added to relate previously submitted message operations. Programmers may be familiar with
this idiom, usually referred to as the builder pattern, whereby a large structure is incrementally
built through method calls that incrementally refine some internal state until the contents are
ready, whereupon they are explicitly finalized. Section B.2.2 details this part of the connector
API.

In future, the connector API may be rewritten to use a new idiom entirely, oriented around the
user application and the connector sharing access to some large data structure which serves
as the medium of information exchange. This structure could encode an automaton represent-
ing the changes in the native component’s state that (a) the user application permits, and (b)
the connector runtime eventually realizes. There are several potential advantages to such an
approach:

1. Fewer calls to pass information to the connector
The application can prepare the automaton for the next synchronous round at its own
pace, without involving the connector runtime. Access can be controlled within a single
call, passing it from application to runtime at the start of connector_sync, and being
returned again at the end. The reduction in the number of calls may greatly improve
performance if the connector’s functionality is provided by system calls.

2. Fewer calls to return information from the connector
The information returned by the connector runtime at the end of the round can be sig-
nificantly complex also. Currently, the most essential information is returned by con-
nector_sync, distinguishing failure from success, but the application must invoke sub-
sequent calls with particular parameters to reflect on any other properties of the round
that are of interest. For example, if the round is successful, the application may inspect
the contents of some received message with connector_gotten_bytes; if there was
an error, the application may want to retrieve the newly-populated error string with re-
owolf_error_peek.

3. The application can reuse the automaton
If the connector runtime modifies the automaton very little, the user application can rely
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on its structure being retained between synchronous rounds, such that they don’t need
to be rebuilt repeatedly. The cases which would see the most benefit would be those in
which the application describes a large automaton, encoding very complex requirements,
but behaving in the same manner every round.

A rework of the connector API provides the ideal opportunity for increasing its functionality
to facilitate asynchrony, as it is commonly defined for I/O procedures: where the control flow
of the caller (the application) is not blocked while awaiting the completion of the callee’s work
(the connector). This functionality goes well with the developments explained in Section 12.2.7,
such that the connector’s work be performed by dedicated kernel-level processes.

12.2.9 Empowered User Timeout

Participating in a distributed procedure ultimately puts the process in question at the mercy of
other hosts in the network. In cases where an unbounded wait for completion of some process
is undesirable, the implementation allows users to provide a timeout parameter, expressing the
maximal duration the user is willing to wait before they would rather regain control than complete
the procedure.

In the case of connect, a timeout event represents a failure to finish arranging the partici-
pating hosts into a distributed system. In such a case, there is really only one sensible way of
abandoning the procedure in favour of returning within a given timeout duration: abandoning
the procedure altogether, and reverting to the state before connection began. This is indeed the
solution the implementation uses.

However, sync may timeout for many reasons, not all of which have the same implication on
the ability to continue the session. As the constraint satisfaction problems that users are able to
describe can have unknown difficulty, the implementation allows a system for any connector to
request a timeout, short-circuiting the decision procedure to end the speculative round when
finding the solution is taking longer than their user is willing to wait. However, to preserve the
consistency of the connectors’ views of the outcome, this procedure itself is reliant on the coop-
eration of peers, preventing the connector from returning immediately. This can be thought of as
a ‘soft’ timeout, which the connector makes a best effort to respect. Section 7.1.2 illustrates that,
for cases where something more fundamental goes wrong with the session, the user cannot rely
on their timeout duration being respected by sync; if a neighboring peer fails (intentionally or
otherwise) to facilitate the completion of the timeout request, sync may be stuck waiting.

Future work may provide users with a finer degree of control by supplying several timeout
arguments to sync, communicating the time the user is willing to wait before the runtime re-
sorts to increasing drastic measures to restore control to the user: first, requesting a distributed
timeout, and then at the worst case, abandoning the session. There are also more subtle inter-
mediate solutions of arbitrary complexity; for example, the connector can attempt to reconfigure
the consensus tree to ‘cut out’ an unresponsive neighbor, using the functionality resulting from
the future work described in Section 12.1.4.

12.2.10 Identifier Reuse

To facilitate all of a session’s connectors creating port and component resources in parallel, the
allocation space of identifiers is partitioned over the set of connectors a priori. More specifically,
each connector with id X manages the allocation of identifiers matching (X , Y ) for any Y . To
keep things simple, connectors chooses contiguous, increasing values for Y when creating new
allocations, starting from zero. The space of identifiers is so much larger than any realistic
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number of ports and components that there is no need to free components. The monotonic
increase in Y is not a practical concern either, as the number of bits needed to represent their
value grows logarithmically.

In future, where the runtime is required to support connectors that communicate indefinitely,
and create infinitely many ports and components over the session’s duration, it will be necessary
to introduce a robust system for freeing these allocated identifiers. There are two complications
that prevent the most obvious approaches: (1) thanks to session optimization, components
or ports may be destroyed while managed by a connector other than that which allocated its
identifier, and (2) the connector runtime cannot weed out copies of old identifiers from the states
of its components (consider the native component as the best example of such).

Problem (1) can be overcome by introducing a distributed procedure for freeing identifiers.
As there are already wave-like distributed procedures in place expected to occur at regular
intervals as part of the session’s standard operation (E.g., the sychronization procedure), a set
of identifiers to be freed can ‘piggyback’ on existing control messages, such that the original
allocator can free the identifier once it receives notice. This approach is simple to understand,
as it keeps in place the property that, given an identifier, only one connector has the authority
to allocate and free it.

At first glance, the problem (2) is more difficult, as it suggests that it will never truly be safe
for a connector to free an identifier of a destroyed port for fear that its previous owner will erro-
neously use it in future. In practice, this problem can be solved using another existing system:
explicitly-tracked port ownership: the connector runtime keeps track of which component owns
a port. Currently, this is in place for two reasons (a) it escalates programming errors or malicious
intent on behalf of components by preventing them from using a channel owned by another com-
ponent, and (b) it is necessary for the connector runtime to keep track of which ports did not
exchange messages during the synchronous round, preventing the acceptance of interactions
in which a message is ‘lost’ in a channel by the putter putting, but the getter not getting. In fu-
ture, the runtime can be adjusted to consider that a component attempting to use a port it does
not own may not be an error, but rather simply a consequence of the port identifier in question
having been since destroyed and re-allocated, such that it is owned by a different component.
The only remaining unsolved problem is the case in which some component is allocated a new
port with the same identifier as a previously-destroyed port they also own; when this component
uses the ‘old’ identifier, the runtime may erroneously confuse it with the new port, resulting in
unexpected behavior.

12.2.11 Dense Candidate Predicate Encoding

Section 6.1 explains how predicates over candidate solutions (i.e., candidate interactions) are
the primary means by which connectors aggregate and compare information at runtime. As
such, predicates are represented in most control messages; they are sent, received, serialized,
deserialized, and compared frequently. Currently, the values of these variables are constrained
using a value from ternary domain: true, false, and ‘none’, the case for which the value is not
mapped by the predicate.

For many data structures, it is possible to re-organize the representation of its contents
to alter the trade-offs between properties such as traversibility and redundancy. Consider the
example of a set of integers; such a structure fundamentally encodes Z → B, where Z and
B are the integer and Boolean domains respectively. Here are three of the many possible
representations: (1) A sequence of tuples explicitly encoding mappings with pairs {(z, b) | z ∈
Z, b ∈ B}, (2) A sequence of integers, explicitly encoding mappings to the value true, and
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implicitly encoding mappings to false by omission, or (3) A sequence of Boolean values, where
each i th Boolean value b expresses the mapping i 7→ b.

While currently, the implementation can be understood as using approach most similar to
approach (1) for representing the speculative variable assignments of candidate predicates;
concretely, candidate predicates encode a partial map of speculative variables (integer pairs)
to speculative values (small integers) as a sequence of tuples, where missing mappings corre-
spond to variables whose values are unspecified.

Future work might investigate the effects of reworking the representation of candidate pred-
icates to something more akin to approach (3), representing the partial mapping as two se-
quences (in lockstep) of one bit per variable whose value is known to be in B. The first bit
distinguishes its assigned value of 0 from 1, and the second bit distinguishes a mapped value
from an unmapped value (in the case of the latter, overriding the value of the first bit). Such
an approach has some practical advantages; for example: (a) bitwise operations could perform
reasoning on contiguous, machine-word-sized sequences of speculative values in aggregate,
and (b) with each variable having a known index, querying a variable’s assigned value is a
constant time operation.

12.2.12 Connector Identifier Re-allocation

In the absence of a system for assuredly assigning unique identifiers to connectors, we expect
to rely on an overwhelming probability for the system to guess unique identifiers by drawing
them from a large integer domain using a random number generator. The larger the domain, the
smaller the probability of two connectors’ identifiers colliding. As a consequence, we can expect
for port predicates to represent these large numbers also, as port identifiers contain connector
identifiers. As smaller integers require fewer bytes when using variable-length integer encoding,
it may be fruitful to employ an additional optimization pass during the end of the session’s setup
to replace connectors’ identifiers with ones that still do not collide, but such that their values are
minimal. Below, we describe two possible schemes for achieving this:

• A traversal algorithm assigns contiguous IDs
As part of the setup procedure, the leader can initiate some sort of centralized traver-
sal algorithm, passing along a token. An example of such an algorithm is Tarry’s algo-
rithm [Fok13]). The token itself acts as an allocator for contiguous connector identifiers
by recording the identifier next available for allocation, starting from zero. This approach
achieves a good result, but may introduce unwanted overhead to the setup procedure, or
complicate future developments which would seek to facilitate new connectors joining the
session in parallel.

• The connector ID space is partitioned recursively over the consensus tree
Let connectors in the consensus tree pass to their children a recursively-partitioned sub-
space of the integer domain, where the root begins with the entire domain, Z. This can
be easily done by representing each sub-domain with an integer prefix (encoded as a
sequence of bits). For example, where a · b is the concatenations of the bits of integers
a and b, the root begins with Z, keeps identifier [0] = 0 for itself and gives sub-domain
{[1] · z|z ∈ Z} to its only child, who keeps identifier [1] · [00] = 4 for itself and gives
{[1] · [01] · z|z ∈ Z} and {[1] · [10] · z|z ∈ Z}to its two children, who keep identifiers
[1] · [01] = 5 and [1] · [10] = 6 for themselves respectively.
The benefit of this approach is it paints a picture of means of unifying the identifier spaces
of components, ports and connectors into a single space. The downside is that it in-
troduces an unwanted correspondence between the length of a connector’s path to the
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leader, and the bit-size of their identifier, i.e., for ‘unbalanced’ trees, the identifier space
will be unevenly partitioned over the set of connectors, consequently, resulting in some
identifiers have very long prefixes.

12.2.13 Robust Connector Security

Section 7.1 describes the systems in place in the connector implementation to preserve correct-
ness and make a best effort to maximize session progress when all connectors are following
the control protocol correctly.

Future work can investigate changes to the implementation to formally verify the existing
safety properties, and modify the implementation to strengthen its safety and liveness prop-
erties as possible. Furthermore, future work can supercede the informal descriptions of Sec-
tion 7.2 by completing a rigorous analysis of the connector implementation’s vulnerability to bad
connectors, erroneous or malicious peers participating in communication sessions.

Armed with a more thorough understanding of the strengths and weaknesses of connec-
tors, follow-up work could investigate augmentations of PDL to facilitate connectors taking extra
steps to work alongside un-trusted peers safely . For example, PDL may facilitate additional
annotations to its components, communicating to the runtime an unwillingness to share the
component’s description with peers as part of its control algorithms. Such a feature may lay the
groundwork for the implementation of components tasked with sensitive work, whose behavior
should be kept local to the user’s machine.
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Extra Benchmarking Plots

Figure A.1: Contents of Figure 11.4 rendered as a heatmap.
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Figure A.2: Contents of Figure 11.14 rendered as a heatmap.



Appendix B

Preliminary Application
Programmer Interface

This chapter serves as a historical reference for the preliminary connector API. The contents of
the chapter are largely obsolete, but are retained for future reference. An up-to-date version of
the connector API is given in Chapter 3.

Socket programming revolves around the creation, management, and use of sockets to ex-
change data with a single peer. Programmers take for granted that another application will
create the counterpart socket, resulting in the manifestation of a shared, two-party communica-
tion medium at runtime, which we will call the ‘socket-pair’. Applications rely on sockets as an
abstraction of the rest of the socket-pair. Communication is represented abstractly, appearing to
the application as the result of interactions with the socket itself. The underlying implementation
is relied upon to translate these abstractions into management of underlying resources (e.g.,
maintaining distributed state, message-passing with IP packets, etc.). Applications are provided
some control over the details of this implementation via the socket’s configuration; typically,
sockets can be configured with additional socket options to specialize the underlying behavior.
For example, TCP supports the inclusion of the NODELAY flag to disable Nagle’s algorithm for
sacrificing round-trip-time on network messages to reduce messaging overhead.

Reowolf introduces connectors as a replacement for socket-pairs to generalize the number of
connected peers (previously two) and the number of communication endpoints per application
(previously one). The connector API is designed to be similar to that of sockets as much as
possible. Applications represent their connector with a connector handle structure, and enable
applications to perform abstract data exchange by reading and writing bytes to logical endpoints
as before. Owing to the increased configuration space for these more complex connectors,
Reowolf defines Protocol Description Language (PDL) for defining an application’s requirements
for the connector’s behavior and communicating it to Reowolf during its configuration.

The API provided in this section is intended to be minimal; elaborations may be introduced
to build more convenient and user-friendly APIs, using these simple procedures as their foun-
dation.

B.1 Definitions

This section clarifies terminology to be used throughout the chapter.
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1. network address
This term generalizes the notion of a physical address over the internet. This generalizes
over the available methods for sufficient capability to address host machines without am-
biguity. For example, this may be implemented as an IPv6 address, or the tuple of (IPv4,
port), where port is a 16-bit integer commonly used in the transport layer (e.g., TCP) for
disambiguating beyond the limited capabilities of IPv4.

2. port handle
Port handles are pervasive in Reowolf’s API for representing logical Reowolf ports as they
occur in the connector’s configured PDL description. Concretely, they are non-negative
integers, indicating the index of the port as parameter in the main component.

3. port binding
During the setup phase of a Reowolf connector handle, the protocol’s logical ports are
bound, making clear their relationship to the application and how they are connected to
peers’ ports. A port given a native binding is exposed for data exchange to the application.
Passive and active ports are exposed to the outside world, relying some application to
provide a counterpart port to complete the coupling once the connector connects to its
peers. Both passive- and active-bound ports are provided an address, and differ only
in the means of resolving the connection: the passive port will listen passively for an
incoming connection, while the active port will actively initiate an outgoing connection.

4. message
The type of values being exchanged between the application and the Reowolf connec-
tor. Passed into ports with the batch_put procedure, and retrieved from ports with the
batch_get procedure.

B.2 Connector Programming

Chapter 2.2 established that Reowolf connectors are inherently stateful, to reflect the stateful
nature of the protocols that provide their definitions. In this section, we introduce an API for
connectors such that the handles themselves are stateful also. For simplicity in this section, the
API consists simply of a set of procedures; their relationship through effects on the connector’s
state are made explicit through text and error conditions. This approach is unlikely to be the
best practice for all programming languages, requiring the design to be adapted. For example,
procedures to do with communicating session-specific metadata of the configured protocol de-
scription may be exposed as the ubiquitous builder pattern, which creates a temporary builder
object for incremental construction and applies all changes to the connector handle’s state at
once with a final build method.

Reflecting the distinct phases of a Reowolf connector outlined in Section 2.2, connector
handles exist in one of four states: uninitialized, connecting, communicating or closed.

B.2.1 Setup and Configuration

Before becoming usable for communication, a connector handle must be created and set up
using the connector_configure and connector_connect operations in succession.

As part of the setup phase, the application must invariably supply a protocol description, ex-
pressed in PDL. Sections to follow apply these concepts to particular programming languages,
including an explanation of how textual PDL is represented in the application. Here, it suffices to
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assume that the language is able to represent some textual PDL loaded into program memory
by a handle that can be passed to Reowolf for inspection.

1. connector_create
A new connector handle is created and returned in the fresh state. An error arises if the
system has insufficient resources to support a new protocol handle.

2. connector_configure
An existing protocol handle in fresh state is configured with a textual protocol description,
expressed in PDL. The procedure is parameterized by (1) a connector handle, (2) the set
of logical port names local to the application, and (3) a mapping from logical port occurring
in the connector’s configured PDL to network addresses. The connector handle moves to
the connecting state.

An error arises if the provided PDL is not well-defined. Concretely, these errors corre-
spond with the semantics of PDL itself. For example, if a component is defined with two
arguments with the same identifier. For more detailed information, see Chapter 4.

3. port_bind_native
An existing connector in the connecting state expresses that the given port is accessible
to the application for data exchange. The procedure is parameterized by (1) a connector
handle, and (2) a port handle.

An error arises if the connector is not in the connecting state, the port handle is invalid in
the connector’s configured PDL, or the port handle is has previously been bound.

4. port_bind_passive
An existing connector in the connecting state expresses that a given logical port is ex-
posed for composition with that of another application, marked to passively wait for the
counterpart point to initiate the coupling at the given address. The procedure is parame-
terized by (1) a connector handle, (2) a port handle, and (3) the network address to which
the port will bind, i.e., analogous to a TCP connection.

An error arises if the connector is not in the connecting state, the port handle is invalid in
the connector’s configured PDL, or the port handle is has previously been bound.

5. port_bind_active
An existing connector in the connecting state expresses that a given logical port is exposed
for composition with that of another application, marked to actively initiate the coupling at
the given address with a passive counterpart. The procedure is parameterized by (1) a
connector handle, (2) a port handle, and (3) the network address to which the port will
connect, i.e., analogous to a TCP connection.

An error arises if the connector is not in the connecting state, the port handle is invalid in
the connector’s configured PDL, or the port handle is has previously been bound.

6. connector_connect
An existing connector in the connecting state is connected to its peers and completes its
setup phase, and entering the communicating state. The procedure is parameterized by a
connector handle. The connect call returns when all ports have been connected to some
peer, and likewise with any of those peers’ ports.

Errors arise if there is a problem finding peers and composing with their connectors. Rea-
sons for this include invalid, unresolvable, or unreachable network addresses used in port
bindings.
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7. connector_close
A connector handle is closed, freeing its underlying resources. It is an error to use an
invalid protocol handle, or one in closed state. The protocol handle moves to the closed
state.

B.2.2 Data Transfer and Synchronization

A protocol handle in the communicating state may be used for the exchange of data. In addition
to ‘communicating’, these connector handles maintain an internal state of a ‘staging area’ for
synchronous port operations. Concretely, each protocol handle maintains a set of batches,
where each batch is a set of staged port operations, and where one batch at a time is currently
selected. Initially, a connector handle has a singleton set of batches whose only element is
empty and selected. These batches provide a means for the application to express a non-
deterministic choice; The connector_sync call finalizes all batches and blocks until Reowolf
chooses one and completes the operations within. The returned result of connector_sync
communicates which batch was chosen back to the application.

1. batch_put
Inserts a tentative put operation for a given port into the connector handle’s selected batch.
The procedure is parameterized by (1) a connector handle, (2) the port handle, and (3) a
message. An error arises if the provided port handle is not provided a native binding. An
error arises if (1) the port handle is not defined for the connector at all, (2) not defined to
have direction in for the connector, or (3) already occurs in the selected batch.

2. batch_get
Inserts a tentative put operation for a given port into the connector handle’s selected batch.
The procedure is parameterized by (1) a connector handle, (2) the port handle. The
procedure returns a value of type message. An error arises if the provided port handle
is not provided a native binding. An error arises if (1) the port handle is not defined for
the connector at all, (2) not defined to have direction in for the connector, or (3) already
occurs in the selected batch.

3. batch_next
Inserts an empty batch into the connector handle’s batch set and selects it. The procedure
is parameterized by a connector handle.

4. connector_sync
The connector handle’s batches are submitted to the connector, and the call blocks until
the synchronous round has been completed. Afterward, all batches are reset to their initial
state, i.e., a set of batches whose only element is empty and selected. The procedure
returns the index of the chosen batch as an integer. The procedure is parameterized by
a connector handle. If the connector encounters an error during runtime, it is propagated
to this procedure and returned to the application. For example, a protocol in inconsistent
state.

B.3 Language-Specific API

This section specializes the abstract procedures of connector programming described in Sec-
tion B.2 to concrete programming languages. Suggestive naming of procedures and methods
preserves the mapping from the former to the latter.
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B.3.1 The C API

Reowolf’s C API follows the paradigms of the language by relying on a simple, procedural style.
State management of resources is relegated to the application programmer, and they are ex-
pected to read and adhere to the textual documentation that accompanies the API. Connector
handles are represented by file descriptors (of the int type) as is the convention for UDP and
TCP sockets. Fallable procedures facilitate the propagation of errors to the application by use
of error codes; consequently, the majority of procedures have the return type int.

#include <sys/socket.h>

/* setup */
int reowolf_connector();
int reowolf_configure(int connector, char* protocol_description);
int reowolf_bind_native(int connector, int port);
int reowolf_bind_passive(int connector, int port, sockaddr* address);
int reowolf_bind_active(int connector, int port, sockaddr* address);
int reowolf_connect();
int reowolf_close_connector(int connector);

/* communication */
int reowolf_put(int connector, int port, char* msg, int msg_len);
int reowolf_get(int connector, int port, char* msg, int msg_len);
int reowolf_close_port(int connector);
int next_batch(int connector);
int sync(int connector);

B.3.2 The Java API

Reowolf’s Java API is more object-oriented than that of the C API, revolving around methods of
the Connector class, with the exception of creation, which is represented by Java’s canonical
means for object instantiation. Fallable methods may throw exceptions for the application to
handle.

import java.net.SocketAddress;

public class Connector {
/* setup */
public Connector();
public void configure(String protocolDescription)

throws ConfigurationException;
public void bindNative(int portHandle)

throws BindException;
public void bindPassive(int portHandle, SocketAddress address)

throws BindException;
public void bindActive(int portHandle, SocketAddress address)

throws BindException;
public void connect() throws ConnectionException;
public void close() throws CloseException;
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/* communication */
public void put(int portHandle, byte[] message)

throws CommunciationException;
public byte[] get(int portHandle)

throws CommunciationException;
public void nextBatch();
public void sync() throws CommunciationException;

}



Appendix C

Preliminary Usage & Examples

This chapter showcases a collection of example usages of connectors for network programming.
Their representation is based on an outdated version of the connector API, and thus, cannot be
used without modification with the final version of the connector implementation. Nevertheless,
the contents of the chapter are largely retained to act as a historical reference, as many of the
concepts underlying the examples are still meaningful in the current implementation. Chapter 10
gives usage and examples for the final version of the connector implementation.

C.1 Connectors

This section demonstrates the usage of connectors for coordinating message passing between
a set of communicating applications. Here, all coordination is expressed by the applications
themselves. To follow, Section C.2 demonstrates how applications may introduce protocol com-
ponents to extend their expressive capabilities.

C.1.1 Peer Connection

The simplest use of connectors that still manages to illustrate a meaningful usage occurs when
a pair of distributed peers wish to establish a shared protocol instance. In the following example,
we see Amy’s C application, which attempts to establish a connection with some application at
a known address within ten thousand milliseconds before timing out.

#include <stdio.h>
#include "reowolf.h"
void amy() {

Connector* c = connector_create();
Port out = connector_bind(

c, // which connector
RW_OUT, // port polarity (in/out)
RW_CONNECT, // method (accept/connect)
"127.0.0.1:7000");// network ip + port

int err = connector_connect(
c, // connector
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10000); // timeout in millisec
if (err) printf("Error! %s\n", connector_error_peek());
connector_destroy(c);

}

This case includes an example of canonical error-handling for Reowolf’s C API; fallible pro-
cedures return an int, which gives a coarse-grained encoding for various error conditions, al-
lowing for programmatic error handling and recovery, where zero is consistently used to encode
success. In the event of a non-zero error code, connector_error_peek returns a pointer
to a buffer containing a more detailed human-readable error description. Going forward, error
handling code is omitted for brevity, along with standard include statements.

C.1.2 Message Passing

Next, we observe an example of two peers, Bob and Cho, using their connector to exchange a
single message. As in the first example, the peers are connected by a single logical channel,
and have ten thousand milliseconds to complete the connection. To connect successfully, both
participants must succeed in coupling their logical ports over network channels and agree on
the polarity of the channel, with one using it for input, and the other for output. Once connected,
both applications are able to perform arbitrary local computation between synchronizations with
their handle to the connector environment. Synchronization generalizes read and write calls to
a synchronous, multi-party context. To allow for the larger space of expressible behavior, the
application can be understood to alternate between (1) preparing a batch of port operations for
the next synchronous round, and (2) synchronizing its state with the connector with the prepared
port operation data.

void bob() {
Connector* c = connector_create();
Port out =

connector_bind(c, RW_OUT, RW_CONNECT, "127.0.0.1:7000");
connector_connect(c, 10000);

PortOp op_out;
op_out.port = out;
op_out.msg_ptr = "Hi, Cho!";
op_out.msg_len = 8;

connector_sync_set(c, 1, &op_out);
connector_destroy(c);

}
void cho() {

Connector* c = connector_create();
Port in =

connector_bind(c, RW_IN, RW_ACCEPT, "127.0.0.1:7000");
connector_connect(c, 10000);

PortOp op_in;
op_in.port = input;
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connector_sync_set(c, 1, &op_in);
// op_in.msg_ptr == "Hi, Cho!"
// op_in.msg_len == 8
connector_destroy(c);

}

In this case, Bob prepares a single port operation to output the message: Hi, Cho!. Mean-
while, Cho prepares an operation to receive some message from his peer. The PortOp struc-
ture facilitates fine-grained communication between the user’s application and the connector
runtime, and also serves as the means by which the data contents, message length and port
identifiers are communicated back to the application in-place. Upon successful return, Cho’s
PortOp is mutated by sync_*, allowing bob to reflect on the received message at his leisure
between synchronous rounds. Whether the fields of the port operation are written or read by
the connector is determined by the polarity of the port in question.

C.1.3 Multiple Synchronous Messages

The synchronization procedure seen previously, connector_sync_set is named sugges-
tively; it expresses the synchronous execution of a set of port operations. Here the behavior
of connectors begins to meaningfully deviate from that of sockets. Dan and Eli express a set of
message exchange operations, which either all occur together (in case of success) or none are
performed at all (in case of failure).

void dan() {
Connector* c = connector_create();
Port in, out =

connector_bind(c, RW_IN , RW_CONNECT, "127.0.0.1:7000"),
connector_bind(c, RW_OUT, RW_CONNECT, "127.0.0.1:7001");

connector_connect(c, 10000);
PortOp ops[] = {

(PortOp) {out, "Hi, Eli!", 8},
(PortOp) {in , NULL , 0}};

connector_sync_set(c, 2, ops);
// ops[1].msg_ptr == "Hi, Dan!"
// ops[1].msg_len == 8
connector_destroy(c);

}
void eli() {

Connector* c = connector_create();
Port in, out =

connector_bind(c, RW_IN , RW_ACCEPT, "127.0.0.1:7001"),
connector_bind(c, RW_OUT, RW_ACCEPT, "127.0.0.1:7000");

connector_connect(c, 10000);
PortOp ops[] = {

(PortOp) {out, "Hi, Dan!", 8},
(PortOp) {in , NULL , 0}};

connector_sync_set(c, 2, ops);
// ops[1].msg_ptr == "Hi, Eli!"
// ops[1].msg_len == 8
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connector_destroy(c);
}

The set of user-provided port operations may have any size (including zero), so long as no
two describe multiple synchronous operations at the same port.

C.1.4 Expressing Alternatives

It is often useful for applications to be flexible to the needs of their peers. It is possible for an
application to express the ability to offer alternative message exchange patterns to be collapsed
into one concrete outcome at runtime. In this fashion, an application can be written to constrain
as much or as little as possible, such that the behavior of the system is chosen to satisfy all
components without the application code of one requiring complex reasoning about the states
of the others.

Here we see an exchange between Flo and Gus where each expresses a set of possible
outcomes for the synchronous data exchange: Flo either sends or receives a message from
Gus, but not both and not neither; Gus sends no message, but he might receive one from Flo.

void flo() {
Connector* c = connector_create();
Port in, out =

connector_bind(c, RW_IN , RW_CONNECT, "127.0.0.1:7000"),
connector_bind(c, RW_OUT, RW_CONNECT, "127.0.0.1:7001");

connector_connect(c, 10000);
PortOp ops[] = {

(PortOp) {in , NULL , 0},
(PortOp) {out, "Hi, Gus!", 8}};

size_t *bitsets[] = {
(size_t[]) {0b01}, // { ops[0] }
(size_t[]) {0b10}}; // { ops[1] }

int idx = connector_sync_subsets(c, 2, ops, 2, bitsets);
// idx == 0
connector_destroy(c);

}
void gus() {

Connector* c = connector_create();
Port in, out =

connector_bind(c, RW_IN , RW_ACCEPT, "127.0.0.1:7001"),
connector_bind(c, RW_OUT, RW_ACCEPT, "127.0.0.1:7000");

connector_connect(c, 10000);
PortOp ops[] = {

(PortOp) {in, NULL, 0}};
size_t *bitsets[] = {

(size_t[]) {0b1}, // { ops[0] }
(size_t[]) {0b0}}; // { }

int idx = connector_sync_subsets(c, 1, ops, 2, bitsets);
// idx == 0
connector_destroy(c);

}
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The connector_sync_subsets procedure is shown as a generalization of that of con-
nector_sync_set seen previously. Where the latter expresses a set of port operations, all
of which are to be performed, the former expresses a list of sets, such that exactly one set is
selected by the connector and performed; the application is able to determine which set was
chosen by inspecting the returned int, the index of the set in the list.

Anticipating the frequency of use cases for which multiple port operations will be shared
between sets, the C API represents the each set as a symbolic subset of a single given set.
Concretely, the connector_sync_subsets accepts (1) reference to a set of n port operations,
and (2) a list of m bit sets encoding a bit sequence of length n, in which a set i th least-significant
bit encodes the presence of the i th port operation is present in the set. The individual effects
of port operations are communicated to the application as before, by modification of the fields
of the appropriate PortOp structures in-place. The procedure also guarantees that all but the
port operations in the chosen bitset will remain unmodified.

Observe that in the context of the particular composition of Flo and Gus, the resulting be-
havior is entirely deterministic: Flo sends a message to Gus. No other behavior is possible,
because it would violate either Flo’s or Gus’s constraints on the coordination. However, this
would not be the case for all compositions. If two instances of Flo were initialized and con-
nected to one another, the resulting system would exhibit non-determinism; whether the first Flo
sends to the second or vice-versa would be unspecified, and therefore ultimately be determined
by the whims of the connector implementation.

C.1.5 Multi-Party Synchronization

The relationship between the number of peers and the number of message channels is entirely
arbitrary. In this manner, it takes no stretch of the imagination to see how connectors facilitate
synchronous multi-party communication that differs only in how the ports are bound, and not in
changing the program’s communication logic.

The relationship between the number of peers and the number of message channels is
entirely arbitrary. In this manner, it takes no stretch of the imagination to see how connectors
facilitate synchronous multi-party communication that differs only in how the ports are bound,
and not in changing the program’s communication logic.

In the following example, we see a function which, when executed by any number of applica-
tions in parallel with pre-initialized connectors, coordinated multi-party communication occurs.
Concretely, this function imposes what we will call the secret Santa protocol on the system for
one communication round; the set of peers exchange the responsibility of buying themselves a
Christmas gift with an anonymous stranger such that everyone gives and receives one gift.

void secret_santa(
Connector* c,
Port in, Port out,
char * name, size_t namelen

) {
PortOp ops[] = {

(PortOp) {in , name, namelen},
(PortOp) {out, NULL, 0 }};

connector_connect(c, 10000);
int err = connector_sync_set(c, 2, ops);
assert(err == 0); // assert success
printf("I will buy a gift for '%.*s'\n",
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ops[1].msg_len, ops[1].msg_ptr);
}

It is a property of all applications that successfully complete this procedure that the protcols
of all participating peers (including their own) have been preserved.

C.1.6 Multiple Synchronous Rounds

Thus far, all examples have demonstrated the possible behaviors of a connected system up
to the end of a synchronous round. Here, an example program is given where it is necessary
for the system to experience a number of communication rounds such that the application may
perform local computation in response to information exchanged previously. Below we observe
an illustrative example of how the application may interleave tasks of (1) local computation,
(2) reading and writing message data from previous or for future synchronous rounds, and
(3) participating in the next synchronous round with prepared data.

void hal() {
Connector* c = connector_create();
Port in, out =

connector_bind(c, RW_IN , RW_CONNECT, "127.0.0.1:7000"),
connector_bind(c, RW_OUT, RW_CONNECT, "127.0.0.1:7001");

connector_connect(c, 10000);
PortOp ops[] = {

(PortOp) {in , NULL , 0 },
(PortOp) {out, "My name is Hal!" , 15},
(PortOp) {out, "What is your name?", 18}};

size_t *bitsets[] = {
(size_t[]) {0b100}, // { ops[2] }
(size_t[]) {0b011}}; // { ops[0], ops[1] }

while(1) {
int idx = connector_sync_subsets(c, 3, ops, 2, bitsets);
if (idx == 1) break;

}
size_t namelen = ops[0].msg_len;
ops[1].msg_len = 24;
if (namelen == 3 && strncmp("Hal", ops[0].msg_ptr, 3) == 0) {

ops[1].msg_buf = "Hey, that's my name too!";
} else if (namelen > 300) {

ops[1].msg_buf = "Wow, that's a long name!";
} else {

ops[1].msg_buf = alloca(namelen + 18);
ops[1].msg_len = namelen + 18;
strncpy(ops[1].msg_ptr, ops[0].msg_ptr, namelen);
strncpy(ops[1].msg_ptr + namelen, " is a lovely name!", 18);

}
connector_sync_set(&ops[1]);
connector_destroy(c);

}

Hal’s example is intended to illustrate how the application treats the connector as an ab-
straction for the rest of the network, and interacts with it in discrete synchronization events. All
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other local computation work may involve arbitrary manipulation of local variables as always. In
concept and in actuality, this separation results in C programs in which the coordination logic is
more readily identifiable and declaratively expressed for the connector to realize.

C.2 Protocol Descriptions

In the protocol description language defined Chapter 4, the notion of connectors is strongly
related to that of protocols, declarative descriptions of constraints on the behavior of a commu-
nicating system. Accordingly, the reference implementation exposes the protocol description, a
data structure that can be used in conjunction with connectors at runtime to coordinate mes-
sage passing. In the previous section, it was seen that C applications are able to exchange
messages by creating and synchronizing with a connector at runtime through an API that af-
fords them some ability to constrain the behavior of the system. In this fashion, connectors alone
make it possible to write C applications that implement non-trivial coordination logic. However,
protocol descriptions are introduced as they allow the expression of fine-grained coordination
logic in PDL, a language that connectors are designed to understand. This simple property has
important consequences:

1. Connectors are able to perform informed optimization, and

2. PDL is able to express relationships between synchronized messages, which relies on
controlled cooperation with the connector runtime.

C.2.1 Message Equality

A surprising subspace of interesting communication protocols require that messages be related
by equality. An intuitive example of such a protocol enforces equality on the contents of two
provided messages:

primitive equal(in a, in b) {
synchronous { // within one synchronous round

assert(0 == msg_cmp(get(a), get(b));
}
// protocol ends. behavior unconstrained

}

However, relating messages by equality describes relationships that are even more fun-
damental still; synchronously forwarding a message expresses the imposition of an equality
relation between the message received as input, and the message sent as output:

primitive forward(in i, in o) {
synchronous {

put(o, get(i));
}

}

C.2.2 Expressing Alternatives

As is the case for the API of the connector as it is exposed to applications, protocol components
are able to express alternative branches. Where the former is ‘flat’, expressed only as the
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single selection between a set of port operations, protocol components are able to branch as
an arbitrary function of the data they observe, including the activity of ports and the messages
they receive. As an example, the exclusive_route component forwards a message from its
input port to either one of its two output ports.

primitive exclusive_route(in i, out a, out c) {
synchronous {

msg m = get(i);
if(fires(a)) put(a, m);
else put(b, m);

}
}

C.2.3 Connecting Protocol Components

Previous sections introduced protocol descriptions and connectors separately. This section
explains how these two ideas may be used in combination to supplement C programs with
coordination logic.

Creating Protocol Components

The reference implementation exposes the Protocol structure, as well as a means for (fallibly)
parsing a given buffer containing a textual description in PDL. While in the connected state,
connectors facilitate the application instantiating components whose behavior is defined within
a given protocol description, on the given ports.

void ivy() {
Connector* c = connector_create();
Port ports[2] = {

connector_bind(c, RW_IN , RW_CONNECT, "127.0.0.1:7000"),
connector_bind(c, RW_OUT, RW_CONNECT, "127.0.0.1:7001")};

connector_connect(c, 10000);
const char* pdl = "primitive forward(in i, out o) {"

" synchronous { "
" put(o, get(o)) "
" } "
"} ";

Protocol* protocol = protocol_parse(pdl);
connector_new_component(c, // connector

protocol, // protocol
"forward", // component entrypoint
2, // port array length
ports); // port array pointer

connector_sync_sets(c, 0, NULL);
connector_destroy(c);

}

Protocol components created in this fashion act autonomously henceforth, progressing their
states synchronously with the application’s subsequent synchronous rounds. Upon instantia-
tion, components claim ownership of their given ports, removing them from the port set of their
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creator. For example, if Ivy’s invocation of connector_sync_all included port operations
with ports port[0] or port[1] would be erroneous, returning a non-zero error code.

Creating Internal Channels

As is the case in PDL, applications are able to create an input-output port pair by creating new
channels between synchronous rounds. This is necessary for creating ‘internal’ communication
such that a component may divide sub-tasks to interconnected sub-components. Consider the
example of Jay’s application, which connects to the network via a single input port. Jay wishes
to process incoming messages, but cannot handle messages with a byte-length shorter than
three. Rather than expressing this as part of his application, Jay defines a forward_min_len_3
protocol component:

primitive forward_min_len_3(in i, out o) {
while(true) synchronous {

msg m = get(i);
if (m.length >= 3) put(o, m);

}
}

By working on messages that have traveled through forward_non_empty, the application
is safe in relying on the properties it will preserve:

void process(size_t msg_len, char * msg_ptr) { /* omitted */ }
void jay() {

Protocol* protocol = protocol_parse(pdl);
Connector* c = connector_create();
Port net_in =

connector_bind(c, RW_IN , RW_CONNECT, "127.0.0.1:7000");
connector_connect(c, 10000);
PortPair mem = connector_new_channel(c);
connector_new_component(

c, protocol, "forward_min_len_3",
2, (Port[]) {net_in, mem.out});

PortOp op = (PortOp) {mem.in, NULL, 0};
while(1) {

connector_sync_set(c, 1, &op);
process(op.msg_len, op.msg_ptr);

}
}

This approach is strictly more flexible to Jay and his networked peers than if the constraint
was expressed in Jay’s application. The difference is that the protocol component is able to
constrain the behavior of the system during the synchronous round, rather than reacting to
it after the fact. Consider that Kim’s application delegates the task of choosing between two
messages, hi and hello to send through the other end of Jay’s network channel. Without
knowing Jay’s protocol, Kim cannot know that Jay prohibits the transmission of hi, but accepts
that of hello.

primitive forward_either(in a, in b, out o) {
while(true) synchronous {
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if (fires(a)) put(o, get(a));
else put(o, get(b));

}
}

The behavior of Kim’s non-deterministic protocol is composed with that of Jay, resulting in a
protocol whose behavior is the conjunction of the two each synchronous round: the message
hello sent from Kim to Jay.
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