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ABSTRACT Ewen’s sampling formula is a foundational theoretical result that connects probability and
number theory with molecular genetics and molecular evolution; it was the analytical result required for
testing the neutral theory of evolution, and has since been directly or indirectly utilized in a number of
population genetics statistics. Ewen’s sampling formula, in turn, is deeply connected to Stirling numbers of
the first kind. Here, we explore the cumulative distribution function of these Stirling numbers, which enables a
single direct estimate of the sum, using representations in terms of the incomplete beta function. This
estimator enables an improved method for calculating an asymptotic estimate for one useful statistic, Fu’s Fs.
By reducing the calculation from a sum of terms involving Stirling numbers to a single estimate, we
simultaneously improve accuracy and dramatically increase speed.
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The dominant paradigm in population genetics is based on a com-
parison of observed data with parameters derived from a theoretical
model (Casillas and Barbadilla 2017; Nielsen 2001). Specifically for
DNA sequences, many techniques have been developed to test
for extreme relationships between average sequence diversity (num-
ber of DNA differences between individuals) and the number of

alleles (distinct DNA sequences in the population). In particular, such
methods are widely used to predict selective pressures, where certain
mutations confer increased or decreased survival to the next generation
(Nielsen 2001). Such selective pressures are relevant for understanding
and modeling practical problems such as influenza evolution over time
(Grenfell et al. 2004) and during vaccine production (Chen et al. 2019);
adaptations in human populations, which may impact disease risk
(Wollstein and Stephan 2015; Quintana-Murci 2016); and the emer-
gence of new infectious diseases and outbreaks (Wu et al. 2016).

Many population genetics tests are therefore formulated as uni-
dimensional test statistics, where the pattern of DNA mutations in a
sample of individuals is reduced to a single number (Nielsen 2001;
Casillas and Barbadilla 2017; Fu 1997). Such statistics are heavily
informed by combinatorial sampling and probability distribution
theories, many of which are built upon the foundational Ewens’s
sampling formula (Ewens 1972), which describes the expected dis-
tribution of the number of alleles in a sample of individuals, given the
nucleotide diversity.
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Ewens’s sampling formula not only was a seminal result for
population genetics, but also established connections with combi-
natorial stochastic processes, algebra, and number theory (Crane
2016). For population genetics, in particular, Ewens’s sampling
formula provided a key analytical result that finally enabled math-
ematical tests of the neutral theory of evolution (Crane 2016;
Nielsen 2001). It has given rise to several classical population
genetics tests for neutrality, including the Ewens-Watterson test,
Slatkin’s exact test, Strobeck’s S, and Fu’s Fs (Fu 1997; Strobeck
1987). Calculation of subsets of this distribution are useful for
testing deviations of observed data from a null model; such subsets
often require the calculation of Stirling numbers of the first kind
(hereafter referred to simply as Stirling numbers). In particular, Fu’s
Fs has recently been shown to be potentially useful for detecting
genetic loci under selection during population expansions (such as
an infectious outbreak) both in theory and in practice (Wu et al.
2016). However, Stirling numbers rapidly grow large and thus
explicit calculation can easily overwhelm the standard floating point
range of modern computers.

In previous work, an asymptotic estimator for individual Stir-
ling numbers was used to solve the problem of computing Fu’s Fs
for large datasets, which are now becoming common due to rapid
progress in DNA sequencing technology (Chen 2019). Without
such improved numerical methods, Fu’s Fs calculations for data
sets as small as 170 sequences can cause overflow, preventing the
use of these statistics for genome-wide screens of selection. This
algorithm based on estimating individual Stirling numbers solved
problems of numerical overflow and underflow, maintained good
accuracy, and substantially increased speed compared with other
existing software packages (Chen 2019). However, there was still a
need to estimate multiple Stirling numbers (up to half the total
number of sequences). Here, we explore the potential for further
increasing both accuracy and speed in calculating Fu’s Fs by using a
single estimator for the entire sum, which involves multiple Stirling
numbers.

METHODS

General definitions and theory
We take a population of n individuals, each of which carries a
particular DNA sequence Di (referred to as the allele of individual
i). We define a metric, distðDi;DjÞ to be the number of positions at
which sequence Di differs from Dj. Then, we denote the average

pairwise nucleotide difference as up (hereafter referred to simply as
u), defined as:

u ¼ 2
nðnþ 1Þ

Xn21

i¼1

Xn
j¼iþ1

dist
�
Di;Dj

�
: (1)

We also define a set of unique alleles Dui 2 fDig which have the
property of ði 6¼ jÞ   ⇒ðdistðDui;DujÞ. 0Þ. The ordinality of fDuig is
denoted m, i.e., the number of distinct alleles in the data set.

Building upon on Ewens’s sampling formula (Fu 1997; Ewens
1972), it has been shown that the probability that, for given n and u, at
least m alleles would be found, is

S9n;mðuÞ ¼ 1
ðuÞn

Xn
k¼m

ð21Þn2kSðkÞn uk; u. 0; (2)

where ðuÞn is the Pochhammer symbol, defined by

ðuÞ0 ¼ 1; ðuÞn ¼ uðuþ 1Þ⋯ðuþ n2 1Þ ¼ Gðuþ nÞ
GðuÞ : (3)

SðkÞn is a Stirling number and is defined by:

ðuÞn ¼
Xn
k¼0

ð21Þn2kSðkÞn uk; (4)

Fu’s Fs is then defined as:

Fs ¼ ln
S9n;mðuÞ

12 S9n;mðuÞ: (5)

Fu’s Fs thus measures the probability of finding amore extreme (equal
or higher) number of alleles than actually observed. It requires
computing a sum of terms containing Stirling numbers, which rapidly
become large and therefore impractical to calculate explicitly even
with modern computers (Chen 2019).

Because of the relation in (4), the statistics quantity S9n;mðuÞ
satisfies 0# S9n;mðuÞ# 1. Also, this relation and (3) show that
ð21Þn2mSðmÞ

n are non-negative. We have the special values

SðnÞn ¼ 1  ðn$ 0Þ;
Sð0Þn ¼ 0  ðn$ 1Þ;
Sð1Þn ¼ ð21Þn21ðn2 1Þ!  ðn$ 1Þ:

(6)

Figure 1 Graphs offðzÞ2fðz0Þ (A) and
xðtÞ2xðt0Þ (B) for n ¼ 100, m ¼ 38,
with z0   ≐  22:81 and t0 ¼ 19

31  ≐  0:61.
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There is a recurrence relation

SðkÞnþ1 ¼ Sðk21Þ
n 2 nSðkÞn ; (7)

which easily follows from (4). For a concise overview of properties, with
a summary of the uniform approximations, see (Gil et al. 2007, x11.3).

We introduce a complementary relation

T9n;mðuÞ ¼ 12 S9n;mðuÞ ¼ 1
ðuÞn

Xm21

k¼0

ð21Þn2kSðkÞn uk; (8)

leading to an alternate calculation for Fu’s Fs of

Fs ¼ ln
S9n;mðuÞ

12 S9n;mðuÞ ¼ ln
12T9n;mðuÞ
T9n;mðuÞ : (9)

The recent algorithm considered in (Chen 2019) is based on asymp-
totic estimates of SðmÞ

n derived in (Temme 1993), which are valid for
large values of n, with unrestricted values of m 2 ð0; nÞ. It avoids the
use of the recursion relation given in (7).

In the present paper we derive an integral representation of S9n;mðuÞ
and of the complementary function T9n;mðuÞ, for which we can use the
same asymptotic approach as for the Stirling numberswithout calculating
the Stirling numbers themselves. From the integral representationwe also
obtain a representation in which the incomplete beta function occurs as
the main approximant. In this way we have a convenient representation,
which is available as well for many classical cumulative distribution
functions. We show numerical tests based on a first-order asymptotic
approximation, which includes the incomplete beta function. In a future
paper we give more details on the complete asymptotic expansion of
S9n;mðuÞ, and, in addition, we will consider an inversion problem for large
n andm: to find u either from the equation S9n;mðuÞ ¼ s, when s 2 ð0; 1Þ
is given, or from the equation Fs ¼ f , when f 2 ℝ is given.

Remarks on computing S9n;mðuÞ
When computing the quantity Fs defined in (5), numerical instability
may happen when S9n;mðuÞ is close to 1. In that case, the computation
of 12 S9 suffers from cancellation of digits. For example, take
n ¼ 100, u ¼ 39:37, m ¼ 31. Then S9n;mðuÞ  ≐  0:99872, and Fs
becomes about 6.6561 when using the first relation in (9). However,
when we calculate T9n;mðuÞ ¼ 0:002689 and use the second relation,
then we obtain the more reliable result Fs   ≐  5:9160.

We conclude that, when S9n;mðuÞ$ 0:5, it is better to switch and
obtain T9n;mðuÞ from the sum in (8) and Fs using the second relation in
(9). A simple criterion to decide about this can be based on using the
saddle point z0 (see Remark 1 below).

A second point is numerical overflow when n is large, because SðmÞ
n

rapidly becomes large whenm is small with respect to n. For example,
when n ¼ 10, m ¼ 5 we have

Sð5Þ10 ¼ 2
n!ðmþ 5Þðmþ 4Þð3m2 þ 23mþ 38Þ

11520ðm2 1Þ! ¼ 2269325: (10)

Therefore, it is convenient to scale the Stirling number in the form
SðkÞn =n!. In addition, the Pochhammer term ðuÞn in front of the sum in
(2) will also be large with n; we have ð1Þn ¼ n!.

We can write the sum in (2) in the form

S9n;mðuÞ ¼ n!
ðuÞn

Xn
k¼m

ð21Þn2kŜ
ðkÞ
n uk; Ŝ

ðkÞ
n ¼ SðkÞn

n!
: (11)

Leading to a corresponding modification in the recurrence relation in
(7) for the scaled Stirling numbers:

Ŝ
ðmÞ
nþ1 ¼

1
nþ 1

�
Ŝ
ðm21Þ
n 2 nŜ

ðmÞ
n

�
: (12)

To control overflow, we can consider the ratio

fnðuÞ ¼ n!
ðuÞn

¼ Gðnþ 1Þ  GðuÞ
Gðuþ nÞ : (13)

This function satisfies fnðuÞ# 1 if u$ 1. For small values of n we can
use recursion in the form

fnþ1ðuÞ ¼ nþ 1
nþ u

fnðuÞ; n ¼ 0; 1; 2; . . . ; f0ðuÞ ¼ 1: (14)

For large values of n and all u. 0, we can use a representation based
on asymptotic forms of the gamma function.

It should be observed that using the recursions in (7) and (12)
is a rather tedious process when n is large. For example, when we
use it to obtain SðmÞ

100 for all m 2 ð0; 100�, we need all previous SðmÞ
n

with n# 99 for all m 2 ð0; n�. A table look-up for Ŝ
ðmÞ
nþ1 in floating

point form may be a solution. When n is large enough, the
algorithm mentioned in (Chen 2019) evaluates each needed

Figure 2 Mollified error in estimating
Fu’s Fs for u 2 ð10; 400Þ, m ¼ 75 and
n ¼ 100 (A) and for m ¼ 275 and
n ¼ 500 (B). The data for the dashed
curves are multiplied by a factor of
10 (A) and 100 (B), to make the error
curves visible in the figures. Refer to the
text for further details.
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Stirling number by using the asymptotic approximation derived
in (Temme 1993).

Data availability
Code implementing the new estimator for Fu’s Fs in R is available at
https://github.com/swainechen/hfufs.

RESULTS AND DISCUSSION

Analytical results
The new algorithm is based on the following results, which we
describe in two theorems.

Theorem 1. The statistics quantity S9nþ1;mþ1ðuÞ introduced in (2)
has the representation as an integral in the complex z-plane

S9nþ1;mþ1ðuÞ ¼ um

ðuþ 1Þn
1
2pi

Z
C R

ðz þ 1Þn
zm

 
dz

z2 u
; R. u; (15)

where n and m are positive integers, 0#m# n, u is a real posi-
tive number, and C R is a circle at the origin with radius R. u. The
symbol ðaÞn denotes the Pochhammer symbol introduced in (3).

Observe that we have raised in Sn;m9ðuÞ the parameters n and m
with unity; this is convenient in the mathematical analysis. The proof
of this theorem will be given in the Appendix (Proof of Theorem 1).

Corollary 1. The complementary quantity T9nþ1;mþ1ðuÞ intro-
duced in (8) has the representation

T9nþ1;mþ1ðuÞ ¼ um

ðuþ 1Þn
1
2pi

Z
C R

ðz þ 1Þn
zm

 
dz

u2 z
; R, u: (16)

The main asymptotic result is given in the second theorem.
Theorem 2. S9nþ1;mþ1ðuÞ has the representation

S9nþ1;mþ1ðuÞ ¼ Ixðm; n2mþ 1Þ þ R9nþ1;mþ1ðuÞ;
x ¼ t

1þ t
; t. 0;

(17)

where Ixðp; qÞ is the incomplete beta function defined by

Ixðp; qÞ ¼ 1
Bðp; qÞ

Z x

0
tp21ð12tÞq21   dt; (18)

with

0, x, 1; p. 0; q. 0; Bðp; qÞ ¼ GðpÞGðqÞ
Gðpþ qÞ : (19)

The term R9nþ1;mþ1ðuÞ is a function of which we give a one-term
approximation in (32).

Corollary 2. The complementary quantity T9nþ1;mþ1ðuÞ has the
representation

T9nþ1;mþ1ðuÞ ¼ I12xðn2mþ 1;mÞ2R9nþ1;mþ1ðuÞ;

12 x ¼ 1
1þ t

:
(20)

This follows from Theorem 1 and the complementary relation of
the incomplete beta function

Ixðp; qÞ ¼ 12 I12xðq; pÞ: (21)

Note also that the incomplete beta function in (17) has the
representation (see (Paris, 2010, x8.17(i)))

I t
1þt
ðm; n2mþ 1Þ ¼ ð1þ tÞ2n

Xn
j¼m

�
n
j

�
tj; (22)

and from the complementary relation in (21) it follows that the
function in (20) has the expansion

I 1
1þt
ðn2mþ 1;mÞ ¼ ð1þ tÞ2n

Xm21

j¼0

�
n
j

�
tj: (23)

The representation in this theorem in terms of the probability
function Ixðp; qÞ shows the characteristic role of S9n;mðuÞ as a cumu-
lative distribution function of the Stirling numbers. The representa-
tion can also be viewed as an asymptotic representation in which the
incomplete beta function is the main approximant.

The proof of Theorem 2 can be found in the Appendix (Proof of
Theorem 2), but we give here some preliminary information about
functions used in the proof to explain the definition of the param-
eter t in (17). It is a function of u and arises in certain transfor-
mations of the integral given in Theorem 1. For this we need the
function

fðzÞ ¼ ln
�ðz þ 1Þn

�
2m    ln    z

            ¼ ln  Gðz þ nþ 1Þ2 ln  Gðz þ 1Þ2m    ln  z;
(24)

and its derivative

f9ðzÞ ¼ cðz þ nþ 1Þ2cðz þ 1Þ2m
z
; cðzÞ ¼ G9ðzÞ

GðzÞ : (25)

With the function fðzÞ we can write (15) in the form

S9nþ1;mþ1ðuÞ ¼ e2fðuÞ

2pi

Z
C R

efðzÞ
dz

z2 u
; R. u: (26)

n■ Table 1 Relative errors in the computation of Fs defined in (5) using the asymptotic estimator in (35)

n=m u Fs, asymptotic Fs, exact rel. error

25/20 9.39 26.83168 26.8294578 0:33 ·1023

50/31 9.61 210.13052 210.1290263 0:15 ·1023

100/40 9.37 210.23064 210.2298131 0:81 ·1024

250/67 8.96 226.41607 226.4155959 0:18 ·1024

500/95 9.04 246.76268 246.76238956 0:63 ·1025

1000/152 9.07 2112.42500 2112.4248080 0:17 ·1025

2001/213 9.03 2192.21835 2192.2182390 0:60 ·1026
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Then the saddle point of the integral in (26) follows from the equation

f9ðzÞ ¼ cðz þ nþ 1Þ2cðz þ 1Þ2m
z
¼ 0; cðzÞ ¼ G9ðzÞ

GðzÞ : (27)

There is a positive saddle point z0 when 0,m, n.
Next to these functions we introduce a function for complex

values of a variable t:

xðtÞ ¼ n  lnð1þ tÞ2m    ln  t;

x9ðtÞ ¼ ðn2mÞt2m
tð1þ tÞ ¼ ðn2mÞ t2 t0

tð1þ tÞ;
(28)

where t0 ¼ m
n2m. These functions are related by

fðzÞ2fðz0Þ ¼ xðtÞ2 xðt0Þ; (29)

with condition signðz2 z0Þ ¼ signðt2 t0Þ. In this way, using this
relation as a transformation of the variable z to t, we can write (26) as

S9nþ1;mþ1ðuÞ ¼ e2xðtÞ

2pi

Z
C R

exðtÞf ðtÞ  dt;

f ðtÞ ¼ 1
z2 u

dz
dt

¼ 1
z2 u

x9ðtÞ
f9ðzÞ:

(30)

The parameter t in Theorem 2 is defined as the positive solution of
the equation

fðuÞ2fðz0Þ ¼ xðtÞ2 xðt0Þ;   signðu2 z0Þ ¼ signðt2 t0Þ: (31)

In Figure 1 we show the graphs of fðzÞ2fðz0Þ (Figure 1A) and
xðtÞ2 xðt0Þ (Figure 1B) for n ¼ 100, m ¼ 38. For these values the
saddle points are z0   ≐  22:81 and t0 ¼ 19

31  ≐  0:61. The sign condition
signðz2 z0Þ ¼ signðt2 t0Þ for the relation in (29) means that the left
branches of the convex curves correspond with functions values for
z 2 ð0; z0� and t 2 ð0; t0�, and the right branches with values for
z 2 ½z0;NÞ and t 2 ½t0;NÞ. Clearly, we have a one-to-one relation
between the positive z and t-variables.

A first-order approximation of the function R9nþ1;mþ1ðuÞ in (17)
and (20) reads

R9nþ1;mþ1ðuÞ � e2xðtÞ
�

n
m2 1

�
gðt0Þ;

n/N; 0,m, n;
(32)

where

gðt0Þ ¼ f ðt0Þ2 1
t0 2 t

; f ðt0Þ ¼ 1
z0 2 u

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x

00 ðt0Þ
f

00 ðz0Þ

s
; (33)

and the function f ðtÞ is defined in (30). The value f ðt0Þ follows from
evaluating dz=dt (see (30)) at t0, by observing that both functions
f0ðzÞ and x0ðtÞ vanish when t/t0 (hence, z/z0). Then, l’Hôpital’s
rule can be used to obtain f ðt0Þ.

In Figure 2 we show the error curves dðFs; ~FsÞ in (34) for Fu’s Fs
(9) for u 2 ½10; 400�. We show examples for n ¼ 100,m ¼ 75 (Figure
2A) and n ¼ 500, m ¼ 275 (Figure 2B). The solid curves are for Fs
when using S9nþ1;mþ1ðuÞ � It=ð1þtÞðm; n2mþ 1Þ, the dashed curves
when using S9nþ1;mþ1ðuÞ � It=ð1þtÞðm; n2mþ 1Þ þ R9nþ1;mþ1ðuÞ
with the asymptotic estimate given in (32). For ease of visuali-
zation, the error dðFs; ~FsÞ has been multiplied by a factor 10 or
100 in Figure 2. We have used the following mollified error
function

dðFs; ~FsÞ ¼
				 Fs 2 ~Fs
maxðjFsj; 1Þ

				; (34)

where ~Fs is the approximation of Fs. This mollified error is exactly the
relative error unless jFsj is small. Because Fs will vanish when
S9nþ1;mþ1ðuÞ ¼ 1

2 (which also means that u is near the transition value
z0   ≐  137:98 (in Figure 2A) and z0   ≐  251:58 (in Figure 2B) (see
Remark 1)), we cannot use relative error for all u. 0. This explains
the non-smooth curves in Figure 2.

The final estimator is based on the representations in (17) and (20)
and the first order approximation in (32), which are used to calculate
Fu’s Fs with one of the two relations in (9) depending on whether
S9n;mðuÞ$ 0:5, decided as described above.

Implementation and numerical results
We first summarize the steps to compute Fu’s Fs by using (9) and the
first-order approximations (see (32) and (17) or (20))

Figure 3 (A) Comparison of relative er-
ror of the estimator from (Chen 2019)
and the single term asymptotic estima-
tor in (35). Relative error for each is
calculated against the arbitrary preci-
sion implementation described in (Chen
2019). In total, 10,000 calculations were
performed with n randomly sampled
from a uniform distribution between
50 and 500; m between 2 and n; and
u between 1 and 50. A solid diagonal
line is drawn at y ¼ x. Dotted lines are
drawn at a relative error of 0.001. Num-
bers within each quadrant defined by
the dotted lines indicate the number of
points in each quadrant. The red dot
indicates the one case where the rela-
tive error was .0:001 and the error of
(35) was greater than the estimator

from (Chen 2019). (B) Comparison of mollified error (34) as a function of m. For this plot, we fixed n ¼ 100 (solid lines) or 500 (dotted lines)
and u 2 ð10;500Þ (as indicated by different line colors).
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S9nþ1;mþ1ðuÞ � I t
1þt
ðm; n2mþ 1Þ þ e2xðtÞ

�
n

m2 1

�
gðt0Þ; (35)

or

T9nþ1;mþ1ðuÞ � I 1
1þt
ðn2mþ 1;mÞ2 e2xðtÞ

�
n

m2 1

�
  gðt0Þ; (36)

for large n, m 2 ð0; nÞ and u. 0.

1 Compute the saddle point z0, the positive zero of f0ðzÞ;
see (27).

2 With t0 ¼ m=ðn2mÞ, the positive zero of x0ðtÞ (see (28)),
compute t, the solution of the equation (see (31))

xðtÞ ¼ xðt0Þ þ fðuÞ2fðz0Þ; (37)

with fðzÞ defined in (24) and xðtÞ defined in (28). When u ¼ z0
there is one solution t ¼ t0. When t 6¼ t0 there are two positive
solutions, and we take the one that satisfies the condition
signðu2 z0Þ ¼ signðt2 t0Þ.

3 When u, z0, hence t, t0, compute the approximation of
S9nþ1;mþ1ðuÞ by using (35), and Fs from the first relation in (9).

4 When u. z0, hence, t. t0, compute the approximation of
T9nþ1;mþ1ðuÞ by using (36), and Fs from the second relation in (9).

In Table 1, we show the relative errors in the computation of Fs
defined in (5). The values of n, m, and u correspond with those in
Table 1 of (Chen 2019). The asymptotic result is from (35). Com-
putations were done with Maple, with Digits = 16. The “exact” values
were obtained by using Maple’s code for Stirling1ðn;mÞ, which
computes the Stirling numbers of the first kind.

We additionally performed a comparison with the recently
published algorithm in (Chen 2019). We performed 10,000
calculations with each algorithm and compared the results with
an exact calculator. As expected, since the previous algorithm
required estimating a Stirling number for each term of the
sum, while the current asymptotic estimate directly calculates
the sum, both error and compute speed were improved. Rela-
tive error for the single term estimate in (35) was well con-
trolled at , 0:001 for nearly 99% of the calculations; for 411

calculations where the previous hybrid estimator had an error
. 0:001, the estimate in (35) was more accurate in all but one case
(n ¼ 157;m ¼ 4; u ¼ 43:59732; 3.08e-3 relative accuracy using
(Chen 2019); 3.32e-3 relative accuracy using (35)) (Figure 3).
Further analysis of the relative error demonstrated that it peaks at
intermediate values of m=n, depending on u. These correspond to
parameter choices near the transition values m ¼ m0, where t
approaches t0 and z approaches z0 in the calculation; notably, they
remain well controlled (all values , 0:001 mollified error) re-
gardless of u. The asymptotic behavior (lower relative error) can
also be seen as both n and m increase in Figure 3B.

The fewer calculations led to a clear improvement in calculation
speed (median 54.6x faster; Figure 4). The speedup also depends on
the parameter choices; in general, the speed advantage is greater when
the hybrid calculator requires many calculations (namely, when m is
small relative to n, as the hybrid calculator performs the sum in (2))
(Figure 4B).

CONCLUSION
The rapid growth of sequencing data has been an enormous boon to
population genetics and the study of evolution. Traditional pop-
ulation genetics statistics are still in common use today. The
statistics Fu’s Fs and Strobeck’s S have been difficult to calculate
on modern, large data sets using previous methods; we now further
improve both accuracy and speed for the calculation of Fu’s Fs for
such data sets, using the main estimator in (35). Our plan for a paper
about the ability to invert the calculation provides additional future
directions in understanding the performance of these statistics.
Therefore, the methods used herein may be useful for the devel-
opment of new statistics that more effectively capture different types
of selection.
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APPENDIX

Proof of Theorem 1
We use the integral representation of the Stirling numbers that follows from the definition given in (4). That is, by using Cauchy’s formula,

ð21Þn2mSðmÞ
n ¼ 1

2pi

Z
C R

ðzÞn
dz

zmþ1; (38)

where C R is a circle around the origin with radius R. We can take R as large as we like. As in (Temme, 1993, x3), it is convenient to
proceed with

ð21Þn2mSðmþ1Þ
nþ1 ¼ 1

2pi

Z
C R

ðz þ 1Þn
dz

zmþ1: (39)

Using the definition of Sn;m0 ðuÞ in (2) we have

S9nþ1;mþ1ðuÞ ¼ 1
ðuÞnþ1

Xnþ1

k¼mþ1

ð21Þnþ12kSðkÞnþ1u
k

                                                   ¼ 1
ðuþ 1Þn

Xn
k¼m

ð21Þn2kSðkþ1Þ
nþ1 uk;

(40)

and using (39) we obtain

S9nþ1;mþ1ðuÞ ¼ 1
ðuþ 1Þn

Xn
k¼m

uk

2pi

Z
C R

ðz þ 1Þn
zkþ1

  dz: (41)

We can take R. u to have ju=zj, 1 on the circle C R, and we can perform the summation to N, because all terms with k. n do not give
contributions. In this way we obtain the requested integral representation

S9nþ1;mþ1ðuÞ ¼ um

ðuþ 1Þn
1
2pi

Z
C R

ðz þ 1Þn
zm

 
dz

z2 u
; R. u: (42)

This concludes the proof of Theorem 1.
Corollary 1 now follows by using the theory of integrals of analytical functions on complex contours. We have assumed that R. u, but we

can take R, u while picking up the residue at z ¼ u. The result is

S9nþ1;mþ1ðuÞ ¼ 12
um

ðuþ 1Þn
1
2pi

Z
C R

ðz þ 1Þn
zm

 
dz

u2 z
; R, u: (43)

This gives the relation in Corollary 1.
Remark 1.When u crosses the value z0, S9nþ1;mþ1ðuÞ becomes (almost) 12. Especially when the parametersm and n are large, S9nþ1;mþ1ðuÞ starts

with very small values for small u, becomes close to 1
2 when u ¼ z0, and quickly becomes 1 as u increases. We call z0 the transition value for u.

For fixed values of n and u, there is also a transition value for m; refer to this transition value as m0. When n is large, S9nþ1;mþ1ðuÞ starts at
values near 1 for small m, it becomes about 1

2 when m nears m0, and it becomes quickly small as m/n.

Proof of Theorem 2
The relation in (29) between the functions fðzÞ (see (24)) and xðtÞ (see (28)) can be used as a transformation of the variable z to t, as in

(Temme, 1993, x3). The result is the integral representation in (30). In Figure 1 we have shown the relationship between z and t.
The function f ðtÞ in (30) has a pole in the t-domain; refer to this pole as t ¼ t. This then corresponds with the pole at z ¼ u in the z-domain.

The relation between t and u follows from the transformation given in (29). In other words, t is defined by the equation

fðuÞ2fðz0Þ ¼ xðtÞ2 xðt0Þ;   signðu2 z0Þ ¼ signðt2 t0Þ; (44)

where the sign-convention follows from the one used for (29). We can express the existence of the pole of the function f ðtÞ defined in (30) by writing

f ðtÞ ¼ 1
z2 u

dz
dt

¼ t2 t

z2 u

dz
dt

1
t2 t

: (45)

In asymptotic analysis, the presence of such a pole is of great interest, especial when (in the t-domain) the saddle point (here t0) is
close to a pole (here t), or even when these points coalesce. See, for example, (Temme, 2015, Chapter 21). Usually, the error function
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is introduced to handle the asymptotic analysis; in the present case, we use an incomplete beta function. We split off the pole from
f ðtÞ and write

f ðtÞ ¼ A
t2 t

þ gðtÞ; (46)

where we assume that gðtÞ is well defined at t ¼ t. To find A we use the analytical relation in (29) between t and z, in particular at z ¼ u (or
t ¼ t). Applying l’Hôpital’s rule, we find that t2 t

z2 u
dz
dt/1 as t/t, which gives A ¼ 1. Hence, substituting this form of f ðtÞ in (30), we find

S9nþ1;mþ1ðuÞ ¼ e2xðtÞ

2pi

Z
C S

ðt þ 1Þn
tm

 
dt

t2 t
þ e2xðtÞ

2pi

Z
C

ðt þ 1Þn
tm

gðtÞ  dt: (47)

The radius of the circle C S in the first integral is larger than t. For the second integral, we take a circle C around the origin such that the
singularities of gðtÞ are outside the circle.

In Proof of the incomplete beta relation below, we prove that the first integral in (47) can be evaluated in terms of the incomplete beta
function as shown in Theorem 2. We can then write (47) as

S9nþ1;mþ1ðuÞ ¼ I t
1þt
ðm; n2mþ 1Þ þ R9nþ1;mþ1ðuÞ; (48)

where

R9nþ1;mþ1ðuÞ ¼ e2xðtÞ

2pi

Z
C S

ðt þ 1Þn
tm

gðtÞ  dt: (49)

A first-order approximation of (49) follows from replacing gðtÞ by its value at the saddle point t0. This gives

R9nþ1;mþ1ðuÞ�e2xðtÞ
�

n
m2 1

�
  gðt0Þ; (50)

where

gðt0Þ ¼ f ðt0Þ2 1
t0 2 t

; f ðt0Þ ¼ 1
z0 2 u

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x

00 ðt0Þ
f

00 ðz0Þ

s
: (51)

This expression of f ðt0Þ follows from (33). In a future publication we will give details about the complete asymptotic expansion of the term
R9nþ1;mþ1ðuÞ.

Proof of the incomplete beta relation
We give a proof of the claim that the incomplete beta function in (48) equals the first integral in (47). That is,

e2xðtÞ

2pi

Z
C S

ðt þ 1Þn
tm

 
dt

t2 t
¼ I t

1þt
ðm; n2mþ 1Þ; (52)

where C S is a circle at the origin with radius larger than t. We have, using the definition of xðtÞ in (28),

e2xðtÞ

2pi

Z
C S

ðt þ 1Þn
tm

 
dt

t2 t
¼ ð1þ tÞ2ntm

2pi

Z
C S

ðt þ 1Þn
tmþ1  

dt
12 t=t

                                                                ¼ ð1þ tÞ2n
Xn2m

k¼0

tkþm 1
2pi

Z
C S

ðt þ 1Þn
tmþkþ1

  dt

                                                                ¼ ð1þ tÞ2n
Xn2m

k¼0

tkþm  

 
n

mþ k

!

                                                                ¼ ð1þ tÞ2n
Xn
j¼m

tj  

 
n

j

!
;

(53)

which is the relation in (22). In the second line we have used a finite number of terms of the infinite expansion of 1=ð12 t=tÞ because terms with
k. n2m do not give a contribution.
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