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Abstract
We consider an online vector balancing game where vectors

vt, chosen uniformly at random in {−1,+1}n, arrive over time

and a sign xt ∈ {−1,+1} must be picked immediately upon

the arrival of vt. The goal is to minimize the L∞ norm of the

signed sum
∑

t xtvt. We give an online strategy for picking the

signs xt that has value O(n1∕2) with high probability. Up to

constants, this is the best possible even when the vectors are

given in advance.
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1 INTRODUCTION

A random set of vectors v1,… , vn ∈ R
n is sent to our hero, Carole. The vectors are each uniform

among the 2n vectors with coordinates −1,+1, and they are mutually independent. Carole’s mission

is to balance the vectors into two nearly equal groups. To that end she assigns to each vector vt a

sign xt ∈ {−1,+1}. Critically, the signs have to be determined on-line—Carole has seen only vectors

v1,… , vt when she determines sign xt. Set

P = x1v1 + · · · + xnvn (1.1)

Carole’s goal is to keep all of the coordinates of P small in absolute value. We set V = |P|∞, the L∞

norm of P. We consider V the value of this (solitaire) game, which Carole tries to minimize.

As our main result, we give a simple algorithm for Carole (with somewhat less simple analysis!)

such that V ≤ K
√

n with high probability. Here K is an absolute constant which we do not attempt to

optimize.

To give a feeling, imagine Carole simply selected xj ∈ {−1, 1} uniformly and independently, not

looking at vj. Then each coordinate of P would have distribution Sn, roughly
√

nN, with N a standard

normal. For, say, K = 10, the great preponderance of the coordinates would lie in [−K
√

n,+K
√

n].
However, there would be a small but positive proportion of outliers, coordinates not lying in that
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interval. Indeed, the largest coordinate, with high probability, would be Θ(
√

n log n). Carole’s task,

from this vantagepoint, is to avoid outliers.

More generally, we define V = V(n,T) where the vectors are in R
n and there are T rounds. Let

T be arbitrary. In particular, think of T as very large. Again, if Carole simply selected xj ∈ {−1, 1}
uniformly and independently, then each coordinate would be distributed as roughly

√
T times the

standard normal. So the largest coordinate, with high probability, would be Θ(
√

T log n). We extend

our algorithm above to give an algorithm for the arbitrary time horizon, which guarantees that for any

time t ≤ T , V(n, t) ≤ K
√

n with probability exponentially close to 1. This is considered in Section 3.3.

1.1 Four discrepancies

Paul, our villain, sends v1,… , vn ∈ {−1,+1}n to Carole. Carole balances with signs x1,… , xn ∈
{−1,+1}. The value of this now two-player game is V = |P|∞ with P =

∑
xivi as above. There are four

variants. Paul can be an adversary (trying to make V large) or can play randomly (as above). Carole can

play on-line (as above) or off-line—waiting to see all v1,… , vn before deciding on the signs x1,… , xn.

All of the variants are interesting.

Paul adversarial, Carole offline. Here V = Θ(
√

n). This was first shown by the senior author [8]

and the first algorithmic strategy (for Carole) was given by the junior author [2].

Paul random, Carole offline. Here V = Θ(
√

n). In recent work [1], a value c such that V ∼ c
√

n
(with high probability) was conjectured with strong partial results.

Paul adversarial, Carole online. Here V = Θ(
√

n log n). These results may be found in the senior

author’s monograph [9]. Up to constants, Carole can do no better than playing randomly. It was this

result that made our current result a bit surprising.

Paul random, Carole online. V = Θ(
√

n), the object of our current work.

The T round setting is also very interesting. If Paul picks vectors vt ∈ {−1,+1}n adversarially, and

Carole plays online, then no better bound is possible than exponential in n [4]. Basically, all Carole

can do is alternate signs when one of the 2n possible vectors v is repeated.

1.2 Alternate formulations

We return to our focus, the random online case. We find it useful to consider the problem in a variety

of guises.

Consider an n-round (solitaire) game with a position vector P ∈ R
n. Initially P ← 0. On each

round a random v ∈ {−1,+1}n is given. Carole must then reset either P ← P + v or P ← P − v. The

value of the game is |P|∞ with the position vector P after the n rounds have been completed.

Chip game. Consider n chips on Z, all initially at 0. Each round each chip selects a random direction.

Carole then either moves all of the chips in their selected direction or moves all of the chips in the

opposite of their selected direction. After n rounds the value V is the longest distance from the origin

to a chip. (Here chip j at position s represents that the jth coordinate of P is s.)

Folded chip game. Consider n chips on the nonnegative integers, initially all at 0. The rules are

as above except that a chip at position 0 can only go to 1 in the next step. Here the chip position is

the absolute value of its position in the previous formulation. Even though the folded chip game is

not exactly the same as the chip game above, the distributions produced on the absolute value of the

positions in the two games are identical, which is all that we will need.
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1.3 Erdős

Historically, discrepancy was examined for families of sets. Let (V ,) be a set system with V = [n] and

 = {S1,… , Sn} a collection of subsets of V . For a two-coloring 𝜒 ∶ V → {−1,+1}, the discrepancy

of a set S is defined as 𝜒(S) = |∑i∈S 𝜒(i)|, and measures the imbalance from an even split of S. The

discrepancy of the system (V ,) is defined as

disc() = min
𝜒∶V→{−1,+1}

max
S∈

𝜒(S). (1.2)

That is, it is the minimum imbalance of all sets in  over all possible two-colorings 𝜒 . Erdős famously

asked for the maximal possible disc() over all such set systems. It was in this formulation that the

senior author first showed that disc() ≤ K
√

n.

Consider the n × n incidence matrix A for the set system (V ,). That is, set aij = 1 if j ∈ Si,

otherwise aij = 0. Let v1,… , vn denote the column vectors of A. The coloring 𝜒 corresponds to the

choice of xj = 𝜒(j). Then |∑j xjvj|∞ measures the maximal imbalance of the coloring. The set-system

problem is then essentially the adversarial, off-line Paul/Carole game. The distinction is only that the

coordinates of the vi are 0,1 instead of −1,+1.

2 CAROLE’S ALGORITHM

The time will be indexed t = 0, 1,… , n. Initially P = 0 ∈ R
n. In round t, a random vt arrives and Carole

resets P ← P±vt. Let Pt denote the vector P after the tth round. Let 𝑑j(t) denote the jth coordinate of Pt.

The algorithm will be based on a potential function and depend on variables c, p. We shall want

V ≤
√

cn with high probability, and the potential will penalize coordinates with discrepancy close to√
cn. Here c will be a large constant as specified later, and p will be a positive integer central to the

algorithm. We may take p = 4 and c = 105 to be specific. However, we use the variables c and p in

the analysis until the end to understand the various dependencies among the parameters.

Define the gap for coordinate j as

gj(t) ∶= cn − 𝑑j(t)2. (2.3)

The algorithm will, with high probability, keep all |𝑑j(t)| < √
cn so that the gaps are positive. Let

Φj(t) = cpnp−1gj(t)−p (2.4)

and define the potential function

Φ(t) =
∑

j
Φj(t) = cpnp−1

n∑
j=1

gj(t)−p. (2.5)

As 𝑑j(0) = 0 for all j ∈ [n], Φ(0) = ncpnp−1(cn)−p = 1. Note that the potential blows up whenever the

discrepancy |𝑑j(t)| for any coordinate j approaches (cn)1∕2. The cpnp−1 factor provides a convenient

normalization. When all 𝑑j(t) = (1 − 𝜅)
√

cn, Φ = (2𝜅 − 𝜅2)−p.

The algorithm is simple. On the tth round, seeing vt, Carole selects the sign xt ∈ {−1,+1}, that

minimizes the increase in the potential Φ(t) − Φ(t − 1).
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We remark that while potential function analyses are widely used in the design and analysis of

random processes and algorithms, the inverse polynomial potential function considered above is moti-

vated by the work of Batson, Spielman, and Srivastava on graph sparsification [5]. In the context of

discrepancy, a similar potential was used by the authors [3], and in an unpublished work of Yin Tat

Lee and Mohit Singh to design offline algorithms.

2.1 Rough analysis

Let us imagine all the 𝑑j(t) as positive and near the boundary
√

cn. The gap basically acts like

g∗
j (t) = 2

√
cn[

√
cn − 𝑑j(t)]. (2.6)

Let Φ∗
j (t),Φ

∗(t) be the potential values using this cleaner gap function. Suppose all 𝑑j(t) =
√

cn(1−𝜅).
Then g∗

j (t) = 2𝜅cn and Φ∗ = (2𝜅)−p. Set f (x) = x−p and consider the change (x large) when x is

incremented or decremented by one. From Taylor series we approximate

f (x ± 1) − f (x)
f (x)

∼ ∓px−1 +
p(p + 1)

2
x−2 (2.7)

ignoring the higher order terms. Consider the change in Φ∗ when a random vector vj+1 is added.

We break it into a linear part L and a quadratic part Q. We compare their sizes using (2.7). The

quadratic part is always positive, (p(p + 1)∕2)(2𝜅
√

cn)−2(Φ∗∕n) for each term j, adding up to Q =
(p(p+1)𝜅−2∕8)(2𝜅)−p∕cn. The linear part is ∓p(2𝜅)−1c−1∕2n−1∕2(Φ∗∕n) = ∓p(2𝜅)−1c−1∕2n−3∕2(2𝜅)−p

for each term j. As the vector (critically!) is random the signs ∓ are random and so add to distribution

roughly
√

nN, N standard normal. Thus L ∼ p(2𝜅)−1c−1∕2N(2𝜅)−p∕n. Carole’s sign selection, effec-

tively, replaces L with −|L|. The change in Φ is then proportional to −|L|+Q. With probability at least

1∕4, say, |N| ≥ 1. After fixing p and 𝜅, |L| will be of the order of c−1∕2∕n while Q will be on the order

of c−1∕n. For c large enough, the linear term −|L| will be much bigger than the positive quadratic term

Q.

Now let us keep the total potential Φ∗ = (2𝜅)−p fixed but suppose that some of the gaps gj(t) were

smaller and the other gaps had zero effect on the total potential. Say, giving a good parametrization, that

𝑑j(t) =
√

cn(1 − 2−u𝜅) for m = n2−pu values of j. (As the potential takes
√

cn − 𝑑j(t) to power −p, the

total potential will remain the same.) Again we break the change in Φ∗ into L and Q. We think of p, 𝜅, c
as fixed and consider the effect of u. The quadratic terms are now (p(p+1)∕2)(2−u𝜅

√
cn)−2(Φ∗∕n) for

each term, an extra factor of 22u. But the number of terms is n2−pu so the new value is Q = 2(2−p)u(p(p+
1)𝜅−2∕2)(2𝜅)−p∕cn. The linear terms are now ∓p(2−u𝜅)−1c−1∕2n−1∕2(Φ∗∕n) for each term, an extra

factor of 2u. Now, however, we sum m = n2−pu random signs, giving
√

mN = 2−pu∕2
√

nN. Compared

to the base u = 0 case the quadratic term Q has been multiplied by 2(2−p)u while the linear term L has

been multiplied by 2(2−p)u∕2. We have taken p = 4 so these factors are 2−2u and 2−u respectively. As u
gets bigger the domination of L over Q becomes stronger. This gives us “extra room” and works even

if only a proportion of the potential function came from these 𝑑j.

In the actual analysis the total potential Φ is in a prescribed moderate range. However, we cannot

assume that all of the potential comes from some n𝜃 coordinates with the same gaps. We split the

coordinates into classes, those in the same class having roughly the same 𝑑 value. We find some class

that has so much of the total potential Φ that L will dominate over Q. Making all this precise is the

object of Lemma 2.2.
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2.2 Analysis

We will show the following result.

Theorem 2.1. The strategy above achieves value V = O(n1∕2), with probability at least 1 −
exp(−Ω(n𝛾 )), where 𝛾 = 1 − 2∕p.

The potential starts initially at 1. Let H = 4e3. We consider the situation when the potential Φ
lies between

H
2

and H. (The value H could be any sufficiently large constant.) We will show that

if Φ(t − 1) ≤ H, then at any step t the potential can increase by at most n−1+(2∕p). More impor-

tantly, whenever Φ(t − 1) ∈ [H∕2,H], the sign xt for the vector vt at time t can be chosen so that

there is a strong negative drift that more than offsets the increase. More formally, we can decompose

the rise in potential into a linear part L(t)xt and some quadratic part Q(t), satisfying the following

properties.

Lemma 2.2. Consider time t. The increase in potential is a random variable (depending on the
randomness in column t) that can be written as Φ(t) − Φ(t − 1) ≤ L(t)xt + Q(t), where

1. Q(t) ≤ Qmax ∶= O(n−1+(2∕p)) with probability 1, whenever Φ(t − 1) ≤ H.
2. |L(t)| ≥ 20Qmax with probability at least 1∕4, whenever Φ(t − 1) ∈ [H∕2,H].

Lemma 2.2 will directly imply Theorem 2.1. Note that the algorithm and the random arrival process

define a Markov chain on the state space on integer-valued vectors. Moreover, the potential Φ defines

a Lyapunov function that maps each state to some real number. For our purposes, it suffices to consider

the following simplified version of a much more general result due to Hajek [7] on hitting probability

for Markov processes with a suitable Lyapunov function.

Theorem 2.3. Let Ψ be a Lyapunov function for a Markov chain defined on a countable state space.
For an interval [a, b], suppose the following holds: (i) the positive increments satisfyΨ(Yk+1)−Ψ(Yk) ≤
𝛿 whenever Ψ(Yk) ≤ b and (ii) Pr[Ψ(Yk+1) − Ψ(Yk) ≤ −20𝛿] ≥ 1∕10, whenever Ψ(Yk) ∈ [a, b]. Then
for any time t,

Pr
[
Ψ(Yt) ≥ b |Ψ(Y0) ≤ a and Ψ(Y1),… ,Ψ(Yt−1) < b

]
≤ exp

(
− Ω(b − a)∕𝛿

)
.

By the two properties of Lemma 2.2, and noting that the interval [H∕2,H] has size Ω(1), and

the positive increment is bounded by 𝛿 = Qmax = O(n−𝛾 ), Theorem 2.1 follows directly by applying

Theorem 2.3 with Ψ = Φ and a = H∕2, b = H.

Proving Lemma 2.2. In the rest of the section, we prove Lemma 2.2. We begin by computing the

relevant quantities. At time step t, for t = 1, 2,… ,T , let xt ∈ {−1, 1} denote the sign chosen for vt.

For j ∈ [n], let vt(j) denote the jth coordinate of vt, and 𝑑j(t) the discrepancy for the jth coordinate at

the end of step t. We initialize 𝑑j(0) = 0 for all j. Then,

Δ𝑑j(t) ∶= 𝑑j(t) − 𝑑j(t − 1) = xtvt(j) (2.8)

and note that |Δ𝑑j(t)| ≤ 1.

Throughout we will condition on the event that Φ(t−1) ≤ H. This will give us a useful separation,

that the discrepancy 𝑑j(t − 1), for any j, is not too close to (cn)1∕2. Indeed, if Φ(t − 1) ≤ H, then
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Φj(t − 1) ≤ H for each j ∈ [n]. By (2.4), this implies gj(t − 1) = Ω(n1−(1∕p)). By (2.3),

𝑑j(t − 1) = (cn − gj(t − 1))1∕2 ≤ (cn)1∕2
(

1 −
gj(t − 1)

cn

)1∕2

which implies that 𝑑j(t − 1) ≤ (cn)1∕2 − Ω(n1∕2−1∕p) = (cn)1∕2 − 𝜔(1), using that p > 2.

We now upper bound the increase in potential, Φ(t) −Φ(t− 1). Let us consider the function f (x) =
(cn − x2)−p with domain |x| < (cn)1∕2. Then f ′(x) = 2px(cn − x2)−p−1, and

f ′′(x) = 2p(cn − x2)−p−1 + 4p(p + 1)x2(cn − x2)−p−2

=
(
2p(cn − x2) + 4p(p + 1)x2

)
(cn − x2)−p−2

≤ 4p(p + 1)cn(cn − x2)−p−2 (as x2 < cn). (2.9)

For any smooth function f , recall that

f (x + 𝜂) − f (x) ≤ f ′(x)𝜂 + 1

2
max

z∈[x,x+𝜂]
f ′′(z)𝜂2.

If x satisfies cn − x2 = 𝜔(1), it is easily checked that f ′′(z) ≤ 2f ′′(x) whenever z ∈ [x − 1, x + 1].
Using the expression for f ′(x) and the bound on f ′′(x) in (2.9), we have that for |𝜂| ≤ 1 and x satisfying

cn − x2 = 𝜔(1),

f (x + 𝜂) − f (x) ≤ 2p x
(cn − x2)p+1

𝜂 + 4p(p + 1) cn
(cn − x2)p+2

. (2.10)

Setting x = 𝑑j(t − 1) and 𝜂 = 𝑑j(t) − 𝑑j(t − 1) = xtvt(j) gives f = (gj(t − 1))−p and

Φj(t) − Φj(t − 1) ≤ Lj(t)xt + Qj(t), (2.11)

where

Lj(t) ∶= cpnp−12p
𝑑j(t − 1)vt(j)
gj(t − 1)p+1

and Qj(t) ∶= cpnp−14p(p + 1) cn
(gj(t − 1))p+2

. (2.12)

As we will only be interested in time t, henceforth we drop t for notational convenience. In particular,

we denote 𝑑j = 𝑑j(t − 1), vj = vt(j), Lj = Lj(t), and Qj = Qt(j). Let L =
∑

j Lj and Q =
∑

j Qj.

Summarizing, if Φ(t − 1) ≤ H, then we have that Φ(t) − Φ(t − 1) ≤ L + Q, where

L =
∑

j
cpnp−12p

𝑑jvj

gp+1

j

and Q =
∑

j
cpnp−14p(p + 1) cn

gp+2

j

. (2.13)

We now focus on proving bound on L and Q in Lemma 2.2.

Notation. Let 𝛽 = 1 + 1∕p. For k = 0, 1, 2,… we say that coordinate lies in class k if

𝑑2
j ∈ [cn(1 − 𝛽−k), cn(1 − 𝛽−k−1)),

or equivalently gj ∈ (cn𝛽−k−1, cn𝛽−k].
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Let nk denote the number of coordinates in class k. As gj ≥ cn𝛽−k−1 for j in class k, we have

g−(p+2)
j ≤ 𝛽(k+1)(p+2)(cn)−(p+2), and hence by (2.13) Q can be upper bounded as,

Q ≤
4p(p + 1)

cn2

∑
k≥0

𝛽(k+1)(p+2)nk. (2.14)

We also have the following useful bounds.

Lemma 2.4. If Φ ≤ H, then

1. For each class k ≥ 0, nk ≤ min(n, n𝛽−kpH).
2. Q = O(n−1+2∕p).

Proof. As Φ =
∑

j cpnp−1g−p
j and gj ≤ cn𝛽−k for each j in class k, we have that

Φ ≥ cpnp−1
∑
k≥0

𝛽kpnk

(cn)p
=
∑
k≥0

𝛽kp nk

n
. (2.15)

As Φ ≤ H, each class k contributes at most H, which gives nk ≤ 𝛽−kpnH.

We now bound Q. Let kmax be the maximum class index for which nk ≥ 1. As 1 ≤ nkmax
≤ nH𝛽−pkmax ,

we have 𝛽kmax ≤ (nH)1∕p = O(n1∕p).
Plugging nk ≤ n𝛽−pkH in the bound for Q in (2.14) gives

Q ≤

kmax∑
k=0

4p(p + 1)H
cn

𝛽p+2k+2 = O
(
𝛽2kmax

n

)
= O(n−1+2∕p), (2.16)

where we use that c, p,H, 𝛽p+2 = O(1) and
∑kmax

i=0
𝛽2k = O(p)𝛽2kmax . ▪

We now focus on lower bounding |L|, when Φ ≥ H∕2. Recall that L = 2pcpnp−1
∑

j 𝑑jg−p−1

j vj, and

hence is a weighted sum of ±1 random variables vj. We will call aj ∶= 2pcpnp−1𝑑jg−p−1

j , the weight of

vj. We will use the following fact from [6].

Lemma 2.5. Let a1,… , am all have absolute value at least 1. Consider the 2m signed sums
∑m

i=1 yiai
for yi ∈ {−1,+1}. The number of sums that lie in any interval of length 2S is maximized when all the
ai = 1 and the interval is [−S,+S]. In particular, taking S = 𝑑

√
m for a small constant 𝑑, the sums lie

in [−S,+S] only a small fraction of the time.

We use this as follows to show that the probability that L ∈ [−S, S], for S = Q, is small. Consider

the indices j where the weights aj lie in (suitably chosen) weight class, and fix the signs outside that

class. Then for any values of signs outside that class, the signs in the class that will put the total sum

in [−S,+S] is bounded by the probability in the lemma above.

We now do the computations.

Claim 2.6. For a coordinate j of class k ≥ 1, the weight |aj| is at least p1∕2𝛽k(p+1)∕(cn3)1∕2.

Proof. This follows as aj = 2pcpnp−1𝑑jg−p−1

j , and for any class k ≥ 1, 𝑑j ≥ (cn(1 − 𝛽−1))1∕2 =
(cn∕(p + 1))1∕2, which is at least (cn∕p)1∕2∕2 as p ≥ 1, and g−p−1

j ≥ (cn)−p−1𝛽k(p+1). ▪
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By Lemma 2.5 and Claim 2.6, to show that L ≫ Q with a constant probability, it would suffice to

show that there is some class k∗ ≥ 1 such that

p1∕2𝛽k∗(p+1)

(cn3)1∕2
n1∕2

k∗ ≫ Q. (2.17)

Note that only classes k ≥ 1 are considered in Claim 2.6, while Q also has terms from class 0, so we

need a final technical lemma to show that this contribution from class 0 can be ignored.

Lemma 2.7. If Φ > H∕2, the contribution of class 0 coordinates to Q is at most Q∕2.

Proof. As gj ≥ cn∕𝛽 for a class 0 coordinate, and there are at most n such coordinates, the contri-

bution of class 0 to Q is at most 4p(p + 1)𝛽p+2∕(cn). So to prove the claim, it suffices to show that

Q > 8p(p + 1)𝛽p+2∕(cn).
As gj ≥ cn𝛽−k−1 for a coordinate of class k, we have

H
2

≤ Φ ≤ cpnp−1
∑
k≥0

nk

(𝛽−k−1cn)p
= 1

n
∑
k≥0

𝛽(k+1)pnk, (2.18)

which gives
∑

k≥0 𝛽
kpnk ≥ 𝛽−pHn∕2. Using this together with gj ≤ cn𝛽−k for j in class k and 𝛽k(p+2) ≥

𝛽kp in the expression for Q in (2.13), we get

Q ≥
∑
k≥0

4p(p + 1)
cn2

nk𝛽
k(p+2) ≥

2p(p + 1)𝛽−pH
cn

≥
8p(p + 1)𝛽p+2

cn
, (2.19)

where the last equality uses our choice of H = 4e3 ≥ 4𝛽2p+2. ▪

By (2.14) and the lemma above, to prove (2.17) it suffices to show that

Lemma 2.8. There is some class k∗ ≥ 1 such that

𝛽(p+1)k∗n1∕2

k∗ ≫ O(p3∕2)
∑
k≥1

𝛽(k+1)(p+2) nk

(cn)1∕2
. (2.20)

Proof. Let 𝓁k = nk𝛽
kp∕(nH), and note that by Lemma 2.4, 𝓁k ≤ 1 for all k. Writing nk in terms of

𝓁k, we need to show that there is some k∗ satisfying

(𝓁k∗𝛽
k∗(p+2))1∕2 ≫ O((Hp3∕c)1∕2)

∑
k≥1

𝓁k𝛽
2k+p+2. (2.21)

Let k∗ = argmaxk≥1𝓁k𝛽
3k, and let v = 𝓁k∗𝛽

3k∗ . Then 𝓁k𝛽
3k ≤ v for all k ≥ 1, and hence 𝓁k𝛽

2k ≤ v𝛽−k.

So the term
∑

k≥1 𝓁k𝛽
2k+p+2 on the right-hand side of (2.21) is at most

∑
k≥1

𝛽p+2v𝛽−k ≤
𝛽p+2v
𝛽 − 1

= O(pv).

Next, as p ≥ 4, the left-hand side of (2.21) is at least (𝓁k∗𝛽
6k∗ )1∕2 = (v2∕𝓁k∗ )1∕2 ≥ v, where the

inequality follows as 𝓁k ≤ 1 for all k. So by (2.21), choosing c ≫ Hp5 finishes the proof. ▪
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3 ARBITRARY TIME HORIZON

We now consider the T round setting, where T can be arbitrarily large compared to n. In particular, a

uniformly chosen vector vt ∈ {−1,+1}n arrives at time t, and Carole then selects a sign xt ∈ {−1,+1}.

As previously, Pt =
∑t

j=1 xjvj, and the value V = V(n,T) after T rounds is |PT |∞.

We will assume that T is fixed in advance by Paul (and is not known to Carole). In particular, if T
can be chosen adaptively by Paul depending on Carole’s play, then the problem is not very interesting

and the exponential in n lower bound [4] for adversarial input vectors still holds. This is because

even if the input vectors are random, after sufficiently long time (about exp(exp(n))), some worst

case adversarial sequence against any online strategy will eventually arrive, leading to worst case

discrepancy Ω(2n).
Our main result is a strategy for Carole, described in Section 3.3, that achieves V(n,T) = Θ(

√
n)

with high probability. Before proving this result, we describe two strategies that achieve a weaker (but

still independent of T) bound of O(
√

n log n). These are very natural and interesting on their own with

simple analysis and are discussed in Sections 3.1 and 3.2.

3.1 Strategy 1

The first strategy is based on a potential function approach as before, but with an exponential penalty

function. This has the drawback of losing an extra log n factor, but has the advantage that the potential

has a negative drift whenever it exceeds a certain threshold (without requiring an upper bound on Φ
that we needed in Lemma 2.2). This allows us to bound the discrepancy for an arbitrary time horizon,

as whenever the potential exceeds the thresholds the negative drift will bring it back quickly.

Strategy. Consider a time step t. As before, let 𝑑i(t) be the discrepancy of the ith coordinate at the

end of time t. Consider the potential

Φ(t) =
n∑

i=1

cosh(𝜆𝑑i(t)),

where 𝜆 = 1∕(cn1∕2) and c is a large constant greater than 1. As before, when presented with the vector

vt, Carole chooses xt ∈ {−1,+1} that minimizes the increase in potential, Φ(t) − Φ(t − 1).
Analysis. Let vt(i) denote the ith coordinate of vt. As we will only consider the time t, let us denote

ΔΦ = Φ(t) − Φ(t − 1), Φ = Φ(t − 1), 𝑑i = 𝑑i(t − 1), and vi = vt(i).
By the Taylor expansion and as cosh′(x) = sinh(x) and sinh′(x) = cosh(x), the increase in potential

ΔΦ can be written as

ΔΦ =
∑

i

(
𝜆 sinh(𝜆𝑑i)xtvi +

𝜆2

2!
cosh(𝜆𝑑i)(xtvi)2 +

𝜆3

3!
sinh(𝜆𝑑i)(xtvi)3 + · · ·

)
≤

∑
i
𝜆 sinh(𝜆𝑑i)xtvi +

∑
i
𝜆2 cosh(𝜆𝑑i)(xtvi)2, (3.22)

where the second step follows as | sinh(x)| ≤ cosh(x) for all x ∈ R and |xtvi| = 1, 𝜆 = o(1), and so the

higher order terms are negligible compared to the second order term.

Let L ∶= 𝜆
∑

i sinh(𝜆𝑑i)vixt be the linear term, and Q ∶= 𝜆2
∑

i cosh(𝜆𝑑i) be the second term in

(3.22) (note that (xtvi)2 = 1). Conveniently, Q is exactly 𝜆2Φ.

As the algorithm chooses xt to have ΔΦ ≤ −|L|+ Q, it suffices to show the following key lemma.

Lemma 3.1. If Φ ≥ 2n, then |L| ≥ (c∕2)Q with probability at least 1∕4.
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Before proving the lemma we need the following anti-concentration estimate, see for example [10].

Lemma 3.2. If Y =
∑

i aiYi, with Yi independent and uniform in {−1,+1}, and ai ∈ R, then for any
s ≤ 1,

Pr[|Y| ≥ s(
∑

i
a2

i )
1∕2] ≥ (1 − s2)2∕3.

In particular, setting s = 1∕2 Pr
[|Y| ≥ (

∑
i a2

i )
1∕2∕2

]
≥ 3∕16 ≥ 1∕10.

Proof (Lemma 3.1). By Lemma 3.2, and using sinh2 h = cosh2 x − 1 for all x, with probability at

least 1∕10,

|L| ≥ 𝜆

2

(∑
i

sinh2(𝜆𝑑i)
)1∕2

= 𝜆

2

(∑
i

cosh2 𝜆𝑑i − n
)1∕2

. (3.23)

As cosh(x) ≥ 1 for all x ∈ R,
∑

i cosh2(𝜆𝑑i) ≥
∑

i cosh(𝜆𝑑i) = Φ. So for Φ ≥ 2n, we get

(∑
i

cosh2(𝜆𝑑i)

)
− n ≥

1

2

∑
i

cosh2(𝜆𝑑i) ≥
⏟⏟⏟

Cauchy-Schwarz

1

2

(
∑

i cosh(𝜆𝑑i))2

n
= 1

2

Φ2

n
. (3.24)

Together (3.24) and (3.23) give that

Pr
[|L| ≥ 𝜆∕(2

√
2n)Φ

]
≥ 1∕10.

Using Q = 𝜆2Φ and plugging 𝜆 = 1∕(c
√

n) give that Pr[|L| > (c∕2
√

2)Q] ≥ 1∕10. ▪

As ΔΦ = −|L|+ Q, we have that the change in potential satisfies the following two properties: (i)

ΔΦ ≤ Q = 𝜆2Φ and, (ii) setting c large enough, by Lemma 3.1 gives that if Φ ≥ 2n, then ΔΦ ≤ −20Q
with probability at least 1∕10.

Setting Ψ = logΦ, then this gives that ΔΨ ≤ log(1+𝜆2) = (1+o(1))𝜆2 as 𝜆 = 1∕c
√

n. Moreover,

whenever Ψ ≥ log(2n), with probability at least 1∕10, ΔΨ ≤ log(1 − 20𝜆2) = −20(1 − o(1))𝜆2.

Applying Theorem 2.3 to Ψ with a = log 2n and b = ∞, we get that for any time t,

Pr[Ψ(t) ≥ log(2n) + z] ≤ exp(−Ω(z∕𝜆2)) = exp(−Ω(nz)).

As Ψ = logΦ ≥ 𝜆|𝑑i| for each i, and 𝜆 = 1∕(cn1∕2), setting z = 1 gives that V(n,T) = O(n1∕2 log n)
with probability 1 − n−Ω(1).

3.2 Strategy 2

Our second strategy is even simpler, and we call it the majority rule. For convenience, it is useful to

think of the folded chip view of the game, as described in Section 1.2. In particular, there are n chips,

originally all at 0, the position of the ith chip being the absolute value of Pt(i). From 0, a chip must go

to 1. Each chip not at 0 picks a random direction, and Carole then either moves all of the chips in their

selected direction or all in their opposite directions. So from a position y ≠ 0, a chip can go to y ± 1.
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Majority rule strategy. Consider the directions vt(i) of the chips not at position zero. If there is a

direction with strict majority, Carole chooses the sign xt that makes the majority of the chips not at

zero move towards zero. Otherwise, in case of a tie, Carole picks xt randomly.

Analysis. We will show the following.

Theorem 3.3. The majority rule strategy achieves E[V(n,T)] = O(
√

n log n). More precisely, the
probability that any chip i has position ≥ k

√
n at time T is ne−Ω(k).

Proof. Consider some time t, and a chip i that is at a nonzero position at the end of t − 1. We claim

that chip i basically does a random walk with drift towards zero.

Look at the other nonzero coordinates (other than i), and suppose there are 𝓁 of them. We consider

two cases depending on whether 𝓁 is even or odd.

1. 𝓁 is even. Consider the random directions of the 𝓁 chips other than i, as given by vt. If these

directions are evenly split, which occurs with probability 𝜀 ∼ K𝓁−1∕2 ≥ Kn−1∕2, then the

majority direction is determined by vt(i) and so chip i goes towards the origin.

Else if the 𝓁 directions are not split evenly, then at least 𝓁∕2 + 1 chips of these 𝓁 chips

have one direction (and at most 𝓁∕2 − 1 the other). So vt(i) has no effect on the outcome

of the majority rule, and as vt(i) is random and independent of the other 𝓁 directions, chip i
moves randomly.

2. 𝓁 is odd. If strictly more than (𝓁 + 1)∕2 of the 𝓁 chips have one direction, then the sign of i
does not affect the majority outcome. So as above, the chip i moves randomly.

Else, exactly (𝓁 + 1)∕2 chips have one direction (say +) and (𝓁 − 1)∕2 have (−). As the

directions are random this happens with probability 𝜀 ≥ Kn−1∕2. Conditioned on this event,

with probability 1∕2, the direction of chip i is also +, in which case there is a strict majority

for +, and chip i goes towards the origin. Else i picks the direction—with probability 1∕2,

resulting in an overall tie, in which case Carole (and hence chip i) moves randomly.

So in either case, each chip does a random walk on nonnegative integers with a reflection at 0 and

with drift at least 𝜀∕2 towards the origin. That is, from 0 it goes to 1, and from y ≠ 0 it goes to y − 1

with probability at least
1

2
(1 + 𝜀

2
), and else to y + 1. So the stationary distribution at positions y > 0

for this chip is dominated by the stationary distribution for an (imaginary) chip that goes to y− 1 with

probability
1

2
(1 + 𝜀

2
) and to y + 1 otherwise. This stationary distribution uy satisfies

uy =
1 − (𝜀∕2)

2
uy+1 +

1 + (𝜀∕2)
2

uy−1. (3.25)

This has the solution

uy = K𝜖

(
1 − (𝜀∕2)
1 + (𝜀∕2)

)y

(3.26)

and in particular,

Pr[y ≥ 𝛼𝜀−1] = Θ(e−𝛼). (3.27)

Taking 𝛼 = (1 + 𝛿) log n, the probability of any particular chip being at 𝛼𝜀−1 or higher is o(n−1) so

with probability 1−o(1) all the chips are ≤ 𝛼𝜀−1. So the value V = V(n,T) = O(𝛼𝜀−1) = O(
√

n log n)
with high probability. ▪
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3.3 A strategy with O(n1∕2) bound

We now describe a strategy that achieves V(n,T) = O(
√

n) with high probability. It will be based on

combining the ideas from the strategy for V(n, n) from Section 2 (call this Rule 1) and the majority

rule from Section 3.2 (call this Rule 2).

The strategy. It is convenient to view the process as the chip game defined in Section 1.2. Now,

chips will also be colored either green or red. Initially, all the chips begin at 0 and are colored green.

Starting at t = 1, we do the following.

1. At (odd) time steps t, choose the sign xt by applying Rule 1 on the green chips.

2. At (even) time steps t, choose xt by applying Rule 2 on all the chips (one could do even better by

applying Rule 2 on the red chips, but it is not necessary).

The color of the chips evolves as follows. When the potential Φ (given by (2.5)) for Rule 1 exceeds

H, all the chips become red. When a red chip reaches 0, it becomes green.

Analysis. We will show the following.

Theorem 3.4. For any time t, the strategy above achieves V(n, t) = O(n1∕2) with probability
exponentially close to 1.

Proof. The result will follow from the following three simple observations, combined together with

the properties of Rule 1 and Rule 2 that we proved earlier.

First, when Rule 1 is applied on the green chips, the red chips move randomly. This follows as for

any red chip i, the coordinate vt(i) of vt is independent of the chosen sign xt (which only depends on

vt(j) for coordinates j with green chips, and the positions of these green chips).

Second, if we apply a good strategy on a chip at alternate time steps, and choose the sign randomly

at the other time steps then we still get a good strategy. In particular, for Rule 2 this halves the negative

drift which makes no qualitative difference. For Rule 1, this halves the negative drift due to the L
term (while Q does not change), but this can be increased by any constant factor by modifying the

parameters.

Third, when we calculate the potential Φ to apply Rule 1 on the green chips, we will assume (for

the purposes of calculation of Φ only) that the red chips are at position 0, and they do not move (that

is vt(i) = 0 for them) until they become green. Lemma 2.2 and hence Theorem 2.1 remain true in this

setting, as Q can only decrease if some vt(i) = 0, and the bound for |L| is not affected as we did not

consider the contribution of class 0 in Lemma 2.8.

We now use these observations to finish the analysis. Let us divide the time into phases, where a

new phase begins whenever the potential Φ for Rule 1 on green chips reaches H. Recall at this point,

all the chips become red, and each chip stays red until it reaches 0. Note that a chip can only turn red

when a phase begins and it must be at position O(n1∕2) when this happens (green chips are always at

positions O(n1∕2) as Φ ≤ H).

The key point is that as the red chips have an expected drift cn−1∕2 toward zero under Rule 2 (and

move randomly otherwise), the probability that a particular chip stays red for kn steps is exp(−Ω(k)).
So, say, within n3 time steps since a phase starts, all the chips will reach zero with probability exponen-

tially close to 1. By the third observation above and Theorem 2.3, for any time t′, the probability that

next phase begins in exactly t′ steps from the start of current phase is exp(−n𝛾 ). Together, this gives

that for any fixed t, the probability that there is any red chip present at t will be exponentially close to 0.▪
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