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Abstract. The maximal achievable advantage of a (computationally
unbounded) distinguisher to determine whether a source Z is distributed
according to distribution P0 or P1, when given access to one sample of Z,
is characterized by the statistical distance d(P0, P1). Here, we study the
distinguishing advantage when given access to several i.i.d. samples of Z.
For n samples, the advantage is then naturally given by d(P ⊗n

0 , P ⊗n
1 ),

which can be bounded as d(P ⊗n
0 , P ⊗n

1 ) ≤ n · d(P0, P1). This bound is
tight for some choices of P0 and P1; thus, in general, a linear increase in
the distinguishing advantage is unavoidable.

In this work, we show new and improved bounds on d(P ⊗n
0 , P ⊗n

1 )
that circumvent the above pessimistic observation. Our bounds assume,
necessarily, certain additional information on P0 and/or P1 beyond, or
instead of, a bound on d(P0, P1); in return, the bounds grow as

√
n,

rather than linearly in n. Thus, whenever applicable, our bounds show
that the number of samples necessary to distinguish the two distributions
is substantially larger than what the standard bound would suggest.

Such bounds have already been suggested in previous literature, but
our new bounds are more general and (partly) stronger, and thus appli-
cable to a larger class of instances.

In a second part, we extend our results to a modified setting, where the
distinguisher only has indirect access to the source Z. By this we mean
that instead of obtaining samples of Z, the distinguisher now obtains
i.i.d. samples that are chosen according to a probability distribution that
depends on the (one) value produced by the source Z.

Finally, we offer applications of our bounds to the area of cryptog-
raphy. We show on a few examples from the cryptographic literature
how our bounds give rise to improved results. For instance, import-
ing our bounds into the analyses of Blondeau et al. for the security of
block ciphers against multidimensional linear and truncated differential
attacks, we obtain immediate improvements to their results.
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1 Introduction

1.1 Motivation and Background

(In)distinguishability of probability distributions is a concept that is of funda-
mental importance in cryptography, for instance in the context of defining and
analyzing security of cryptographic schemes. It is well known that for a com-
putationally unbounded distinguisher, given access to one sample of the source
(i.e. random variable) Z in question, the maximal achievable advantage in dis-
tinguishing whether Z is distributed according to distribution P0 or P1, is given
by the statistical distance

d(P0, P1) =
1
2

∑

z

|P0(z) − P1(z)| .

If the distinguisher has access to multiple samples Z1, . . . , Zn instead, each Zi

being identically and independently distributed (i.i.d) according to P0 or P1, the
best distinguishing advantage is then given by the statistical distance of the
respective product distributions P⊗n

b (z1, . . . , zn) := Pb(z1) · · · Pb(zn). Unfortu-
nately, in general it is not easy to estimate d(P⊗n

0 , P⊗n
1 ); a simple and commonly

used bound is
d(P⊗n

0 , P⊗n
1 ) ≤ n · d(P0, P1) . (1)

This bound is very useful in that it is universally applicable, and in case no
more information on P0 and P1 is available, it is the best one can hope for.
E.g., if P0 and P1 are Boolean distributions with P0(1) = ε and P1(1) = 0, then
d(P0, P1) = ε and d(P⊗n

0 , P⊗n
1 ) = 1 − (1 − ε)n ≈ nε when ε � 1

n . Thus, the
bound (1) is tight in general, if one has no additional information on P0 and P1.

However, in typical examples, one would expect to have some more infor-
mation available on P0 and P1. In such cases, one may then hope for a better
bound on the distinguishing advantage. Indeed, a few examples are known. For
instance, Vaudenay [10] showed that for Boolean distributions and P1 being the
uniform distribution U , the bound

d(P⊗n
0 , U⊗n) ≤ 4

√
n · d(P0, U) (2)

holds. A somewhat generalized variant of this is by Renner [8], which states that
for any pair of (not necessarily Boolean) distributions, it holds that

d(P⊗n
0 , P⊗n

1 ) ≤
√

n

2p̄
· d(P0, P1) (3)

where p̄ := minz min{P0(z), P1(z)} and the outer min is over all z with P0(z) �=
P1(z). Finally, one can also obtain a bound that grows with

√
n by means of

the Rényi divergence Dα. Indeed, using basic properties of Dα, and applying
Gilardoni’s inequality [3,5] if 0 < α < 1, and Pinsker’s inequality if α = 1, one
immediately obtains the bound

d(P⊗n
0 , P⊗n

1 ) ≤ √
n ·

√
1
2α

Dα(P0‖P1)
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for α in the range 0 < α ≤ 1. The case α = 1, where the Rényi divergence is
referred to as Kullback-Leibler Divergence (or KL divergence), was for instance
used by Pöppelmann, Ducas, and Güneysu [6,7, Lemma 1].

In our work here, we give new support to this general hypothesis: we show
new, non-trivial bounds on d(P⊗n

0 , P⊗n
1 ) that apply if one has some more control

over P0 and P1, beyond—or instead of—a bound on d(P0, P1). Our bounds can
be appreciated as generalizations and unification of (2) and (3) above.

Like the above examples, all our bounds, when applicable, show that the dis-
tinguishing advantage grows as

√
n only, compared to the linear growth implied

by (1). This means that in those cases, the number of samples necessary to dis-
tinguish the two distributions is substantially larger than what the bound (1)
would suggest, i.e. quadratically more samples are actually needed. We discuss
this on several concrete examples from the cryptographic literature, and we show
how our new bounds give immediate rise to improved results.

Next to the concrete technical results and the applications discussed below,
the goal of this work is to showcase the usefulness in the area of cryptography of
the various notions of distance measures and their relations as studied in pure
information theory (see e.g. [9] and the reference therein).

1.2 Our Technical Results

New Bounds on the Distinguishing Advantage. We show new bounds on the
distinguishing advantage when given access to n i.i.d. samples. Our first bound
is a generalization (and slight improvement) of (2) that applies also for a non-
uniform P1; it shows that for any two Boolean distributions

d(P⊗n
0 , P⊗n

1 ) ≤
√

n

2q(1 − q)
d(P0, P1) (4)

where q := P1(0).
Our second bound removes the condition on the distributions being Boolean

and is in terms of the 2-distance of P0 and P1. It states that

d(P⊗n
0 , P⊗n

1 ) ≤
√

n

2minz∈Δ P1(z)
· ‖P0 − P1‖2 , (5)

where Δ = {z ∈ Z : P0(z) �= P1(z)}. This improves upon Renner’s bound
(3) in that it requires control over the small probabilities of one of the two
distributions only, and in that the 2-distance may be substantially smaller than
the statistical distance. Also, compared to Renner’s proof of (3), which relies on
a cumbersome derivative estimation [8, Lemma 2.2] that goes over two pages,
our proof is significantly simpler.

Using that ‖P0 − P1‖2 ≤ 2d(P0, P1), we thus obtain the bound

d(P⊗n
0 , P⊗n

1 ) ≤
√

2n

minz∈Δ P1(z)
· d(P0, P1) , (6)
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which still requires control over the small probabilities of one of the two distri-
butions only, but it is slightly worse in the constant factor than (3).

Finally, applying (5) to P1 = U , the uniform distribution over Z, and setting
N = #Z, we obtain the bound

d(P⊗n
0 , U⊗n) ≤

√
nN

2
· ‖P0 − U‖2 ≤

√
2nN · d(P0, U) , (7)

which again can be appreciated as a generalization (and slight improvement) of
Vaudenay’s bound (2), now to non-Boolean distributions.

Sources with Indirect Access. We also study a variation of the setting discussed
so far, where we considered a distinguisher with direct access to the source. Here,
we show extensions of our results, i.e., bounds on the distinguishing advantage
that grow as

√
n, when the distinguisher has indirect access only to the source.

Here, the distinguisher’s goal is still to decide if a source Z is distributed
according to one or another distribution, which we now refer to as Q0 and Q1,
but now he needs to do so by means of samples W1, . . . ,Wn that are obtained
as follows: conditioned on that Z = z, which happens with probability either
Q0(z) or Q1(z), the samples Wi are i.i.d. according to a distribution Pz that
depends on z. Formally, given that Z has distribution Qb, the joint distribution
of W1, . . . ,Wn is given by P̄n

b :=
∑

z Qb(z)P⊗n
z .

This setting naturally occurs in cryptography. E.g., let Z be the key of a
cipher following either a distribution Q0 or a distribution Q1. If we assume that
the adversary obtains random plaintext/ciphertext pairs Wi for that key, and
lets say that the adversary wants to determine one bit of the secret (namely,
whether it followed Q0 or Q1), then d(P̄n

0 , P̄n
1 ) offers a bound on the adversary’s

advantage.
Based on our bounds above, we show two bounds on d(P̄n

0 , P̄n
1 ), which both

grow as
√

n. Like (4), (7) and (6) above, they differ in what kind of additional
information is needed on the distributions Q0 and Q1, and on {Pz}z∈Z , for the
bound to be meaningful. For the details, we refer to Sect. 4.

1.3 Applications

We show three immediate applications of our new bounds in the area of cryptog-
raphy. The first two applications improve on the results of Blondeau et al. [1].
The first one is an improvement on the security bound for multidimensional lin-
ear cryptanalysis derived in [1], and the second application is an improvement on
the security bound for truncated differential cryptanalysis derived in [1]. In both
cases, our techniques apply very directly and enable to improve both bounds
by a factor

√
n. Interestingly, such improvements were actually anticipated by

Blondeau et al., but proving them was outside the scope of their techniques. We
thus solve the open problems mentioned in [1].

The third application is to decorrelation theory, as introduced by
Vaudenay [10]. By means of our bounds, we can improve the bound in [10] by
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a factor Θ(n1/6). This enables to prove the security of ciphers against iterated
attacks for a larger number of iterations than was known before.

2 Preliminaries

2.1 The p-Norm and the Statistical Distance

Throughout the document, Z is a finite, non-empty set. We recall that for param-
eter 1 ≤ p ≤ ∞, the p-norm of a function f : Z → R is defined as

‖f‖p :=
( ∑

z∈Z
|f(z)|p

)1/p

,

with the natural understanding that ‖f‖∞ = maxz |f(z)|.
The definition of the p-norm obviously applies to distributions as well, i.e., to

functions P : Z → [0, 1] with
∑

z P (z) = ‖P‖1 = 1. In particular, the statistical
distance of two distributions P0, P1 : Z → [0, 1] is defined as

d(P0, P1) :=
1
2
‖P0 − P1‖1 =

1
2

∑

z

|P0(z) − P1(z)| .

We recall some basic properties of the statistical distance that are relevant for us.
From the well-known fact that the statistical distance equals the total variation
distance, i.e., d(P0, P1) = maxE⊆Z

∣∣P0(E)−P1(E)
∣∣, it follows that the statistical

distance measures the maximal distinguishing advantage for (computationally
unbounded) distinguishers that obtain one sample.

The statistical distance is jointly convex: if P i
0 and P i

1 are distributions that
depend on some parameter i ∈ I, and P̄0 :=

∑
i Q(i)P i

0 and P̄1 :=
∑

i Q(i)P i
1

are the corresponding mixtures with respect to distribution Q : I → [0, 1], then

d
(
P̄0, P̄1

) ≤
∑

i

Q(i) d(P i
0, P

i
1) . (8)

This follows immediately from basic properties of the 1-norm.
Finally, it is easy to see that d(P0 ⊗P ′, P1 ⊗P ′) = d(P0, P1), where a product

distribution P ⊗ P ′ is defined by P ⊗ P ′ : Z × Z ′ → [0, 1], (z, z′) �→ P (z)P ′(z′).
Together with the triangular inequality, this implies subadditivity for product
distributions, i.e., d(P0⊗P ′

0, P1⊗P ′
1) ≤ d(P0, P1)+d(P ′

0, P
′
1) . Thus, in particular,

writing P⊗n for P ⊗ · · · ⊗ P (n times), we get inequality (1).

2.2 The Kullback-Leibler and the Rényi Divergence

The Kullback-Leibler divergence (or KL divergence) between two distributions
P0, P1 : Z → [0, 1] is defined by

DKL(P0‖P1) =
∑

z∈Z
P0(z)>0

P0(z) ln
P0(z)
P1(z)

,
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with the convention that DKL(P0‖P1) = ∞ if the support of P0 is not included
in the support of P1.

The Kullback-Leibler divergence is additive in the sense that

DKL(P0 ⊗ Q0‖P1 ⊗ Q1) = DKL(P0‖P1) + DKL(Q0‖Q1) .

Consequently, we have

DKL(P⊗n
0 ‖P⊗n

1 ) = n · DKL(P0‖P1) .

It relates to the statistical distance as follows.

Theorem 1 (Pinsker inequality). For any two distributions P0 and P1, we
have

d(P0, P1) ≤
√

1
2
DKL(P0‖P1) .

The Kullback-Leibler divergence is a special case of the Rényi divergence

Dα(P0‖P1) =
1

α − 1
ln

∑

z∈Z
P0(z)>0

P0(z)αP1(z)1−α ,

defined for any 0 < α �= 1, where the Kullback-Leibler divergence is recovered
in the limit α → 1. Like the Kullback-Leibler divergence, the Rényi divergence
is additive, and the Pinsker inequality generalizes as follows.

Theorem 2 (Gilardoni inequality [3,5]). For any two distributions P0 and
P1 and 0 < α < 1, we have

d(P0, P1) ≤
√

1
2α

Dα(P0‖P1) .

2.3 The Neyman Divergence

We also make use of the Neyman χ2 divergence, which we denote by DN. For
distributions P0, P1 : Z → [0, 1], it is defined as

DN(P0‖P1) =
∑

z∈Z
P1(z)>0

(
P0(z) − P1(z)

)2

P1(z)
,

with the convention that DN(P0‖P1) = ∞ if the support of P0 is not included
in the support of P1.

Theorem 3. For any two distributions P0 and P1, we have

DKL(P0‖P1) ≤ DN(P0‖P1) .

This was proven by Dai et al. [2] but has been known in the information-theory
community for longer (see e.g. [9]); we recall here the proof for completeness.
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Proof. Multiplying out the square in the enumerator, we obtain

DN(P0‖P1) =
∑

z

P0(z)2

P1(z)
− 1 = e

ln
(∑

z
P0(z)2

P1(z)

)
− 1

≥ ln
(∑

z

P0(z)2

P1(z)

)
≥

∑

z

P0(z) ln
P0(z)
P1(z)

= DKL(P0‖P1) ,

where the first inequality uses ex −1 ≥ x, which is verified by having equality for
x = 0 and comparing derivatives, and the second inequality is Jensen’s inequality,
exploiting concavity of ln. ��

2.4 Warm-Up Observation

We discuss yet another distance measure for distributions P0, P1 : Z → [0, 1].
The fidelity of P0 and P1 (aka. Bhattacharyya distance) is defined as

F (P0, P1) :=
∑

z∈Z

√
P0(z)P1(z) .

Like the statistical distance, the fidelity of two distributions is always in the
range 0 to 1; this follows immediately from the Chauchy-Schwarz inequality. We
emphasize though that the fidelity is not a metric in the mathematical sense.
In particular, F (P0, P1) is small when P0 and P1 are far apart, and it is large,
i.e. close to 1, when P0 and P1 are close. As a matter of fact, it turns out
that H(P0, P1) :=

√
1 − F (P0, P1) is a metric, known as Hellinger distance.

Nevertheless, it is useful to consider the fidelity directly as a measure of distance.
Fidelity is related to the Rényi divergence of order 1

2 by

D1/2(P0‖P1) = −2 ln(F (P0, P1)) .

Sometimes referred to as the Fuchs – van de Graaf inequalities, the following
relates the fidelity to the statistical distance.

Theorem 4. For distributions P0 and P1,

1 − F (P0, P1) ≤ d(P0, P1) ≤
√

1 − F (P0, P1)2 .

We conclude this brief introduction to the fidelity by pointing out that the fidelity
is multiplicative for product distributions, and thus in particular

F (P⊗n
0 , P⊗n

1 ) = F (P0, P1)n . (9)

We show here a simple standard application of the fidelity and its properties.
A typical question is to wonder how many samples n are needed to distinguish
two known distributions P0 and P1 with constant advantage t. Motivated by
this question, let nt be such that n ≥ nt ⇐⇒ d(P⊗n

0 , P⊗n
1 ) ≥ t hold for all n.

Using (1), we only get the relatively crude bound nt ≥ t/d(P0, P1). However, if
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we actually control the fidelity F (P0, P1) and set1 ε := −2 log2(F (P0, P1)) then
we obtain from Theorem 4 and property (9) that

−1
ε

log2(1 − t2) ≤ nt ≤ −2
ε

log2(1 − t) ,

which is a much more precise estimate of the threshold number nt. For instance,
n0.5 is in the range 0.41/ε ≤ n0.5 ≤ 2/ε. In Appendix A, we work out a concrete
application of this in the context of side-channel attacks.

3 Sublinear Bounds on the Statistical Distance

We present here our new bounds on the statistical distance of i.i.d. samples. At
the core of the bounds is the following lemma.2

Lemma 5. For any two distributions P0, P1 : {0, 1} → [0, 1] and any integer n,

d(P⊗n
0 , P⊗n

1 ) ≤
√

n

2
DN(P0‖P1) .

Proof. We have

d(P⊗n
0 , P⊗n

1 ) ≤
√

1
2
DKL(P⊗n

0 ‖P⊗n
1 ) =

√
n

2
DKL(P0‖P1) ≤

√
n

2
DN(P0‖P1) ,

where the first inequality is Pinsker’s inequality, the equality is by the additivity
of the Kullback-Leibler divergence, and the final inequality is by Theorem 3. ��

3.1 A Bound for Boolean Distributions

We first consider Boolean distributions.

Theorem 6. Let P0, P1 : {0, 1} → [0, 1] be two Boolean distributions. Then

d(P⊗n
0 , P⊗n

1 ) ≤
√

n

2q(1 − q)
d(P0, P1) ,

where q := P1(0).

We observe that in the special case of P1 = U , the uniform distribution on {0, 1},
we recover a slightly improved version of the bound (2) from [10].

Proof. Setting p := P0(0) and q := P1(0), we have

DN(P0‖P1) =
(p − q)2

q
+

(q − p)2

1 − q
=

(p − q)2

q(1 − q)
=

d(P0, P1)2

q(1 − q)
.

The claim thus holds by Lemma 5. ��
1 As a matter of fact, ε is the Rényi divergence measured in bits.
2 This lemma was hinted at by an anonymous reviewer. It improves and simplifies on

an earlier version of this paper.
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3.2 Bounds for Non-Boolean Distributions

Here, we drop the assumption on the distributions P0 and P1 being Boolean but
instead assume that we have control over the small probabilities of one of the
two distributions. Concretely, we assume control over

minΔ(P1) := min
z∈Δ

P1(z)

where Δ := Δ(P0, P1) := {z ∈ Z : P0(z) �= P1(z)}. This is well defined for
P0 �= P1.

Theorem 7. For different distributions P0, P1 : Z → [0, 1] and minΔ(P1) as
above,

d(P⊗n
0 , P⊗n

1 ) ≤
√

n

2minΔ(P1)
· ‖P0 − P1‖2 .

Proof. If there exists z ∈ Z with P0(z) �= 0 = P1(z) then minΔ(P1) = 0 and the
claim holds trivially, with the right hand side being ∞ then. If no such z ∈ Z
exists then DN(P0‖P1) is finite and equal to

DN(P0‖P1) =
∑

z∈Z
P1(z)>0

(
P0(z) − P1(z)

)2

P1(z)
=

∑

z∈Z
P0(z)�=P1(z)>0

(
P0(z) − P1(z)

)2

P1(z)

≤
∑

z∈Z

(
P0(z) − P1(z)

)2

minΔ(P1)
=

‖P0 − P1‖22
minΔ(P1)

.

The claimed bound then holds by Lemma 5. ��
Recalling that ‖P0 − P1‖2 ≤ 2d(P0, P1), we obtain the following.

Corollary 8. For different distributions P0, P1 : Z → [0, 1] and minΔ(P1) as
above,

d(P⊗n
0 , P⊗n

1 ) ≤
√

2n

minΔ(P1)
· d(P0, P1) .

This bound can be appreciated as a variant of Renner’s bound (3), which we
rephrase here as

d(P⊗n
0 , P⊗n

1 ) ≤
√

n

2minΔ(P0 ∪ P1)
· d(P0, P1)

for
minΔ(P0 ∪ P1) := min

z∈Δ
min

{
P0(z), P1(z)

}
,

where Δ is as above. Our new bound improves on this in that it requires control
over the small probabilities of one of the two distributions only (but is slightly
worse in the constant factor). Additionally, compared to Renner’s result [8], we
also have a substantially simpler proof.

Applying Theorem 7 to P1 being the uniform distribution with U(z) = 1/|Z|
for all z ∈ Z, we obtain the following.
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Corollary 9. Let P0 be a distribution over a set Z with cardinality N := |Z|,
and let U be the uniform distribution over the same set Z. Then, we have

d(P⊗n
0 , U⊗n) ≤

√
nN

2
· ‖P0 − U‖2 ≤

√
2nN · d(P0, U) .

This as well can be appreciated as a generalization (and slight improvement) of
the bound (2), now to non-Boolean distributions.

4 Indistinguishability for Sources with Indirect Access

The above bounds—on distinguishing whether a source Z is distributed accord-
ing to P0 or P1—apply when the distinguisher has access to independently gen-
erated samples of Z. Here, we consider a variation of this problem where the dis-
tinguisher does not have direct access to the source Z, distributed according to
Q0 or Q1; instead, the distinguisher obtains independent samples W1, . . . ,Wn of
a source W that depends on Z. Formally, conditioned on the event Z = z, which
happens with probability Q0(z) or Q1(z), the joint distribution of W1, . . . ,Wn

is given by P⊗n
z , where {Pz}z∈Z is a given family of distributions over a set W.

Algorithmically, for a fixed guessing function f , the task of distinguishing Q0

from Q1 in this setting can be captured as illustrated in Fig. 1, and the maximal
distinguishing advantage is given by d(P̄n

0 , P̄n
1 ), where P̄n

b :=
∑

z Qb(z)P⊗n
z .

Distinguisher:
1: pick z following Qb

2: for i = 1 to n do
3: pick wi following Pz

4: end for
5: output f(w1, . . . , wn)

Fig. 1. Distinguisher with indirect access to Z.

Below and for the remainder, we use the following notation. Assuming the
range Z of Z to be in R, and given that Z is distributed according to Q (which
will either be Q0 or Q1), we let E(Z) be the expectation, i.e., E(Z) :=

∑
z Q(z) z,

and correspondingly E(g(Z)) :=
∑

z Q(z) g(z) for any function g on R. Similarly,
V (Z) denotes the variance V (Z) := E

(
(Z − E(Z))2

)
= E(Z2) − E(Z)2. If we

want to make Q explicit, we write EQ(Z), EQ(g(Z)) and VQ(Z) instead. This
notation generalizes to Z with range Z in an arbitrary vector space (with a given
2-norm): E is obvious, and V then becomes V (Z) := E

(‖Z − E(Z)‖22
)
.
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4.1 The Boolean Case

We first consider the case of Boolean samples, i.e., where the Wi’s have values
in {0, 1}. Since Pz is fully defined by Pz(1) then, we may assume without loss
of generality that Z ⊂ [0, 1] ⊂ R and Pz(1) = z for any z ∈ Z. In other words,
the output of the source not only determines but equals the probability of each
sample to be 1.

For n = 1 and guessing function f(w1) = w1, the distinguishing advantage is
given by EQ0(Z) − EQ1(Z). For n = 2 and f(w1, w2) = w1w2, the advantage is

EQ0(Z
2) − EQ1(Z

2) = VQ0(Z) − VQ1(Z) + EQ0(Z)2 − EQ1(Z)2 .

Therefore, to keep the advantage low for arbitrary distinguishers, we obviously
need EQ0(Z) ≈ EQ1(Z) (due to the n = 1 case) and VQ0(Z) ≈ VQ1(Z) (due
to the n = 2 case). These two conditions are necessary. We show below that
these conditions, and the assumption that the two variances are small, are also
sufficient for indistinguishability.

Theorem 10. Let Q0 and Q1 be two distributions for Z, and let {Pz}z∈Z be a
family of Boolean distributions. Then, for any n and for P̄n

0 and P̄n
1 defined as

above,

d(P̄n
0 , P̄n

1 ) ≤
√

n

2
·
√

VQ0(Z) + (EQ0(Z) − EQ1(Z))2 +
√

VQ1(Z)√
EQ1(Z)

(
1 − EQ1(Z)

)

We will show in Section 5.3 a direct application of this to [10].

Proof. Recall that the source Z takes values 0 ≤ z ≤ 1, and for any such z, Pz is
a Boolean distribution with Pz(1) = z. For an arbitrary but fixed 0 ≤ μ ≤ 1, we
also consider the Boolean distribution Pμ with Pμ(1) = μ. Applying Theorem 6,
we obtain

d(P⊗n
z , P⊗n

μ ) ≤
√

n

2μ(1 − μ)
d(Pz, Pμ) =

√

n
(z − μ)2

2μ(1 − μ)
.

By convexity (8) of the statistical distance, and applying Jensen inequality with√· and using that E((Z − μ)2) = V (Z) + (E(Z) − μ)2, we obtain

d(P̄n
b , P⊗n

μ ) ≤ EQb

(
d(P⊗n

Z , P⊗n
μ )

) ≤
√

n
VQb

(Z) + (EQb
(Z) − μ)2

2μ(1 − μ)

for b ∈ {0, 1}. Hence, by triangular inequality,

d(P̄n
0 , P̄n

1 ) ≤
√

n
VQ0(Z) + (EQ0(Z) − μ)2

2μ(1 − μ)
+

√

n
VQ1(Z) + (EQ1(Z) − μ)2

2μ(1 − μ)
.

This holds for any μ. We can apply it to μ = EQ1(Z) and obtain the result. ��
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4.2 The Non-Boolean Case

Here, we consider the non-Boolean case where the samples Wi have range W of
arbitrary size N . Our result gives a meaningful bound if the distributions Pz are
close to uniform on average.

Theorem 11. Let Q0 and Q1 be two distributions for Z, and let {Pz}z∈Z be a
family of distributions over a set of size N . Then, for any n and for P̄n

0 and P̄n
1

defined as above,

d(P̄n
0 , P̄n

1 ) ≤
√

nN

2
·
(
EQ0

(‖PZ − U‖2
)

+ EQ1

(‖PZ − U‖2
))

.

For clarification, given that Z is a random variable, we recall that PZ is a random
variable as well; its range being {Pz : z ∈ Z}, a subset of the distributions
over W. As such, ‖PZ − U‖2 is then a real-valued random variable, and so its
expectation is well defined.

Proof. Applying Corollary 9, we have d(P⊗n
z , U⊗n) ≤

√
nN
2 · ‖Pz −U‖2 , and by

convexity (8) of the statistical distance, we then obtain

d(P̄n
b , U⊗n) ≤ EQb

(
d(P⊗n

Z , U⊗n)
) ≤

√
nN

2
· EQb

(‖PZ − U‖2) .

The claim then follows from triangular inequality. ��

5 Applications

We discuss three direct applications of our new bounds in the context of block-
cipher security, giving rise to immediate improvements to results in [1] and [10].

5.1 Resistance to Multidimensional Linear Cryptanalysis

As a first application, we improve the security bound from Blondeau et al. [1]
against multidimensional linear (ML) cryptanalysis. As considered in [1], for a
block cipher Enc over �-bit blocks and a vector subspace V of {0, 1}� × {0, 1}�

spanned by a basis (α1, β1), . . . , (αk, βk), the so-called linear masks, an ML dis-
tinguisher works as described in Fig. 2. We refer to [1] for the motivation and
for additional explanations.

Adopting the notation from Blondeau et al. [1], we write pML
Enc for the prob-

ability that the distinguisher outputs 1 using Enc with an arbitrary but fixed
key, and we write pML

CK
for the same probability but now considered as a random

variable with the randomness stemming from the random choice of the key. We
note that for Enc with a fixed key, the bi’s are i.i.d. over {0, 1}k, and we denote
the distribution of one bi by DEnc then.
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Distinguisher ML with oracle Enc:

1: for i = 1 to n do
2: pick a random x ∈ {0, 1}�

3: set y = Enc(x)
4: for j = 1 to k do
5: set bi,j = (αj · x)⊕ (βj · y)
6: end for
7: set bi = (bi,1, . . . , bi,k)
8: end for
9: output f(b1, . . . , bn)

Fig. 2. ML distinguisher

In [1, Thm. 19], it is shown that3

∣∣E(pML
CK

) − E(pML
C∗)

∣∣ ≤ n
√

2k

√
2−� +

1
4

∥∥[CK ]2 − [C∗]2
∥∥

∞ (10)

where ‖[CK ]2 − [C∗]2‖∞ denotes the decorrelation of order 2, i.e., twice the best
non-adaptive advantage to distinguish the cipher CK from a uniformly random
permutation C∗ using two queries. Our results allow us to improve this bound
by a factor

√
2n.

At the core of the proof in [1] is the observation that for any two fixed encryp-
tion functions Enc and Enc∗(with fixed keys), by [1, Lemma 14] and triangular
inequality,

∣∣pML
Enc − pML

Enc∗
∣∣ ≤ n

2

√
2k‖DEnc − DEnc∗‖2 ≤ n

2

√
2k

(‖DEnc − U‖2 + ‖DEnc∗ − U‖2
)
,

and then these 2-norms are further worked out, using [1, Lemma 12] etc. How
exactly the bound (10) is then derived in [1] is not so important here; what is
important is that the factor n from above directly carries into (10).

Our improvement is now to apply triangular inequality to d(DEnc,DEnc∗) and
then invoke Corollary 9 to show that

∣∣pML
Enc − pML

Enc∗
∣∣ ≤

√
n2k−1

(‖DEnc − U‖2 + ‖DEnc∗ − U‖2
)

instead. Then, we can argue exactly as in [1] to conclude the following, which in
particular solves one of the open questions posed in [1].

3 We point out that in the derivation of their bound, [1] uses
√

a + b+
√

a ≤ 2
√

a + b.
If, instead, we use

√
a + b +

√
a ≤ 2

√
a + b/2, which hold by Jensen’s inequality, we

obtain the slightly improved version stated here in (10), with a factor 1/4 instead 1/2.
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Theorem 12. For every cipher CK over �-bit blocks, the ML-advantage for k-
linear masks, i.e., the advantage of an ML distinguisher as in Fig. 2, is bounded
by

∣∣E(pML
CK

) − E(pML
C∗)

∣∣ ≤
√

n2k+1

√
2−� +

1
4

∥∥[CK ]2 − [C∗]2
∥∥

∞ .

Alternatively, and slightly more directly, we can use Theorem 11 to argue that

∣∣E(pML
CK

) − E(pML
C∗)

∣∣ ≤
√

n2k−1 ·
(
EQ0

(‖PZ − U‖2
)

+ EQ1

(‖PZ − U‖2
))

,

and then apply Lemma 12, Theorem 1 and Lemma 17 and 18 from [1] to obtain
the above bound.

5.2 Resistance to Truncated Differential Attacks

Here, we revisit and improve the security bound from Blondeau et al. [1] against
what is knows as truncated differential (TD) attacks. Following the definition
given in [1], for a block cipher Enc over �-bit blocks and for a vector space
V ⊥ = V ⊥

in × V ⊥
out with V ⊥

in having dimension � − s > 0, a TD distinguisher works
as described in Fig. 3 to the right.

Distinguisher TD with oracle Enc:
1: for i = 1 to n do
2: pick (x, x′) ∈ ({0, 1}�)2 uniformly such that x ⊕

x′ ∈ V ⊥
in

3: set y = Enc(x) and y′ = Enc(x′)
4: set bi = 1((x,y)⊕(x′,y′))∈V ⊥
5: end for
6: output f(b1, . . . , bn)

Fig. 3. TD distinguisher

Using notation similar to as above, [1, Thm. 21] shows that

∣∣E(pTDCK
) − E(pTDC∗)

∣∣ ≤ n2s
(
2 · 2−� +

1
2

∥∥[CK ]2 − [C∗]2
∥∥

∞
)

. (11)

At the core of the proof of (11) is the bound
∣∣pTDEnc − pTDEnc∗

∣∣ ≤ nd(DEnc,DEnc∗)

= n2s
∣∣pSTDEnc − pSTDEnc∗

∣∣

≤ n2s
(∣∣pSTDEnc − 2−�

∣∣ +
∣∣pSTDEnc∗ − 2−�

∣∣)
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where pSTDEnc is defined in [1] and happens to coincide with 2−sDEnc(1). Again, it
is not relevant here how (11) is then derived from this; important for us is that
the factor n2s carries into the bound.

Our improvement is obtained by applying Corollary 8 to the Boolean distri-
butions DEnc and Dref , with the latter defined as Dref(1) = 2s−�. This gives

d(D⊗
Enc,D

⊗
ref) ≤

√
n

2min(2s−�, 1 − 2s−�)
d(DEnc,Dref)

=
√

n

2s−�+1

∣∣2spSTDEnc − 2s−�
∣∣

=
√

n2s+�−1
∣∣pSTDEnc − 2−�

∣∣ .

Therefore, by triangular inequality, we obtain
∣∣pTDEnc − pTDEnc∗

∣∣ ≤ d(D⊗
Enc,D

⊗
Enc∗) ≤

√
n2s+�−1

(∣∣pSTDEnc − 2−�
∣∣ +

∣∣pSTDEnc∗ − 2−k
∣∣) .

By the techniques of [1], this then result in the following bound, which improves
(11) by a factor

√
n 2(s−�+1)/2 and solves the second open problem from [1].

Theorem 13. For every cipher CK over �-bit blocks, the TD-advantage for V ⊥
in

of dimension � − s, i.e., the advantage of a TD distinguisher as in Fig. 3, is
bounded by

∣∣E(pTDCK
) − E(pTDC∗)

∣∣ ≤
√

n2s+�−1
(
2 · 2−� +

1
2

∥∥[CK ]2 − [C∗]2
∥∥

∞
)

.

5.3 Decorrelation

As a last application, we now move to decorrelation theory, as introduced by
Vaudenay [10]. Again, we consider a block cipher Enc over �-bit blocks.4 As con-
sidered and studied in [10], an iterated distinguisher of order q is a distinguisher
as described in Fig. 4 to the right, where n is a positive integer, D is a probability
distribution over ({0, 1}�)q, and T and f are functions T : ({0, 1}�)2q → {0, 1}
and f : {0, 1}n → {0, 1}.

Expressed in terms of notation similar to as above, it was shown in [10,
Th. 18] that the advantage of any such distinguisher with Boolean T is bounded
by

∣∣E(pIterCK
) − E(pIterC∗ )

∣∣ ≤ 5 3

√

n2

(
2δ +

5q2

2 · 2�
+

3
2
ε ,

)
+ nε (12)

where ε := ‖[CK ]2q − [C∗]2q‖∞, i.e., twice the best advantage of a distinguisher
making 2q non-adaptive queries, and δ is the probability that two given iterations
(say for i = 1 and i = 2) would select at least one xj in common (not necessarily
for the same index j). We let Z be the probability that bi = 1 in the probability
4 As a matter of fact, here Enc may also be a pseudorandom functions (PRF), but we

ignore this here and keep the notation consistent with above.
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Distinguisher Iter with oracle Enc:
1: for i = 1 to n do
2: pick (x1, . . . , xq) ∈ ({0, 1}�)q following distribution

D
3: set yj = Enc(xj) for j = 1, . . . , q
4: set bi = T (x1, . . . , xq, y1, . . . , yq) ∈ {0, 1}
5: end for
6: output f(b1, . . . , bn)

Fig. 4. Iterated distinguisher

space induced by D with a fixed Enc and write E(Z) for the expected value of Z
with respect to the corresponding distribution of a random Enc. By definition,
it holds that

|ECK
(Z) − EC∗(Z)| ≤ 1

2

∥∥[CK ]q − [C∗]q
∥∥

∞ ≤ ε

2
.

Furthermore, by considering a distinguisher that samples bi and b′
i and returns

bib
′
i, which is 1 with probability Z2, we see that

|ECK
(Z2) − EC∗(Z2)| ≤ 1

2

∥∥[CK ]2q − [C∗]2q
∥∥

∞ =
ε

2
.

Given that EC∗(Z)2−ECK
(Z)2 =

(
EC∗(Z)−ECK

(Z)
)(

EC∗(Z)+ECK
(Z)

) ≤ ε,
it is then easy to see that

VCK
(Z) − VC∗(Z) = ECK

(Z2) − EC∗(Z2) + EC∗(Z)2 − ECK
(Z)2 ≤ 3

2
ε .

Finally, it was shown in [10] that

VC∗(Z) ≤ δ +
q2

4 · 2�
+

q2

2 · (2� − q)
.

So, applying Theorem 10 we obtain the bound

∣∣E(pIter
CK

) − E(pIter
C∗)

∣∣ ≤
√

n

2
·
√

VCK (Z) + (ECK (Z) − EC∗(Z))2 +
√

VC∗(Z)
√

EC∗(Z)
(
1 − EC∗(Z)

)

≤
√

n

2EC∗(Z)(1 − EC∗(Z))

(√
3

2
ε + VC∗(Z) + ε2 +

√
VC∗(Z)

)

≤
√

2n

EC∗(Z)(1 − EC∗(Z))

√

δ +
q2

4 · 2�
+

q2

2 · (2� − q)
+

5

2
ε .

Thus, in summary, and using the notation from above, we obtain the following
improved version of (12).



Sublinear Bounds on the Distinguishing Advantage for Multiple Samples 181

Theorem 14. Let CK be a cipher over �-bit blocks. Then, for any positive
integers q and n, any distribution D over ({0, 1}�)q, and any functions T :
({0, 1}�)2q → {0, 1} and f : {0, 1}n → {0, 1}, the iterated distinguisher of order
q from Fig. 4 has an advantage

∣∣E(pIterCK
) − E(pIterC∗ )

∣∣ ≤
√

2n

p(1 − p)

√

δ +
q2

4 · 2�
+

q2

2 · (2� − q)
+

5
2
ε ,

where p := EC∗(Z) is the probability that bi = 1 in case of a random permutation,
and ε and δ are as in [10], i.e., ε = ‖[CK ]2q − [C∗]2q‖∞ and δ is the probability
that two given iterations have one xj in common (not necessarily for the same
index j).

This is better than (12) by a ratio which is asymptotically Θ(n1/6), but requires
that we know EC∗(Z). This is normally the case though. We can further see
that for EC∗(Z) close to 1/2, we obtain security for n � 1/ε while the previ-
ous result (12) offers security only for n � 1/

√
ε. We thus obtain security for

significantly larger n.

6 Conclusion

We derived new bounds on the statistical distance d(P⊗n
0 , P⊗n

1 ) of i.i.d. samples
of a source Z that is distributed according to distribution P0 or P1, as well as on
the statistical distance of i.i.d. samples that are chosen according a distribution
that depends on Z. All the bounds grow as

√
n in the number n of samples, and

they are applicable if some additional information on the distributions is known.
We expect these new bounds to become useful tools in cryptography. Indeed,

we demonstrated the usefulness on several applications in the context of block-
cipher analysis. In all these examples, our bounds lead to an immediate improve-
ment over the prior results.

A Computing the Threshold Number in Power-Analysis
Attacks

At the core of a power-analysis attack is the task to distinguish whether a source
X over a finite set X is distributed according to P0 or P1 when given i.i.d. samples
of the form X + N , where N is noise that follows a normal distribution with
expected value 0 and standard deviation σ. Formally, given that X is distributed
according to Pb, the random variable X + N has density

fQb
(t) =

∑

x∈Z
Pb(x)

1
σ
√

2π
e− (t−x)2

2σ2 .
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Hence, not worrying that we are now dealing with continuous random variables,
we have

F (Q0‖Q1) =
∫ +∞

−∞

√
fQ0(t)fQ1(t) dt

=
1

σ
√

2π

∫ +∞

−∞

√ ∑

x,y∈X
P0(x)P1(y)e− (t−x)2+(t−y)2

2σ2 dt .

Thus, the threshold number of samples is given by

n1/2 =
θ

−2 log2

⎛

⎝ 1
σ
√

2π

∫ +∞

−∞

√ ∑

x,y∈X
P0(x)P1(y)e− (t−x)2+(t−y)2

2σ2 dt

⎞

⎠

for some 0.41 ≤ θ ≤ 2.
As a concrete example, if P0 and P1 are such that P0(x) = 1 = P1(y) for

some fixed values x, y ∈ X , then we get

F (Q0‖Q1) =
1

σ
√

2π

∫ +∞

−∞

√
e− (t−x)2+(t−y)2

2σ2 dt

=
1

σ
√

2π

∫ +∞

−∞
e− (t− x+y

2 )2+( x−y
2 )2

2σ2 dt

= e− (x−y)2

8σ2

and thus

−2 log F (Q0‖Q1) =
(x − y)2

(4 ln 2) · σ2
.

Thus, the number of samples needed to have a distinguishing advantage 1/2 (i.e.,
guess correctly with probability 3/4) is

n1/2 = θ
(4 ln 2) · σ2

(x − y)2

with 0.41 ≤ θ ≤ 2.
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