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a b s t r a c t 

Despite the introduction of many new sound-coding strategies speech perception outcomes in cochlear 

implant listeners have leveled off. Computer models may help speed up the evaluation of new sound- 

coding strategies, but most existing models of auditory nerve responses to electrical stimulation include 

limited temporal detail, as the effects of longer stimulation, such as adaptation, are not well-studied. 

Measured neural responses to stimulation with both short (400 ms) and long (10 min) duration high- 

rate (5kpps) pulse trains were compared in terms of spike rate and vector strength (VS) with model out- 

comes obtained with different forms of adaptation. A previously published model combining biophysical 

and phenomenological approaches was adjusted with adaptation modeled as a single decaying exponent, 

multiple exponents and a power law. For long duration data, power law adaptation by far outperforms 

the single exponent model, especially when it is optimized per fiber. For short duration data, all tested 

models performed comparably well, with slightly better performance of the single exponent model for 

VS and of the power law model for the spike rates. The power law parameter sets obtained when fit- 

ted to the long duration data also yielded adequate predictions for short duration stimulation, and vice 

versa. The power law function can be approximated with multiple exponents, which is physiologically 

more viable. The number of required exponents depends on the duration of simulation; the 400 ms data 

was well-replicated by two exponents (23 and 212 ms), whereas the 10-minute data required at least 

seven exponents (ranging from 4 ms to 600 s). Adaptation of the auditory nerve to high-rate electrical 

stimulation can best be described by a power-law or a sum of exponents. This gives an adequate fit for 

both short and long duration stimuli, such as CI speech segments. 

© 2020 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Cochlear implants (CIs) are implantable hearing devices for 

eople with severe to profound hearing loss. CIs generally al- 

ow good speech understanding, but outcomes are highly vari- 

ble and speech perception remains challenging in more com- 

lex listening situations. Many different sound-coding strategies 

ave been introduced in the last decade to improve sound cod- 

ng, but performance on perception tests has not improved signif- 

cantly ( Zeng, 2017 ). New stimulation strategies are commonly in- 

estigated in psychophysical experiments and clinical trials, which 

s time-consuming for both the patient and researcher and does 

ot provide insight into physiological characteristics underlying the 

arge variability in perception scores. Alternatively, strategies could 
∗ Corresponding author. 

E-mail address: m.j.van_gendt@lumc.nl (M.J. van Gendt). 
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e evaluated using computational models. A variety of models are 

urrently available that can simulate responses of the auditory 

erve to electrical stimulation. 

Models that simulate responses of the auditory nerve to electri- 

al stimulation can be classified as phenomenological or biophys- 

cal. Biophysical models, which describe physiological elements of 

he neuron in detail, have been shown to reproduce determinis- 

ic threshold characteristics and refractory behavior in response to 

 stimulation of several milliseconds, with arbitrary pulse shapes 

 Dekker et al., 2014 ; Frijns et al., 2001 ; Frijns and ten Kate, 1994 ;

alkman et al., 2015 ; O’Brien and Rubinstein, 2016 ). Methods 

o biophysically model more complex neural behavior, such as 

tochasticity and the effects of long temporal spiking history, have 

lso been suggested. These methods provide insight into the phys- 

ological processes, but have the disadvantage of requiring many 

arameters to be fitted and consume great computational power 

 Negm and Bruce, 2014 ; O’Brien and Rubinstein, 2016 ; Woo et al.,
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010 , 2009 ). Efficient computation of the neural responses of all 

30,0 0 0 auditory nerve fibers is fundamental to predicting percep- 

ion outcomes. Alternative to biophysical models, phenomenolog- 

cal models, that describe the behavior of the neuron empirically, 

an be used efficiently for these purposes. Stochasticity is such a 

henomenon that can be included ( Bruce et al., 1999b , 1999a ), and

ore recently adaptation has been included in phenomenological 

odels ( Boulet et al., 2016 ; van Gendt et al., 2019 , 2016 ). The effect

f adaptation increases with stimulus duration and rate ( van Gendt 

t al., 2017 , 2016). Therefore, in simulations of neural responses 

o segments of speech, which are of long durations, adaptation 

ecomes relevant. Contemporary CIs use pulse rates of 80 0–20 0 0 

ps, but depending on the spatial spread single neurons may be 

timulated by higher rates. 

Single fiber auditory neuron recordings in response to long du- 

ation electrical stimulation, which can be used for verification, is 

vailable only for high pulse rates (5 kpps). For lower stimulus 

ates adaptation is expected to have a smaller effect. It has been 

uggested that high rate pulse trains can be used as desynchroniz- 

ng pulse trains ( Rubinstein et al., 1999 ). In the healthy auditory 

erve there is spontaneous activity, which yields linear behavior 

lso for low stimulus levels. Electrically stimulated auditory nerve 

bers, however, respond highly synchronized, diminishing the dy- 

amic range. To overcome this, it has been suggested to first stim- 

late the auditory nerve with a high-rate (e.g., 5kpps) pulse train, 

ringing all fibers in a refractory or adapted state, after which spik- 

ng will be less coherent. 

Adaptation is a well-known phenomenon in general neuro- 

cience that is particularly well-studied in the visual system. Adap- 

ation has been shown to maximize information transmission 

 Barlow, 1961 ; Wark et al., 2007 ). Neural adaptation dynamics de- 

end on the stimulus history ( de Ruyter van Steveninck et al., 

986 ). Neurons not only adapt to stimulus gain, but to a range of 

timulus statistics, so that stimuli in a dynamic environment are 

epresented most efficiently ( Brenner et al., 20 0 0 ). Such statistics 

ay be very different over different durations of stimulation. After 

ong durations of stimulation, the dynamics of adaptation in neural 

ystems in general are often better described by a power law than 

n exponent ( Toib et al., 1998 ). In the fly’s visual system, adapta-

ion was demonstrated to occur at different time scales; short time 

cales are necessary for optimal information encoding of rapid 

timulus variations within an ensemble, whereas long time scales 

djust the rate and statistics of the firing pattern to provide infor- 

ation about the ensemble of the stimulus ( Fairhall et al., 2001 ). 

 power law function can be approximated by a combination of 

 large number of exponential processes with a range of time 

onstants ( Drew and Abbott, 2006 ). Many natural processes decay 

nd grow exponentially. Although neurons behave according to a 

ower law, no individual biological processes that can be described 

y a power law have been detected in neurons ( Drew and Ab- 

ott, 2006 ), and the dynamics probably arise physiologically from 

ifferent exponential processes. Because of the power law dynam- 

cs, neurons are capable of adapting their responses to stimulus 

tatistics over a wide range of time scales, from tens of millisec- 

nds to minutes. Thus, adaptation has been shown to play a role 

n efficient coding of the continuously (rapidly or slowly), changing 

ensory world. 

In the auditory system, adaptation is also a supposed mecha- 

ism for optimized information transmission ( Clague et al., 1997 ; 

pping, 1990 ). Neurons can adapt to stimulus statistics, such as 

ound level and variance ( Dean et al., 2005 ; Wen et al., 2009 ).

he dynamic range is adjusted to the range of presented sound 

evels, leading to high accuracy of the perception of differences in 

oudness, regardless of the large dynamic range spanned by the in- 

ut levels. Auditory nerve responses to statistically varying acous- 

ic input were well-replicated by a model that included power law 
2 
daptation ( Zilany et al., 2009 ; Zilany and Bruce, 2006 ). This model

howed that power law adaptation increases the dynamic range of 

he auditory neuron ( Zilany and Carney, 2010 ). Auditory neurons 

lso adapt in response to electrical stimulation ( Heffer et al., 2010 ; 

itvak et al., 2003 ; Zhang et al., 2007 ). This becomes especially ap-

arent with stimulus durations > 100 milliseconds, as is the case 

n pulse trains encoding speech segments. Thus, a model of the 

uditory nerve that simulates responses to electrical CI stimula- 

ion representative of speech should account for adaptation. Pre- 

iously, a model combining the biophysical and phenomenologi- 

al approaches was shown to accurately simulate spiking of the 

uditory nerve in response to electrical pulse trains of durations 

p to a few hundred milliseconds ( van Gendt et al., 2019 , 2017,

016). In these studies, adaptation was modeled by increasing the 

hreshold following each spike or pulse with a certain amplitude 

hat exponentially decayed over time. Exponential spike adaptation 

nd accommodation with a time constant of 100 ms was found 

o explain spiking behavior in response to both amplitude mod- 

lated and continuous amplitude pulse trains with duration up to 

00 ms. This model, with a single exponent, successfully replicated 

esponses, but its success was restricted to the limited stimulus 

anges for which its parameters were optimized. The model has 

ot been validated for longer duration stimulation. In addition, no 

tudies have evaluated whether a power law, a single exponent, 

r a sum of exponents best describes the response of the auditory 

erve to electrical stimulation. 

As speech segments have durations of up to several seconds 

nd a large dynamic range, it is important that the adaptation be 

orrectly implemented in a model of neural responses to speech 

oding in CIs. The present study evaluated which model of adap- 

ation best describes the responses of the auditory nerve to long 

uration stimulation. For this, recordings of the auditory neuron’s 

esponses to pulse trains with short and long durations were 

imulated with different models of adaptation. The used model 

uilds on a previously developed computationally efficient model 

 van Gendt et al., 2017 ). 

It is plausible to expect that more than one time-component is 

equired to model long duration responses. This could be modeled 

s multiple exponentials, or, with less parameters, with a power 

aw. This study investigates how both short- and long-term adap- 

ation of auditory neurons to electrical stimulation can most ad- 

quately, physiologically realistic and computationally efficient be 

escribed and fitted. 

. Methods 

Responses of the electrically stimulated auditory nerve were 

odeled using a combined biophysical and phenomenological 

odel. 

.1. Deterministic thresholds 

First, deterministic fiber thresholds ( I det ) were calculated with a 

D volume conduction model and active nerve fiber model devel- 

ped in the LUMC ( Kalkman et al., 2015 , 2014 ). The cochlear ge-

metry is based on micro-CT data, the electrode array geometry is 

ased on the HiFocus1J array (Advanced Bionics, Valencia, CA, USA) 

n lateral position. Deterministic thresholds were obtained for spe- 

ific pulse shapes and pulse widths. In the current paper biphasic 

ulses with pulse-widths per phase of 18μs were used. 

.2. Phenomenological threshold adjustments 

These deterministic thresholds were adjusted with stochas- 

icity, adaptation, and accommodation using a phenomenological 

pproach ( van Gendt et al., 2017 , 2016 ). For each nerve fiber, 



M.J. van Gendt, M. Siebrecht, J.J. Briaire et al. Hearing Research 398 (2020) 108090 

Table 1 

Parameters for optimization. 

Parameter Range 

Accommodation amplitude ( αacco ),% 0.004 – 0.014, step size: 0.002 

Adaptation amplitude ( αadap ),% 0.00 – 0.05, step size: 0.01 

Offset, ms 1, 5, 20, 40 

Exponent β −1.2, −1.1, −1.0, −0.9 
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he stochastic threshold was taken from the normal distribution, 

 ( I det , SD ), with SD calculated with a relative spread ( RS ) as SD =
 det · RS. Subsequently, refractoriness ( R ), as calculated with Eq. (1) , 

as added to the stochastic threshold. 

 = 

1 

1 − e 
−( t−τARP ) 

τRRP 

, (1) 

here τARP and τ RRP are the time constants for the absolute and 

elative refractory period, and t is the time since the last action 

otential. It was shown previously ( van Gendt et al., 2017 , 2016 )

hat the adaptation behavior of the auditory nerve in response to 

lectrical stimulation is a consequence of both sustained firing, re- 

erred to as spike adaptation ( SA ), and sustained stimulation, re- 

erred to as accommodation ( Acco ). Different models to described 

A and Acco are described below. The final threshold was calculated 

s follows; 

 adj = N ( I det , σ ) · R + SA + Acco (2) 

A spike was assumed to occur when: I given > I adj , where I given 

s the stimulus current. The parameters for stochasticity, refrac- 

oriness, and single exponential adaptation were previously fitted 

 van Gendt et al., 2017 , 2016 ). An overview of the parameters is

iven in Table 1 in the appendix. The present paper determined 

arameters for power law adaptation and multiple exponentials. 

Single exponent adaptation 

Adaptation was previously modeled with an exponential decay 

s in Eq. (3) . 

 = α ·
∑ 

i 

SP · e 
t−t i 
τa (3) 

is the adaptation amplitude or the accommodation ampli- 

ude. SP , a spatial factor, is 1 for spike adaptation, and 0 . 03% ·
 · I min ( electrode ) 

I( electrode, f iber ) 
for accommodation, I min ( electrode ) is the thresh- 

ld for the fiber most sensitive to the used electrode, and 

 ( electrode , fiber ) is the threshold for a particular fiber to that elec-

rode. For spike adaptation i refers to the last spike, for accommo- 

ation i refers to the last stimulus pulse given. 

Power law adaptation 

The power law function was implemented in the neural model 

s in Eq. (4) : 

 LA ( t ) = α ·
∑ 

i 

SP · ( t − t i + of f set ) 
β
, (4) 

here i, α and SP are the same as above, offset represents a shift 

n the power law function, and β is the power component for the 

ower law. Offset and β were assumed equal in both spike adap- 

ation and accommodation. 

Power law approximation with multiple exponents 

Power law adaptation can be approximated by multiple expo- 

ents ( Drew and Abbott, 2006 ). This was implemented here as in 

q. (5) for one exponent and Eq. (6) for multiple (k) exponents: 

xpA ( t ) k = α ·
∑ 

i 

SP · e 
t−t i 
τa (5) 

 xpA ( t ) = 

∑ 

k 

E xpA ( t ) k , (6) 
3 
here i, α and SP are the same as above, and τ refers to the time 

onstant for the exponential adaptation. 

.3. Model optimization 

The parameters for the single exponent adaptation model were 

reviously fitted ( van Gendt et al., 2017 , 2016), and the formulas 

nd optimal parameters are given in Appendix A. The power law 

daptation model was fitted to two different data sets. The first 

ata set consisted of the responses of one fiber to short duration 

400 ms) amplitude-modulated electrical pulse trains with five dif- 

erent stimulus amplitudes ( Hu et al., 2010 ) ( Fig. 2 ). For this short

uration data, similar to the recordings, stimulation amplitudes 

ere set to a certain relative amplitude compared to the thresh- 

ld, which was defined as the stimulus amplitude that yielded a 

esponse of 100 spikes/s in the first bin. Similar to the record- 

ngs by Hu et al. (2010) , the stimulus duration was 400 ms, bin-

idth 50 ms, pulse rate 50 0 0 pps, modulation frequency 10 0 Hz, 

nd modulation depth 10%. The second data set consisted of the 

esponses of seven different fibers to long duration (600 s) contin- 

ous amplitude electrical pulse trains ( Litvak et al., 2003 ). For this 

ong duration data, the measurements of the seven different fibers 

 Fig. 1 ) were replicated. Stimulus levels that elicited the same sim- 

lated discharge rate in the initial bin as in the recordings were 

hosen. The duration was 600 s, the rate was 50 0 0 pps, and bin-

idth was 1 second. Responses of fiber 1200 (located roughly 180 ̊

rom the round window) to stimulation of the nearest electrode 

ontact were simulated. 

.3.1. Parameter search 

Simulations were performed for both data sets using a range 

f parameters ( Table 1 ). Combinations of different parameter set- 

ings in the range (i.e., 432 unique parameter sets) were used to 

imulate both datasets. Refractoriness and relative spread were set 

o the average values as published by van Gendt et al. (2017) . See

ppendix A for an overview of these parameters. 

.3.2. Minimal normalized rms error 

Values were visually extracted from the published data record- 

ngs for the measured discharge rates in all different bins. Dif- 

erences between simulated and measured discharge rates were 

alculated using the normalized root mean square error (NRMSE), 

ormalization was done by dividing by the range of the measured 

ates per stimulus amplitude. The NRMSE was calculated for each 

timulus amplitude (a) as in Eq. (7) . 

RMS E a = 

√ ∑ N 
n =1 ( ̄r a − r a ) 

2 

r a, max − r a, min 

(7) 

here for N bins, r is the measured rate and r̄ the simulated rate. 

The NRMSE values for all stimulus levels were averaged. For 

oth data sets, the parameter set with minimal error was defined. 

hese parameter sets were used to simulate responses to the other 

ata set for which it was not optimized. An optimal parameter set 

or both conditions combined was defined as the set yielding the 

inimal average NRMSE of both data sets. In addition, in the long 

uration data, seven different fibers were used, and the optimal 

arameter set was defined for each individual fiber. A sensitivity 

nalysis was performed in which the effect of parameter variations 

n the NRMSE was investigated. 

.4. Approximating the power law fit with multiple exponents 

The optimal power law parameter set was matched to a sum of 

xponents using least squares optimization. The number of expo- 

ents (n) for this fit was increased until 5 or, if no good fit was

ound with 5 exponents, until the NRMSE did not decrease more 
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[A]: Exp 100 ms

E = 0.806

0 200 400 600

[B]: PLA - Short

E = 0.201

0 200 400 600

[C]: PLA - Long

E = 0.082

0 200 400 600

[D]: PLA - Both

E = 0.090

0 200 400 600

[E]: PLA - Long per fiber

E = 0.060

Fig. 1. Discharge rates in response to long duration stimulation (600 s). The simulations are plotted in black. The visually extracted data from Litvak et al. (2003) is plotted 

in blue in each graph. The E in the upper right corner refers to the mean NRMSE for all fibers. Simulated discharge rates are calculated with the 100 ms exponential model 

[A], with the power law model optimized for the short duration data [B], with the power law model optimized for the long duration data [C], with the power law model 

optimized for both the short and long duration data [D] and with the power law model optimized per fiber for the long duration data [E]. 

Table 2 

Optimal parameter sets yielding the smallest NRMSE averaged for the different stimulus amplitudes on the short duration data 

(Short), the seven different fibers used in the long duration data (Long), for both errors averaged (Both) and per fiber (F) in the long 

duration data. 

Short Long Both F1 F2 F3 F4 F5 F6 F7 

Offset, ms 20 5 20 5 5 5 5 40 20 40 

Exponent β −1 −1 −1.1 −0.9 −0.9 −1.1 −1 −1.2 −1 −0.9 

α accommodation [x 10 −4 % of stimulus] 10 6 8 6 4 4 4 12 6 4 

α adaptation [% of threshold] 0.03 0.02 0.02 0.02 0.01 0.00 0.01 0.05 0.02 0.01 
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han 10% with an extra exponent. In order to limit the search space 

or the least squares-optimization of the parameters for the set of 

xponents, the power law kernel was divided into n parts of equal 

og-length. The longest exponent was fitted first and only on the 

ast part of the power law kernel. The second longest exponent was 

tted on the last two parts of the power law kernel taking the con- 

ribution of the longest exponent into account. Following this pat- 

ern, the shortest exponent was fitted last on the entire duration of 

he power law kernel taking all other exponents into account. This 

ethod ensured that all exponents were properly normalized. The 

og spacing ensured that the exponents overlapped equally with 

ach other. 

. Results 

The optimal parameter set was defined as the combination of 

arameters that yielded the smallest NRMSE. Table 2 shows these 

arameter sets optimized for the short and long duration data and 

hose combined (columns Short, Long and Both respectively), and 

or each of the individual fibers of the long duration data (F1 – F7). 

.1. Comparison of model simulations to recordings 

.1.1. Long duration simulations 

For the long duration simulations, measured and simulated 

pike rates over the course of the stimulus are plotted in Fig. 1 .

ata were recorded from seven different fibers from one animal 

 Litvak et al., 2003 ). The two units with the lowest response am-

litudes stopped discharging after 1–2 min, the other five units 

xhibited adaptation over the first 100 s followed by either slow 

daptation or a steady response. For comparison, the simulations 

or the previously published model with an exponent of 100 ms is 

hown in Fig. 1 A. The power law adaptation simulations with the 

ptimal parameter set ( Table 2 ) for the short and long duration 

ata are shown in Fig. 1 B and 1 C respectively, 1D shows the simu-

ations with the parameter set that yielded the minimal combined 

rror. Fig. 1 E shows the power law fit when the optimal parameter 

et is chosen per fiber. 
4 
The simulations with exponential adaptation only showed an 

nitial, small decrease in spike rate, whereas all power law adap- 

ation models demonstrated a continuous spike rate decrease over 

he course of the stimulation ( Fig. 1 ). Quantitatively, the power law 

utperformed the model with exponential adaptation, as reflected 

n the NRMSE value of 0.806 for exponential adaptation, 0.201 for 

ower law adaptation with the parameter set optimized for the 

hort duration data, 0.082 optimized for the long duration data set, 

.090 for both data sets and 0.060 optimized per fiber. Both the 

arameter set optimized for this particular data and the parameter 

et optimized for the short duration data yielded a substantial im- 

rovement in predicting the discharge rate relative to single expo- 

ent. The best replication was obtained when optimized per fiber. 

he only difference between the recordings and these per-fiber- 

imulations was that the dip in the spike rate at approximately 50 

o 150 s was not replicated by the model. 

.1.2. Short duration, amplitude-modulated simulations 

To investigate which model best described the discharge rates 

nd modulation following behavior in response to short du- 

ation amplitude-modulated pulse trains, the recordings from 

u et al. (2010) were simulated. The single exponent model and 

he power law models optimized for the short duration data and 

or the long duration data were used. For ease of comparison, 

ecordings and simulations are plotted together in Fig. 2 . 

For the spike rates, the exponential adaptation yielded an 

RMSE of 0.094. The power law model with the parameters op- 

imized for this data and the combined data sets had NRMSE’s 

f 0.065 and 0.068 respectively, outperforming exponential adap- 

ation, whereas the parameters optimized for the long duration 

ata only performed quantitatively worse, with an NRMSE of 0.134. 

or the VS, the single exponent model performed better than any 

f the power law models. Vector Strength measures periodicity in 

he neural response to a periodic input. The vector strength in the 

odels is above zero but lower than the recordings. This means 

hat some periodicity is maintained in the modeled responses, but 

ot as much as in the recordings. 
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[B]: Exp 100 ms
E = 0.100

0 200 400

E = 0.166

[C]: PLA - Short
E = 0.065

0 200 400

E = 0.212

[D]: PLA - Long
E = 0.134

0 200 400

Time [ms]

E = 0.289

[E]: PLA - Both
E = 0.068

0 200 400

E = 0.238

Fi
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0

200

400

600

0

0.5

1.0

0 200 400

[A]: Data

Fig. 2. Simulation of responses to short duration, amplitude-modulated pulse trains. Upper row shows spike rates determined in bins of 50 ms in response to five different 

stimulus amplitudes. The lower row shows vector strengths obtained from the same bins. For clarity, the recorded data are plotted separately in [A], and in [B-E] in gray- 

blue in the background (data from Hu et al., 2010 , reprinted with permission). The numbers in the lower right corner in [A] indicate amplitudes relative to the threshold. In 

[B]-[E] simulations are plotted in black. Simulations were modeled with exponential adaptation, single exponent (100 ms) in [B], with the parameter set optimized for the 

short data in [C], with the parameter set optimized for the long duration data in [D], and with the parameter set optimized for both data sets in [E]. The optimal parameter 

sets are given in table 2 . 
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.2. Sensitivity analysis 

To find the parameter sets yielding the minimal NRMSE, sim- 

lations were performed with a range of stimulus parameters. To 

nvestigate how the error was affected by the variation in the pa- 

ameters, a sensitivity analysis was performed. The sensitivity to 

he adaptation and accommodation parameters was investigated 

y plotting them for each exponent and offset combination, and 

he sensitivity of the exponent and offset parameters was inves- 

igated by plotting them for each adaptation and accommodation 

ombination. The resulting graphs including the optimal parame- 

ers are shown in Fig. 3 . 

The patterns in Fig. 3 are different for the short and long dura- 

ion data. For long duration data, larger accommodation values led 

o strong errors, which was not seen in the short duration data. 

he short duration data exhibited a combined effect of adaptation 

nd accommodation amplitudes; larger adaptation amplitudes re- 

uired smaller accommodation amplitudes for similar errors. Fur- 

hermore, we identified an entangled effect of offset and β in the 

hort duration simulations that was not seen in the long duration 

imulations. In the long duration data, the exponent influenced the 

rror much more than the offset. 

.3. Fitting the power law with multiple exponents 

.3.1. Short duration fits with multiple exponents 

The actual physiological processes underlying adaptation likely 

ave exponential dynamics, but together behave in line with power 

aw dynamics. Therefore, we investigated how many exponential 

rocesses would be required to explain the data. Each added expo- 

ent adds two new parameters to the parameter space that needs 

o be fitted. Fitting with several parameters can lead to overfit- 

ing or lack of convergence. Moreover, running simulations of the 

istory-dependent neural responses with multiple exponents re- 

uires tremendous computational power. Alternatively, the expo- 

ential parameters can be fitted on the power law function that, 
5 
n turn, was fitted on the data. Here, the minimum number of 

xponents needed to reliably simulate the recordings was tested. 

he time constants and weights for each number of exponents are 

iven in Appendix B. The simulations of the short duration data 

ith multiple exponents are shown in Fig. 4 . 

Going from the fit with 1 exponent ( τ= 77 ms) to two expo- 

ents ( τ 1 = 23 and τ 2 = 212 ms) induced the largest improvement. 

he NRMSE decreased from 0.100 to 0.0 6 6, and a continuous de- 

rease in the spike rate was seen, similar to the animal data. The 

S also improved with the addition of a second exponent; the 

RMSE decreased from 0.25 to 0.219. When the number of expo- 

ents increased further, no additional substantial improvement in 

eplication of the data was seen. 

.3.2. Long duration fits with multiple exponents 

In a similar approach as with the short duration data, the long 

uration data were fitted with exponents. The simulations with 1, 

 and 7 exponentials are shown in Figs. 5 A-C. The NRMSE values 

or up to 10 exponentials are shown in Fig. 5 D. 

As can be seen in Fig. 5 D, with up to seven exponents the fit

mproved; NRMSE decreased from 0.257 with the one fitted ex- 

onent to 0.079 with seven exponential functions. With seven ex- 

onents the taus ranged from 4 ms to 600 s, with approximately 

ne order size difference between each tau. The NRMSE of 0.079 

s found with seven exponents is similar to the NRMSE found with 

he power law fitted on the long duration (0.082, Fig. 1 C). 

. Discussion 

Power law and exponential models of adaptation were evalu- 

ted for their performance in simulating the responses of the au- 

itory nerve to electrical pulse trains of different durations. Fir- 

ng rates were better simulated with power law adaptation opti- 

ized on both data sets combined than with exponential adapta- 

ion. For both data sets, when optimized for the data set itself the 

est results were obtained. The power law parameters optimized 
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Fig. 3. NRMSEs for the short duration data (left) and long duration data (right). Color coding ranges from the minimal error in blue to the maximal error in yellow. The 

minimal and maximal values are included in each sub-figure. At all intersections of the dotted lines, responses were calculated, and between those points is interpolated. 

The following parameters were set so that the optimal value was included in each sub-figure: [A] offset = 20 ms, exponent = −1; [B] offset = 5 ms, exponent = −1; [C] 

adaptation = 0.03%, accommodation = 10 × 10–4%; and [D] adaptation = 0.02%, accommodation = 6 × 10–4%. (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.) 
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or short duration data also predicted the long duration data rea- 

onably well, but short duration data simulated with the parame- 

ers for long duration data yielded a fit worse than the exponen- 

ial. Vector strength was best simulated with exponential adapta- 

ion, but was in all simulations smaller than in the recordings. For 

ndividual fibers, slightly different parameter sets were found. The 

ower law could be fitted with multiple exponents, which is phys- 
6 
ologically more realistic. When enough exponents were included, 

his yielded similar responses as with the power law. The number 

f required exponents depended on the duration of stimulation. 

he effect of long duration stimulation is important because rele- 

ant temporal segments, such as sentences, are in the order of sec- 

nds rather than milliseconds, and regular CI usage will last a day. 

ith improved models of adaptation as suggested here, extended 
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ith an interpretation model, the effect of sound-coding strategies 

or speech segments and longer duration stimulation can be evalu- 

ted. It will be particularly interesting to evaluate how the adapta- 

ion in the auditory nerve alters loudness perception and dynamic 

ange. In the future, this improved understanding of neural adapta- 

ion could be used to test the performance of sound-coding strate- 

ies in long duration stimulation and provide suggestions on how 

o integrate adaptation in sound-coding strategies to optimally en- 

ode the acoustic environment. 

.1. Optimal power law parameters 

Here, two different data sets were used to find the optimal 

arameter set, and an overall optimum parameter set was deter- 

ined. The separate data sets were best described by a power 

aw with an exponent of −1, the combined optimum was obtained 

ith an exponent of −1.1. These values are in line with earlier 

tudies of adaptation mechanisms in general computational neu- 

osciences, and with specific studies on adaptation of the audi- 

ory nerve in response to acoustic stimulation ( Zilany and Car- 

ey, 2010 ), where the exponent was found to be around −1. The 

arameter set found by minimizing the combined error outper- 

orms the single exponential model for both the short and long 

uration data. 

Power law adaptation has been argued to result in whitening 

f the neural responses, with the power law exponent optimiz- 

ng information transmission by removing both short-range and 

ong-range temporal correlations in spike trains ( Pozzorini et al., 

013 ). For the individual fits, the exponents varied between −0.9 

nd −1.2 ( Fig. 1 D and Table 2 ). This spread in individual power law

omponents suggests that the characteristic exponent depends on 

he frequency sensitivity of the neuron and the corresponding tem- 

oral correlations, thereby optimizing information transmission in 

he population of fibers. As seen in the sensitivity analysis for the 

hort duration data ( Fig. 3 ), there is a relationship between off- 

et and exponent; with a smaller exponent, a smaller offset was 

equired to yield minimal error. For the long duration data, such 

 relationship was not as clear. When the optimized power law 

as fitted to a single exponent, the resulting time constant (77 ms 

or the short duration data, and 60 s for the long duration data) 

as different from the time constant found in previous studies 

100 ms) ( van Gendt et al., 2017 , 2016 ). A possible explanation for

his is that, in previous studies, the exponent was found by directly 

ptimizing on the data, whereas in the present study the exponent 

as found by fitting on the optimal power law. Moreover, previ- 

usly, the time constant of 100 ms was based on a larger num- 

er of data sets. Previous studies combined the power law with 
7 
xponential adaptation to ensure that adaptation on the shortest 

ime scales was properly modeled ( Zilany and Carney, 2010 ). In the 

odel presented here, temporal neural behavior was described by 

oth power law adaptation and refractory behavior, which is ex- 

onential with a time constant of approximately 1 ms. Parameters 

f the approximation with multiple exponents were obtained by a 

irect fit to the power law and minimizing the error. Alternatively, 

he error between expected output and simulated neural responses 

an be minimized directly, but requires much more computational 

ffort. The computational effort depended mostly on stimulus du- 

ation and level, and was comparable for power law and exponen- 

ial adaptation. 

.2. Biophysical origins of adaptation 

The dynamics of adaptation in the auditory nerve in response 

o electrical stimulation, and more specifically the dynamics of 

ower law adaptation, can be attributed to underlying phenomena 

ith exponential dynamics. Generally, many biological processes 

annot be described by a single exponential time constant, but 

ather by a sum of exponents with a wide range of time constants. 

uch a sum yields a single power law, which has been applied 

o model adaptation in neural systems (Anderson, 2001; Thorson 

nd Biderman-Thorson, 1974). Up to this date it is unclear which 

iophysical processes cause power law adaptation and whether 

his is a single process or multiple processes operating on differ- 

nt time scales ( Pozzorini, 2014 ). It has been suggested to be re- 

ated to ion channel- ( Teka et al., 2016 ; Toib et al., 1998 ), synaptic-

 Fusi et al., 2005 ), and psychophysical dynamics ( Fairhall et al., 

0 01 ; Zilany et al., 20 09 ). The synaptic mechanism can be caused

ither by depletion of presynaptic neurotransmitters, or desensiti- 

ation of post-synaptic receptors ( Zilany et al., 2009 ). With electri- 

al stimulation of the auditory nerve and recorded peripherally, as 

n this study, no synapse mechanisms or complex neural networks 

ave been in place. Rather, the power law response in the record- 

ngs replicated here is an effect of adaptation in the behavior of 

he ion channels in the membranes of the auditory neurons. 

Ion channels can show power-law dynamics under the as- 

umption of a large number of hidden states ( Ben-Avraham and 

avlin, 1991 ; Teka et al., 2016 ), producing anomalous diffu- 

ion with power-law behavior. Such behavior has been shown 

o accurately capture single channel dynamics ( Goychuk and 

änggi, 2004 ), with phenomenological power-law parameters re- 

ating to the transition probabilities between these hidden states. 

he exact parameters to be implemented in the kinetics of ion 

hannels to yield the power law dynamics could be evaluated us- 

ng a biophysical model. 
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Specific adaptation currents have been suggested in the liter- 

ture, and have been related to different ion channels and time 

onstants. The most well-known are the voltage-gated potassium 

M-) currents, they may cause adaptation with time constants of 

 few milliseconds ( Benda and Herz, 2003 ). Secondly, calcium- 

ated potassium currents have been shown to cause adaptation 

ith time constants of around 50 milliseconds ( Madison and 

icoll, 1984 ). A third, slower, mechanism is the slow recovery 

rom inactivation of the sodium channels ( Vilin and Ruben, 2001 ). 

he time constant of the slow inactivation process ranges from 

 few 100 ms up to tens of seconds ( Benda and Herz, 2003 ;

lair and Bean, 2003 ). Moreover, a model study showed that 

yperpolarization-activated cation and low-threshold potassium 

on channels may play a role in adaptation with a time scale 

round 100 ms ( Negm and Bruce, 2014 ). An after hyperpolariza- 

ion, adaptation current may be generated by a cascade of expo- 

ential processes ( Drew and Abbott, 2006 ). The number of relevant 

rocesses, the time scales involved, and the parameters required to 

ouple the different processes depend on the duration of stimula- 

ion. 

.3. Implications of power law adaptation behavior 

Power law adaptation provides an improved dynamic range 

nd enhanced representation of stimulus dynamics ( Fairhall et al., 

001 ; Mensi et al., 2016 ). The slow components of adaptation pro- 

ide information about the context or stimulus statistics, whereas 

he fast components provide information about the rapid stimu- 

us variations ( Fairhall et al., 2001 ). Because of the slow variations, 

he human auditory system is sensitive to a wide range of stimu- 

us levels, including levels of soft speech and loud shouting. With 

ower law adaptation, auditory neurons that adapt to sound-level 

tatistics ( Zilany and Carney, 2010 ) are more sensitive to ampli- 

ude modulations in the presence of a steady background noise 

 Zilany et al., 2009 ) and to abrupt changes, such as those reflected

n oddball paradigms ( Antunes et al., 2010 ). When the neuron is 

dapted to a certain sound level, small variations are better de- 

ectable, i.e., just noticeable differences become smaller. A previ- 

us modeling study showed that weaker adaptation reduces the 

ector strength and vice versa, but vector strength is the results 

f a complex interplay of adaptation, stochasticity and refractori- 

ess ( van Gendt et al., 2017 ). Power law adaptation has been sug-

ested to improve dynamic range, or precision coding in a dy- 

amic environment. The question is whether long term adapta- 

ion components would come at the expense of short-term com- 

onents, yielding the drop in vector strength. Models developed so 

ar slightly underestimate vector strength of phase locking proper- 

ies of the electrically stimulated auditory nerve (Goldwyn et al., 

010; van Gendt et al., 2017 ). It would be of great value to fur-

her investigate what neural behavior could underlie this strong 

hase locking. Future simulations with amplitude modulated pulse 

rains with means slowly varying over time could demonstrate 

ow power law adaptation affects precision coding in a dynami- 

ally changing environment. 

The modulation rate of the speech envelope is 2 to 50 Hz 

 Rosen, 1992 ), and peaks at 3–5 Hz. These slow modulations are 

mportant for speech perception. Frequency modulations, often re- 

erred to as fine-structure, occur on much shorter time scales. 

hese faster modulations in speech (milliseconds or less) convey 

nformation about prosody, melody, intonation, timbre, and the 

uality of speech. One can expect that, because power law adap- 

ation improves precision coding in a dynamic environment, it also 

mproves the perception of both of these cues. This could be eval- 

ated in a follow-up study including amplitude-modulated signals 

ith different modulation rates and switching stimulus levels. 
8 
In CIs, loudness is generally coded by charge, i.e., the ampli- 

ude or width of the stimulus pulse, by which a larger number 

f fibers are stimulated. For normal hearing, loudness increases 

ith a compressive function of sound pressure, whereas for elec- 

rical stimulation, loudness increases with an expansive function 

or increasing stimulation ( Vellinga et al., 2017 ). Moreover, the dy- 

amic range in CI listeners is much smaller than that of normal 

earing listeners. Compression can be employed to compensate for 

he steep build-up in loudness. In addition, in contemporary CIs, 

atching the dynamic range of naturally occurring sounds to the 

erceptual dynamic range is improved through the automatic gain 

ontrol (AGC). The AGC adjusts the loudness cue according to the 

istory of stimulus levels averaged over a certain amount of time, 

hereby improving the comfortable audibility of a wide range of 

timulus levels. These systems are generally slow- or fast-acting 

r dual. Fast-acting systems aim to evoke the loudness perception 

ost true to nature, whereas slow-acting systems are designed to 

aintain the audibility of the amplitude differences for the modu- 

ation rates conveying speech information ( Boyle et al., 2009 ). With 

n ideal AGC, neural activation would replicate the situation of nat- 

ral hearing, and the optimal dynamic range would be achieved. To 

urther optimize existing AGC designs in this direction, the differ- 

nce in adaptation dynamics between the normal hearing situation 

nd the electrically stimulated degenerated auditory nerve could 

e established and accounted for by sound processing. The present 

tudy shows that power law dynamics best describe the adaptation 

n the electrically stimulated auditory nerve. Ideally, the dynamics 

nd strength of adaptation of the auditory nerve in an individual 

I user would be determined. Subsequently, the adaptation mech- 

nism in the sound-coding strategy could be adjusted so that the 

timulation pattern effectively yields activation similar to the nor- 

al hearing situation. 

In real-life, a CI listener will wear the CI continuously. Although 

here will be moments of relative quiescence, adaptation will occur 

ontinuously to a larger or smaller extent. Consequently, models of 

he auditory nerve in response to electrical stimulation will have 

o be tuned to this. Psychophysical experiments generally start in 

uiet. This may lead to inherent changes within the duration of 

he experiments. This should be considered while designing an ex- 

eriment. When one wants to use a desynchronizing pulse train to 

ctivate the neurons from an adapted situation ( Rubinstein et al., 

999 ), the duration of stimulation must be evaluated. As can be 

een from the recordings ( Litvak et al., 2003 ), most fibers fire at a

onstant rate after a stimulus duration of around 200 s. This sug- 

ests that here the maximum adaptation is reached. 

The pulse trains simulated in the current study had pulse rates 

f 5 kpps. Stimulus rates used in contemporary cochlear implants 

ary from 800 to 20 0 0 pps, with new developments in the lower 

requency range. Because of cross-over stimulation between elec- 

rodes, neurons are likely to be affected by much higher rates than 

he stimulus rates on single electrodes, notwithstanding the fact 

hat there will be a large variability of stimulus rates at the site of 

he neurons. It has been shown that the stimulus rate has an effect 

n the spike rate decreases over time for short duration responses 

 Heffer et al., 2010 ; Zhang et al., 2007 ). Previous modeling work 

howed that such differences over time can be replicated with a 

ingle model with the same parameters ( van Gendt et al., 2016 ). 

or long duration electrical stimulation, unfortunately, such exper- 

mental data of neural responses to a variety of stimulus rates is 

ot available. Such data would enable validation of, or optimiza- 

ion of the power law parameters (alpha, beta and offset) for low 

ate pulse trains. To investigate the theoretical effect of power law 

daptation on clinically used, lower rate pulse trains, responses to 

ong duration stimulation with 800 and 1800 pps were simulated, 

esults are shown in Fig. 6 . 
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Fig. 6. Response rates simulated with power law adaptation (offset = 5 ms, expo- 

nent = −1, accommodation = 6 × 10–4% of stimulus, adaptation = 0.02% of thresh- 

old) for long duration pulse trains (600 s) with different stimulus rates; 800 pps 

(black), 1800 pps (middle gray) and 50 0 0 pps (light gray). For all pulse trains the 

stimulus level was used that elicited the 720 spikes in the first second in response 

to the 5kpps pulse train. 
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Fig. 6 shows that also with lower rates the induced firing rates 

re expected to decrease over a long period of stimulation. The 

ower stimulation rates (800 and 1800 pps) had higher sustained 

ring rates than the response to 50 0 0 pps, in which the neuron

as supposedly less affected by adaptation and refractoriness. The 

ustained firing rates in response to 800 and 1800 pps are very 

imilar. The exact response is the result of a complex interplay be- 

ween refractory properties, accommodation, adaptation, and stim- 

lus rate, and therefore dependent on stimulus rate in a nonlinear 

anner. 

.4. Limitations and suggestions for further research 

The optimal parameter set was found via direct comparison of 

he simulated and recorded spike rates. However, especially for 

he long duration simulations, the model did not replicate some 

nomalous behavior of the recorded spike rates. Examples of this 

ehavior were the dip in response rates around 50 ms and the con- 

inuous decrease in the strongest responding neuron. This latter 

bservation may have been a result of continuing damage being 

one to the neuron due to the recording electrode, or displace- 

ent of the recording electrode. A larger number of these kinds 

f recordings from neural fibers would be required to determine 

hether this is an intrinsic neural behavior that should be mod- 

led, or whether it is merely an effect of the recording method. 

The short duration data fitted in this paper were all ob- 

ained from a single neuron. The other two fibers presented in 

hang et al. (2007) did not show the continuous decrease and 

ere already reliably simulated by the model with a single expo- 

ent. Such inter-fiber differences indicate great variability between 

bers in adaptation behavior. The improved fit on long duration 

ata when optimized per fiber indicates that different fibers re- 

uire a different parameter set and exhibit different neural behav- 

ors. More experimental data are needed to obtain ranges for the 

arameters in auditory neurons. A previous study showed that the 

trength of adaptation may be related to the health of the auditory 

erve ( van Gendt et al., 2019 ). How the characteristics of the power

aw adaptation relate to neural health is unknown, but could be 

valuated in a physiological study. 

In a follow-up study, the effect of the amount of adaptation 

n long duration stimulation, especially speech segments, should 

e evaluated. An interpretation model that can relate the neural 

piking to perceptual outcomes will be required. Hypotheses re- 
9 
ating neural adaptation to increased dynamic range and loudness 

iscrimination could be tested. In addition, the effect of dimin- 

shed adaptation, in amplitude or temporal length, as may occur 

n a degenerated auditory nerve, on perceptual outcomes could 

e tested. Besides evaluating how the neural behavior can be ex- 

ected to be related to perceptual outcomes, the model can also 

e used to compare different sound-coding strategies. After vali- 

ation, new approaches to sound coding can be tested efficiently. 

ith the model presented here, the performance of new designs 

nd strategies in the perception of long duration speech segments 

an be evaluated. 
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ppendices 

. Exponential model formula and parameters 

Table A.1 

• Relative spread: σ = I th · RS

• Refractoriness: R = 1 − e 
t−τARP 
τRRP 

• Adaptation: AF = 

∑ 

i 

amp l adap · e 

t−t i 
τadap 

◦ Every pulse: adaptation amplitude is increased: 

Adaptation parameter: 

amp l adap = amp l adap ( oud ) 

+ Adaptation amplitude · threshold ( initial ) 

◦ Every spike: adaptation amplitude is increased (accommo- 

dation): 

Adaptation parameter (accommodation): 

amp l adap = amp l adap ( oud ) + Accommodation amplitude 

·st imulus current · spat ial factor 

Spatial factor = 

I min ( electrode ) 

I ( electrode, f iber ) 

• Total model: I f inal _ th = N( I th , σ ) · R + AF 

. Power law approximation with exponents 

Tables B.1 , B.2 
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Table A.1 

Model parameters. 

Parameter Value 

RS 0.06 

τ ARP 0.4 ms 

τ RRP 0.8 ms 

Within refractoriness stochasticity 5% of τ ARP / τ RRP 

Adaptation amplitude 1% of threshold 

Accommodation amplitude 0.03% of stimulus current · spatial factor 

Table B.1 

Fitted exponents and their weights to approximate the power law for short duration data. 

1 exp in ms 

weight 

77 

2 exps in ms 

weights 

23 

0.72 

212 

0.26 

3 exps in ms 

weights 

17 

0.61 

80 

0.28 

376 

0.13 

4 exps in ms 

weights 

15 

0.52 

50 

0.28 

159 

0.14 

512 

0.07 

5 exps in ms 

weights 

14 

0.45 

36 

0.27 

93 

0.16 

237 

0.09 

606 

0.05 

Exponential time constants and weights for the fit to power law with beta = −1 and offset = 20 ms. 

Table B.2 

Fitted exponents and their weights to approximate the power law for long duration data. 

1 exp ms 

weights 

6e5 

2.5e-4 

2 exps ms 

weights 

21 

0.76 

6e5 

1.9e-4 

3 exps ms 

weights 

10 

0.86 

150 

0.13 

6e5 

1e-4 

4 exps ms 

weights 

6.3 

0.81 

49 

0.25 

748 

0.03 

6e5 

1.1e-4 

5 exps ms 

weights 

5 

0.71 

26 

0.35 

197 

0.067 

2.8e4 

7e-3 

6e5 

1e-4 

6 exps ms 

weights 

3.8 

0.61 

17 

0.41 

88 

0.11 

628 

0.021 

7.8e3 

2.3e-3 

6e5 

5.9e-5 

7 exps ms 

weights 

4 

0.56 

14 

0.43 

68 

0.13 

407 

0.028 

3608 

4.1e-3 

6.5e4 

2.9e-4 

6e5 

1.9e-5 

8 exps ms 

weights 

3 

.50 

12 

0.45 

48 

0.17 

239 

0.042 

519 

7.9e-3 

134e2 

1.0e-3 

897e2 

1.0e-4 

6e5 

2.8e-5 

9 Exps ms 

weights 

2.8 

0.43 

9.4 

0.47 

35 

0.20 

140 

0.061 

710 

0.014 

4.1e3 

2.6e-3 

2.2e4 

4.5e-4 

1.1e5 

8.6e-5 

6e5 

2.3e-5 

10 exps ms 

weights 

2.4 

0.35 

7.3 

0.47 

23 

0.25 

82 

0.089 

320 

0.026 

1.4e3 

6.6e-3 

7.1e3 

1.3e-3 

3.1e4 

2.7e-4 

1.4e5 

6.2e-5 

6.0e5 

2.2e-5 

Exponential time constants and weights for the fit to power law with beta = −1 and offset = 5 ms . 
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