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Abstract
Despite the increasing popularity of Bayesian inference in empirical research, few practical guidelines provide detailed
recommendations for how to apply Bayesian procedures and interpret the results. Here we offer specific guidelines for
four different stages of Bayesian statistical reasoning in a research setting: planning the analysis, executing the analysis,
interpreting the results, and reporting the results. The guidelines for each stage are illustrated with a running example.
Although the guidelines are geared towards analyses performed with the open-source statistical software JASP, most
guidelines extend to Bayesian inference in general.
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In recent years, Bayesian inference has become increasingly
popular, both in statistical science and in applied fields
such as psychology, biology, and econometrics (e.g.,
Andrews & Baguley, 2013; Vandekerckhove, Rouder, &
Kruschke, 2018). For the pragmatic researcher, the adoption
of the Bayesian framework brings several advantages
over the standard framework of frequentist null-hypothesis
significance testing (NHST), including (1) the ability
to obtain evidence in favor of the null hypothesis
and discriminate between “absence of evidence” and
“evidence of absence” (Dienes, 2014; Keysers, Gazzola, &
Wagenmakers, 2020); (2) the ability to take into account
prior knowledge to construct a more informative test
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(Gronau, Ly, & Wagenmakers, 2020; Lee & Vanpaemel,
2018); and (3) the ability to monitor the evidence as the data
accumulate (Rouder, 2014). However, the relative novelty of
conducting Bayesian analyses in applied fields means that
there are no detailed reporting standards, and this in turn
may frustrate the broader adoption and proper interpretation
of the Bayesian framework.

Several recent statistical guidelines include information
on Bayesian inference, but these guidelines are either
minimalist (Appelbaum et al., 2018; The BaSiS group,
2001), focus only on relatively complex statistical tests
(Depaoli & Schoot, 2017), are too specific to a certain
field (Spiegelhalter, Myles, Jones, & Abrams, 2000; Sung
et al., 2005), or do not cover the full inferential process
(Jarosz & Wiley, 2014). The current article aims to provide
a general overview of the different stages of the Bayesian
reasoning process in a research setting. Specifically, we
focus on guidelines for analyses conducted in JASP (JASP
Team, 2019; jasp-stats.org), although these guidelines can
be generalized to other software packages for Bayesian
inference. JASP is an open-source statistical software
program with a graphical user interface that features both
Bayesian and frequentist versions of common tools such
as the t test, the ANOVA, and regression analysis (e.g.,
Marsman & Wagenmakers, 2017; Wagenmakers et al.
2018).
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We discuss four stages of analysis: planning, executing,
interpreting, and reporting. These stages and their individual
components are summarized in Table 1. In order to
provide a concrete illustration of the guidelines for each
of the four stages, each section features a data set
reported by Frisby and Clatworthy (1975). This data set
concerns the time it took two groups of participants to
see a figure hidden in a stereogram—one group received
advance visual information about the scene (i.e., the VV
condition), whereas the other group did not (i.e., the NV
condition).1 Three additional examples (mixed ANOVA,
correlation analysis, and a t test with an informed prior)
are provided in an online appendix at https://osf.io/nw49j/.
Throughout the paper, we present three boxes that provide
additional technical discussion. These boxes, while not
strictly necessary, may prove useful to readers interested in
greater detail.

Stage 1: Planning the analysis

Specifying the goal of the analysis. We recommend that
researchers carefully consider their goal, that is, the research
question that they wish to answer, prior to the study
(Jeffreys, 1939). When the goal is to ascertain the presence
or absence of an effect, we recommend a Bayes factor
hypothesis test (see Box 1). The Bayes factor compares the
predictive performance of two hypotheses. This underscores
an important point: in the Bayes factor testing framework,
hypotheses cannot be evaluated until they are embedded
in fully specified models with a prior distribution and
likelihood (i.e., in such a way that they make quantitative
predictions about the data). Thus, when we refer to the
predictive performance of a hypothesis, we implicitly refer
to the accuracy of the predictions made by the model
that encompasses the hypothesis (Etz, Haaf, Rouder, &
Vandekerckhove, 2018).

When the goal is to determine the size of the effect,
under the assumption that it is present, we recommend to
plot the posterior distribution or summarize it by a credible
interval (see Box 2). Testing and estimation are not mutually
exclusive and may be used in sequence; for instance, one
may first use a test to ascertain that the effect exists, and
then continue to estimate the size of the effect.

Box 1. Hypothesis testing The principled approach to
Bayesian hypothesis testing is by means of the Bayes
factor (e.g., Etz & Wagenmakers, 2017; Jeffreys, 1939;
Ly, Verhagen, & Wagenmakers, 2016; Wrinch & Jeffreys,

1The variables are participant number, the time (in seconds) each
participant needed to see the hidden figure (i.e., fuse time),
experimental condition (VV = with visual information, NV = without
visual information), and the log-transformed fuse time.

1921). The Bayes factor quantifies the relative predictive
performance of two rival hypotheses, and it is the degree
to which the data demand a change in beliefs concerning
the hypotheses’ relative plausibility (see Equation 1).
Specifically, the first term in Equation 1 corresponds to
the prior odds, that is, the relative plausibility of the rival
hypotheses before seeing the data. The second term, the
Bayes factor, indicates the evidence provided by the data.
The third term, the posterior odds, indicates the relative
plausibility of the rival hypotheses after having seen the
data.
p(H1)

p(H0)
︸ ︷︷ ︸

Prior odds

× p(D | H1)

p(D | H0)
︸ ︷︷ ︸

Bayes factor10

= p(H1 | D)

p(H0 | D)
︸ ︷︷ ︸

Posterior odds

(1)

The subscript in the Bayes factor notation indicates
which hypothesis is supported by the data. BF10 indicates
the Bayes factor in favor of H1 over H0, whereas BF01
indicates the Bayes factor in favor of H0 over H1.
Specifically, BF10 = 1/BF01. Larger values of BF10
indicate more support forH1. Bayes factors range from 0 to
∞, and a Bayes factor of 1 indicates that both hypotheses
predicted the data equally well. This principle is further
illustrated in Figure 4.

Box 2. Parameter estimation For Bayesian parameter esti-
mation, interest centers on the posterior distribution of the
model parameters. The posterior distribution reflects the rel-
ative plausibility of the parameter values after prior knowl-
edge has been updated by means of the data. Specifically,
we start the estimation procedure by assigning the model
parameters a prior distribution that reflects the relative plau-
sibility of each parameter value before seeing the data. The
information in the data is then used to update the prior dis-
tribution to the posterior distribution. Parameter values that
predicted the data relatively well receive a boost in plau-
sibility, whereas parameter values that predicted the data
relatively poorly suffer a decline (Wagenmakers, Morey, &
Lee, 2016). Equation 2 illustrates this principle. The first
term indicates the prior beliefs about the values of parame-
ter θ . The second term is the updating factor: for each value
of θ , the quality of its prediction is compared to the average
quality of the predictions over all values of θ . The third term
indicates the posterior beliefs about θ .

p(θ)
︸︷︷︸

Prior belief
about θ

×

Predictive adequacy
of specific θ

︷ ︸︸ ︷

p(data | θ)

p(data)
︸ ︷︷ ︸

Average predictive
adequacy across all θ ′s

= p(θ | data)
︸ ︷︷ ︸

Posterior belief
about θ

. (2)

The posterior distribution can be plotted or summarized
by an x% credible interval. An x% credible interval contains
x% of the posterior mass. Two popular ways of creating a

https://osf.io/nw49j/
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Table 1 A summary of the guidelines for the different stages of a Bayesian analysis, with a focus on analyses conducted in JASP.

Stage Recommendation

Planning Write the methods section in advance of data collection

Distinguish between exploratory and confirmatory research

Specify the goal; estimation, testing, or both

If the goal is testing, decide on one-sided or two-sided procedure

Choose a statistical model

Determine which model checks will need to be performed

Specify which steps can be taken to deal with possible model violations

Choose a prior distribution

Consider how to assess the impact of prior choices on the inferences

Specify the sampling plan

Consider a Bayes factor design analysis

Preregister the analysis plan for increased transparency

Consider specifying a multiverse analysis

Executing Check the quality of the data (e.g., assumption checks)

Annotate the JASP output

Interpreting Beware of the common pitfalls

Use the correct interpretation of Bayes factor and credible interval

When in doubt, ask for advice (e.g., on the JASP forum)

Reporting Mention the goal of the analysis

Include a plot of the prior and posterior distribution, if available

If testing, report the Bayes factor, including its subscripts

If estimating, report the posterior median and x% credible interval

Include which prior settings were used

Justify the prior settings (particularly for informed priors in a testing scenario)

Discuss the robustness of the result

If relevant, report the results from both estimation and hypothesis testing

Refer to the statistical literature for details about the analyses used

Consider a sequential analysis

Report the results of any multiverse analyses, if conducted

Make the .jasp file and data available online

Note that the stages have a predetermined order, but the individual recommendations can be rearranged where necessary

credible interval are the highest density credible interval,
which is the narrowest interval containing the specified
mass, and the central credible interval, which is created by
cutting off 100−x

2 % from each of the tails of the posterior
distribution.

Specifying the statistical model. The functional form of
the model (i.e., the likelihood; Etz, 2018) is guided by
the nature of the data and the research question. For
instance, if interest centers on the association between
two variables, one may specify a bivariate normal model
in order to conduct inference on Pearson’s correlation
parameter ρ. The statistical model also determines which
assumptions ought to be satisfied by the data. For instance,
the statistical model might assume the dependent variable

to be normally distributed. Violations of assumptions may
be addressed at different points in the analysis, such as the
data preprocessing steps discussed below, or by planning to
conduct robust inferential procedures as a contingency plan.

The next step in model specification is to determine
the sidedness of the procedure. For hypothesis testing,
this means deciding whether the procedure is one-
sided (i.e., the alternative hypothesis dictates a specific
direction of the population effect) or two-sided (i.e.,
the alternative hypothesis dictates that the effect can
be either positive or negative). The choice of one-sided
versus two-sided depends on the research question at hand
and this choice should be theoretically justified prior to
the study. For hypothesis testing it is usually the case
that the alternative hypothesis posits a specific direction.



Psychon Bull Rev

In Bayesian hypothesis testing, a one-sided hypothesis
yields a more diagnostic test than a two-sided alternative
(e.g., Jeffreys, 1961; Wetzels, Raaijmakers, Jakab, &
Wagenmakers, 2009, p.283).2

For parameter estimation, we recommend to always use
the two-sided model instead of the one-sided model: when
a positive one-sided model is specified but the observed
effect turns out to be negative, all of the posterior mass
will nevertheless remain on the positive values, falsely
suggesting the presence of a small positive effect.

The next step in model specification concerns the
type and spread of the prior distribution, including its
justification. For the most common statistical models (e.g.,
correlations, t tests, and ANOVA), certain “default” prior
distributions are available that can be used in cases where
prior knowledge is absent, vague, or difficult to elicit (for
more information, see Ly et al., 2016). These priors are
default options in JASP. In cases where prior information
is present, different “informed” prior distributions may be
specified. However, the more the informed priors deviate
from the default priors, the stronger becomes the need
for a justification (see the informed t test example in the
online appendix at https://osf.io/ybszx/). Additionally, the
robustness of the result to different prior distributions can
be explored and included in the report. This is an important
type of robustness check because the choice of prior can
sometimes impact our inferences, such as in experiments
with small sample sizes or missing data. In JASP, Bayes
factor robustness plots show the Bayes factor for a wide
range of prior distributions, allowing researchers to quickly
examine the extent to which their conclusions depend on
their prior specification. An example of such a plot is given
later in Figure 7.

Specifying data preprocessing steps. Dependent on the
goal of the analysis and the statistical model, different
data preprocessing steps might be taken. For instance,
if the statistical model assumes normally distributed
data, a transformation to normality (e.g., the logarithmic
transformation) might be considered (e.g., Draper & Cox,
1969). Other points to consider at this stage are when
and how outliers may be identified and accounted for,
which variables are to be analyzed, and whether further
transformation or combination of data are necessary. These
decisions can be somewhat arbitrary, and yet may exert a

2A one-sided alternative hypothesis makes a more risky prediction
than a two-sided hypothesis. Consequently, if the data are in line
with the one-sided prediction, the one-sided alternative hypothesis is
rewarded with a greater gain in plausibility compared to the two-sided
alternative hypothesis; if the data oppose the one-sided prediction, the
one-sided alternative hypothesis is penalized with a greater loss in
plausibility compared to the two-sided alternative hypothesis.

large influence on the results (Wicherts et al., 2016). In order
to assess the degree to which the conclusions are robust
to arbitrary modeling decisions, it is advisable to conduct
a multiverse analysis (Steegen, Tuerlinckx, Gelman, &
Vanpaemel, 2016). Preferably, the multiverse analysis is
specified at study onset. A multiverse analysis can easily be
conducted in JASP, but doing so is not the goal of the current
paper.

Specifying the sampling plan. As may be expected from
a framework for the continual updating of knowledge,
Bayesian inference allows researchers to monitor evidence
as the data come in, and stop whenever they like, for
any reason whatsoever. Thus, strictly speaking there is
no Bayesian need to pre-specify sample size at all (e.g.,
Berger & Wolpert, 1988). Nevertheless, Bayesians are free
to specify a sampling plan if they so desire; for instance, one
may commit to stop data collection as soon as BF10 ≥ 10
or BF01 ≥ 10. This approach can also be combined with
a maximum sample size (N), where data collection stops
when either the maximum N or the desired Bayes factor is
obtained, whichever comes first (for examples see Matzke
et al., 2015;Wagenmakers et al. 2015).

In order to examine what sampling plans are feasible,
researchers can conduct a Bayes factor design analysis
(Schönbrodt & Wagenmakers, 2018; Stefan, Gronau,
Schönbrodt, & Wagenmakers, 2019), a method that shows
the predicted outcomes for different designs and sampling
plans. Of course, when the study is observational and the
data are available ‘en bloc’, the sampling plan becomes
irrelevant in the planning stage.

Stereogram example

First, we consider the research goal, which was to determine
if participants who receive advance visual information
exhibit a shorter fuse time (Frisby & Clatworthy, 1975).
A Bayes factor hypothesis test can be used to quantify the
evidence that the data provide for and against the hypothesis
that an effect is present. Should this test reveal support in
favor of the presence of the effect, then we have grounds
for a follow-up analysis in which the size of the effect is
estimated.

Second, we specify the statistical model. The study focus
is on the difference in performance between two between-
subjects conditions, suggesting a two-sample t test on the
fuse times is appropriate. The main measure of the study
is a reaction time variable, which can for various reasons
be non-normally distributed (Lo & Andrews, 2015; but see
Schramm & Rouder, 2019). If our data show signs of non-
normality we will conduct two alternatives: a t test on the
log-transformed fuse time data and a non-parametric t test

https://osf.io/ybszx/
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(i.e., the Mann–Whitney U test), which is robust to non-
normality and unaffected by the log-transformation of the
fuse times.

For hypothesis testing, we compare the null hypothesis
(i.e., advance visual information has no effect on fuse
times) to a one-sided alternative hypothesis (i.e., advance
visual information shortens the fuse times), in line with the
directional nature of the original research question. The rival
hypotheses are thus H0 : δ = 0 and H+ : δ > 0, where δ

is the standardized effect size (i.e., the population version of
Cohen’s d),H0 denotes the null hypothesis, andH+ denotes
the one-sided alternative hypothesis (note the ‘+’ in the
subscript). For parameter estimation (under the assumption
that the effect exists), we use the two-sided t test model and
plot the posterior distribution of δ. This distribution can also
be summarized by a 95% central credible interval.

We complete the model specification by assigning prior
distributions to the model parameters. Since we have only
little prior knowledge about the topic, we select a default
prior option for the two-sample t test, that is, a Cauchy
distribution3 with spread r set to 1/

√
2. Since we specified

a one-sided alternative hypothesis, the prior distribution is
truncated at zero, such that only positive effect size values
are allowed. The robustness of the Bayes factor to this prior
specification can be easily assessed in JASP by means of a
Bayes factor robustness plot.

Since the data are already available, we do not have
to specify a sampling plan. The original data set has a
total sample size of 103, from which 25 participants were
eliminated due to failing an initial stereo-acuity test, leaving
78 participants (43 in the NV condition and 35 in the VV
condition). The data are available online at https://osf.io/
5vjyt/.

Stage 2: Executing the analysis

Before executing the primary analysis and interpreting
the outcome, it is important to confirm that the intended
analyses are appropriate and the models are not grossly
misspecified for the data at hand. In other words, it
is strongly recommended to examine the validity of the
model assumptions (e.g., normally distributed residuals or
equal variances across groups). Such assumptions may be
checked by plotting the data, inspecting summary statistics,
or conducting formal assumption tests (but see Tijmstra,
2018).

A powerful demonstration of the dangers of failing to
check the assumptions is provided by Anscombe’s quartet

3The fat-tailed Cauchy distribution is a popular default choice because
it fulfills particular desiderata, see (Jeffreys, 1961;Liang, German,
Clyde, & Berger, 2008; Ly et al., 2016; Rouder, Speckman, Sun,
Morey, & Iverson, 2009) for details.

(Anscombe, 1973; see Fig. 1). The quartet consists of
four fictitious data sets of equal size that each have the
same observed Pearson’s product moment correlation r ,
and therefore lead to the same inferential result both in
a frequentist and a Bayesian framework. However, visual
inspection of the scatterplots immediately reveals that three
of the four data sets are not suitable for a linear correlation
analysis, and the statistical inference for these three data
sets is meaningless or even misleading. This example
highlights the adage that conducting a Bayesian analysis
does not safeguard against general statistical malpractice—
the Bayesian framework is as vulnerable to violations of
assumptions as its frequentist counterpart. In cases where
assumptions are violated, an ordinal or non-parametric test
can be used, and the parametric results should be interpreted
with caution.

Once the quality of the data has been confirmed,
the planned analyses can be carried out. JASP offers a
graphical user interface for both frequentist and Bayesian
analyses. JASP 0.10.2 features the following Bayesian
analyses: the binomial test, the Chi-square test, the
multinomial test, the t test (one-sample, paired sample, two-
sample, Wilcoxon rank-sum, and Wilcoxon signed-rank
tests), A/B tests, ANOVA, ANCOVA, repeated measures
ANOVA, correlations (Pearson’s ρ and Kendall’s τ ), linear
regression, and log-linear regression. After loading the
data into JASP, the desired analysis can be conducted by
dragging and dropping variables into the appropriate boxes;
tick marks can be used to select the desired output.

The resulting output (i.e., figures and tables) can be
annotated and saved as a .jasp file. Output can then
be shared with peers, with or without the real data in the
.jasp file; if the real data are added, reviewers can easily
reproduce the analyses, conduct alternative analyses, or
insert comments.

Stereogram example

In order to check for violations of the assumptions of the t

test, the top row of Fig. 2 shows boxplots and Q-Q plots of
the dependent variable fuse time, split by condition. Visual
inspection of the boxplots suggests that the variances of the
fuse times may not be equal (observed standard deviations
of the NV and VV groups are 8.085 and 4.802, respectively),
suggesting the equal variance assumption may be unlikely
to hold. There also appear to be a number of potential
outliers in both groups. Moreover, the Q-Q plots show that
the normality assumption of the t test is untenable here.
Thus, in line with our analysis plan we will apply the log-
transformation to the fuse times. The standard deviations
of the log-transformed fuse times in the groups are roughly
equal (observed standard deviations are 0.814 and 0.818
in the NV and the VV group, respectively); the Q-Q plots

https://osf.io/5vjyt/
https://osf.io/5vjyt/
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Fig. 1 Model misspecification is also a problem for Bayesian analyses. The four scatterplots in the top panel show Anscombe’s quartet
(Anscombe, 1973); the bottom panel shows the corresponding inference, which is identical for all four scatter plots. Except for the leftmost
scatterplot, all data violate the assumptions of the linear correlation analysis in important ways

in the bottom row of Fig. 2 also look acceptable for both
groups and there are no apparent outliers. However, it
seems prudent to assess the robustness of the result by also
conducting the Bayesian Mann–WhitneyU test (van Doorn,
Ly, Marsman, & Wagenmakers, 2020) on the fuse times.

Following the assumption check, we proceed to execute
the analyses in JASP. For hypothesis testing, we obtain
a Bayes factor using the one-sided Bayesian two-sample
t test. Figure 3 shows the JASP user interface for this
procedure. For parameter estimation, we obtain a posterior
distribution and credible interval, using the two-sided
Bayesian two-sample t test. The relevant boxes for the
various plots were ticked, and an annotated .jasp file
was created with all of the relevant analyses: the one-sided
Bayes factor hypothesis tests, the robustness check, the
posterior distribution from the two-sided analysis, and the
one-sided results of the Bayesian Mann–Whitney U test.
The .jasp file can be found at https://osf.io/nw49j/. The
next section outlines how these results are to be interpreted.

Stage 3: Interpreting the results

With the analysis outcome in hand, we are ready to draw
conclusions. We first discuss the scenario of hypothesis
testing, where the goal typically is to conclude whether an
effect is present or absent. Then, we discuss the scenario
of parameter estimation, where the goal is to estimate
the size of the population effect, assuming it is present.
When both hypothesis testing and estimation procedures
have been planned and executed, there is no predetermined
order for their interpretation. One may adhere to the adage
“only estimate something when there is something to be
estimated” (Wagenmakers et al. 2018) and first test whether
an effect is present, and then estimate its size (assuming the
test provided sufficiently strong evidence against the null),
or one may first estimate the magnitude of an effect, and
then quantify the degree to which this magnitude warrants a
shift in plausibility away from or toward the null hypothesis
(but see Box 3).

https://osf.io/nw49j/
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Fig. 2 Descriptive plots allow a visual assessment of the assumptions
of the t test for the stereogram data. The top row shows descriptive
plots for the raw fuse times, and the bottom row shows descriptive
plots for the log-transformed fuse times. The left column shows box-
plots, including the jittered data points, for each of the experimental

conditions. The middle and right columns show parQ-Q plots of the
dependent variable, split by experimental condition. Here we see that
the log-transformed dependent variable is more appropriate for the t

test, due to its distribution and absence of outliers. Figures from JASP

Fig. 3 JASP menu for the Bayesian two-sample t test. The left input panel offers the analysis options, including the specification of the alternative
hypothesis and the selection of plots. The right output panel shows the corresponding analysis output. The prior and posterior plot is explained in
more detail in Fig. 6. The input panel specifies the one-sided analysis for hypothesis testing; a two-sided analysis for estimation can be obtained
by selecting “Group 1 �= Group 2” under “Alt. Hypothesis”
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If the goal of the analysis is hypothesis testing, we
recommend using the Bayes factor. As described in Box
1, the Bayes factor quantifies the relative predictive
performance of two rival hypotheses (Wagenmakers et al.,
2016; see Box 1). Importantly, the Bayes factor is a relative
metric of the hypotheses’ predictive quality. For instance, if
BF10 = 5, this means that the data are 5 times more likely
under H1 than under H0. However, a Bayes factor in favor
of H1 does not mean that H1 predicts the data well. As
Figure 1 illustrates,H1 provides a dreadful account of three
out of four data sets, yet is still supported relative toH0.

There can be no hard Bayes factor bound (other than
zero and infinity) for accepting or rejecting a hypothesis
wholesale, but there have been some attempts to classify
the strength of evidence that different Bayes factors
provide (e.g., Jeffreys, 1939; Kass & Raftery, 1995).
One such classification scheme is shown in Figure 4.
Several magnitudes of the Bayes factor are visualized as a
probability wheel, where the proportion of red to white is
determined by the degree of evidence in favor of H0 and
H1.4 In line with Jeffreys, a Bayes factor between 1 and
3 is considered weak evidence, a Bayes factor between 3
and 10 is considered moderate evidence, and a Bayes factor
greater than 10 is considered strong evidence. Note that
these classifications should only be used as general rules
of thumb to facilitate communication and interpretation of
evidential strength. Indeed, one of the merits of the Bayes
factor is that it offers an assessment of evidence on a
continuous scale.

When the goal of the analysis is parameter estimation,
the posterior distribution is key (see Box 2). The posterior
distribution is often summarized by a location parameter
(point estimate) and uncertainty measure (interval estimate).
For point estimation, the posterior median (reported by
JASP), mean, or mode can be reported, although these
do not contain any information about the uncertainty of
the estimate. In order to capture the uncertainty of the
estimate, an x% credible interval can be reported. The
credible interval [L, U ] has a x% probability that the true
parameter lies in the interval that ranges from L to U (an
interpretation that is often wrongly attributed to frequentist
confidence intervals, see Morey, Hoekstra, Rouder, Lee,
& Wagenmakers, 2016). For example, if we obtain a 95%
credible interval of [−1, 0.5] for effect size δ, we can be
95% certain that the true value of δ lies between −1 and 0.5,
assuming that the alternative hypothesis we specify is true.
In case one does not want to make this assumption, one can
present the unconditional posterior distribution instead. For
more discussion on this point, see Box 3.

4Specifically, the proportion of red is the posterior probability of H1
under a prior probability of 0.5; for a more detailed explanation and a
cartoon see https://tinyurl.com/ydhfndxa

Box 3. Conditional vs. unconditional inference. A widely
accepted view on statistical inference is neatly summarized
by Fisher (1925), who states that “it is a useful prelim-
inary before making a statistical estimate . . . to test if
there is anything to justify estimation at all” (p. 300; see
also Haaf, Ly, & Wagenmakers, 2019). In the Bayesian
framework, this stance naturally leads to posterior distri-
butions conditional on H1, which ignores the possibility
that the null value could be true. Generally, when we
say “prior distribution” or “posterior distribution” we are
following convention and referring to such conditional dis-
tributions. However, only presenting conditional posterior
distributions can potentially be misleading in cases where
the null hypothesis remains relatively plausible after see-
ing the data. A general benefit of Bayesian analysis is that
one can compute anunconditional posterior distribution for
the parameter using model averaging (e.g., Clyde, Ghosh,
& Littman, 2011; Hinne, Gronau, Bergh, & Wagenmakers,
2020). An unconditional posterior distribution for a param-
eter accounts for both the uncertainty about the parameter
within any one model and the uncertainty about the model
itself, providing an estimate of the parameter that is a com-
promise between the candidate models (for more details see
Hoeting, Madigan, Raftery, & Volinsky, 1999). In the case
of a t test, which features only the null and the alternative
hypothesis, the unconditional posterior consists of a mix-
ture between a spike under H0 and a bell-shaped posterior
distribution under H1 (Rouder, Haaf, & Vandekerckhove,
2018; van den Bergh, Haaf, Ly, Rouder, & Wagenmakers,
2019). Figure 5 illustrates this approach for the stereogram
example.

Common pitfalls in interpreting Bayesian results

Bayesian veterans sometimes argue that Bayesian concepts
are intuitive and easier to grasp than frequentist concepts.
However, in our experience there exist persistent misinter-
pretations of Bayesian results. Here we list five:

• The Bayes factor does not equal the posterior odds; in
fact, the posterior odds are equal to the Bayes factor
multiplied by the prior odds (see also Equation 1).
These prior odds reflect the relative plausibility of the
rival hypotheses before seeing the data (e.g., 50/50
when both hypotheses are equally plausible, or 80/20
when one hypothesis is deemed to be four times more
plausible than the other). For instance, a proponent
and a skeptic may differ greatly in their assessment
of the prior plausibility of a hypothesis; their prior
odds differ, and, consequently, so will their posterior
odds. However, as the Bayes factor is the updating
factor from prior odds to posterior odds, proponent
and skeptic ought to change their beliefs to the same

https://tinyurl.com/ydhfndxa
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Fig. 4 A graphical representation of a Bayes factor classification table.
As the Bayes factor deviates from 1, which indicates equal support for
H0 and H1, more support is gained for either H0 or H1. Bayes fac-
tors between 1 and 3 are considered to be weak, Bayes factors between
3 and 10 are considered moderate, and Bayes factors greater than 10
are considered strong evidence. The Bayes factors are also represented

as probability wheels, where the ratio of white (i.e., support for H0)
to red (i.e., support for H1) surface is a function of the Bayes fac-
tor. The probability wheels further underscore the continuous scale of
evidence that Bayes factors represent. These classifications are heuris-
tic and should not be misused as an absolute rule for all-or-nothing
conclusions

degree (assuming they agree on the model specification,
including the parameter prior distributions).

• Prior model probabilities (i.e., prior odds) and parame-
ter prior distributions play different conceptual roles.5

The former concerns prior beliefs about the hypotheses,
for instance that bothH0 andH1 are equally plausible a
priori. The latter concerns prior beliefs about the model
parameters within a model, for instance that all values
of Pearson’s ρ are equally likely a priori (i.e., a uniform
prior distribution on the correlation parameter). Prior
model probabilities and parameter prior distributions
can be combined to one unconditional prior distribution
as described in Box 3 and Fig. 5.

• The Bayes factor and credible interval have different
purposes and can yield different conclusions. Specif-
ically, the typical credible interval for an effect size
is conditional on H1 being true and quantifies the
strength of an effect, assuming it is present (but see
Box 3); in contrast, the Bayes factor quantifies evidence
for the presence or absence of an effect. A common
misconception is to conduct a “hypothesis test” by
inspecting only credible intervals. Berger (2006, p. 383)
remarks: “[...] Bayesians cannot test precise hypothe-
ses using confidence intervals. In classical statistics one
frequently sees testing done by forming a confidence
region for the parameter, and then rejecting a null value
of the parameter if it does not lie in the confidence
region. This is simply wrong if done in a Bayesian
formulation (and if the null value of the parameter is
believable as a hypothesis).”

• The strength of evidence in the data is easy to overstate:
a Bayes factor of 3 provides some support for one
hypothesis over another, but should not warrant the
confident all-or-none acceptance of that hypothesis.

5This confusion does not arise for the rarely reported unconditional
distributions (see Box 3).

• The results of an analysis always depend on the
questions that were asked.6 For instance, choosing a
one-sided analysis over a two-sided analysis will impact
both the Bayes factor and the posterior distribution.
For an illustration of this, see Fig. 6 for a comparison
between one-sided and a two-sided results.

In order to avoid these and other pitfalls, we recommend
that researchers who are doubtful about the correct
interpretation of their Bayesian results solicit expert advice
(for instance through the JASP forum at http://forum.cogsci.
nl).

Stereogram example

For hypothesis testing, the results of the one-sided t test
are presented in Fig. 6a. The resulting BF+0 is 4.567,
indicating moderate evidence in favor of H+: the data
are approximately 4.6 times more likely under H+ than
under H0. To assess the robustness of this result, we
also planned a Mann–Whitney U test. The resulting BF+0

is 5.191, qualitatively similar to the Bayes factor from
the parametric test. Additionally, we could have specified
a multiverse analysis where data exclusion criteria (i.e.,
exclusion vs. no exclusion), the type of test (i.e., Mann–
Whitney U vs. t test), and data transformations (i.e., log-
transformed vs. raw fuse times) are varied. Typically in
multiverse analyses these three decisions would be crossed,
resulting in at least eight different analyses. However,
in our case some of these analyses are implausible or
redundant. First, because the Mann–Whitney U test is
unaffected by the log transformation, the log-transformed
and raw fuse times yield the same results. Second, due

6This is known as Jeffreys’s platitude: “The most beneficial result that
I can hope for as a consequence of this work is that more attention
will be paid to the precise statement of the alternatives involved in the
questions asked. It is sometimes considered a paradox that the answer
depends not only on the observations but on the question; it should be
a platitude” (Jeffreys, 1939, p.vi).

http://forum.cogsci.nl
http://forum.cogsci.nl
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Fig. 5 Updating the unconditional prior distribution to the uncondi-
tional posterior distribution for the stereogram example. The left panel
shows the unconditional prior distribution, which is a mixture between
the prior distributions under H0 and H1. The prior distribution under
H0 is a spike at the null value, indicated by the dotted line; the
prior distribution under H1 is a Cauchy distribution, indicated by the
gray mass. The mixture proportion is determined by the prior model
probabilities p(H0) and p(H1). The right panel shows the uncon-
ditional posterior distribution, after updating the prior distribution
with the data D. This distribution is a mixture between the posterior

distributions underH0 andH1., where the mixture proportion is deter-
mined by the posterior model probabilities p(H0 | D) and p(H1 | D).
Since p(H1 | D) = 0.7 (i.e., the data provide support for H1 over
H0), about 70% of the unconditional posterior mass is comprised of
the posterior mass under H1, indicated by the gray mass. Thus, the
unconditional posterior distribution provides information about plausi-
ble values for δ, while taking into account the uncertainty ofH1 being
true. In both panels, the dotted line and gray mass have been rescaled
such that the height of the dotted line and the highest point of the gray
mass reflect the prior (left) and posterior (right) model probabilities

to the multiple assumption violations, the t test model
for raw fuse times is misspecified and hence we do not
trust the validity of its result. Third, we do not know
which observations were excluded by (Frisby & Clatworthy,
1975). Consequently, only two of these eight analyses are
relevant.7 Furthermore, a more comprehensive multiverse
analysis could also consider the Bayes factors from two-
sided tests (i.e., BF10 = 2.323) for the t test and BF10 =
2.557 for the Mann–Whitney U test). However, these tests
are not in line with the theory under consideration, as they
answer a different theoretical question (see “Specifying the
statistical model” in the Planning section).

For parameter estimation, the results of the two-sided
t test are presented in Fig. 6a. The 95% central credible
interval for δ is relatively wide, ranging from 0.046 to 0.904:
this means that, under the assumption that the effect exists
and given the model we specified, we can be 95% certain
that the true value of δ lies between 0.046 to 0.904. In
conclusion, there is moderate evidence for the presence of
an effect, and large uncertainty about its size.

Stage 4: Reporting the results

For increased transparency, and to allow a skeptical assess-
ment of the statistical claims, we recommend to present

7The Bayesian Mann–Whitney U test results and the results for the
raw fuse times are in the .jasp file at https://osf.io/nw49j/.

an elaborate analysis report including relevant tables, fig-
ures, assumption checks, and background information. The
extent to which this needs to be done in the manuscript
itself depends on context. Ideally, an annotated .jasp file
is created that presents the full results and analysis set-
tings. The resulting file can then be uploaded to the Open
Science Framework (OSF; https://osf.io), where it can be
viewed by collaborators and peers, even without having
JASP installed. Note that the .jasp file retains the set-
tings that were used to create the reported output. Analyses
not conducted in JASP should mimic such transparency, for
instance through uploading an R-script. In this section, we
list several desiderata for reporting, both for hypothesis test-
ing and parameter estimation. What to include in the report
depends on the goal of the analysis, regardless of whether
the result is conclusive or not.

In all cases, we recommend to provide a complete
description of the prior specification (i.e., the type of
distribution and its parameter values) and, especially for
informed priors, to provide a justification for the choices
that were made. When reporting a specific analysis, we
advise to refer to the relevant background literature for
details. In JASP, the relevant references for specific tests can
be copied from the drop-down menus in the results panel.

When the goal of the analysis is hypothesis testing, it is
key to outline which hypotheses are compared by clearly
stating each hypothesis and including the corresponding
subscript in the Bayes factor notation. Furthermore, we
recommend to include, if available, the Bayes factor
robustness check discussed in the section on planning (see

https://osf.io/nw49j/
https://osf.io
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Fig. 6 Bayesian two-sample t test for the parameter δ. The probabil-
ity wheel on top visualizes the evidence that the data provide for the
two rival hypotheses. The two gray dots indicate the prior and poste-
rior density at the test value (Dickey & Lientz, 1970; Wagenmakers,
Lodewyckx, Kuriyal, & Grasman, 2010). The median and the 95%

central credible interval of the posterior distribution are shown in the
top right corner. The left panel shows the one-sided procedure for
hypothesis testing and the right panel shows the two-sided procedure
for parameter estimation. Both figures from JASP

Fig. 7 for an example). This check provides an assessment
of the robustness of the Bayes factor under different prior
specifications: if the qualitative conclusions do not change
across a range of different plausible prior distributions,
this indicates that the analysis is relatively robust. If this
plot is unavailable, the robustness of the Bayes factor can
be checked manually by specifying several different prior
distributions (see the mixed ANOVA analysis in the online
appendix at https://osf.io/wae57/ for an example). When
data come in sequentially, it may also be of interest to
examine the sequential Bayes factor plot, which shows the
evidential flow as a function of increasing sample size.

When the goal of the analysis is parameter estimation, it
is important to present a plot of the posterior distribution,
or report a summary, for instance through the median and a
95% credible interval. Ideally, the results of the analysis are
reported both graphically and numerically. This means that,
when possible, a plot is presented that includes the posterior
distribution, prior distribution, Bayes factor, 95% credible
interval, and posterior median.8

Numeric results can be presented either in a table or
in the main text. If relevant, we recommend to report the
results from both estimation and hypothesis test. For some
analyses, the results are based on a numerical algorithm,
such as Markov chain Monte Carlo (MCMC), which
yields an error percentage. If applicable and available, the
error percentage ought to be reported too, to indicate the
numeric robustness of the result. Lower values of the error

8The posterior median is popular because it is robust to skewed dis-
tributions and invariant under smooth transformations of parameters,
although other measures of central tendency, such as the mode or the
mean, are also in common use.

percentage indicate greater numerical stability of the result.9

In order to increase numerical stability, JASP includes
an option to increase the number of samples for MCMC
sampling when applicable.

Stereogram example

This is an example report of the stereograms t test example:

Here we summarize the results of the Bayesian
analysis for the stereogram data. For this analysis
we used the Bayesian t test framework proposed
by (see also; Jeffreys, 1961; Rouder et al., 2009).
We analyzed the data with JASP (JASP Team, 2019).
An annotated .jasp file, including distribution
plots, data, and input options, is available at https://
osf.io/25ekj/. Due to model misspecification (i.e.,
non-normality, presence of outliers, and unequal
variances), we applied a log-transformation to the
fuse times. This remedied the misspecification. To
assess the robustness of the results, we also applied a
Mann–Whitney U test.
First, we discuss the results for hypothesis testing.

The null hypothesis postulates that there is no
difference in log fuse time between the groups and
therefore H0 : δ = 0. The one-sided alternative

9We generally recommend error percentages below 20% as acceptable.
A 20% change in the Bayes factor will result in one making the same
qualitative conclusions. However, this threshold naturally increases
with the magnitude of the Bayes factor. For instance, a Bayes factor of
10 with a 50% error percentage could be expected to fluctuate between
5 and 15 upon recomputation. This could be considered a large change.
However, with a Bayes factor of 1000 a 50% reduction would still
leave us with overwhelming evidence.

https://osf.io/wae57/
https://osf.io/25ekj/
https://osf.io/25ekj/
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Fig. 7 The Bayes factor robustness plot. The maximum BF+0 is
attained when setting the prior width r to 0.38. The plot indicates
BF+0 for the user specified prior ( r = 1/

√
2), wide prior

(r = 1), and ultrawide prior (r = √
2). The evidence for the

alternative hypothesis is relatively stable across a wide range of prior
distributions, suggesting that the analysis is robust. However, the
evidence in favor ofH+ is not particularly strong and will not convince
a skeptic

hypothesis states that only positive values of δ are
possible, and assigns more prior mass to values closer
to 0 than extreme values. Specifically, δ was assigned
a Cauchy prior distribution with r = 1/

√
2, truncated

to allow only positive effect size values. Figure 6a
shows that the Bayes factor indicates evidence for
H+; specifically, BF+0 = 4.567, which means that
the data are approximately 4.5 times more likely
to occur under H+ than under H0. This result
indicates moderate evidence in favor of H+. The
error percentage is < 0.001%, which indicates great
stability of the numerical algorithm that was used to
obtain the result. The Mann–Whitney U test yielded
a qualitatively similar result, BF+0 is 5.191. In order
to assess the robustness of the Bayes factor to our
prior specification, Fig. 7 shows BF+0 as a function of
the prior width r . Across a wide range of widths, the
Bayes factor appears to be relatively stable, ranging
from about 3 to 5.
Second, we discuss the results for parameter

estimation. Of interest is the posterior distribution
of the standardized effect size δ (i.e., the population
version of Cohen’s d , the standardized difference in
mean fuse times). For parameter estimation, δ was
assigned a Cauchy prior distribution with r = 1/

√
2.

Figure 6b shows that the median of the resulting
posterior distribution for δ equals 0.47 with a central
95% credible interval for δ that ranges from 0.046 to
0.904. If the effect is assumed to exist, there remains
substantial uncertainty about its size, with values close

to 0 having the same posterior density as values close
to 1.

Limitations and challenges

The Bayesian toolkit for the empirical social scientist
still has some limitations to overcome. First, for some
frequentist analyses, the Bayesian counterpart has not yet
been developed or implemented in JASP. Secondly, some
analyses in JASP currently provide only a Bayes factor, and
not a visual representation of the posterior distributions, for
instance due to the multidimensional parameter space of the
model. Thirdly, some analyses in JASP are only available
with a relatively limited set of prior distributions. However,
these are not principled limitations and the software is
actively being developed to overcome these limitations.
When dealing with more complex models that go beyond
the staple analyses such as t tests, there exist a number of
software packages that allow custom coding, such as JAGS
(Plummer, 2003) or Stan (Carpenter et al., 2017). Another
option for Bayesian inference is to code the analyses in a
programming language such as R (R Core Team, 2018) or
Python (van Rossum, 1995). This requires a certain degree
of programming ability, but grants the user more flexibility.
Popular packages for conducting Bayesian analyses in R
are the BayesFactor package (Morey & Rouder, 2015)
and the brms package (Bürkner, 2017), among others
(see https://cran.r-project.org/web/views/Bayesian.html for
a more exhaustive list). For Python, a popular package
for Bayesian analyses is PyMC3 (Salvatier, Wiecki, &
Fonnesbeck, 2016). The practical guidelines provided in this
paper can largely be generalized to the application of these
software programs.

Concluding comments

We have attempted to provide concise recommenda-
tions for planning, executing, interpreting, and reporting
Bayesian analyses. These recommendations are summa-
rized in Table 1. Our guidelines focused on the standard
analyses that are currently featured in JASP. When going
beyond these analyses, some of the discussed guidelines will
be easier to implement than others. However, the general
process of transparent, comprehensive, and careful statisti-
cal reporting extends to all Bayesian procedures and indeed
to statistical analyses across the board.
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