
Journal of Logical and Algebraic Methods in Programming 118 (2021) 100615
Contents lists available at ScienceDirect

Journal of Logical and Algebraic Methods in

Programming
www.elsevier.com/locate/jlamp

Soft constraint automata with memory

Kasper Dokter a, Fabio Gadducci b,1, Benjamin Lion c, Francesco Santini d,∗,2

a Leiden University, Leiden, the Netherlands
b Dipartimento di Informatica, Università di Pisa, Pisa, Italy
c Centrum Wiskunde & Informatica, Amsterdam, the Netherlands
d Dipartimento di Matematica e Informatica, Università di Perugia, Perugia, Italy

a r t i c l e i n f o a b s t r a c t

Article history:
Received 10 May 2019
Received in revised form 30 September
2020
Accepted 1 October 2020
Available online 21 October 2020

Keywords:
Constraint automata
Automata with memory
Reo language
Soft constraints

We revise soft constraint automata, wherein transitions are weighted and each action
has an associated preference value. We first relax the underlying algebraic structure
to allow bipolar preferences. We then equip automata with memory locations, that is,
with an internal state to remember and update information from transition to transition.
We furthermore revise automata operators, such as composition and hiding, providing
examples on how such memory locations interact with preferences. We finally apply our
framework to encode context-sensitive behaviour.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

Many languages have been proposed for the specification and implementation of systems of interacting processes. Such
languages include process calculi, concurrent objects, actors, agents, shared memory, and message passing. A distinctive
feature of these languages is that they are all primarily action-based: the protocol by which all processes interact must
be encoded in the actions of individual processes. Consequently, the interaction protocol becomes implicit, which makes it
practically impossible to analyse the current protocol or to reuse previously developed protocols.

In contrast, the Reo language [1] treats interaction protocols as an explicit first-class concept, and is therefore referred
to as an interaction-based language. Reo represents the interaction protocol as a graph-like structure, called a connector or
circuit. Intuitively, such graphs describe networks of channels that facilitate data flow among all processes in the system.
Components can perform I/O operations on the boundary nodes of the circuit to which they are connected. In this way, a
Reo connector imposes constraints on the order in which the components exchange data items with each other.

Reo comes with a powerful composition operator that allows for the specification of complex interaction protocols by
combining simpler (possibly primitive) ones. Even though the basic primitive channels are simple, Reo connectors can
actually describe rather complex protocols.

In our work, we focus the attention on the formal models used to describe the behaviour of the interaction protocol. The
literature offers several semantic formalisms to express the behaviour of Reo connectors. The work in [2] collects, classifies,
and surveys around thirty semantics based on co-algebraic or colouring techniques, and other models based on, for instance,

* Corresponding author.
E-mail addresses: K.P.C.Dokter@cwi.nl (K. Dokter), fabio.gadducci@unipi.it (F. Gadducci), B.Lion@cwi.nl (B. Lion), francesco.santini@unipg.it (F. Santini).

1 Partially supported by the MIUR PRIN 2017FTXR7S “IT-MaTTerS”.
2 Partially supported by GNCS-INdAM (“Gruppo Nazionale per il Calcolo Scientifico”).
https://doi.org/10.1016/j.jlamp.2020.100615
2352-2208/© 2020 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jlamp.2020.100615
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jlamp
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jlamp.2020.100615&domain=pdf
mailto:K.P.C.Dokter@cwi.nl
mailto:fabio.gadducci@unipi.it
mailto:B.Lion@cwi.nl
mailto:francesco.santini@unipg.it
https://doi.org/10.1016/j.jlamp.2020.100615

K. Dokter, F. Gadducci, B. Lion et al. Journal of Logical and Algebraic Methods in Programming 118 (2021) 100615
constraints and Petri nets. The operational models (i.e., automata) are probably the most popular approaches: the main classes
are represented by constraint automata, and (several) related variants, and context-sensitive automata.

The aim of the current work is to generalise soft constraint automata [3] or soft component automata [4,5] (SCA in both
cases), which is a variant of constraint automata that has been developed after the publication of the survey [2]. An SCA is
a state-transition system where transitions are labelled with actions and preferences. Higher-preference transitions typically
contribute more towards the goal of the component.

The contribution of this paper is twofold. First, we relax the definition of the underlying structure that models prefer-
ences. Instead of absorptive semirings (as in [3–5]), we use complete lattice monoids (see Section 2.1) to allow both positive
and negative preference values, as well as possibly infinite ones.

Second, we extend SCA with a notion of memory (SCAM), as already accomplished for (non-soft) constraint automata [6].
Each transition of a SCAM can also impose a condition on the current data assigned to a finite set of memory locations, and
update their respective values. Therefore, together with states, memory locations determine the configuration of a connector,
and influence its observable behaviour.

This paper extends the work in [7], a Festschrift in honour of Farhad Arbab. We here improve the original paper by
extensively revising the formalism (e.g., the definition of weighted data streams [7] into CLM streams, Section 2.1); simpli-
fying definitions (e.g., the SCAM semantics in Definition 16); providing a case study that explains the working details of
composition and hiding (Section 4); and applying SCAMs in a novel encoding of context-sensitive behaviour (Section 5).

The outline of the paper is as follows: Section 2 defines soft constraints and shows that they can be compared and
composed, and their variables renamed and hidden. Section 3 introduces soft constraint automata with memory (SCAMs)
and their interpretation as soft constraints. We define their composition and hiding, and show their correctness with respect
to the soft constraint semantics. Section 4 presents a case study illustrating the composition and hiding operations on
SCAMs. Section 5 offers a novel encoding of context-sensitive behaviour based on SCAMs. Finally, Section 6 summarises
related works on different semantics for CA, and Section 7 wraps up the paper with conclusive thoughts and hints about
future research.

2. Preliminaries on soft constraints

In contrast to Boolean constraints, a soft constraint is a constraint that does not need to be fully satisfied [8]. Instead, such
a constraint assigns a preference value that measures the degree of satisfaction of a solution. The goal is to find a solution
that maximises this preference value.

The structure of this section is as follows: Section 2.1 proposes complete lattice monoids (CLMs) to serve as a structured
domain of preference values, which allows us to compare and compose such values. Section 2.2 develops a complete lattice
monoid of streams equipped with a lexicographic order. We use this construction in the semantics of soft constraint au-
tomata in Section 3. Section 2.3 presents our personal take on cylindric and diagonal operators [9]: they are mostly drawn
with minor adjustments from [10]. Section 2.4 shows that the set of soft constraints is itself a complete lattice monoid that
admits cylindric and diagonal operators. As such, soft constraints can be compared and composed, and variables in a soft
constraint can be renamed and hidden.

2.1. Complete lattice monoids

The first step is to define an algebraic structure that models preference values. We refer to [11] for the missing proofs
as well as for an introduction to bipolar preferences and a comparison with other proposals.

Definition 1 (Partial order). A partial order (PO) is a pair 〈A, ≤〉 such that A is a set and ≤ ⊆ A × A is a reflexive, transitive,
and anti-symmetric relation. A complete lattice (CL) is a PO such that any subset of A has a least upper bound (LUB).

The LUB of a subset X ⊆ A is denoted as
∨

X , and it is unique. Note that
∨

A and
∨∅ correspond respectively to the

top, denoted as �, and to the bottom, denoted as ⊥, of the CL.

Definition 2 (Complete lattice monoid). A (commutative) monoid is a triple 〈A, ⊗, 1〉 such that ⊗ : A × A → A is a commuta-
tive and associative operation and 1 ∈ A is its identity element.

A partially ordered monoid (POM) is a 4-tuple 〈A, ≤, ⊗, 1〉 such that 〈A, ≤〉 is a PO and 〈A, ⊗, 1〉 a commutative monoid.
A complete lattice monoid (CLM) is a POM such that its underlying PO is a CL.

As usual, we use the infix notation: a ⊗ b stands for ⊗(a, b). According to Definition 2, the partial order ≤ and the
product ⊗ can be unrelated. This is not so for monotone CLMs.

Definition 3 (Monotonicity). A CLM 〈A, ≤, ⊗, 1〉 is monotone if for all a, b, c ∈ A, we have that a ≤ b implies a ⊗ c ≤ b ⊗ c.

Our framework (Lemma 3) requires a condition that is stronger than monotonicity.
2

K. Dokter, F. Gadducci, B. Lion et al. Journal of Logical and Algebraic Methods in Programming 118 (2021) 100615
Definition 4 (Distributivity). A CLM 〈A, ≤, ⊗, 1〉 is distributive if for all a ∈ A and subset X ⊆ A, we have

a ⊗
∨

X =
∨

{a ⊗ x | x ∈ X}.

Note that a ≤ b is equivalent to
∨{a, b} = b. Hence, a distributive CLM is monotone and ⊥ is its zero element (i.e.,

a ⊗ ⊥ = ⊥, for all a ∈ A).

Example 1 (Boolean CLM). The Boolean CLM B = 〈{0, 1}, ≤, ×, 1〉, with the usual order and multiplication, is distributive.

Distributive CLMs generalise tropical semirings: it suffices to define their (idempotent) sum operator as a ⊕ b = ∨{a, b},
for all a, b ∈ A. If, moreover, 1 is the top of the CL, we end up with absorptive semirings [12] (in the algebraic literature)
or c-semirings [8] (in the soft constraint literature). See [13] for a brief survey on residuation for such semirings. Together
with monotonicity, imposing 1 to coincide with � means that preferences are negative (i.e., a ≤ 1, for all a ∈ A). Since we
allow the top of the CL to be strictly positive (i.e., 1 < �), our approach falls into the category of bipolar approaches.

Example 2 (Bipolar CLM). The CLM K = 〈{0, 1, ∞}, ≤, ×, 1〉, with the usual order and multiplication (extended to ∞ by
defining 0 × ∞ = 0 and 1 × ∞ = ∞ × ∞ = ∞ > 1), is distributive.

Example 3 (Power set). Given a (possibly infinite) set V of variables, we consider the monoid 〈2V , ∪, ∅〉 of (possibly empty)
subsets of V , with union as the monoidal operator. Since the operator is idempotent (a ⊗ a = a, for all a ∈ A), the natural
order (a ≤ b ⇔ a ⊗ b = b, for all a, b ∈ A) is a partial order, and it coincides with subset inclusion: in fact, the power set
〈2V , ⊆, ∪, ∅〉 is a CLM. Moreover, since both

∨
and ⊗ model set-union, the power set CLM is distributive.

Example 4 (Extended integers). The extended integers 〈Z ∪ {±∞}, ≤, +, 0〉, where ≤ is the natural order, such that, for all
k ∈Z

−∞ ≤ k ≤ +∞,

+ is the natural addition, such that, for all k ∈Z ∪ {+∞}

±∞ + k = ±∞, +∞ + (−∞) = −∞,

and 0 the identity element, constitutes a distributive CLM. Here, +∞ and −∞ are respectively the top and the bottom
element of the CL.

In the following definition we propose a construction that allows us to compose primitive CLMs (such as those in
Examples 1 to 4) into more complex ones.

Definition 5 (Cartesian product). Let 〈A1, ≤1, ⊗1, 11〉 and 〈A2, ≤2, ⊗2, 12〉 be CLMs. Their Cartesian product is the CLM 〈A1 ×
A2, ≤, ⊗, (11, 12)〉 such that, for all (a1, a2), (b1, b2) ∈ A1 × A2

1. (a1, a2) ≤ (b1, b2) if a1 ≤1 b1 and a2 ≤2 b2,
2. (a1, a2) ⊗ (b1, b2) = (a1 ⊗1 b1, a2 ⊗2 b2).

It is easy to see that the Cartesian product of distributive CLMs is also distributive.

2.2. Streams of preferences

We now introduce the CLM of streams, which we use for our semantics of SCAMs in Definition 16. Here we generalise the
results in [14] on binary lexicographic operators. In the following, we denote by Aω the set of streams (infinite sequences)
of elements of A.

Definition 6 (Lexicographic order). Let 〈A, ≤〉 be a PO. The lexicographic order ≤l on Aω is given by

a0a1 · · · ≤l b0b1 · · · if

{
∀i.ai = bi ∨
∃ j.a j < b j ∧ ∀i < j.ai = bi

We write <l for the usual strict version of the lexicographic order ≤l . The following lemma provides a recursive descrip-
tion of LUBs in lexicographically ordered streams.
3

K. Dokter, F. Gadducci, B. Lion et al. Journal of Logical and Algebraic Methods in Programming 118 (2021) 100615
Lemma 1. Let 〈A, ≤〉 be a CL and X ⊆ Aω a subset of the PO 〈Aω, ≤l〉. Then,
∨

X = x0x1x2 · · · ∈ Aω exists and satisfies, for all i ≥ 0,
the recursion

xi =
∨

{bi | x0x1 · · · xi−1bibi+1 · · · ∈ X}.

Proof. Define x0x1 · · · ∈ Aω using the recursion in the lemma.
We prove that x0x1 · · · is an upper bound of X . Let a0a1 · · · �= x0x1 · · · be in X . Find the smallest i ≥ 0, such that ai �= xi .

Then, we have ai ∈ {bi | x0x1 · · · xi−1bibi+1 · · · ∈ X} and ai < xi . Thus, a0a1 · · · ≤l x0x1 · · · .
We prove that x0x1 · · · is minimal. Let u0u1 · · · �= x0x1 · · · be an upper bound of X . Find the smallest i ≥ 0, such that

ui �= xi . For all x0 · · · xi−1bi · · · ∈ X , we have x0 · · · xi−1bi · · · ≤l u0u1 · · · = x0 · · · xi−1ui · · · , which implies bi ≤ ui . Hence, xi =∨{bi | x0 · · · xi−1bi · · · ∈ X} ≤ ui , and x0x1 · · · ≤l u0u1 · · · .
We conclude that

∨
X = x0x1 · · · , which proves the result. �

Let ⊗ω be the operator on data stream given by the point-wise application of ⊗ and 1ω the data stream composed just
by 1. Lemma 1 shows that 〈Aω, ≤l, ⊗ω, 1ω〉 is a CLM. However, it turns out that this CLM may not be distributive due to
the presence of non-cancellative (or collapsing) elements in A.

Definition 7 (Cancellative elements). An element c in a CLM 〈A, ≤, ⊗, 1〉 is cancellative if a ⊗ c = b ⊗ c implies a = b, for all
a, b ∈ A.

In any distributive CLM, ⊥ is a collapsing element. The presence of such elements prevents the CLM of streams to be
distributive, and forces to restrict its carrier, Aω , to a suitable subset. Let Aι be the set of cancellative elements, and let Ac
be the set of collapsing ones. The following example shows that the subset Aω

ι ⊆ Aω of streams of cancellative elements is
not a suitable domain for the CLM of streams, as it is not closed under LUBs.

Example 5. Let 〈A, ≤, +, 0〉, with A =Z ∪{±∞}, be the CLM of extended integers from Example 4. Observe that Aι =Z and
Ac = {±∞}. Although ∅ and {1ω, 2ω, 3ω, · · · } are subsets of Aω

ι , their respective LUBs are (by Lemma 1) equal to (−∞)ω

and (+∞)(−∞)ω , thus not included in Aω
ι .

To ensure that the set of streams is closed under LUBs, we further include elements of the shape A∗
ι Ac⊥ω: streams

prefixed by a (possibly empty) finite sequence of cancellative elements, then followed by a single occurrence of a collapsing
one, and then closed by an infinite sequence of ⊥.

Theorem 1 (Lexicographic CLM). If S = 〈A, ≤, ⊗, 1〉 is a distributive CLM, then Sω = 〈Aω
ι ∪ A∗

ι Ac⊥ω, ≤l, ⊗ω, 1ω〉 is so.

Proof. The POM Sω is a CLM, because its carrier B = Aω
ι ∪ A∗

ι Ac⊥ω is closed with respect to LUBs: let X ⊆ B and
∨

X =
x0x1 · · · . Suppose that xi ∈ Ac , for some i ≥ 0. Let j > i be arbitrary, and consider the set X j = {b | x0 · · · xi · · · x j−1b · · · ∈ X}.
Since X ⊆ B and xi ∈ Ac , we have either X j = ∅ or X j = {⊥}. By Lemma 1, we have x j = ∨

X j = ⊥, and we conclude that ∨
X ∈ B .
Next, we show that the CLM Sω is distributive, i.e., that a ⊗ω

∨
X = ∨{a ⊗ω x | x ∈ X}. Let X ⊆ B be a subset of the

carrier, and a ∈ B . Let also p = ∨
X and q = ∨{a ⊗ω x | x ∈ X}: we show by induction that ai ⊗ pi = qi for all i ≥ 0. So,

let us suppose that a j ⊗ p j = q j for all 0 ≤ j < i, which is vacuously true for i = 0. Lemma 1 shows that qi = ∨
S , with

S = {b | q0 · · ·qi−1b · · · ∈ {a ⊗ω x | x ∈ X}}. We distinguish two cases:
Case 1: Suppose that some a j , 0 ≤ j < i, is non-cancellative. Then, a ∈ B implies that ai = ⊥. Hence, we have either S = ∅

or S = {⊥}, and we find qi = ∨
S = ⊥ = ai ⊗ pi .

Case 2: Suppose that all a j , 0 ≤ j < i, are cancellative. Then,

qi =
∨

S =
∨

{ai ⊗ xi | x0x1 · · · ∈ X ∧ a j ⊗ x j = q j for all j < i}.
Distributivity of the original CLM and the induction hypothesis implies

qi = ai ⊗
∨

{xi | x0x1 · · · ∈ X,a j ⊗ x j = a j ⊗ p j , for all j < i}.
Applying Lemma 1 yields

qi = ai ⊗
∨

{xi | p0 · · · pi−1xi · · · ∈ X} = ai ⊗ pi .

In both cases, we find qi = ai ⊗ pi , which completes the proof. �
Example 6. Looking at the CLM 〈Z ∪{±∞}, ≤, +, 0〉 of extended integers from Example 4 and Example 5, the set of elements
of the associated lexicographic CLM is Zω ∪Z∗{±∞}(−∞)ω .
4

K. Dokter, F. Gadducci, B. Lion et al. Journal of Logical and Algebraic Methods in Programming 118 (2021) 100615
2.3. Cylindric operators for ordered monoids

We introduce two families of operators on CLMs, which enable hiding and renaming of variables (cf. [10,15]). The first
family is parameterised by a cylindric operator, and models existential quantification. The second family is parameterised
by a diagonal operator, and models the equality of variables. Cylindric and diagonal operators originate in the context of
cylindric algebras [16] and entered the constraint literature via [9].

Definition 8 (Pomonoid action). Let S = 〈A, ≤, ⊗, 1〉 be a CLM and P = 〈E, ≤〉 a PO. An action of S on P is a function
φ : A × E → E , such that, for all a, b ∈ A and all e ∈ E ,

1. φ(1, e) = e,
2. φ(a, φ(b, e)) = φ(a ⊗ b, e),
3. a ≤ b =⇒ φ(a, e) ≤ φ(b, e).

The first two requirements state that φ is a monoid action of S on E .

Let V be a set of variables, and recall the power set CLM 〈2V , ⊆, ∪, ∅〉 from Example 3. Consider a CLM 〈A, ≤, ⊗, 1〉,
whose elements a ∈ A can be thought of as expressions with variables from V . The partial order, ≤, the product, ⊗, and the
identity, 1, can be thought of as implication, conjunction, and tautology, respectively. The following definition axiomatises
existential quantification for these expressions.

Definition 9 (Cylindric operator and support). A cylindric operator ∃ over a CLM 〈A, ≤, ⊗, 1〉 and set of variables V is an action
∃ : 2V × A → A, such that, for all X ⊆ V , all a, b ∈ A, and all C ⊆ A,

1. ∃(X, 1) = 1,
2. ∃(X, a ⊗ ∃(X, b)) = ∃(X, a) ⊗ ∃(X, b),
3. ∃(X,

∨
C) = ∨{∃(X, c) | c ∈ C}.

The support of a ∈ A is the set of variables supp(a) = {x | ∃({x}, a) �= a}.

In the following, we use ∃X a for ∃(X, a) and write ∃xa when X = {x}. Item 3 in Definition 9 is required for the correctness
proofs of SCAM operations on SCAMs: see Theorems 2 and 3 later on. Item 3 also implies the monotonicity of ∃ in the
second argument (a ≤ b implies ∃X a ≤ ∃X b, for all X ⊆ V and all a, b ∈ A). By Definition 8 it holds that a = ∃∅a ≤ ∃X a and
X ∩ supp(∃(X, a)) = ∅.

Next, we axiomatise expressions that equate two variables.

Definition 10 (Diagonalisation). Let ∃ be a cylindric operator over a CLM 〈A, ≤, ⊗, 1〉 and V a set of variables. A diagonal
operator δ for ∃ is a family of idempotent elements δx,y ∈ A, indexed by pairs of variables in V , such that, for all x, y, z ∈ V
and a ∈ A

1. δx,x = 1,
2. δx,y = δy,x ,
3. z /∈ {x, y} =⇒ δx,y = ∃z(δx,z ⊗ δz,y),
4. x �= y =⇒ δx,y ⊗ ∃x(a ⊗ δx,y) ≤ a.

Axioms 1, 2, and 3 plus idempotency of δx,y imply ∃xδx,y = 1, which in turn implies (using also idempotency of ∃X)
supp(δx,y) = {x, y} for x �= y. Diagonal operators can be used for modelling variable substitution [10]: substituting y for
x �= y in a yields ∃x(a ⊗ δx,y).

2.4. Soft constraints (on infinite domains)

We define the notion of soft constraints, following the approach in [17], but generalising the preference structure, as in
[10,15]. Soft constraints are expressions that evaluate to a value in a given CLM. They generalise crisp constraints, which are
expressions that evaluate into the Boolean CLM.

Definition 11 (Soft constraints). Let V be a set of variables, D a domain of interpretation, and S = 〈A, ≤, ⊗, 1〉 a CLM. A soft
constraint is a function c : (V → D) → A associating a value in A with each assignment η : V → D of the variables. We
write C(V , D, S) for the set of all such soft constraints.

We write cη to denote the application of a constraint c : (V → D) → A to a variable assignment η : V → D .
5

K. Dokter, F. Gadducci, B. Lion et al. Journal of Logical and Algebraic Methods in Programming 118 (2021) 100615
Definition 11 does not impose any restriction on the number of variables and the size of the domain of interpretation.
In fact, our framework requires infinitely many timed variables, as introduced in Section 3.1. Different from standard practice
in soft constraint literature, we also consider a possibly infinite domain of interpretation, D , which is required by the
introduction of memory locations in Definition 14.

In the following example, we introduce notation to view preference values and Boolean constraints as soft constraints.

Example 7 (Constant constraints). A preference value a ∈ A induces a soft constraint [a] defined as [a]η = a, for every assign-
ment η : V → D .

Example 8 (Boolean constraints). A Boolean constraint B induces a soft constraint [B] defined, for every assignment η : V →
D , as

[B]η =
{

1 if η satisfies B

⊥ otherwise

For example, for a variable v ∈ V , a datum d ∈ D , and an assignment η : V → D , we have [v = d]η = 1 if and only if
η(v) = d. Since conjunction with a tautology should act as the identity, we choose 1 instead of �.

The set of constraints forms a CLM, with the structure lifted from S.

Lemma 2 (The CLM of constraints). The set C(V , D, S) of soft constraints, endowed with partial order ≤, composition ⊗, and unit [1]
defined as

1. c1 ≤ c2 if c1η ≤ c2η for all η : V → D
2. (c1 ⊗ c2)η = c1η ⊗ c2η

is a CLM denoted as C(V , D, S). The LUB of a subset C ⊆C(V , D, S) satisfies (
∨

C)η = ∨{cη | c ∈ C}, for all assignments η : V →
D. The CLM C(V , D, S) is distributive if S is so.

Combining constraints using the ⊗ operator builds a new constraint whose support involves at most the variables of the
original ones. The composite constraint associates, with every assignment, a preference that is equal to the product of the
preferences of its constituents.

Note that, in a bipolar setting, we do not have conjunction elimination: for constraints c1, c2 ∈ C(V , D, S), c2 > 1, mono-
tonicity implies c1 ⊗ c2 > c1, where ≤ is interpreted as implication.

Given a function η : V → D and a set X ⊆ V , we denote by η|X : X → D the usual restriction.

Lemma 3 (Cylindric and diagonal operators for constraints). If S is a distributive CLM, then the CLM of constraints C(V , D, S) admits
a diagonal operator δx,y = [x = y], for all x, y ∈ V , and a cylindric operator ∃X , defined, for all soft constraints c ∈ C(V , D, S) and all
subsets X ⊆ V of variables, as

(∃X c)η =
∨

{cρ | ρ|V \X = η|V \X }.

Proof. Using the definitions from Example 8, Lemma 2, and distributivity of S, it is straightforward to verify that all axioms
in Definitions 8 to 10 are satisfied. For example, for all soft constraints c, d ∈ C(V , D, S) and all X ⊆ V , we have, for all
assignments η : V → D , that

(∃X (c ⊗ ∃X d))η =
∨

{cρ ⊗ (∃X d)ρ | ρ|V \X = η|V \X }
=

∨
{cρ ⊗ (

∨
{dξ | ξ |V \X = η|V \X }) | ρ|V \X = η|V \X }

=
∨

{cρ | ρ|V \X = η|V \X } ⊗
∨

{dξ | ξ |V \X = η|V \X }
= (∃X c ⊗ ∃X d)η,

which shows that ∃X (c ⊗ ∃X d) = ∃X c ⊗ ∃X d. �
Hiding removes variables from the support: supp(∃X c) ⊆ supp(c) \ X .3 Note that both the infinite number of variables

and the infinite domain of interpretation necessitate the existence of LUBs in the definition of ∃X c, which motivates the
introduction of complete lattices in the previous section.

3 The operator is called projection in the constraints literature, and ∃X c is denoted c ⇓V \X .
6

K. Dokter, F. Gadducci, B. Lion et al. Journal of Logical and Algebraic Methods in Programming 118 (2021) 100615
Although a constraint c evaluates mappings η : V → D that assign a value in D to every variable in V , the evaluation
cη may depend on the assignment of a (finite) subset of them, called its support. The cylindric operator from Lemma 3,
together with Definition 9, provides a precise characterisation of the support. For instance, a binary constraint c with
supp(c) = {x, y} is a function c : (V → D) → A that depends only on the assignment of variables {x, y} ⊆ V , meaning that
two assignments η1, η2 : V → D that differ only for the image of variables z /∈ {x, y} coincide (i.e., cη1 = cη2). The notion of
support corresponds to the classical notion of constraint scope.

3. Soft constraint automata with memory

Constraint automata have been introduced in [18] as a formalism to describe the behaviour and data flow in coordination
models (such as the Reo language [18]); they can be considered as acceptors of timed data streams [18,7,19]. Constraint
automata have been enriched with new features to create more expressive formalisms. On the one hand, constraint automata
with memory (CAM) enrich constraint automata with a finite set of memory locations [6]. This extension allows one to
handle infinite state spaces by enabling the values of each memory location to range over an infinite data domain. On the
other hand, soft constraint automata (SCA) enrich constraint automata with soft constraints [3]. This extension allows one to
express preference amongst different executions.

We present soft constraint automata with memory (SCAM): a generic framework that captures both CAM and SCA in a
single formalism. Our approach differs significantly from both existing works with respect to its semantics. Originally, SCA
are acceptors of tuples of weighted timed data streams [3,7]. In the current work, we interpret a SCAM as a special kind of
soft constraint, encoding the same information in an alternative way.

3.1. Soft languages

Memory is the capacity to preserve information through time. Therefore, given a finite set of memory locations L, we
model the behaviour of a location v ∈ L as an infinite sequence of timed variables

(v,0), (v,1), . . . , (v, i), . . . ,

where variable (v, i) represents the value of memory location v ∈ L at time step i ∈N0.
We write L̂ = L × N0 for the set of timed variables. We define the k-th derivative of a variable x = (v, i) ∈ L̂ as xk =

(v, i)k = (v, k + i). We define the k-th derivative of a set of variables X ⊆ L̂ as Xk = {xk | x ∈ X}.
For notational convenience, we treat a timed variable (v, 0) ∈ L̂ and a plain variable v as equal, and we write a prime

for the first derivative. For example, the expression m′ = a expands to the expression (m, 1) = (a, 0) on timed variables.
Next, we extend the data domain D with a special symbol ∗ /∈ D that denotes “no data”, and write D∗ = D ∪ {∗}. We

model a single execution of a SCAM as an assignment to timed variables.

Definition 12 (Data stream). A data stream is a map η : L̂ →D∗ .

Intuitively, η(v, i) ∈ D∗ represents the data observed at location v ∈ L and time step i ≥ 0. If η(v, i) = ∗, no data is
observed at location v and time step i. We define the k-th derivative ηk : L̂ →D∗ of a data stream η as ηk(v, i) = η(v, k + i),
for all v ∈ L and i ≥ 0.

We can visualise a data stream η as an infinite table, with columns indexed by variables v ∈ L, rows indexed by non-
negative integers i ∈ N0, and entries containing either ∗ or data from D. For a time step i ≥ 0, we can represent the i-th
row of η as the partial map ηi : L ⇀ D, with dom(ηi) = {v ∈ L | η(v, i) �= ∗} and ηi(v) = η(v, i), for all v ∈ dom(ηi). We
refer to ηi as the i-th data assignment. The empty function τ : L ⇀D, with dom(τ) = ∅, is also a valid data assignment. We
use τ to represent an explicit silent step.

Definition 13 (Soft languages). A soft language over a CLM 〈A, ≤, ⊗, 1〉 is a function c : (̂L →D∗) → A.

Suppose that we have a morphism h : A → B . Then, we can view any soft language c over A as a soft constraint over
B . Indeed, the composition h ◦ c that maps a data stream η to the value h(cη) ∈ B constitutes a soft constraint over B .
In particular, if B is the Boolean CLM B, we can view a soft constraint as a crisp constraint that defines a set of accepted
executions. Such a constraint corresponds naturally to a constraint automaton [18], which is thus subsumed by Definition 13.

Lemma 3 shows that soft constraints form a cylindric algebra. Thus, relevant notions, such as composition and hiding,
carry over from soft constraints to SCAMs. It is straightforward to verify that all these notions correspond to their classical
definitions in the literature.

3.2. Syntax

We fix a finite set of memory locations X , a data domain D, and a distributive and cancellative CLM S. Recall the CLM
of constraints C(V , D, S) from Lemma 2, for a set of variables V and domain of interpretation D .
7

K. Dokter, F. Gadducci, B. Lion et al. Journal of Logical and Algebraic Methods in Programming 118 (2021) 100615
q0[a = 10] ⊗ [l = 0] q1

〈{b}, cb〉

〈{s}, cs〉

Fig. 1. A SCAM over the data domain N0 and CLM 〈Z ∪ {±∞}, ≤, +, 0〉, where cb = [−b] ⊗[a′ = a − b] ⊗[b ≤ a] ⊗[l′ = b] buys an affordable item and saves
its price, and cs = [s] ⊗ [a′ = a + s] ⊗ [l ≤ s] sells that item for a higher price.

Definition 14 (SCAM). A soft constraint automaton with memory over D and S is a 6-tuple 〈Q, N , X , −→, Q0, c0〉, such that

1. Q is a finite set of states,
2. N is a finite set of port variables,
3. X is a finite set of memory locations,
4. −→ ⊆Q × 2N ×C(̂N ∪X , D∗, S) ×Q is a finite set of transitions,
5. Q0 ⊆Q is a set of initial states, and
6. c0 ∈C(̂N ∪X , D∗, S) is an initial constraint

such that X ∩ N = ∅, supp(c0) ⊆ X , and (q, N, c, p) ∈ −→ implies that supp(c) ⊆ N ∪ X ∪ X ′ (where X ′ = {x′ | x ∈ X } is
the set of first derivatives).

We usually write q N,c−−→ p instead of (q, N, c, p) ∈ −→ and we call N the synchronisation constraint and c the guard of
the transition, respectively. We say that a transition is invisible whenever N = ∅.

Different from [7], the condition supp(c) ⊆ N ∪X ∪X ′ means that the guards are soft constraints with a single time step
look-ahead for memory locations. This is just a simplifying assumption: the following results would carry over smoothly.

Definition 15 (Runs). Let T = 〈Q, X , N , −→, Q0, c0〉 be a SCAM. A run λ of T from q ∈ Q is an infinite sequence in −→ω ,
with λi = (pi, Ni, ci, qi) ∈ −→, such that p0 = q and qi = pi+1, for all i ≥ 0. We write R(T , q) for the set of runs of T from
q and R(T) = ⋃

q∈Q0
R(T , q) for the set of runs of T .

The intuitive meaning of a SCAM T as an operational model for service queries is similar to the interpretation of
transition systems as models for reactive systems. The states represent the configurations of a service. Transitions represent
the one-step behaviour, where the meaning of a transition p N,c−−→q is that we can move from configuration p to q, whenever

1. all ports in n ∈ N perform an I/O operation,
2. all other ports in N \N perform no I/O operation,
3. all ports/memory locations in N ∪X ∪X ′ satisfy the guard c.

Each assignment to ports in N represents the data exchanged by the I/O operations through these ports, while assignments
to variables in X and X ′ represent the data in memory locations before and after the transition.

For example, a transition p {a,b},[x=a]⊗[x′=b]−−−−−−−−−−−→q from state p to state q fires ports a and b, the value at port a is equal to
the current value of the memory x, and the next value at x is equal to the current value at port b. If they are not hidden,
port variables can be shared with other SCAMs (cf. Definition 17), while memory variables are not shared (cf. Theorem 2).

Example 9 (A SCAM for buying and selling). We describe an agent that prefers to buy an item as cheap as possible, and
prefers to maximise its profit. We use the set N0 of natural numbers as a data domain, and we use the extended integers
〈Z ∪ {±∞}, ≤, +, 0〉 as preference values. In particular, every datum can be viewed as a preference value.

Figure 1 shows a (deterministic) SCAM for buying and selling. The set of ports N is {b, s}, where the value at b is the
purchase price of an item and the value at s is the selling price of an item. The set of variables X is {a, l}, where a is
the current balance and l is the price of current item. The soft constraint cb buys (a′ = a − b) an affordable (b ≤ a) item,
and stores its value (l′ = b). The preference of −b ensures that maximising preference amounts to minimising purchase
price. The soft constraint cs sells the current item (a′ = a + s) for a higher price (l ≤ s). The preference of s ensures that
maximising preference amounts to maximising selling price.

3.3. Semantics

Recall the lexicographically-ordered CLM of streams Sω from Theorem 1. We interpret a SCAM T as a soft language

L(T) : (̂N ∪X → D∗) → Sω

assigning a stream from Sω to any execution. In this way, the constraint L(T) can be seen as the language of the SCAM T .
8

K. Dokter, F. Gadducci, B. Lion et al. Journal of Logical and Algebraic Methods in Programming 118 (2021) 100615
x b s a l

η(x,0) 6 ∗ 10 0

η(x,1) ∗ 7 4 6

η(x,2)

.

.

.

.

.

. 11
.
.
.

Fig. 2. Data stream for the SCAM from Example 9, wherein the agent starts with 10 units of money, buys an item for 6 units, and sells it for 7 units.

We describe the intuitive semantics of a SCAM. Let η : ̂N ∪X → D∗ be a data stream. First, we define the preference
stream cλη ∈ Sω of η with respect to a run λ = t0t1t2 · · · ∈ R(T , q) from a state q ∈ Q. We compute the initial preference
c0η ∈S and, for every transition ti = (pi, Ni, ci, qi) in the run λ, we compute the preference cti η

i ∈S of transition ti , where
ηi is the ith derivative of η, and cti is the soft constraint composed from the guard ci and the synchronisation constraint Ni .
For i ≥ 0, consider the composition ai = c0η ⊗ cti η

i ∈ S. If the initial condition and all transition guards and synchronisation
constraints are satisfied (i.e., ai cancellative, for all i ≥ 0), then the preference stream of η equals cλη = a0a1a2 · · · ∈ Sω .
Otherwise, we set cλη = ⊥ω .

Next, we define the preference value of the data stream η assigned by the SCAM T as the least upper bound (in the
lexicographically-ordered CLM of streams Sω) over all the possible runs that start from an initial state. The lexicographic
order implies that, at any given state, the SCAM prefers to take the outgoing transition of maximal preference. Indeed, any
run that starts with an outgoing transition of suboptimal preference results in a preference stream that is suboptimal in the
lexicographic order.

Finally, we hide all memory locations, preventing SCAMs from synchronising on shared memory locations (Theorem 2).

Definition 16 (SCAM semantics). Let T = 〈Q, N , X , −→, Q0, c0〉 be a SCAM. The semantics of a transition t = (p, N, c, q) ∈
−→ is a soft constraint ct ∈C(̂N ∪X , D∗, S) defined as

ct = c ⊗
⊗
n∈N

[n �= ∗] ⊗
⊗

n∈N \N

[n = ∗].

The semantics of a run λ = t0t1t2 · · · ∈ R(T , q) from a state q ∈ Q is a soft constraint cλ that maps a data stream η :
̂N ∪X →D∗ to the preference stream cλη defined as

cλη =
{

a0a1a2 · · · if ai = c0η ⊗ cti η
i is cancellative, for all i ≥ 0,

⊥ω otherwise

The accepted language of T at q ∈Q is defined as

L(T ,q) =
∨

{cλ | λ ∈ R(T ,q)}.
The language of T is defined as

L(T) = ∃X̂
∨

{L(T ,q) | q ∈ Q0}.

Definition 16 deals exclusively with infinite paths in a SCAM T : if a state q has no outgoing transitions, then c(T , q)η =
⊥, for every data stream η.

Example 10 (The language of business). Let T be the SCAM from Example 9. Consider a data stream η : ̂{b, s,a, l} →N0 whose
prefix is defined in Figure 2. From η(a, 0) = 10 and η(l, 0) = 0, it follows that

c0η = ([a = 10] ⊗ [l = 0])η = 1,

which means that the initial condition is satisfied. There exists only one possible run λ = t0t1 · · · in T from the initial state
q0. Hence, the stream of preferences associated with η satisfies

L(T)η = (∃̂{a,l}
∨

{cλ})η = (∃̂{a,l}cλ)η = cλη,

where the last equality follows from the fact that the preferences are independent of the memory locations a and l. Con-
cretely, the stream of preferences L(T)η = a0a1 · · · satisfies

a0 = c0η ⊗ ct0η
0 = 1 ⊗ cbη

0 = −η0(b,0) = −η(b,0) = −6

a1 = c0η ⊗ ct1η
1 = 1 ⊗ csη

1 = η1(s,0) = η(s,1) = 7
9

K. Dokter, F. Gadducci, B. Lion et al. Journal of Logical and Algebraic Methods in Programming 118 (2021) 100615
The lexicographic order on preference streams ensures that any other data stream ρ : ̂{b, s,a, l} →N0, for which ρ(b, 0) < 6,
satisfies L(T)η <l L(T)ρ , which means that the data stream ρ is preferred over η. In other words, the SCAM T prefers to
minimise the purchase price.

3.4. SCAM composition

We now introduce the product of automata, extending [3, Definition 5].

Definition 17 (Soft join). Let Ti = (Qi, Xi, Ni, →i, Q0i, c0i) for i ∈ {0, 1} be two SCAMs over D and S, with (N0 ∪N1) ∩ (X0 ∪
X1) = ∅. Then, their soft product T0 �� T1 is the tuple 〈Q0 ×Q1, X0 ∪X1, N0 ∪N1, −→, Q00 ×Q01, c00 ⊗ c01〉 where −→
is the smallest relation that satisfies the rule

q0
N0,c0−−−→0 p0, q1

N1,c1−−−→1 p1, N0 ∩N1 = N1 ∩N0

〈q0,q1〉 N0∪N1,c0⊗c1−−−−−−−−→ 〈p0, p1〉

The rule applies when there is a transition in each automaton such that they can fire together. This happens only if the
two local transitions agree on the subset of shared ports that fire (which is empty, if no ports are shared). The transition in
the resulting automaton is labelled with the union of the name sets on both transitions, and the constraint is the conjunction
of the constraints of the two transitions.

Note that the new automaton may include asynchronous executions: it suffices that the SCAM is reflexive, i.e., every q

has an idling transition q ∅,1−−→q. To avoid such idling transitions to be of maximal preference, we must use a bipolar CLM of
preferences, wherein � > 1.

We now express the composition of SCAM in Definition 17 in terms of composition of languages as defined in Lemma 2.

Theorem 2 (Correctness of soft join). Let T0 and T1 be two SCAMs sharing no memory location. Then, L(T0 �� T1) = L(T0) ⊗ L(T1).

Proof. We first show that, for all (q0, q1) ∈Q0 ×Q1, we have

L(T0 �� T1, (q0,q1)) =
∨

{cρ0 ⊗ cρ1 | ρi ∈ R(Ti,qi), i ∈ {0,1}}. (1)

Let ρ ∈ R(T0 �� T1, (q0, q1)) be a run from (q0, q1). By construction of T0 �� T1, we find runs ρi ∈ R(Ti, qi), for i ∈ {0, 1},
such that cρ = cρ0 ⊗ cρ1 . Hence, cρ is less than or equal to the right-hand side of Equation (1). Since, ρ is arbitrary, we
conclude the ≤ part of Equation (1).

For i ∈ {0, 1}, let ρi ∈ R(Ti, qi) be, a run from qi . If ρ0 and ρ1 are not compatible according to the rule in Definition 17,
we have cρ0 ⊗ cρ1 = [⊥ω] ≤ L(T0 �� T1, (q0, q1)). If ρ0 and ρ1 are compatible according to the rule in Definition 17, we find
a run ρ ∈ R(T0 �� T1, (q0, q1)) from (q0, q1), such that cρ0 ⊗ cρ1 = cρ ≤ L(T0 �� T1, (q0, q1)). Since ρ0 and ρ1 are arbitrary,
we conclude the ≥ part of Equation (1), which proves Equation (1).

Using Equation (1) and Theorem 1, we find, for (q0, q1) ∈Q0 ×Q1, that

L(T0 �� T1, (q0,q1)) =
1⊗

i=0

∨
{cρi | ρi ∈ R(Ti,qi)}

= L(T0,q0) ⊗ L(T1,q1)

Since no memory is shared, we have X0 ∩X1 = ∅. Then

L(T0 �� T1) = ∃X̂
∨

{L(T0,q0) ⊗ L(T1,q1) | q0 ∈ Q00,q1 ∈ Q01}

= ∃X̂0
∃X̂1

1⊗
i=0

∨
{L(Ti,qi) | qi ∈ Q0i}

=
1⊗

i=0

∃X̂i

∨
{L(Ti,qi) | qi ∈ Q0i} = L(T0) ⊗ L(T1),

which proves the result. �

10

K. Dokter, F. Gadducci, B. Lion et al. Journal of Logical and Algebraic Methods in Programming 118 (2021) 100615
q0[id = ∗] ⊗ [c = 0] q1

〈∅, [1]〉 〈∅, [1]〉

〈∅, [1] ⊗ [c′ = c − 1]〉〈{i}, [�] ⊗ [id′ = i] ⊗ [id = ∗]〉
〈{s}, [1] ⊗ [s = id] ⊗ [c′ = 10]〉

〈{k}, [�] ⊗ [k = id] ⊗ [c ≤ 0]〉

〈{ack}, [�] ⊗ [ack = id] ⊗ [c′ = 0]〉

Fig. 3. The operator’s SCAM A over an arbitrary data domain and the CLM 〈Z∪ {±∞},≤,+,0〉.

3.5. SCAM hiding

The hiding operator [18] abstracts the details of the internal communication in a constraint automaton. For SCA [3,
Definition 6], the hiding operator ∃OT removes from the transitions all the information about the ports in O ⊆ N , includ-
ing those in the (support of the) constraints. The definition smoothly extends over SCAMs: in fact, since we allow silent
transitions, our definition is much more compact.

Definition 18 (Soft hiding). Let T = 〈Q,X ,N ,−→,Q0〉 be a SCAM and O ⊆ N a set of ports. Then ∃OT is the SCAM
〈Q, X , N \ O −→∗, Q0〉 where −→∗ is defined by q

N\O ,∃O c−−−−−→∗ p if q N,c−−→ p.

We express the correctness of hiding in terms of the cylindric operator on soft constraints from Lemma 3.

Theorem 3 (Correctness of soft hiding). Let T be a SCAM and O a set of its ports. Then L(∃OT) = ∃O L(T).

Proof. We prove that, for all q ∈Q, we have

L(∃OT ,q) =
∨

{∃O c(ρ) | ρ ∈ R(T ,q)}. (2)

By construction of ∃OT in Definition 18, we have a natural 1-1 correspondence between runs ρ ∈ R(∃OT , q) in ∃OT from
q and runs ρ ′ ∈ R(T , q) in T from q, which satisfies cρ = ∃O cρ ′ . Using the same approach used in the proof of Theorem 2
(i.e., ≤ and ≥ on LUBs), we conclude that Equation (2) holds. For all q ∈ Q, we now find that L(∃OT , q) = ∃O L(ρ, q). Hence,
L(∃OT) = ∃O L(T), which proves the result. �
4. A case study

We present an example that illustrates the operations of composition and hiding for SCAMs. The example consists of an
interrupt management-system tied to a data flow of information. Even if academic, it is rooted into concepts widely adopted
by several real-world examples, e.g., a computer CPU receiving hardware and software interrupts.

We show that, even if the machine has the ability to keep executing a process, in the presence of a kill signal sent by
the operator, the machine chooses to stop. The given construction could be adapted to express the case where more than
one machine is controlled by an operator.

As a carrier for the preferences of the soft constraints, we use the CLM of extended integers S = 〈Z ∪ {±∞}, ≤, +, 0〉
from Example 4. Recall that a tautology has preference 1, which is the element 0 ∈ S, and a false constraint has the least
preference −∞ ∈S. We refer to +∞ as the element � and to −∞ as the element ⊥.

4.1. Operator

Let A = 〈{q0, q1}, {k, s, i, ack}, {c, id}, −→, {q0}, [id = ∗] ⊗ [c = 0]〉 be the SCAM representation of the operator, with tran-
sition relation −→ as in Figure 3. Initially, the memory id is empty. The operator, in state q0, waits to receive a signal i and
stores the value carried by the signal in the memory location id. Then, the operator waits for a signal s �= ∗ to arrive, and
takes the outgoing transition from q0 to q1 only if the value of s equals the current value of memory location id. Simul-
taneously, the operator starts a counter by setting the memory location c to 10. Being in state q1, the operator repeatedly
decreases its counter c. When the value of memory location c becomes negative, the operator sends a kill signal carrying
the value stored in memory location id. If the operator receives, in state q1, an acknowledge signal ack with the value stored
in the memory location id, the operator sets the counter memory location c to 0 and returns to its initial state q0.

The preference values in Figure 3 ensure that, if the guards of the self transition at q1 and the transitions from q1 to q0
are satisfied by the same assignment, the operator prefers to send a kill or acknowledge signal (transitions from q1 to q0)
instead of decreasing its counter (self transition at q1).
11

K. Dokter, F. Gadducci, B. Lion et al. Journal of Logical and Algebraic Methods in Programming 118 (2021) 100615
p0

[id = 1] ⊗ [c = 0]

p1 p2

〈∅, [1]〉 〈∅, [1]〉 〈∅, [1]〉

〈∅, [2] ⊗ [c′ = c − 1] ⊗ [c > 0]〉

〈{ack}, [1] ⊗ [ack = id] ⊗ [c = 0]〉

〈{s}, [e = id] ⊗ [c′ ≤ 20]〉
〈{k}, [1] ⊗ [k = id]〉

Fig. 4. The machine’s SCAM B over an arbitrary data domain and the CLM 〈Z∪ {±∞},≤,⊗,1〉.

s00

[id = 1] ⊗ [c = 0]

s11 s02

〈∅, cq1,q1,∅,1 ⊗ cp1,p1,∅,2〉

〈∅, [1]〉

〈∅, [1]〉

〈∅, cp1,p1,∅,2〉

〈∅, cq1,q1,∅,1〉
〈∅, [1]〉

〈{ack}, cq1,q0,{ack} ⊗ cp1,p0 〉

〈{s}, cq0,q1 ⊗ cp0,p1 〉

〈{i}, cq0,q0,{i} ⊗ cp0,p0 〉

〈{k}, cq1,q0,{k} ⊗ cp1,p2 〉

Fig. 5. The product A ��B of the machine’s SCAM and operator’s SCAM, where si j = (qi , p j) and cx,y,N,e is the constraint of the underlying SCAM labelling
transition from state x to state y with synchronisation set N and constant preference e. If clear from the context, some elements from x, y, N, e are omitted
to identify the constraint.

s00

[id = 1] ⊗ [c = 0]

s11 s01

〈∅, cq1,q1,∅,1 ⊗ cp1,p1,∅,2〉

〈∅, [1]〉
〈∅, cp1,p1,∅,2〉

〈∅, cq1,q1,∅,1〉
〈∅, [1]〉

〈{ack}, cq1,q0,{ack} ⊗ cp1,p0 〉

〈{s}, cq0,q1 ⊗ cp0,p1 〉
〈{i}, cq0,q0 〉

〈∅, cp1,p1,∅,2〉

〈∅, [1]〉

〈{i}, cq0,q0,{i} ⊗ cp0,p0 〉

〈{k}, cq1,q0,{k}〉

Fig. 6. The product A �� ∃k(B) of the machine’s SCAM and operator’s SCAM after hiding k in the machine, using the same notation for states and guards
as in Figure 5.

4.2. Machine

Let B = 〈{p0, p1, p2}, {k, s, ack}, {c, id}, −→, {p0}, [id = 1] ⊗ [c = 0]〉 be the SCAM representation of a machine, whose
transition relation −→ is shown in Figure 4. The machine starts in p0, with the identity value 1 stored in the memory id.
Whenever the value observed on port s corresponds to its identity id, the machine can start executing and moves from
state p0 to p1. In state p1, the execution of the machine is simulated by decreasing a counter from a non-deterministically
selected initial value of at most 20. Once the counter reaches 0, the machine sends an acknowledgement with its own id
value and gets back to state p0. At any point, however, the machine can be interrupted by a kill signal and goes to state p2.

The constraints of the machine ensure that the machine terminates, if a kill signal is received. In absence of a kill signal,
the machine prefers to execute the process before sending the acknowledgement.

4.3. Composition

Figure 5 shows the SCAM of the composition A �� B of the operator A and the machine B. Their composition synchro-
nises on the shared ports k, ack, and s between A and B. While the I/O direction of a port is not explicitly mentioned, one
should think of the port k as an input port for the machine and an output port for the operator. Similarly, the port ack is
used as an output port for the machine and input port for the operator.

If satisfied, the constraint cq1,q1,∅,1 ⊗ cp1,p1,∅,2 (see the caption of Figure 5 for the notation) evaluates to preference
2 + 1 = 3, and the constraint cq1,q0,{k} ⊗ cp1,p2 evaluates to preference �. Since 3 < �, when the counter memory of the
operator reaches 0, the run where the kill signal is sent has higher preference than the run where the machine keeps
executing its process.

4.4. Hiding

We compare the product A �� B with the product A �� ∃k(B), wherein we hide the port k in B. As displayed in Figure 6,
the composite system goes to the state s01, where the transition 〈∅, cp1,p1,∅,2〉 can still be taken (i.e. the machine is still
running). Hence, hiding the kill signal in B does not force the machine to terminate its execution. Note that state s01 is a
deadlock: the operator cannot receive an acknowledge signal or send a kill signal.
12

K. Dokter, F. Gadducci, B. Lion et al. Journal of Logical and Algebraic Methods in Programming 118 (2021) 100615
q 〈{a}, [ε]〉〈{a,b}, [�] ⊗ [a = b]〉

〈∅, [1]〉

a b

Fig. 7. SCAM representation of the context-sensitive lossysync channel, and its Reo notation. The passing transition, 〈{a, b}, [�] ⊗ [a = b]〉, has priority over
the losing transition, 〈{a}, [ε]〉, and the losing transition has priority over the idling transition, 〈∅, [1]〉.

5. Application to context-sensitivity

The presented SCAM framework can be applied to model context-sensitivity, which is also known as context-dependency
or as context-awareness.

Definition 19. A component is context-sensitive if an I/O request by the environment can disable one of its actions.

One source of context-sensitivity is priority. If an I/O request by the environment enables a high-priority action, then
previously enabled actions of lower priority become disabled.

The notion of context-sensitivity received considerable attention in the Reo community. The primal example of a context-
sensitive Reo connector is a lossysync channel, which accepts a datum d from its input end, and either atomically offers d at
its output end, or loses d if the output is not ready to accept. The literature offers a variety of semantic models that encode
context-sensitive behaviour, namely colouring semantics [20], augmented Büchi automata of records [21], intentional automata
[22], and guarded automata [23]. Context-sensitivity can be encoded in context-insensitive models by adding dual ports
[24]. Although we consider here context-sensitivity in the realm of Reo, we stress that context-sensitivity is a fundamental
concept that applies to languages other than Reo.

The environment of a connector can be represented in at least two ways. On the one hand, augmented Büchi automata
of records, intentional automata, and guarded automata represent the environment as the subset of ports of the connector
that have pending requests. On the other hand, colouring semantics and the encoding in [24] represent the environment as
another connector of identical type that composes with the current connector.

All context-sensitive models for Reo [20–24] have special syntax to detect the presence or absence of pending I/O re-
quests. Intentional, guarded, and augmented Büchi automata of records query the presence of I/O requests via a Boolean
guard. The colouring semantics use two colours for the absence of data flow, allowing the connector to detect the presence
of I/O requests. The dual ports in the encoding in [24] serve the same purpose as the two colours in the colouring semantics.

We now propose a context-sensitive semantics without any syntax to detect the presence or absence of pending I/O
requests. As such, our approach is arguably simpler than existing approaches. The basic idea is to distinguish four types of
transitions, namely

1. illegal transitions with unsatisfiable soft constraint,
2. idling transition (i.e., a silent self-loop transition),
3. losing transition (as in the lossysync),
4. regular transitions (i.e., legal, non-idling, non-losing transitions).

Let us consider the distributive CLM K × B, and its sub-CLM E whose set of elements is composed by ⊥ = (⊥, ⊥),
1 = (1, �), ε = (�, ⊥), and � = (�, �), which are the types respectively of illegal, idling, losing, and regular transitions. It
is easy to see that E is indeed a CLM and it is distributive.

The partial order ≤ on E induces a priority relation on the set of enabled transitions in a SCAM over E . If present, the
connector fires any enabled transition of highest priority. The multiplication ⊗ propagates the types through composition.

Figure 7 shows the SCAM representation of the lossysync channel. We verify that the SCAM representation of lossysync
behaves as desired, if it operates in isolation. Note that ⊥ < 1 < � and ⊥ < ε < �, but ε and 1 are incomparable. If the
lossysync has no pending I/O operations on a or b, then the idling transition, 〈∅, [1]〉, is the only enabled transition. If there
is a pending input at port a, then the losing transition, 〈{a}, [ε]〉, and the idling transition, 〈∅, [1]〉, are enabled. Since 1 and
ε are incomparable, the choice between losing and idling is non-deterministic. If there are pending I/O operations on both a
and b, then all transitions are enabled. In particular, the passing transition 〈{a, b}, [�] ⊗[a = b]〉 has priority over the others.

We now verify that the SCAM representation of lossysync behaves as desired, if it operates in a composition. Our ap-
proach crucially relies on the correct identification of the three different transition types, namely the illegal, idling, and
losing transitions. We define the type of a global transition τ = τ1 | · · · | τn as follows

1. τ is illegal if one local transition τi is illegal,
2. τ is idling if all local transitions τi are idling,
3. τ is losing if τ is not illegal and one transition τi is losing,
4. τ is regular if τ is not idling and all local transitions τi are idling or regular.
13

K. Dokter, F. Gadducci, B. Lion et al. Journal of Logical and Algebraic Methods in Programming 118 (2021) 100615
Fig. 8. SCAM representation of the fifo channel, and its Reo notation.

Fig. 9. Composition of the lossysync and fifo in Figs. 7 and 8. If the fifo channel can drain its buffer, then the lossysync channel cannot lose any datum.

The following result ensures that the transition types are correctly propagated through the composition of SCAMs.

Lemma 4. Let a1, . . . , an ∈ E and x = a1 ⊗ · · · ⊗ an. Then for I = {1, . . . , n} we have

1. x = ⊥ if and only if ∃i ∈ I. ai = ⊥,
2. x = 1 if and only if ∀i ∈ I. ai = 1,
3. x = ε if and only if (∃i ∈ I. ai = ε) ∧ (∀i ∈ I. ai �= ⊥),
4. x = � if and only if (∃i ∈ I. ai = �) ∧ (∀i ∈ I. ai ∈ {1, �}).

Proof. Follows immediately from the definition of E . �
Example 11. Consider the composition C of the lossysync channel and the fifo channel, as depicted in Figure 9. Suppose that
C is in state q1, which means that the fifo channel is full. If there is a pending I/O request on port c, then the data can be
taken out. And since the fifo channel can drain its buffer, the lossysync channel cannot lose any datum.

It is important to observe that the bipolar approach is essential for the construction of our context-sensitive model. To
see this, note that 1 is the only sensible value for an idling transition. Otherwise, composition with an idling transition
would change the preferences. If 1 = � holds (as in absorptive semirings), then the priority of the losing transition is
necessarily lower than the priority of the idling transition. Hence, any component would prefer idling (which is always
possible) over losing, which is clearly undesirable.

6. Related work on constraint automata

The closest work to what we present in this paper concerns other extensions of constraint automata (CAs), mostly
proposed in the literature about Reo. In the following of this section we survey some of such proposals.

Quantitative CAs (QCAs) are introduced in [25,26] with the aim of describing the behaviour of connectors tied to their
quality of service (QoS), e.g., a reliability measure or the shortest transmission time. Similarly to CAs, the states of a QCAs cor-
respond to the internal states of the connector it models. The label on a transition consists of a firing set, a data constraint,
and a cost that represents a QoS metric. QCAs differ from timed [27] and probabilistic [28] constraint automata, because
these latter two classes of models describe functional aspects of connectors, while QoS represents non-functional aspects.

As applications, SCAs have been already used in [3,29] and [4,5,30]. Different from previous related work, the main
motivation behind SCAs is to associate an action with a preference. In [3,29] the authors present a formal framework
that is able to discover stateful web services, and to rank the results according to a similarity score expressing the affinities
between the query, asked by a user, and the services in a database. Preference for the similarity between the query and each
service is modelled through SCAs. In the second group of works instead, the authors advance a framework that facilitates the
construction of autonomous agents in a compositional fashion; these agents are ‘soft’, in that their actions are associated
with a preference value, and agents may or may not execute an action depending on a threshold preference. Hence, at
design-time, SCAs can be used to reason about the behaviour of the components in an uncertain physical world, i.e., to
model and verify the behaviour of cyber-physical systems.

Research on SCAs is currently a trending topic among all the different lines concerning Reo. An example is [31], where
the authors describe two complementary approaches to the specification and analysis of robust cyber-physical agent sys-
tems: the first one focuses on abstract theoretical concepts based on automata and temporal logics, called soft component
14

K. Dokter, F. Gadducci, B. Lion et al. Journal of Logical and Algebraic Methods in Programming 118 (2021) 100615
automata; the second approach describes a concrete experimental approach based on executable rewriting logic specifica-
tions, simulation, search, and model checking, called soft agents [31]. The soft agents framework combines ideas from several
previous works: i) the use of soft constraints and SCAs for specifying robust and adaptive behaviour, ii) partially ordered
knowledge sharing for communication in disrupted environments, and iii) the real-time Maude approach to timed systems.

The work in [6] extensively presents a kind of CA (there named as W/MC) consisting of a finite set of states, a finite
set of transitions, three sets of directed ports, and a set of memory cells. The presence of memory cells in W/MC allows
for explicitly modelling the content of buffers, instead of using states. The main difference is represented by the fact that
constraints are crisp, and consequently they do not allow for representing preference values, as needed by application
summarised in the following paragraph.

Still concerning cyber-physical systems, the related literature is represented by several works, as for example [30]
and [32]. In [30] the authors formalise soft agents in the Maude rewriting logic system [33]. The most important features of
this framework are the explicit representation of the physical state, the cyber perception of this state, the robust commu-
nication via sharing of partially ordered knowledge, and the robust behaviour based on soft constraints. In [32] the authors
address the problem of finding what local properties the agents in a cyber-physical system have to satisfy to guarantee a
global required property φ; preferences are modelled via semirings on actions, and verified through a model checking func-
tion. Note that also all the examples in [4] use SCAs (with preferences) to model the behaviour of cyber-physical systems.

The feature of enhancing automata with memory has roots in the dawn of computer science. In this way, an automaton
can base its transition on both the current symbol being read and the values stored in the memory; moreover, it can issue
commands to the memory device whenever it makes a transition. For example, pushdown automata (PDAs) employ a stack
through which operations can be determined by the first element on such a data structure; a transition rule optionally pops
the top of the stack, and optionally pushes new symbols onto the stack. Stack automata allow access to and operations on
deeper elements instead, and can recognise a strictly larger set of languages than PDAs [34]. Applications may concern also
computational models in biology: e.g., automata can use memory to stabilise the behaviour of modelled proteins [35].

A conclusive related work is represented by [36], where Reo channels are annotated with stochastic values for data
arrival rates at channel ends and processing delay rates at channels. Automata are thus stochastically extended in order to
compositionally derive a QoS-aware semantics for Reo. The semantics is given by translating a component into continuous-
time Markov chains. Our approach deals with preferences by using a more general approach: we do not only consider time
but different systems of preferences, as long as they can be cast in the algebraic structure we present in Section 3.

7. Conclusions

We have reworked soft constraint automata as originally proposed in [3,4], with the dual purpose of extending the
underlying algebraic structure, in order to model both positive and negative preferences, and adding memory locations as
originally provided for ‘standard’ constraint automata [6].

As future work, we have many directions in mind. First, we would like to extend existing Reo compilers [37,38] to a
SCAM-based compiler. Our results allow the user to conveniently compile context-sensitive connectors.

Next, we would like to exploit the properties of soft constraints to give additional operators on SCAMs, such as operators
for port renaming or for determinising guards by adding [m′ = m], whenever m′ is unbound.

Finally, we would like to encode the behaviour of SCAMs into a concurrent constraint programming language [10]. Such
languages provide agents with actions to tell (i.e., add) and ask (i.e., query) constraints to a centralised store of information;
this store represents a constraint satisfaction problem, and standard heuristic-based techniques might be applied to find a
solution to complex conditions on filter channels [39].

Declaration of competing interest

We declare no conflict of interest.

References

[1] F. Arbab, Reo: a channel-based coordination model for component composition, Math. Struct. Comput. Sci. 14 (3) (2004) 329–366.
[2] S.T.Q. Jongmans, F. Arbab, Overview of thirty semantic formalisms for Reo, Sci. Ann. Comput. Sci. 22 (1) (2012) 201–251.
[3] F. Arbab, F. Santini, Preference and similarity-based behavioral discovery of services, in: M.H. ter Beek, N. Lohmann (Eds.), WS-FM 2012, in: LNCS,

vol. 7843, Springer, 2012, pp. 118–133.
[4] T. Kappé, F. Arbab, C.L. Talcott, A compositional framework for preference-aware agents, in: M. Kargahi, A. Trivedi (Eds.), V2CPS@IFM 2016, in: EPTCS,

vol. 232, 2016, pp. 21–35.
[5] T. Kappé, F. Arbab, C.L. Talcott, A component-oriented framework for autonomous agents, in: J. Proença, M. Lumpe (Eds.), FACS 2017, in: LNCS,

vol. 10487, Springer, 2017, pp. 20–38.
[6] S.T.Q. Jongmans, T. Kappé, F. Arbab, Constraint automata with memory cells and their composition, Sci. Comput. Program. 146 (2017) 50–86.
[7] K. Dokter, F. Gadducci, F. Santini, Soft constraint automata with memory, in: F.S. de Boer, M.M. Bonsangue, J. Rutten (Eds.), It’s All About Coordination,

in: LNCS, vol. 10865, Springer, 2018, pp. 70–85.
[8] S. Bistarelli, U. Montanari, F. Rossi, Semiring-based constraint satisfaction and optimization, J. ACM 44 (2) (1997) 201–236.
[9] V.A. Saraswat, M.C. Rinard, P. Panangaden, Semantic foundations of concurrent constraint programming, in: D.S. Wise (Ed.), POPL 1991, ACM Press,

1991, pp. 333–352.
15

http://refhub.elsevier.com/S2352-2208(20)30100-0/bib4234A71A276F53C8574031E537D7EC9Es1
http://refhub.elsevier.com/S2352-2208(20)30100-0/bib1A3161E2DDD0C76177D617FA103D8453s1
http://refhub.elsevier.com/S2352-2208(20)30100-0/bib158AA565E0848F037F6F068A957385C6s1
http://refhub.elsevier.com/S2352-2208(20)30100-0/bib158AA565E0848F037F6F068A957385C6s1
http://refhub.elsevier.com/S2352-2208(20)30100-0/bib19E62546E3C8BFE1D9A595A26049DBF5s1
http://refhub.elsevier.com/S2352-2208(20)30100-0/bib19E62546E3C8BFE1D9A595A26049DBF5s1
http://refhub.elsevier.com/S2352-2208(20)30100-0/bib1A8AF4347192E99389BE50D12EBA1F0Fs1
http://refhub.elsevier.com/S2352-2208(20)30100-0/bib1A8AF4347192E99389BE50D12EBA1F0Fs1
http://refhub.elsevier.com/S2352-2208(20)30100-0/bib68B366A84852A02DC516C5FD59F81A61s1
http://refhub.elsevier.com/S2352-2208(20)30100-0/bibF2032E68CEBBE98727B31FC33812AD24s1
http://refhub.elsevier.com/S2352-2208(20)30100-0/bibF2032E68CEBBE98727B31FC33812AD24s1
http://refhub.elsevier.com/S2352-2208(20)30100-0/bib70AA1452DE58D7A60C2464F0F06B4766s1
http://refhub.elsevier.com/S2352-2208(20)30100-0/bib4CB856B9D22D43E22D47C174A367CF09s1
http://refhub.elsevier.com/S2352-2208(20)30100-0/bib4CB856B9D22D43E22D47C174A367CF09s1

K. Dokter, F. Gadducci, B. Lion et al. Journal of Logical and Algebraic Methods in Programming 118 (2021) 100615
[10] F. Gadducci, F. Santini, L.F. Pino, F.D. Valencia, Observational and behavioural equivalences for soft concurrent constraint programming, Log. Algebraic
Methods Program. 92 (2017) 45–63.

[11] F. Gadducci, F. Santini, Residuation for bipolar preferences in soft constraints, Inf. Process. Lett. 118 (2017) 69–74.
[12] J. Golan, Semirings and Affine Equations over Them: Theory and Applications, Kluwer, 2003.
[13] S. Bistarelli, F. Gadducci, Enhancing constraints manipulation in semiring-based formalisms, in: G. Brewka, S. Coradeschi, A. Perini, P. Traverso (Eds.),

ECAI 2006, in: FAIA, vol. 141, IOS Press, 2006, pp. 63–67.
[14] F. Gadducci, M.M. Hölzl, G.V. Monreale, M. Wirsing, Soft constraints for lexicographic orders, in: F. Castro-Espinoza, A.F. Gelbukh, M. González-Mendoza

(Eds.), MICAI 2013, in: LNCS, vol. 8265, Springer, 2013, pp. 68–79.
[15] F. Gadducci, F. Santini, L.F. Pino, F.D. Valencia, A labelled semantics for soft concurrent constraint programming, in: T. Holvoet, M. Viroli (Eds.), COOR-

DINATION 2018, in: LNCS, vol. 9037, Springer, 2015, pp. 133–149.
[16] L. Henkin, J.D. Monk, A. Tarski, Cylindric set algebras and related structures, in: Cylindric Set Algebras, Springer, 1981, pp. 1–129.
[17] S. Bistarelli, U. Montanari, F. Rossi, Soft concurrent constraint programming, ACM Trans. Comput. Log. 7 (3) (2006) 563–589.
[18] C. Baier, M. Sirjani, F. Arbab, J.J.M.M. Rutten, Modeling component connectors in Reo by constraint automata, Sci. Comput. Program. 61 (2) (2006)

75–113.
[19] F. Arbab, J.J.M.M. Rutten, A coinductive calculus of component connectors, in: M. Wirsing, D. Pattinson, R. Hennicker (Eds.), WADT 2002, in: LNCS,

vol. 2755, Springer, 2003, pp. 34–55.
[20] D. Clarke, D. Costa, F. Arbab, Connector colouring I: synchronisation and context dependency, Sci. Comput. Program. 66 (3) (2007) 205–225.
[21] M. Izadi, M.M. Bonsangue, D. Clarke, Modeling component connectors: synchronisation and context-dependency, in: A. Cerone, S. Gruner (Eds.), SEFM

2008, IEEE Computer Society, 2008, pp. 303–312.
[22] D. Costa, M. Niqui, J.J.M.M. Rutten, Intentional automata: a context-dependent model for component connectors - (extended abstract), in: F. Arbab, M.

Sirjani (Eds.), FSEN 2011, in: LNCS, vol. 7141, Springer, 2012, pp. 335–342.
[23] M.M. Bonsangue, D. Clarke, A. Silva, A model of context-dependent component connectors, Sci. Comput. Program. 77 (6) (2012) 685–706.
[24] S.T.Q. Jongmans, C. Krause, F. Arbab, Encoding context-sensitivity in Reo into non-context-sensitive semantic models, in: W.D. Meuter, G. Roman (Eds.),

COORDINATION 2011, in: LNCS, vol. 6721, Springer, 2011, pp. 31–48.
[25] F. Arbab, T. Chothia, S. Meng, Y. Moon, Component connectors with QoS guarantees, in: A.L. Murphy, J. Vitek (Eds.), COORDINATION 2007, in: LNCS,

vol. 4467, Springer, 2007, pp. 286–304.
[26] S. Meng, F. Arbab, QoS-driven service selection and composition using quantitative constraint automata, Fundam. Inform. 95 (1) (2009) 103–128.
[27] F. Arbab, C. Baier, F.S. de Boer, J.J.M.M. Rutten, Models and temporal logical specifications for timed component connectors, Softw. Syst. Model. 6 (1)

(2007) 59–82.
[28] C. Baier, Probabilistic models for Reo connector circuits, Univers. Comput. Sci. 11 (10) (2005) 1718–1748.
[29] M. Sargolzaei, F. Santini, F. Arbab, H. Afsarmanesh, A tool for behaviour-based discovery of approximately matching web services, in: R.M. Hierons,

M.G. Merayo, M. Bravetti (Eds.), SEFM 2013, in: LNCS, vol. 8137, Springer, 2013, pp. 152–166.
[30] C.L. Talcott, V. Nigam, F. Arbab, T. Kappé, Formal specification and analysis of robust adaptive distributed cyber-physical systems, in: M. Bernardo, R.D.

Nicola, J. Hillston (Eds.), SFM 2016, in: LNCS, vol. 9700, Springer, 2016, pp. 1–35.
[31] C.L. Talcott, From soft agents to soft component automata and back, in: F.S. de Boer, M.M. Bonsangue, J. Rutten (Eds.), It’s All About Coordination, in:

LNCS, vol. 10865, Springer, 2018, pp. 189–207.
[32] S. Bistarelli, F. Martinelli, I. Matteucci, F. Santini, A formal and run-time framework for the adaptation of local behaviours to match a global property,

in: O. Kouchnarenko, R. Khosravi (Eds.), FACS 2016, in: LNCS, vol. 10231, Springer, 2016, pp. 134–152.
[33] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martí-Oliet, J. Meseguer, J.F. Quesada, Maude: specification and programming in rewriting logic, Theor. Comput.

Sci. 285 (2) (2002) 187–243.
[34] J.E. Hopcroft, J.D. Ullman, Nonerasing stack automata, Comput. Syst. Sci. 1 (2) (1967) 166–186.
[35] R. Alonso-Sanz, A. Adamatzky, Actin automata with memory, Bifurc. Chaos 26 (1) (2016).
[36] Y. Moon, A. Silva, C. Krause, F. Arbab, A compositional model to reason about end-to-end QoS in stochastic Reo connectors, Sci. Comput. Program. 80

(2014) 3–24.
[37] S.-S.T.Q. Jongmans, Automata-theoretic protocol programming, Ph.D. thesis, Leiden University, 2016.
[38] K. Dokter, F. Arbab, Rule-based form for stream constraints, in: G.D.M. Serugendo, M. Loreti (Eds.), COORDINATION 2018, in: LNCS, vol. 10852, Springer,

2018, pp. 142–161.
[39] F. Arbab, Puff, the magic protocol, in: G. Agha, O. Danvy, J. Meseguer (Eds.), Formal Modeling: Actors, Open Systems, Biological Systems, in: LNCS,

vol. 7000, Springer, 2011, pp. 169–206.
16

http://refhub.elsevier.com/S2352-2208(20)30100-0/bibD763043FAC71E5726A3A3E3A1C7E8C41s1
http://refhub.elsevier.com/S2352-2208(20)30100-0/bibD763043FAC71E5726A3A3E3A1C7E8C41s1
http://refhub.elsevier.com/S2352-2208(20)30100-0/bibEA817650BAE7C4719E7780D4B3E93E14s1
http://refhub.elsevier.com/S2352-2208(20)30100-0/bib079FE3A23788E141EA13235B5CB0D9C0s1
http://refhub.elsevier.com/S2352-2208(20)30100-0/bib7D9908BDD6773672953F061030147689s1
http://refhub.elsevier.com/S2352-2208(20)30100-0/bib7D9908BDD6773672953F061030147689s1
http://refhub.elsevier.com/S2352-2208(20)30100-0/bib51F0A5C3B64C86B31E24A026FE625E71s1
http://refhub.elsevier.com/S2352-2208(20)30100-0/bib51F0A5C3B64C86B31E24A026FE625E71s1
http://refhub.elsevier.com/S2352-2208(20)30100-0/bib3340F7AEBC6E1015B6F0CC2738681943s1
http://refhub.elsevier.com/S2352-2208(20)30100-0/bib3340F7AEBC6E1015B6F0CC2738681943s1
http://refhub.elsevier.com/S2352-2208(20)30100-0/bibC9ED6C0E08B23D29D08D343059561FC1s1
http://refhub.elsevier.com/S2352-2208(20)30100-0/bib9C94594BEEF2DD07675954D761B8DEACs1
http://refhub.elsevier.com/S2352-2208(20)30100-0/bib5435C69ED3BCC5B2E4D580E393E373D3s1
http://refhub.elsevier.com/S2352-2208(20)30100-0/bib5435C69ED3BCC5B2E4D580E393E373D3s1
http://refhub.elsevier.com/S2352-2208(20)30100-0/bib3B84F8CFD144E7211160037EBACBF0E7s1
http://refhub.elsevier.com/S2352-2208(20)30100-0/bib3B84F8CFD144E7211160037EBACBF0E7s1
http://refhub.elsevier.com/S2352-2208(20)30100-0/bibBF5A7E40119AB990E49626D678E65D8Ds1
http://refhub.elsevier.com/S2352-2208(20)30100-0/bib3ACE44E20DD321C5F8F1FE1FD0979735s1
http://refhub.elsevier.com/S2352-2208(20)30100-0/bib3ACE44E20DD321C5F8F1FE1FD0979735s1
http://refhub.elsevier.com/S2352-2208(20)30100-0/bibD4878814BDCC7A3E09B514C19B462EDAs1
http://refhub.elsevier.com/S2352-2208(20)30100-0/bibD4878814BDCC7A3E09B514C19B462EDAs1
http://refhub.elsevier.com/S2352-2208(20)30100-0/bibADF02D468732FE4076C321C96D2A629Fs1
http://refhub.elsevier.com/S2352-2208(20)30100-0/bibCC688915CEEEC9FB0D56199163DBE507s1
http://refhub.elsevier.com/S2352-2208(20)30100-0/bibCC688915CEEEC9FB0D56199163DBE507s1
http://refhub.elsevier.com/S2352-2208(20)30100-0/bib8745C9E4C3E3AE0BC9124AD4EDFC657Ds1
http://refhub.elsevier.com/S2352-2208(20)30100-0/bib8745C9E4C3E3AE0BC9124AD4EDFC657Ds1
http://refhub.elsevier.com/S2352-2208(20)30100-0/bib7470AF348FC8DF2C27F5F0B9ED763DE1s1
http://refhub.elsevier.com/S2352-2208(20)30100-0/bib6C86EB53EE544DB77A473265058CFFBEs1
http://refhub.elsevier.com/S2352-2208(20)30100-0/bib6C86EB53EE544DB77A473265058CFFBEs1
http://refhub.elsevier.com/S2352-2208(20)30100-0/bib1959941CF1A921A01ABB0FFB9FFDF4DCs1
http://refhub.elsevier.com/S2352-2208(20)30100-0/bibC2F98A224A79A6BC1A472B3343DDCE2Ds1
http://refhub.elsevier.com/S2352-2208(20)30100-0/bibC2F98A224A79A6BC1A472B3343DDCE2Ds1
http://refhub.elsevier.com/S2352-2208(20)30100-0/bibB5CC5FEF8670463FEE273C9AFE5C7555s1
http://refhub.elsevier.com/S2352-2208(20)30100-0/bibB5CC5FEF8670463FEE273C9AFE5C7555s1
http://refhub.elsevier.com/S2352-2208(20)30100-0/bibB0C3A8DF073F6C3260B3C2591F388ABFs1
http://refhub.elsevier.com/S2352-2208(20)30100-0/bibB0C3A8DF073F6C3260B3C2591F388ABFs1
http://refhub.elsevier.com/S2352-2208(20)30100-0/bib4A85A80A5558582FE07491146364AF42s1
http://refhub.elsevier.com/S2352-2208(20)30100-0/bib4A85A80A5558582FE07491146364AF42s1
http://refhub.elsevier.com/S2352-2208(20)30100-0/bibA7CDF8142CF63F7297B59DD8016CC09Fs1
http://refhub.elsevier.com/S2352-2208(20)30100-0/bibA7CDF8142CF63F7297B59DD8016CC09Fs1
http://refhub.elsevier.com/S2352-2208(20)30100-0/bib38BD0012C0808F5FAC559EB9CD01F3B4s1
http://refhub.elsevier.com/S2352-2208(20)30100-0/bibE922898342E5F93212D28406D9E7F706s1
http://refhub.elsevier.com/S2352-2208(20)30100-0/bib6D4DB5FF0C117864A02827BAD3C361B9s1
http://refhub.elsevier.com/S2352-2208(20)30100-0/bib6D4DB5FF0C117864A02827BAD3C361B9s1
http://refhub.elsevier.com/S2352-2208(20)30100-0/bibC14AE2A096AD4CDAE56A34D891D2A4ABs1
http://refhub.elsevier.com/S2352-2208(20)30100-0/bibFD1D47BF9A7905CCE3A0A25B0FC45A88s1
http://refhub.elsevier.com/S2352-2208(20)30100-0/bibFD1D47BF9A7905CCE3A0A25B0FC45A88s1
http://refhub.elsevier.com/S2352-2208(20)30100-0/bib58649878B7E5F1EE39E9034B8CD6AE5Ds1
http://refhub.elsevier.com/S2352-2208(20)30100-0/bib58649878B7E5F1EE39E9034B8CD6AE5Ds1

	Soft constraint automata with memory
	1 Introduction
	2 Preliminaries on soft constraints
	2.1 Complete lattice monoids
	2.2 Streams of preferences
	2.3 Cylindric operators for ordered monoids
	2.4 Soft constraints (on infinite domains)

	3 Soft constraint automata with memory
	3.1 Soft languages
	3.2 Syntax
	3.3 Semantics
	3.4 SCAM composition
	3.5 SCAM hiding

	4 A case study
	4.1 Operator
	4.2 Machine
	4.3 Composition
	4.4 Hiding

	5 Application to context-sensitivity
	6 Related work on constraint automata
	7 Conclusions
	Declaration of competing interest
	References

