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Abstract

Feed-forward deep convolutional neural networks (DCNNs) are, under specific conditions,

matching and even surpassing human performance in object recognition in natural scenes.

This performance suggests that the analysis of a loose collection of image features could

support the recognition of natural object categories, without dedicated systems to solve spe-

cific visual subtasks. Research in humans however suggests that while feedforward activity

may suffice for sparse scenes with isolated objects, additional visual operations (’routines’)

that aid the recognition process (e.g. segmentation or grouping) are needed for more com-

plex scenes. Linking human visual processing to performance of DCNNs with increasing

depth, we here explored if, how, and when object information is differentiated from the back-

grounds they appear on. To this end, we controlled the information in both objects and back-

grounds, as well as the relationship between them by adding noise, manipulating

background congruence and systematically occluding parts of the image. Results indicate

that with an increase in network depth, there is an increase in the distinction between object-

and background information. For more shallow networks, results indicated a benefit of train-

ing on segmented objects. Overall, these results indicate that, de facto, scene segmentation

can be performed by a network of sufficient depth. We conclude that the human brain could

perform scene segmentation in the context of object identification without an explicit mecha-

nism, by selecting or “binding” features that belong to the object and ignoring other features,

in a manner similar to a very deep convolutional neural network.

Author summary

To what extent do Deep Convolutional Neural Networks exhibit sensitivity to scene prop-

erties (e.g. object context) during object recognition, and how is this related to network

depth? Linking human visual processing to performance of feed-forward DCNNs with

increasing depth, our study explored if and how object information is differentiated from

the backgrounds they appear on. We show that with an increase in network depth, there is

a stronger selection of parts of the image that belong to the target object, compared to the

rest of the image. In other words, network depth facilitates scene segmentation. Given
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that the operations of a very deep network can be performed by a recurrent network, we

speculate that the human brain could perform scene segmentation, in the context of object

identification, without an explicit mechanism using recurrent processing.

Introduction

Visual object recognition is so swift and efficient that it has been suggested that a fast feed-for-

ward sweep of perceptual activity is sufficient to perform the task [1–3]. Disruption of visual

processing beyond feed-forward stages (e.g. >150 ms after stimulus onset, or after activation

of higher order areas) can however lead to decreased object recognition performance [4,5],

and a multitude of recent findings suggest that while feed-forward activity may suffice to rec-

ognize isolated objects that are easy to discern, the brain employs increasing feedback or recur-

rent processing for object recognition under more ’challenging’ natural conditions [6–10].

When performing a visual object recognition task, the visual input (stimulus) elicits a feed-for-

ward drive that rapidly extracts basic image features through feedforward connections [11].

For sparse scenes with isolated objects, this set of features appears to be enough for successful

recognition. For more complex scenes, however, the jumble of visual information (’clutter’)

may be so great that object recognition cannot rely on having access to a conclusive set of fea-

tures. For those images, extra visual operations (’visual routines’), such as scene segmentation

and perceptual grouping, requiring several iterations of modulations and refinement of the

feedforward activity in the same and higher visual areas, might be necessary [11–14].

While this view emphasises that object recognition relies on the integration of features that

belong to the object, many studies have shown that features from the background can also

influence the recognition process [15–22]. For example, objects appearing in a familiar context

are detected more accurately and quickly than objects in an unfamiliar environment, and

many computational models of object recognition (in both human and computer vision), use

features both from within the object and from the background [23–25]. This shows that when

subjects recognise an object, figure-ground segmentation has not always occurred completely.

One way to understand how the human visual system processes information involves build-

ing computational models that account for human-level performance under different condi-

tions. Here we investigate Deep Convolutional Neural Networks (DCNNs). DCNNs are being

studied often because they show remarkable performance on both object and scene recogni-

tion, rivaling human performance. Recent evidence shows that the depth of DCNNs is of cru-

cial importance for this recognition performance [26]. In addition to better performance,

deeper networks have also been shown to be more human-like (making errors similar to

human subjects; [27]). More layers seem especially important when scenes are more difficult

or challenging, e.g. because of occlusion, variation, or blurring, where elaborate processing is

required [8,10]. The very deep residual networks used in current object recognition tasks are

nearly equivalent to a recurrent neural network unfolding over time, when the weights

between their hidden layers are clamped [28]. This has led to the hypothesis that the additional

layers function in a way that is similar to recurrent processing in the human visual system, and

that these additional layers are solving the challenges that are resolved by recurrent computa-

tions in the brain.

In the current study, we explore how the number of layers (depth) in a DCNN relates to

human vision and how depth influences to what degree object segmentation occurs. While we

certainly do not aim to claim that DCNNs are identical to the human brain, we argue that they

can be studied in a way similar to the way in which we use animal models (DNimals; [29]).
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First, we focused on the question to what extent DCNNs exhibit the same sensitivity to scene

properties (object context) as human participants. To this end, we presented seven Residual

Networks (ResNets; [30]) with an increasing number of layers and 40 human participants with

images of objects that were either presented on a uniform background (segmented), or on top

of congruent or incongruent scenes and evaluated their performance. Additionally, for the

DCNNs, we controlled the amount of information in the objects and backgrounds, as well as

the relationship between them by adding noise or systematically occluding parts of the image.

Next, we investigated the role of segmentation on learning (’training’), by training the DCNNs

on either segmented or unsegmented objects.

A convergence of results indicated a lower degree of segregation between object- and back-

ground features in more shallow networks, compared to deeper networks. This was confirmed

by the observation that more shallow networks benefit more from training on pre-segmented

objects than deeper networks. Overall, deeper networks seem to perform implicit ’segmenta-

tion’ of the objects from their background, by improved selection of relevant features.

Results

Experiment 1: Scene segmentation + background consistency effect

Human performance. In experiment 1, participants viewed images of real-world objects

placed onto white (segmented), congruent and incongruent backgrounds (Fig 1). Images were

presented in randomized sequence, for a duration of 32 ms, followed by a mask, presented for

300 ms. After the mask, participants indicated which target object was presented, by clicking

on one of 27 options on screen using the mouse (see Materials and methods).

Accuracy (percentage correct) was computed for each participant. A non-parametric Fried-

man test differentiated accuracy across the three conditions (segmented, congruent, incongru-

ent), Friedman’s Q(2) = 74.053, p< .001. Post-hoc analyses with Wilcoxon signed-rank tests

indicated that participants made fewer errors for segmented objects, than the congruent,

W = 741, p< .001, and incongruent condition, W = 741, p< .001. Additionally, participants

made fewer errors for congruent than incongruent trials, W = 729, p< .001. Overall, results

indicate that when a scene is glanced briefly (32 ms, followed by a mask), the objects are not

completely segregated from their background and semantic consistency information influ-

ences object perception.

Model performance. For human participants, results indicated that (at a first glance) fea-

tures from the background influenced object perception. Do DCNNs show a similar pattern

and how is this influenced by network depth? To investigate the effect of network depth on

scene segmentation, tests were conducted on seven deep residual networks (ResNets; [29])

with increasing number of layers: 6 (technically, this network is a "Net6", because we removed

the residual connection), 10, 18, 34, 50, 101 and 152.This approach allowed us to investigate

the effect of network depth (adding layers) while keeping other model properties as similar as

possible.

We presented 38 different subsets of 243 stimuli to the DCNNs, each subset consisting of

the same number of images per category and condition that human observers were exposed to

(81 per condition, 3 per category). Following the procedure for comparing human perfor-

mance, a non-parametric Friedman test differentiated accuracy across the three conditions

(segmented, congruent, incongruent) for all networks. Using Post-hoc Wilcoxon signed-rank

tests with Benjamini/Hochberg FDR correction, differences between the conditions were eval-

uated for all networks (Fig 2; significant differences indicated with a solid line).

Results indicated both a substantial overlap and difference in performance between human

participants and DCNNs (Fig 2). Both were better in recognizing an object on a congruent
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versus an incongruent background. However, whereas human participants performed best in

the segmented condition, DCNNs performed equally well (or better) for the congruent condi-

tion. Performance for the incongruent condition was lowest. This effect was particularly strong

for more shallow networks (ResNet-6, ResNet-10), and got smaller as the networks got deeper.

A Mann-Whitney U test on the difference in performance between congruent and incongru-

ent trials indicated a smaller decrease in performance for incongruent trials for ResNet-152

compared to ResNet-6 (Mann–Whitney U = 1420.0, n1 = n2 = 38, p< .001, two-tailed) For

’ultra-deep’ networks it mattered less if the background was congruent, incongruent or even

present, behavior that humans also exhibit when these images are shown unmasked. Remark-

ably, performance of the most shallow network (ResNet-6) was better for the congruent condi-

tion compared to the segmented condition. These results suggest that parts of co-varying

backgrounds or surroundings influence the categorization of the objects. In other words, there

is ‘leakage’ of the natural (congruent) background in the features for classification, predomi-

nantly for the more shallow networks. For object recognition in a congruent scene this is not

necessarily a problem, and can even increase or facilitate performance (as compared to the seg-

mented condition). For objects on an incongruent background, however, this impairs

Fig 1. Stimuli and experimental design. A) Exemplars of the different object categories (cut-out objects from

ImageNet validation set). 27 object categories were used in this experiment (subordinate level, based on ImageNet

categories). In total, each category contained 10 exemplars. B) Stimuli were generated by placing the objects onto

white, congruent and incongruent backgrounds (512�512 pixels, full-color). Backgrounds were sampled from the

SUN2012 database [53]. For human participants, objects were downsized and placed in one of nine possible locations

(3x3 grid). For DCNNs, objects were bigger and placed centrally. C) Participants performed on an object recognition

task. At the beginning of each trial, a fixation-cross was presented in the center of the screen for 2000 ms, followed by

an image. Images were presented in randomized sequence, for a duration of 32 ms, followed by a mask, presented for

300 ms. After the mask, participants had to indicate which object they saw, by clicking on one of 27 options on screen

using the mouse. After 81 (⅓) and 162 (⅔) trials, there was a short break. D) Human performance (% correct) on the

object recognition task. Participants performed best for segmented objects, followed by congruent and incongruent

respectively. Error bars represent bootstrap 95% confidence intervals.

https://doi.org/10.1371/journal.pcbi.1008022.g001
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classification performance. These results suggest that one of the ways in which network depth

improves object classification, is by learning how to select the features that belong to the object,

and thereby implicitly segregating the object features from the other parts of the scene.

Then, to determine whether the experimental observations above can be approximated by

recurrent computations, we additionally tested three different architectures from the CORnet

model family[31]; CORnet-Z (feedforward), CORnet-R (recurrent) and CORnet-S (recurrent

with skip connections). The shift in performance from CORnet-Z to CORnet-S showed the

same pattern as the shift from ResNet-6 to ResNet-18. This overlap suggests that the pattern of

results for deeper ResNets can be approximated by recurrent computations. Because the differ-

ent CORnet models did not only differ with respect to ‘recurrence’, but also contained other

architectural differences (CORnet-Z not only is feedforward, but it is also shallower than COR-

net-S), the differences between the networks could stem from the difference in information

flow (feedforward vs. recurrent), or from the different amount of parameters in each network.

Taking the results from the ResNets and CORnets together, these findings suggest that one of

Fig 2. DCNN performance on the object recognition task. A) DCNN performance on the object recognition task. 38 different subsets of 243 stimuli were presented,

each subset consisting of the same number of images per target category and condition (segmented, congruent, incongruent) that human observers were exposed to (81

per condition, 3 per category). For all models, performance was better for the congruent than for the incongruent condition. For the ResNets, this decrease was most

prominent for ResNet-6, and got smaller as the models get deeper. For ’ultra-deep’ networks it mattered less if the background was congruent, incongruent or even

present. For the CORnets, this decrease was most prominent for the feedforward architecture (CORnet-Z). For CORnet-S (recurrent + skip connection) performance

was similar to an ‘ultra-deep’ network. Using Post-hoc Wilcoxon signed-rank tests with Benjamini/Hochberg FDR correction, differences between the conditions were

evaluated for all networks. Significant differences are indicated with a solid line vs. a dashed line (all segmented–incongruent comparisons were significant). Error bars

represent bootstrap 95% confidence interval. B) DCNN performance on the object recognition task after adding noise to the object, the background, or both.

https://doi.org/10.1371/journal.pcbi.1008022.g002
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the ways in which network depth improves object classification, is by learning how to select

the features that belong to the object, and thereby implicitly segregating the object features

from the other parts of the scene.

To confirm this hypothesis, and to gain more insight into the importance of the features in

the object vs. the background, Gaussian noise was added to either the object, the background,

or both (Fig 2B). When noise was added to the complete image (object included), performance

decreased for all conditions and all networks. When noise was added to the object only, classi-

fication performance also decreased for all conditions Crucially, this decrease was modest for

the congruent and particularly severe for the incongruent condition. This indicates that for the

congruent condition, also in the no-noise manipulation, performance is heavily dependent on

the background for classification. The other side of this conclusion, that in the incongruent

condition the features in the background interfere with object classification, is confirmed by

the observation that this condition improves when noise is added to the background.

To further investigate the degree to which the networks are using features from the object

and/or background for classification, we systematically occluded different parts of the input

image by sliding a gray patch of either 128�128 (Fig 3), 64�64 or 256�256 pixels (Fig 4) across

the image in 32 pixel steps. We evaluated the changes in activation of the correct class after

occlusion of the different image parts, before the softmax activation function (compared to

activation for the ’original’ unoccluded image). We reasoned that, if the activity in the feature

map changed after occluding a patch of the image, that those pixels were important for classifi-

cation. For this analysis, positive values indicate that pixels are helping classification, with

higher values indicating a higher importance. This reveals the features to be far from random,

uninterpretable patterns. For example, in Fig 3, results clearly show that the network is localiz-

ing the object within the scene, as the activity in the feature map drops significantly when the

object (china cabinet in this example) is occluded. To evaluate whether deeper networks are

better at localizing the objects in the scene, while ignoring irrelevant background information,

we quantified the importance of features in the object vs. background by averaging the change

in the feature map across pixels belonging to either the object or the background (‘impor-

tance’). For each image, importance values of the objects and backgrounds were normalized

by dividing them by the activation for the original image. Because performance of ResNet-6

for the ‘original’ unoccluded images was already exceptionally low, the averaged interference

was hard to interpret and remained low, due to many near-zero values in the data. Therefore,

we took into account only images that were classified correctly (correct class within Top 5 pre-

dictions), resulting in an unequal number of images for each network. Mann-Whitney U tests

with Benjamini/Hochberg FDR correction indicated a smaller influence (importance) of back-

ground pixels on classification for deeper networks. For those models, pixels from the object

had a smaller impact as well, for the segmented and congruent condition.

Next, we tested how training was influenced by network depth. If deeper networks indeed

implicitly learn to segment object from background, we expect them to show a smaller differ-

ence in learning speed, when trained with segmented vs. unsegmented stimuli (as compared to

shallow networks).

Experiment 2: Training on unsegmented/segmented objects

Experiment 1 indicated that, when trained on ImageNet, network performance is influenced

by visual information from both the object and the background region. In experiment 2, we

investigated the influence of background on classification performance when the networks are

trained on visual information from the object region only. To do so, we trained four networks

(ResNet-6, ResNet-10, ResNet-18, ResNet-34) on a dataset with objects that were already
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segmented, and on a dataset in which they were unsegmented (i.e. objects embedded in the

scene). All images were resized to 128x128 pixels. We used more shallow networks and fewer

object classes to reduce computation time. To obtain statistical results, we reinitialized the net-

works with different seeds and repeated the process for 10 different seeds.

Accuracy of the ResNets was evaluated after each epoch (100 in total) on the validation sets.

Results indicated a higher classification accuracy in the early stages of training for the networks

trained on segmented objects compared to the networks trained on unsegmented objects (Fig

5). Statistical analyses comparing the average accuracies of the first 10 epochs for networks

trained on segmented vs. unsegmented objects indicated significant differences for all models

(Mann-Whitney U-statistic: U = 5.0, p< .001, for ResNet-6, -10, -18 and -34 respectively).

Fig 3. Systematic occlusion of parts of the image. A) Examples where we occluded different portions of the scene, and visualized how the classifier output for the

correct class changed (before the softmax activation function). Images were occluded by a gray patch of 128x128 pixels, sliding across the image in 32 pixel steps.

Importance is defined as the relative change in activation after occluding that part of the image (compared to the activation of the ‘original’ unoccluded image) and is

computed as follows: original activation—activation after occlusion / original activation. This example is for illustrative purposes only; maps vary across exemplars. B)

The relative change in activation (compared to the original image), after occluding pixels of either the object or the background, for the different conditions

(segmented, congruent, incongruent). For each image, importance values of the objects and backgrounds were normalized by dividing them by the activation for the

original image, resulting in the importance ratio. Error bars represent the bootstrap 95% confidence interval. Non-significant differences are indicated with a solid

line below the graph.

https://doi.org/10.1371/journal.pcbi.1008022.g003
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Fig 4. Analysis repeated with a smaller (64x64) and larger (256x256) patch. A) visualization of the change in classifier output for the correct class, before the softmax

activation function after occlusion by a 64x64 patch, sliding across the image in 32 pixel steps. B) The relative change in activation (compared to the original image), after

occluding pixels of either the object or the background, for the different conditions (segmented, congruent, incongruent). For each image, importance values of the objects

and backgrounds were normalized by dividing them by the activation for the original image, resulting in the importance ratio. Error bars represent the 95% confidence

interval. C/D) Repeated for a large patch (256x256 pixels).

https://doi.org/10.1371/journal.pcbi.1008022.g004

Fig 5. Accuracy during training on segmented vs. unsegmented stimuli. Networks trained on segmented objects

achieve better classification accuracy in the early stages of training than the networks trained on unsegmented objects

for shallow networks (ResNet-6, ResNet-10), and they converge in less epochs. Individual data points indicate the

moment of convergence, defined as the first epoch to reach 95% of the maximum accuracy across all epochs.

https://doi.org/10.1371/journal.pcbi.1008022.g005
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In the later stages, accuracy of the two types of models (trained on unsegmented vs. seg-

mented) was similar. Results also indicated a difference between the more shallow networks

(ResNet-6), where there is a difference in accuracy between segmented and unsegmented

objects for all training epochs, and the deeper networks. For the deeper networks, the differ-

ence in accuracy quickly diminishes and finally disappears. Shallow networks trained on seg-

mented stimuli also converged (stabilized) earlier than when they were trained on

unsegmented images. Statistical analyses comparing the ‘speed of convergence’ indicated sig-

nificant effects of visual training diet (segmented vs. unsegmented) across multiple initializa-

tion conditions of the networks, for the more shallow networks (Mann Whitney-U statistic

U = 0, p< .001; U = 20.0, p = .012 for ResNet6 and ResNet10, respectively). For this analysis,

the speed of convergence was defined as the first epoch at which 95% of the maximum accu-

racy was reached. Deeper networks thus seem to learn to ’segment’ the objects from their back-

ground during training.

To better understand the inner workings of our models, we visualized the filter activations

of each convolution layer for one initialization. Visualizing the filter activations of each convo-

lution layer of the networks provides us with heatmaps that show features of a given image,

that a corresponding filter is tuned to. This gives an idea of which parts of the image contained

the most important features for classification. To obtain these heatmaps, we extracted all the

filter activations from the different layers (one 2D-array per filter) for a specific image. Then,

for each layer, we summed the absolute value of those arrays together.

Looking at the heatmaps of networks trained on segmented vs. unsegmented data (Fig 6),

we see that the heatmaps of the networks trained on segmented objects contain no background

activations. For networks trained on unsegmented objects (full images), however, we see that

Fig 6. Visualization of the filter activations of each convolution layer for the different networks. All the filter activations from the different layers (one 2D-array per

filter) for a specific image were extracted. heatmaps were generated by summing the absolute value of those arrays together. The lightest part of these heatmaps contain

the most important features for classification. Maps for ResNet-34 were resized for visualization purposes.

https://doi.org/10.1371/journal.pcbi.1008022.g006
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the backgrounds are gradually suppressed inside the network. This indicates that the networks

learn to attend to important features (i.e. the objects) and almost eliminate completely the

influence of the background, when the depth or capacity of the network is sufficient. This sug-

gests that the network learns to segment the objects before classifying.

Discussion

We investigated the extent to which object and context information is represented and used

for object recognition in trained deep convolutional neural networks. Experiment 1 showed

both a substantial overlap, and a difference in performance between human participants and

DCNNs. Both humans and DCNNs are better in recognizing an object on a congruent versus

an incongruent background. However, whereas human participants performed best in the seg-

mented condition, DCNNs performed equally well (or better) for the congruent condition.

Performance for the incongruent condition was lowest. This effect was particularly strong for

more shallow networks. Further analyses, investigating which parts of the image were most

important for recognition, showed that the influence of the background features on the

response outcome was relatively strong for shallow networks and almost absent for deeper net-

works. For shallow networks, the results of experiment 2 indicated a benefit of training on seg-

mented objects (as compared to unsegmented objects). For deeper networks, this benefit was

much less prominent. Training on segmented images thus reduced the difference in perfor-

mance between shallow and deeper networks.

The current results suggest that there is no discrete ‘moment’ at which segmentation is suc-

cessful or ‘done’. We interpret these findings as indicating that with an increase in network

depth there is better selection of the features that belong to the output category (vs. the back-

ground), resulting in higher performance during recognition. Thus, more layers are associated

with ‘more’ or better segmentation, by virtue of increasing selectivity for relevant constella-

tions of features. This process is similar, at least in terms of its outcome, to figure-ground seg-

mentation in humans and might be one of the ways in which scene segmentation is performed

in the brain using recurrent computations.

Explicit vs. implicit models of grouping and segmentation

Classic models focussing on grouping and segmentation presume an explicit process in which

certain elements of an image are grouped, whilst others are segregated from each other, by a

labelling process [32,33]. Several studies have established the involvement of such explicit

grouping mechanisms during specific visual tasks. For example, different curve tracing para-

digms require grouping of spatially separate contour segments [34], and recent findings by

Doerig, Bornet, Rosenholtz, Francis, Clarke & Herzog [35], comparing a wide range of compu-

tational models, indicate that an explicit grouping step is crucial to explain different (un)

crowding phenomena. Adding explicit segmentation mechanisms to DCNNs is promising to

explain human behavior in tasks that require integrating and grouping of global features, or

shape-level representations. Our results from behavioral experiments with segmented and

unsegmented objects show that when the task is object recognition an explicit segmentation

step is typically not necessary. We show that with an increase in network depth, there is a

stronger influence of the features that belong to the object on recognition performance, show-

ing that ‘implicit’ segmentation occurs. When this process becomes more efficient (with a

deeper network, or recurrent processing) the result is a situation in which, just as in ‘explicit’

segmentation, the network (or visual system) knows which features belong together, and

which ones do not.
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Previous studies have already looked into DCNN performance on unsegmented images

[36,37], or have even shown a decrease in classification accuracy for unsegmented, compared

to segmented objects [27]). In those images, however, objects were placed on a random back-

ground, thereby often incongruent (or coincidentally, congruent). In the current study, by

manipulating the relevance and usefulness of the background information, we could disentan-

gle whether this decrease was due to a segmentation problem, or the presence of incongruent,

misleading information.

Contextual effects in object recognition

Different accounts of object recognition in scenes propose different loci for contextual effects

[38,39]. It has been argued that a bottom-up visual analysis is sufficient to discriminate

between basic level object categories, after which context may influence this process in a top-

down manner by priming relevant semantic representations, or by constraining the search

space of most likely objects (e.g. [40]). Recent studies have also indicated that low-level features

of a scene (versus high-level semantic components) can modulate object processing [39] by

showing that seemingly meaningless textures with preserved summary statistics contribute to

the effective processing of objects in scenes. Comparably, in the current study the DCNNs

were agnostic to the meaning of the backgrounds, as they were not trained to recognize, for

example, kitchens or bedrooms. The current results show that visual context features may

impact object recognition in a bottom-up fashion, even for objects in a spatially incongruent

location.

Previous studies have indicated that explicitly augmenting DCNNs with human-derived

contextual expectations (likelihood, scale and location of a target object) was able to improve

detection performance, potentially indicating a difference in contextual representations in the

networks and the humans [41]. In the current study, findings show that only training DCNNs

on a large dataset (ImageNet), enables them to learn human-like contextual expectations as

well.

Feed-forward vs. recurrent processing

Instead of being an ultra-deep feed-forward network, the brain likely uses recurrent connec-

tions for object recognition in complex natural environments. There are a multitude of find-

ings that have firmly established the involvement of feedback connections during figure-

ground segmentation. For example, behavior and neural activity in V1 evoked by figure-

ground stimuli are affected by backward masking [42], region-filling processes that are medi-

ated by feedback connections lead to an enhanced neural representation for figure regions

compared to backgrounds in early visual areas [43], responses by neurons showing selectivity

to border ownership are modulated depending on the location of a ’figure’ relative to other

edges in their receptive field [44], and the accuracy of scene segmentation seems to depend on

recurrent connections to sharpen the local elements within early visual areas [45] (and there

are many more). The current results do not speak to those findings, but merely indicate that a

very deep feed-forward architecture is capable of obtaining a ’segmented’ representation of an

object, without recurrent projections.

The interpretation that deeper networks are better at object recognition, because they are

capable of limiting their analysis to (mostly) the object–when necessary–is consistent with the

idea that deeper networks are solving the challenges that are resolved by recurrent computa-

tions in the brain [28]. Previous findings comparing human behavior or the representational

geometry of neural responses to DCNNs (e.g. [36,46]) often use images that contain (mostly)

frontal views of objects on uniform backgrounds. For segmented objects, on a white or
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uniform background, all incoming information is relevant and segmentation is not needed.

For those scenes, feed-forward activity in the brain may suffice to recognize the objects [6]. In

line with those findings, we also see that even very shallow networks are able to perform well

on those scenes. For more complex scenes, on the other hand, the first feed-forward sweep

might not be not sufficiently informative, and correctly classifying or recognizing the object

might require additional processing. For those scenes, we see a decrease in classification per-

formance, mainly for the more shallow networks. These findings are in line with the global-to-

local (or coarse-to-fine) processing framework, in which a coarse visual representation is

acquired by the initial feedforward sweep. If this coarse representation is not informative

enough to solve the task at hand, additional, more sophisticated visual processes (’routines’)

can be recruited to refine this representation [6,11,12,47–50]).

Background congruency

In human natural vision, extraction of gist can lead to a set of expectations regarding the sce-

ne’s composition, indicating the probability of the presence of a certain object in a scene, but

also its most probable locations [20,22]. In the current study, in incongruent scenes, objects

did not only violate the overall meaning of the scene category (semantic violation), but were

also placed in a position that was not predicted by the local structure of the scene (syntactic

violation). On top of that, objects in the human categorization task were placed in a semi-ran-

dom location across trials to make the task more difficult. This spatial uncertainty, however,

has the additional benefit that it makes the task more comparable to the task we ask DCNNs to

perform, as DCNNs have no knowledge about the spatial location. A pilot study using stimuli

with centered 3D-rendered objects indicated no difference in performance between congruent

and incongruent images (see S1 Fig). While this is contrary to published literature [51], there

are several factors that might explain this difference. First of all, we used 3D-rendered, com-

puter generated objects, placed on natural scenes (real-world pictures). The difference in visual

quality and ’style’ between the object and the background might have influenced perception,

by making it easier to distinguish them from each other. A second reason might be the size of

the objects. Compared to the stimuli used by Davenport and Potter [16] or Munneke et al.

[51], our objects were quite large, in order to obtain good network performance.

Conclusion

With an increase in network depth there is better selection of the features that belong to the

output category. This process is similar, at least in terms of its outcome, to figure-ground seg-

mentation in humans and might be one of the ways in which scene segmentation is performed

in the brain.

Materials and methods

Experiment 1 (scene segmentation and background consistency)

Ethics statement. All participants provided written informed consent and were rewarded

with research credits or received a monetary compensation. The experiment was approved by

the ethics committee of the University of Amsterdam.

Participants. 40 participants (9 males) aged between 18 and 30 years (M = 22.03,

SD = 3.02) with normal or corrected-to-normal vision, took part in the experiment. Data from

the first two participants were excluded from further data analyses due to technical problems.

Networks. We used Residual Networks (ResNets; [29]) as a method to systematically

manipulate network depth because this type of network consists of a limited number of fixed
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components that can be up-scaled without altering the architecture in another way. To evalu-

ate whether the performance of ultra-deep ResNets can be approximated by recurrent compu-

tations, we al;so tested three different architectures from the CORnet model family (Kubilius

et al., 2018); CORnet-Z (feedforward), CORnet-R (recurrent) and CORnet-S (recurrent with

skip connections). Our implementation uses the PyTorch deep learning framework [52] and

the torchvision package. ResNet-6 was trained on ImageNet [26] with 1 GPU. The other

ResNets were downloaded (pretrained).

Stimuli. Images of 27 different object categories were generated by placing cut-out objects

from the ImageNet validation set onto white (segmented), congruent and incongruent back-

grounds. The categories were defined at a (sub)ordinate level, based on ImageNet categories:

acoustic guitar, airliner, bathtub, birdhouse, cab, canoe, cellular telephone, china cabinet, dish-

washer, grand piano, laptop, limousine, loudspeaker, mailbox, microphone, microwave, park

bench, pirate ship, printer, remote, rocking chair, schoolbus, screen, speedboat, sports car,

table lamp, wall clock (Fig 1A). There were ten exemplars for every object category. Back-

grounds were sampled from a large database of images obtained from the SUN2012 database

[53] (512�512 pixels, full-color). For each category, three typical backgrounds were selected

using the five most common places where this object was found within the database (sorted by

number of instances inside each scene type). Three atypical backgrounds were manually cho-

sen (Fig 1B). In total, the stimulus set contained 810 images with a congruent background, 810

with an incongruent background and 270 images with segmented objects.

To familiarize human participants with the categories, one of the ten exemplars for each

category was randomly selected and used in a practice-run. Using the remaining nine exem-

plars—three for each condition (segmented, congruent, incongruent) - 243 images were gener-

ated for the actual experiment. Each exemplar was only presented once for each participant.

To ensure participants processed the complete image, exemplars were downsized and placed

in one of 9 possible locations (3x3 grid). Importantly, to rule out any effect of ‘exemplar-com-

plexity’ (e.g. one guitar being easier to recognize than another) or an interaction between the

object, location and the background, all possible exemplar-background-location combinations

were balanced over participants.

For DCNNs, to make the comparison with human participants more valid and to estimate

the reliability of the effects in our experiment, we showed different subsets of 243 stimuli to the

DCNNs, each subset consisting of the same number of images per category and condition that

human observers were exposed to (81 per condition, 3 per category).

Experimental procedure. Participants performed on an object recognition task (Fig 1C).

At the beginning of each trial, a fixation-cross was presented for 2000 ms, followed by an

image. Images were presented in randomized sequence, for a duration of 32 ms, followed by a

mask. The masks consisted of scrambled patches of the images and was presented for 300 ms.

After the mask, participants had to indicate which object they had seen, by clicking on one of

27 options on screen using the mouse. After 81 (⅓) and 162 (⅔) trials, there was a short break.

Using this paradigm, our human object recognition task was closely analogous to the large-

scale ImageNet 1000-way object categorization for which the DCNNs were optimized and

thus expected to perform well.

Statistical analysis: Human performance. Accuracy (percentage correct) was computed

for each participant. Differences in accuracy between the three conditions (segmented, con-

gruent, incongruent) were statistically evaluated using a non-parametric Friedman test. A sig-

nificant main effect was followed up by Wilcoxon signed-rank tests. Data were analyzed in

Python.

Statistical analysis: DCNNs. For each of the images, the DCNNs (ResNet-6, ResNet-10,

ResNet-18, ResNet-34, Resnet-50, ResNet-101, ResNet-152) assigned a probability value to
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each of the 1000 object categories it had been trained to classify. For each condition (seg-

mented, congruent, incongruent) the Top-5 Error (%) was computed (classification is correct

if the object is among the objects categories that received the five highest probability assign-

ments). Then, to gain more insight in the importance of the features in the object vs the back-

ground for classification, we added Gaussian noise to either the object, background, or to both

(the complete image) and evaluated performance.

Experiment 2: Training on unsegmented/segmented objects

Results from experiment 1 suggested that information from the background is present in the

representation of the object, predominantly for more shallow networks. What happens if we

train the networks on segmented objects, when all features are related to the object? To further

explore the role of segmentation on learning, we trained ResNets differing in depth on a data-

set with objects that were already segmented, and a dataset in which they were intact (i.e.

embedded in a scene).

Networks. As in experiment 1, we used deep residual network architectures (ResNets;

[30]) with increasing number of layers (6, 10, 18, 34). Networks were implemented using

the Keras and Theano code libraries [54,55]. In this implementation, input images were

128x128 randomly cropped from a resized image. We did not use ResNets with more than

34 layers, as the simplicity of the task leads to overfitting problems for the ‘ultra-deep’

networks.

Stimuli. To train the networks, a subset of images from 10 different categories were

selected from ImageNet. The categories were: bird 1 t/m 7, elephant, zebra, horse. Using multi-

ple different types of birds helped us to increase task difficulty, enforcing the networks to learn

specific features for each class (Table 1). The remaining (bigger) animals were added for diver-

sity. From this subselection, we generated two image sets: one in which the objects were seg-

mented, and one with the original images (objects embedded in scenes). Because many images

are needed to train the models, objects were segmented using a DCNN pretrained on the MS

COCO dataset [56], using the Mask R-CNN method [57] (instead of manually). Images with

object probability scores lower than 0.98 were discarded, to minimize the risk of selecting

images with low quality or containing the wrong object. All images were resized to 128x128

pixels. In total, the image set contained ~9000 images. 80% of these images was used for train-

ing, 20% was used for validation.

Table 1. Dataset classes (categories) and the number of training and test stimuli. Multiple different types of birds

increased task difficulty, enforcing the models to learn specific features for each class. The remaining (bigger) animals

were added for diversity.

Category train test

Bird 1 944 236

Bird 2 867 217

Bird 3 312 227

Bird 4 455 114

Bird 5 421 105

Bird 6 930 233

Bird 7 462 241

Elephant 700 175

Horse 290 72

Zebra 316 230

https://doi.org/10.1371/journal.pcbi.1008022.t001
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Experimental procedure

First, we trained the four different ResNets for 100 epochs and monitored their accuracy after

each epoch on the validation sets. Then, we reinitialized the networks with different seeds and

repeated the process for 10 different seeds to obtain statistical results.

Supporting information

S1 Fig. Human performance (% correct) on the object recognition task, using centered 3D

rendered objects on white, congruent of incongruent backgrounds. Performance was higher

for the segmented condition compared to congruent and incongruent.

(TIF)
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