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Abstract. String data are often disseminated to support applications
such as location-based service provision or DNA sequence analysis. This
dissemination, however, may expose sensitive patterns that model confi-
dential knowledge (e.g., trips to mental health clinics from a string repre-
senting a user’s location history). In this paper, we consider the problem
of sanitizing a string by concealing the occurrences of sensitive patterns,
while maintaining data utility. First, we propose a time-optimal algo-
rithm, TFS-ALGO, to construct the shortest string preserving the order
of appearance and the frequency of all non-sensitive patterns. Such a
string allows accurately performing tasks based on the sequential nature
and pattern frequencies of the string. Second, we propose a time-optimal
algorithm, PFS-ALGO, which preserves a partial order of appearance
of non-sensitive patterns but produces a much shorter string that can
be analyzed more efficiently. The strings produced by either of these
algorithms may reveal the location of sensitive patterns. In response,
we propose a heuristic, MCSR-ALGO, which replaces letters in these
strings with carefully selected letters, so that sensitive patterns are not
reinstated and occurrences of spurious patterns are prevented. We imple-
mented our sanitization approach that applies TFS-ALGO, PFS-ALGO
and then MCSR-ALGO and experimentally show that it is effective and
efficient.

1 Introduction

A large number of applications, in domains ranging from transportation to web
analytics and bioinformatics feature data modeled as strings, i.e., sequences of
letters over some finite alphabet. For instance, a string may represent the history
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of visited locations of one or more individuals, with each letter corresponding to
a location. Similarly, it may represent the history of search query terms of one
or more web users, with letters corresponding to query terms, or a medically
important part of the DNA sequence of a patient, with letters corresponding
to DNA bases. Analyzing such strings is key in applications including location-
based service provision, product recommendation, and DNA sequence analysis.
Therefore, such strings are often disseminated beyond the party that has col-
lected them. For example, location-based service providers often outsource their
data to data analytics companies who perform tasks such as similarity evalua-
tion between strings [14], and retailers outsource their data to marketing agencies
who perform tasks such as mining frequent patterns from the strings [15].

However, disseminating a string intact may result in the exposure of confiden-
tial knowledge, such as trips to mental health clinics in transportation data [20],
query terms revealing political beliefs or sexual orientation of individuals in web
data [17], or diseases associated with certain parts of DNA data [16]. Thus, it
may be necessary to sanitize a string prior to its dissemination, so that confi-
dential knowledge is not exposed. At the same time, it is important to preserve
the utility of the sanitized string, so that data protection does not outweigh the
benefits of disseminating the string to the party that disseminates or analyzes
the string, or to the society at large. For example, a retailer should still be able to
obtain actionable knowledge in the form of frequent patterns from the marketing
agency who analyzed their outsourced data; and researchers should still be able
to perform analyses such as identifying significant patterns in DNA sequences.

Our Model and Setting. Motivated by the discussion above, we introduce
the following model which we call Combinatorial String Dissemination (CSD).
In CSD, a party has a string W that it seeks to disseminate, while satisfying a
set of constraints and a set of desirable properties. For instance, the constraints
aim to capture privacy requirements and the properties aim to capture data
utility considerations (e.g., posed by some other party based on applications).
To satisfy both, W must be transformed to a string X by applying a sequence
of edit operations. The computational task is to determine this sequence of edit
operations so that X satisfies the desirable properties subject to the constraints.

Under the CSD model, we consider a specific setting in which the sanitized
string X must satisfy the following constraint C1: for an integer k > 0, no
given length-k substring (also called pattern) modeling confidential knowledge
should occur in X. We call each such length-k substring a sensitive pattern. We
aim at finding the shortest possible string X satisfying the following desired
properties: (P1) the order of appearance of all other length-k substrings (non-
sensitive patterns) is the same in W and in X; and (P2) the frequency of these
length-k substrings is the same in W and in X. The problem of constructing
X in this setting is referred to as TFS (Total order, Frequency, Sanitization).
Clearly, substrings of arbitrary lengths can be hidden from X by setting k equal
to the length of the shortest substring we wish to hide, and then setting, for
each of these substrings, any length-k substring as sensitive.
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Our setting is motivated by real-world applications involving string dissemi-
nation. In these applications, a data custodian disseminates the sanitized version
X of a string W to a data recipient, for the purpose of analysis (e.g., mining).
W contains confidential information that the data custodian needs to hide, so
that it does not occur in X. Such information is specified by the data custo-
dian based on domain expertise, as in [1,4,11,15]. At the same time, the data
recipient specifies P1 and P2 that X must satisfy in order to be useful. These
properties map directly to common data utility considerations in string analysis.
By satisfying P1, X allows tasks based on the sequential nature of the string,
such as blockwise q-gram distance computation [12], to be performed accurately.
By satisfying P2, X allows computing the frequency of length-k substrings [19]
and hence mining frequent length-k substrings with no utility loss. We require
that X has minimal length so that it does not contain redundant information.
For instance, the string which is constructed by concatenating all non-sensitive
length-k substrings in W and separating them with a special letter that does not
occur in W , satisfies P1 and P2 but is not the shortest possible. Such a string
X will have a negative impact on the efficiency of any subsequent analysis tasks
to be performed on it.

Note, existing works for sequential data sanitization (e.g., [4,11,13,15,22])
or anonymization (e.g., [2,5,7]) cannot be applied to our setting (see Sect. 7).

Our Contributions. We define the TFS problem for string sanitization and a
variant of it, referred to as PFS (Partial order, Frequency, Sanitization), which
aims at producing an even shorter string Y by relaxing P1 of TFS. Our algo-
rithms for TFS and PFS construct strings X and Y using a separator letter #,
which is not contained in the alphabet of W . This prevents occurrences of sen-
sitive patterns in X or Y . The algorithms repeat proper substrings of sensitive
patterns so that the frequency of non-sensitive patterns overlapping with sen-
sitive ones does not change. For X, we give a deterministic construction which
may be easily reversible (i.e., it may enable a data recipient to construct W
from X), because the occurrences of # reveal the exact location of sensitive pat-
terns. For Y , we give a construction which breaks several ties arbitrarily, thus
being less easily reversible. We further address the reversibility issue by defining
the MCSR (Minimum-Cost Separators Replacement) problem and designing an
algorithm for dealing with it. In MCSR, we seek to replace all separators, so that
the location of sensitive patterns is not revealed, while preserving data utility.
We make the following specific contributions:

1. We design an algorithm for solving the TFS problem in O(kn) time, where
n is the length of W . In fact we prove that O(kn) time is worst-case optimal
by showing that the length of X is in Θ(kn) in the worst case. The output
of the algorithm is a string X consisting of a sequence of substrings over the
alphabet of W separated by # (see Example 1 below). An important feature
of our algorithm, which is useful in the efficient construction of Y discussed
next, is that it can be implemented to produce an O(n)-sized representation
of X with respect to W in O(n) time. See Sect. 3.
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Example 1. Let W = aabaaaababbbaab, k = 4, and the set of sensitive pat-
terns be {aaaa, baaa, bbaa}. The string X = aabaa#aaababbba#baab consists
of three substrings over the alphabet {a, b} separated by #. Note that no sen-
sitive pattern occurs in X, while all non-sensitive substrings of length 4 have
the same frequency in W and in X (e.g., aaba appears twice) and appear in
the same order in W and in X (e.g., babb precedes abbb). Also, note that
any shorter string than X would either create sensitive patterns or change
the frequencies (e.g., removing the last letter of X creates a string in which
baab no longer appears). ��

2. We define the PFS problem relaxing P1 of TFS to produce shorter strings
that are more efficient to analyze. Instead of a total order (P1), we require a
partial order (Π1) that preserves the order of appearance only for sequences
of successive non-sensitive length-k substrings that overlap by k − 1 letters.
This makes sense because the order of two successive non-sensitive length-k
substrings with no length-(k − 1) overlap has anyway been “interrupted” (by
a sensitive pattern). We exploit this observation to shorten the string further.
Specifically, we design an algorithm that solves PFS in the optimal O(n+|Y |)
time, where |Y | is the length of Y , using the O(n)-sized representation of X.
See Sect. 4.

Example 2 (Cont’d from Example 1).Recall that W = aabaaaababbbaab. A
string Y is aaababbba#aabaab. The order of babb and abbb is preserved in
Y since they are successive, non-sensitive, and with an overlap of k − 1 = 3
letters. The order of abaa and aaab, which are successive and non-sensitive,
is not preserved since they do not have an overlap of k − 1 = 3 letters. ��

3. We define the MCSR problem, which seeks to produce a string Z, by deleting
or replacing all separators in Y with letters from the alphabet of W so that: no
sensitive patterns are reinstated in Z; occurrences of spurious patterns that
may not be mined from W but can be mined from Z, for a given support
threshold, are prevented; the distortion incurred by the replacements in Z
is bounded. The first requirement is to preserve privacy and the next two to
preserve data utility. We show that MCSR is NP-hard and propose a heuristic
to attack it. See Sect. 5.

4. We implemented our combinatorial approach for sanitizing a string W (i.e.,
all aforementioned algorithms implementing the pipeline W → X → Y → Z)
and show its effectiveness and efficiency on real and synthetic data. See Sect. 6.

2 Preliminaries, Problem Statements, and Main Results

Preliminaries. Let T = T [0]T [1] . . . T [n−1] be a string of length |T | = n over a
finite ordered alphabet Σ of size |Σ| = σ. By Σ∗ we denote the set of all strings
over Σ. By Σk we denote the set of all length-k strings over Σ. For two positions
i and j on T , we denote by T [i . . j] = T [i] . . . T [j] the substring of T that starts
at position i and ends at position j of T . By ε we denote the empty string of
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length 0. A prefix of T is a substring of the form T [0 . . j], and a suffix of T is
a substring of the form T [i . . n − 1]. A proper prefix (suffix) of a string is not
equal to the string itself. By FreqV (U) we denote the number of occurrences of
string U in string V . Given two strings U and V we say that U has a suffix-prefix
overlap of length � > 0 with V if and only if the length-� suffix of U is equal to
the length-� prefix of V , i.e., U [|U | − � . . |U | − 1] = V [0 . . � − 1].

We fix a string W of length n over an alphabet Σ = {1, . . . , nO(1)} and an
integer 0 < k < n. We refer to a length-k string or a pattern interchangeably. An
occurrence of a pattern is uniquely represented by its starting position. Let S
be a set of positions over {0, . . . , n − k} with the following closure property: for
every i ∈ S, if there exists j such that W [j . . j + k − 1] = W [i . . i + k − 1], then
j ∈ S. That is, if an occurrence of a pattern is in S all its occurrences are in S. A
substring W [i . . i+k−1] of W is called sensitive if and only if i ∈ S. S is thus the
set of occurrences of sensitive patterns. The difference set I = {0, . . . , n− k} \S
is the set of occurrences of non-sensitive patterns.

For any string U , we denote by IU the set of occurrences of non-sensitive
length-k strings over Σ. (We have that IW = I.) We call an occurrence i the t-
predecessor of another occurrence j in IU if and only if i is the largest element in
IU that is less than j. This relation induces a strict total order on the occurrences
in IU . We call i the p-predecessor of j in IU if and only if i is the t-predecessor
of j in IU and U [i . . i + k − 1] has a suffix-prefix overlap of length k − 1 with
U [j . . j + k − 1]. This relation induces a strict partial order on the occurrences
in IU . We call a subset J of IU a t-chain (resp., p-chain) if for all elements
in J except the minimum one, their t-predecessor (resp., p-predecessor) is also
in J . For two strings U and V , chains JU and JV are equivalent, denoted by
JU ≡ JV , if and only if |JU | = |JV | and U [u . . u + k − 1] = V [v . . v + k − 1],
where u is the jth smallest element of JU and v is the jth smallest of JV , for
all j ≤ |JU |.
Problem Statements and Main Results

Problem 1 (TFS). Given W , k, S, and I construct the shortest string X:

C1 X does not contain any sensitive pattern.
P1 IW ≡ IX , i.e., the t-chains IW and IX are equivalent.
P2 FreqX(U) = FreqW (U), for all U ∈ Σk \ {W [i . . i + k − 1] : i ∈ S}.

TFS requires constructing the shortest string X in which all sensitive pat-
terns from W are concealed (C1), while preserving the order (P1) and the
frequency (P2) of all non-sensitive patterns. Our first result is the following.

Theorem 1. Let W be a string of length n over Σ = {1, . . . , nO(1)}. Given
k < n and S, TFS-ALGO solves Problem 1 in O(kn) time, which is worst-case
optimal. An O(n)-sized representation of X can be built in O(n) time.

P1 implies P2, but P1 is a strong assumption that may result in long output
strings that are inefficient to analyze. We thus relax P1 to require that the order
of appearance remains the same only for sequences of successive non-sensitive
length-k substrings that also overlap by k − 1 letters (p-chains).
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Problem 2 (PFS). Given W , k, S, and I construct a shortest string Y :

C1 Y does not contain any sensitive pattern.
Π1 There exists an injective function f from the p-chains of IW to the p-chains

of IY such that f(JW ) ≡ JW for any p-chain JW of IW .
P2 FreqY (U) = FreqW (U), for all U ∈ Σk \ {W [i . . i + k − 1] : i ∈ S}.

Our second result, which builds on Theorem1, is the following.

Theorem 2. Let W be a string of length n over Σ = {1, . . . , nO(1)}. Given
k < n and S, PFS-ALGO solves Problem 2 in the optimal O(n + |Y |) time.

To arrive at Theorems 1 and 2, we use a special letter (separator) # /∈ Σ when
required. However, the occurrences of # may reveal the locations of sensitive
patterns. We thus seek to delete or replace the occurrences of # in Y with
letters from Σ. The new string Z should not reinstate any sensitive pattern.
Given an integer threshold τ > 0, we call pattern U ∈ Σk a τ -ghost in Z if and
only if FreqW (U) < τ but FreqZ(U) ≥ τ . Moreover, we seek to prevent τ -ghost
occurrences in Z by also bounding the total weight of the letter choices we make
to replace the occurrences of #. This is the MCSR problem. We show that
already a restricted version of the MCSR problem, namely, the version when
k = 1, is NP-hard via the Multiple Choice Knapsack (MCK) problem [18].

Theorem 3. The MCSR problem is NP-hard.

Based on this connection, we propose a non-trivial heuristic algorithm to
attack the MCSR problem for the general case of an arbitrary k.

3 TFS-ALGO

We convert string W into a string X over alphabet Σ ∪{#}, # /∈ Σ, by reading
the letters of W , from left to right, and appending them to X while enforcing
the following two rules:

R1: When the last letter of a sensitive substring U is read from W , we append
# to X (essentially replacing this last letter of U with #). Then, we append the
succeeding non-sensitive substring (in the t-predecessor order) after #.
R2: When the k − 1 letters before # are the same as the k − 1 letters after #,
we remove # and the k − 1 succeeding letters (inspect Fig. 1).

R1 prevents U from occurring in X, and R2 reduces the length of X (i.e.,
allows to protect sensitive patterns with fewer extra letters). Both rules leave
unchanged the order and frequencies of non-sensitive patterns. It is crucial to
observe that applying the idea behind R2 on more than k − 1 letters would
decrease the frequency of some pattern, while applying it on fewer than k − 1
letters would create new patterns. Thus, we need to consider just R2 as-is.

Let C be an array of size n that stores the occurrences of sensitive and non-
sensitive patterns: C[i] = 1 if i ∈ S and C[i] = 0 if i ∈ I. For technical reasons
we set the last k − 1 values in C equal to C[n − k]; i.e., C[n − k + 1] := . . . :=
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W = aabaaaababbbaab

X̃ = aabaaa#aaaba#babb#bbbaab

X = aabaaaba#babb#bbbaab

Fig. 1. Sensitive patterns are overlined in red; non-sensitive are under- or over-lined
in blue; X̃ is obtained by applying R1; and X by applying R1 and R2. In green we
highlight an overlap of k − 1 = 3 letters. Note that substring aaaababbb, whose length
is greater than k, is also not occurring in X. (Color figure online)

C[n − 1] := C[n − k]. Note that C is constructible from S in O(n) time. Given
C and k < n, TFS-ALGO efficiently constructs X by implementing R1 and
R2 concurrently as opposed to implementing R1 and then R2 (see the proof of
Lemma 1 for details of the workings of TFS-ALGO and Fig. 1 for an example).
We next show that string X enjoys several properties.

Lemma 1. Let W be a string of length n over Σ. Given k < n and array C,
TFS-ALGO constructs the shortest string X such that the following hold:

1. There exists no W [i . . i + k − 1] with C[i] = 1 occurring in X (C1).
2. IW ≡ IX , i.e., the order of substrings W [i . . i + k − 1], for all i such that

C[i] = 0, is the same in W and in X; conversely, the order of all substrings
U ∈ Σk of X is the same in X and in W (P1).

3. FreqX(U) = FreqW (U), for all U ∈ Σk \ {W [i . . i + k − 1] : C[i] = 1} (P2).
4. The occurrences of letter # in X are at most 
n−k+1

2 � and they are at least
k positions apart (P3).

5. 0 ≤ |X| ≤ �n−k+1
2  · k + 
n−k+1

2 � and these bounds are tight (P4).

Proof. Proofs of C1 and P1–P4 can be found in [3]. We prove here that X
has minimal length. Let Xj be the prefix of string X obtained by processing
W [0 . . j]. Let jmin = min{i | C[i] = 0} + k − 1. We will proceed by induction
on j, claiming that Xj is the shortest string such that C1 and P1–P4 hold for
W [0 . . j], ∀ jmin ≤ j ≤ |W | − 1. We call such a string optimal.

Base case: j = jmin. By Lines 3–4 of TFS-ALGO, Xj is equal to the first
non-sensitive length-k substring of W , and it is clearly the shortest string such
that C1 and P1–P4 hold for W [0 . . j].

Inductive hypothesis and step: Xj−1 is optimal for j > jmin. If C[j − k] =
C[j −k +1] = 0, Xj = Xj−1W [j] and this is clearly optimal. If C[j −k +1] = 1,
Xj = Xj−1 thus still optimal. Finally, if C[j−k] = 1 and C[j−k+1] = 0 we have
two subcases: if W [f . . f +k−2] = W [j−k+1 . . j−1] then Xj = Xj−1W [j], and
once again Xj is evidently optimal. Otherwise, Xj = Xj−1#W [j − k + 1 . . j].
Suppose by contradiction that there exists a shorter X ′

j such that C1 and P1–
P4 still hold: either drop # or append less than k letters after #. If we appended
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TFS-ALGO(W ∈ Σn, C, k,# /∈ Σ)
1 X ← ε; j ← |W |; � ← 0;
2 j ← min{i|C[i] = 0}; /* j is the leftmost pos of a non-sens. pattern */

3 if j + k − 1 < |W | then /* Append the first non-sens. pattern to X */

4 X[0 . . k − 1] ← W [j . . j + k − 1]; j ← j + k; � ← � + k;

5 while j < |W | do /* Examine two consecutive patterns */

6 p ← j − k; c ← p + 1;
7 if C[p] = C[c] = 0 then /* If both are non-sens., append the last

letter of the rightmost one to X */

8 X[�] ← W [j]; � ← � + 1; j ← j + 1;

9 if C[p] = 0 ∧ C[c] = 1 then /* If the rightmost is sens., mark it

and advance j */

10 f ← c; j ← j + 1;

11 if C[p] = C[c] = 1 then j ← j + 1; /* If both are sens., advance j */

12 if C[p] = 1 ∧ C[c] = 0 then /* If the leftmost is sens. and the

rightmost is not */

13 if W [c . . c + k − 2] = W [f . . f + k − 2] then /* If the last marked

sens. pattern and the current non-sens. overlap by k − 1,
append the last letter of the latter to X */

14 X[�] ← W [j]; � ← � + 1; j ← j + 1;

15 else /* Else append # and the current non-sensitive pattern

to X */

16 X[�] ← #; � ← � + 1;
17 X[� . . � + k − 1] ← W [j − k + 1 . . j]; � ← � + k; j ← j + 1;

18 report X

less than k letters after #, since TFS-ALGO will not read W [j] ever again, P2–
P3 would be violated, as an occurrence of W [j − k + 1 . . j] would be missed.
Without #, the last k letters of Xj−1W [j − k + 1] would violate either C1 or
P1 and P2 (since we suppose W [f . . f + k − 2] �= W [j − k + 1 . . j − 1]). Then
Xj is optimal. ��

Theorem 1. Let W be a string of length n over Σ = {1, . . . , nO(1)}. Given
k < n and S, TFS-ALGO solves Problem 1 in O(kn) time, which is worst-case
optimal. An O(n)-sized representation of X can be built in O(n) time.

Proof. For the first part inspect TFS-ALGO. Lines 2–4 can be realized in O(n)
time. The while loop in Line 5 is executed no more than n times, and every
operation inside the loop takes O(1) time except for Line 13 and Line 17 which
take O(k) time. Correctness and optimality follow directly from Lemma 1 (P4).

For the second part, we assume that X is represented by W and a sequence
of pointers [i, j] to W interleaved (if necessary) by occurrences of #. In Line 17,
we can use an interval [i, j] to represent the length-k substring of W added to
X. In all other lines (Lines 4, 8 and 14) we can use [i, i] as one letter is added to
X per one letter of W . By Lemma 1 we can have at most 
n−k+1

2 � occurrences
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of letter #. The check at Line 13 can be implemented in constant time after
linear-time pre-processing of W for longest common extension queries [9]. All
other operations take in total linear time in n. Thus there exists an O(n)-sized
representation of X and it is constructible in O(n) time. ��

4 PFS-ALGO

Lemma 1 tells us that X is the shortest string satisfying constraint C1 and
properties P1–P4. If we were to drop P1 and employ the partial order Π1 (see
Problem 2), the length of X = X1# . . . #XN would not always be minimal: if a
permutation of the strings X1, . . . , XN contains pairs Xi, Xj with a suffix-prefix
overlap of length � = k −1, we may further apply R2, obtaining a shorter string
while still satisfying Π1.

We propose PFS-ALGO to find such a permutation efficiently constructing
a shorter string Y from W . The crux of our algorithm is an efficient method to
solve a variant of the classic NP-complete Shortest Common Superstring (SCS)
problem [10]. Specifically our algorithm: (I) Computes string X using Theorem 1.
(II) Constructs a collection B′ of strings, each of two symbols (two identifiers) and
in a one-to-one correspondence with the elements of B = {X1, . . . , XN}: the first
(resp., second) symbol of the ith element of B′ is a unique identifier of the string
corresponding to the length-� prefix (resp., suffix) of the ith element of B. (III)
Computes a shortest string containing every element in B′ as a distinct substring.
(IV) Constructs Y by mapping back each element to its distinct substring in B.
If there are multiple possible shortest strings, one is selected arbitrarily.

Example 3 (Illustration of the workings of PFS-ALGO). Let � = k−1 = 3 and

X = aabbc#bccaab#bbca#aaabac#aabcbbc.

The collection B is aabbc, bccaab, bbca, aaabac, aabcbbc, and the collection
B′ is 24, 62, 45, 13, 24 (id of prefix · id of suffix). A shortest string containing all
elements of B′ as distinct substrings is: 13 · 24 · 6245 (obtained by permuting
the original string as 13, 24, 62, 24, 45 then applying R2 twice). This shortest
string is mapped back to the solution Y = aaabac#aabbc#bccaabcbbca. For
example, 13 is mapped back to aaabac. Note, Y contains two occurrences of #
and has length 24, while X contains 4 occurrences of # and has length 32. ��

We now present the details of PFS-ALGO. We first introduce the Fixed-
Overlap Shortest String with Multiplicities (FO-SSM) problem: Given a collection
B of strings B1, . . . , B|B| and an integer �, with |Bi| > �, for all 1 ≤ i ≤ |B|,
FO-SSM seeks to find a shortest string containing each element of B as a distinct
substring using the following operations on any pair of strings Bi, Bj :

1. concat(Bi, Bj) = Bi · Bj ;
2. �-merge(Bi, Bj) = Bi[0 . . |Bi|−1−�]Bj [0 . . |Bj |−1] = Bi[0 . . |Bi|−1−�] ·Bj .
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Any solution to FO-SSM with � := k − 1 and B := X1, . . . , XN implies a
solution to the PFS problem, because |Xi| > k − 1 for all i’s (see Lemma 1, P3)

The FO-SSM problem is a variant of the SCS problem. In the SCS problem,
we are given a set of strings and we are asked to compute the shortest common
superstring of the elements of this set. The SCS problem is known to be NP-
Complete, even for binary strings [10]. However, if all strings are of length two,
the SCS problem admits a linear-time solution [10]. We exploit this crucial detail
positively to show a linear-time solution to the FO-SSM problem in Lemma3. In
order to arrive to this result, we first adapt the SCS linear-time solution of [10]
to our needs (see Lemma 2) and plug this solution to Lemma3.

Lemma 2. Let Q be a collection of q strings, each of length two, over an alpha-
bet Σ = {1, . . . , (2q)O(1)}. We can compute a shortest string containing every
element of Q as a distinct substring in O(q) time.

Proof. We sort the elements of Q lexicographically in O(q) time using radixsort.
We also replace every letter in these strings with their lexicographic rank from
{1, . . . , 2q} in O(q) time using radixsort. In O(q) time we construct the de Bruijn
multigraph G of these strings [6]. Within the same time complexity, we find all
nodes v in G with in-degree, denoted by IN(v), smaller than out-degree, denoted
by OUT(v). We perform the following two steps:

Step 1: While there exists a node v in G with IN(v) < OUT(v), we start an
arbitrary path (with possibly repeated nodes) from v, traverse consecutive edges
and delete them. Each time we delete an edge, we update the in- and out-degree
of the affected nodes. We stop traversing edges when a node v′ with OUT(v′) = 0
is reached: whenever IN(v′) = OUT(v′) = 0, we also delete v′ from G. Then, we
add the traversed path p = v . . . v′ to a set P of paths. The path can contain
the same node v more than once. If G is empty we halt. Proceeding this way,
there are no two elements p1 and p2 in P such that p1 starts with v and p2 ends
with v; thus this path decomposition is minimal. If G is not empty at the end,
by construction, it consists of only cycles.

Step 2: While G is not empty, we perform the following. If there exists a cycle c
that intersects with any path p in P we splice c with p, update p with the result
of splicing, and delete c from G. This operation can be efficiently implemented
by maintaining an array A of size 2q of linked lists over the paths in P: A[α]
stores a list of pointers to all occurrences of letter α in the elements of P. Thus
in constant time per node of c we check if any such path p exists in P and
splice the two in this case. If no such path exists in P, we add to P any of the
path-linearizations of the cycle, and delete the cycle from G. After each change
to P, we update A and delete every node u with IN(u) = OUT(u) = 0 from G.

The correctness of this algorithm follows from the fact that P is a minimal
path decomposition of G. Thus any concatenation of paths in P represents a
shortest string containing all elements in Q as distinct substrings. ��

Omitted proofs of Lemmas 3 and 4 can be found in [3].
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Lemma 3. Let B be a collection of strings over an alphabet Σ =
{1, . . . , ||B||O(1)}. Given an integer �, the FO-SSM problem for B can be solved
in O(||B||) time.

Thus, PFS-ALGO applies Lemma 3 on B := X1, . . . , XN with � := k − 1
(recall that X1# . . . #XN = X). Note that each time the concat operation is
performed, it also places the letter # in between the two strings.

Lemma 4. Let W be a string of length n over an alphabet Σ. Given k < n and
array C, PFS-ALGO constructs a shortest string Y with C1, Π1, and P2-P4.

Theorem 2. Let W be a string of length n over Σ = {1, . . . , nO(1)}. Given
k < n and S, PFS-ALGO solves Problem 2 in the optimal O(n + |Y |) time.

Proof. We compute the O(n)-sized representation of string X with respect to W
described in the proof of Theorem1. This can be done in O(n) time. If X ∈ Σ∗,
then we construct and return Y := X in time O(|Y |) from the representation.
If X ∈ (Σ ∪ {#})∗, implying |Y | ≤ |X|, we compute the LCP data structure of
string W in O(n) time [9]; and implement Lemma 3 in O(n) time by avoiding
to read string X explicitly: we rather rename X1, . . . , XN to a collection of two-
letter strings by employing the LCP information of W directly. We then construct
and report Y in time O(|Y |). Correctness follows directly from Lemma 4. ��

5 The MCSR Problem and MCSR-ALGO

The strings X and Y , constructed by TFS-ALGO and PFS-ALGO, respec-
tively, may contain the separator #, which reveals information about the loca-
tion of the sensitive patterns in W . Specifically, a malicious data recipient can
go to the position of a # in X and “undo” Rule R1 that has been applied by
TFS-ALGO, removing # and the k − 1 letters after # from X. The result will
be an occurrence of the sensitive pattern. For example, applying this process to
the first # in X shown in Fig. 1, results in recovering the sensitive pattern abab.
A similar attack is possible on the string Y produced by PFS-ALGO, although
it is hampered by the fact that substrings within two consecutive #s in X often
swap places in Y .

To address this issue, we seek to construct a new string Z, in which #s are
either deleted or replaced by letters from Σ. To preserve privacy, we require sep-
arator replacements not to reinstate sensitive patterns. To preserve data utility,
we favor separator replacements that have a small cost in terms of occurrences
of τ -ghosts (patterns with frequency less than τ in W and at least τ in Z) and
incur a bounded level of distortion in Z, as defined below. This is the MCSR
problem, a restricted version of which is presented in Problem3. The restricted
version is referred to as MCSRk=1 and differs from MCSR in that it uses k = 1
for the pattern length instead of an arbitrary value k > 0. MCSRk=1 is presented
next for simplicity and because it is used in the proof of Lemma5 (see [3] for
the proof). Lemma 5 implies Theorem 3.
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Problem 3 (MCSRk=1). Given a string Y over an alphabet Σ ∪ {#} with
δ > 0 occurrences of letter #, and parameters τ and θ, construct a new string
Z by substituting the δ occurrences of # in Y with letters from Σ, such that:

(I)
∑

i:Y [i]=#, FreqY (Z[i])<τ
FreqZ(Z[i])≥τ

Ghost(i, Z[i]) is minimum, and (II)
∑

i:Y [i]=#

Sub(i, Z[i]) ≤ θ.

The cost of τ -ghosts is captured by a function Ghost. This function assigns a
cost to an occurrence of a τ -ghost, which is caused by a separator replacement at
position i, and is specified based on domain knowledge. For example, with a cost
equal to 1 for each gained occurrence of each τ -ghost, we penalize more heavily
a τ -ghost with frequency much below τ in Y and the penalty increases with
the number of gained occurrences. Moreover, we may want to penalize positions
towards the end of a temporally ordered string, to avoid spurious patterns that
would be deemed important in applications based on time-decaying models [8].

The replacement distortion is captured by a function Sub which assigns a
weight to a letter that could replace a # and is specified based on domain knowl-
edge. The maximum allowable replacement distortion is θ. Small weights favor
the replacement of separators with desirable letters (e.g., letters that reinstate
non-sensitive frequent patterns) and letters that reinstate sensitive patterns are
assigned a weight larger than θ that prohibits them from replacing a #. Simi-
larly, weights larger than θ are assigned to letters which would lead to implausible
patterns [13] if they replaced #s.

Lemma 5. The MCSRk=1 problem is NP-hard.

Theorem 3. The MCSR problem is NP-hard.

MCSR-ALGO. Our MCSR-ALGO is a non-trivial heuristic that exploits the
connection of the MCSR and MCK [18] problems and works by:

(I) Constructing the set of all candidate τ -ghost patterns (i.e., length-k strings
over Σ with frequency below τ in Y that can have frequency at least τ in
Z).

(II) Creating an instance of MCK from an instance of MCSR. For this, we map
the ith occurrence of # to a class Ci in MCK and each possible replacement
of the occurrence with a letter j to a different item in Ci. Specifically, we
consider all possible replacements with letters in Σ and also a replacement
with the empty string, which models deleting (instead of replacing) the ith
occurrence of #. In addition, we set the costs and weights that are input
to MCK as follows. The cost for replacing the ith occurrence of # with the
letter j is set to the sum of the Ghost function for all candidate τ -ghost
patterns when the ith occurrence of # is replaced by j. That is, we make the
worst-case assumption that the replacement forces all candidate τ -ghosts
to become τ -ghosts in Z. The weight for replacing the ith occurrence of #
with letter j is set to Sub(i, j).
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(III) Solving the instance of MCK and translating the solution back to a (pos-
sibly suboptimal) solution of the MCSR problem. For this, we replace the
ith occurrence of # with the letter corresponding to the element chosen
by the MCK algorithm from class Ci, and similarly for each other occur-
rence of #. If the instance has no solution (i.e., no possible replacement
can hide the sensitive patterns), MCSR-ALGO reports that Z cannot be
constructed and terminates.

Lemma 6 below states the running time of MCSR-ALGO (see [3] for the
proof on an efficient implementation of this algorithm).

Lemma 6. MCSR-ALGO runs in O(|Y | + kδσ + T (δ, σ)) time, where T (δ, σ)
is the running time of the MCK algorithm for δ classes with σ+1 elements each.

6 Experimental Evaluation

We evaluate our approach, referred to as TPM, in terms of data utility and
efficiency. Given a string W over Σ, TPM sanitizes W by applying TFS-ALGO,
PFS-ALGO, and then MCSR-ALGO, which uses the O(δσθ)-time algorithm
of [18] for solving the MCK instances. The final output is a string Z over Σ.

Experimental Setup and Data. We do not compare TPM against existing
methods, because they are not alternatives to our approach (see Sect. 7). Instead,
we compared against a greedy baseline referred to as BA.

BA initializes its output string ZBA to W and then considers each sensitive
pattern R in ZBA, from left to right. For each R, it replaces the letter r of R
that has the largest frequency in ZBA with another letter r′ that is not contained
in R and has the smallest frequency in ZBA, breaking all ties arbitrarily. If no
such r′ exists, r is replaced by # to ensure that a solution is produced (even if
it may reveal the location of a sensitive pattern). Each replacement removes the
occurrence of R and aims to prevent τ -ghost occurrences by selecting an r′ that
will not substantially increase the frequency of patterns overlapping with R.

Table 1. Characteristics of datasets and values used (default values are in bold).

Dataset Data domain Length n Alphabet

size |Σ|
# sensitive

patterns

# sensitive

positions |S|
Pattern

length k

OLD Movement 85,563 100 [30, 240] (60) [600, 6103] [3, 7] (4)

TRU Transportation 5,763 100 [30, 120] (10) [324, 2410] [2, 5] (4)

MSN Web 4,698,764 17 [30, 120] (60) [6030, 320480] [3, 8] (4)

DNA Genomic 4,641,652 4 [25, 500] (100) [163, 3488] [5, 15] (13)

SYN Synthetic 20,000,000 10 [10, 1000] (1000) [10724, 20171] [3, 6] (6)

We considered the following publicly available datasets used in [1,11,13,15]:
Oldenburg (OLD), Trucks (TRU), MSNBC (MSN), the complete genome of
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Escherichia coli (DNA), and synthetic data (uniformly random strings, the
largest of which is referred to as SYN). See Table 1 for the characteristics of
these datasets and the parameter values used in experiments, unless stated
otherwise.

The sensitive patterns were selected randomly among the frequent length-k
substrings at minimum support τ following [11,13,15]. We used the fairly low
values τ = 10, τ = 20, τ = 200, and τ = 20 for TRU, OLD, MSN, and
DNA, respectively, to have a wider selection of sensitive patterns. We also used
a uniform cost of 1 for every occurrence of each τ -ghost, a weight of 1 (resp., ∞)
for each letter replacement that does not (resp., does) create a sensitive pattern,
and we further set θ = δ. This setup treats all candidate τ -ghost patterns and
all candidate letters for replacement uniformly, to facilitate a fair comparison
with BA which cannot distinguish between τ -ghost candidates or favor specific
letters.

To capture the utility of sanitized data, we used the (frequency) distortion
measure

∑
U (FreqW (U)−FreqZ(U))2, where U ∈ Σk is a non-sensitive pattern.

The distortion measure quantifies changes in the frequency of non-sensitive pat-
terns with low values suggesting that Z remains useful for tasks based on pat-
tern frequency (e.g., identifying motifs corresponding to functional or conserved
DNA [19]). We also measured the number of τ -ghost and τ -lost patterns in Z
following [11,13,15], where a pattern U is τ -lost in Z if and only if FreqW (U) ≥ τ
but FreqZ(U) < τ . That is, τ -lost patterns model knowledge that can no longer
be mined from Z but could be mined from W , whereas τ -ghost patterns model
knowledge that can be mined from Z but not from W . A small number of
τ -lost/ghost patterns suggests that frequent pattern mining can be accurately
performed on Z [11,13,15]. Unlike BA, by design TPM does not incur any τ -lost
pattern, as TFS-ALGO and PFS-ALGO preserve frequencies of nonsensitive
patterns, and MCSR-ALGO can only increase pattern frequencies.

All experiments ran on an Intel Xeon E5-2640 at 2.66 GHz with 16 GB
RAM. Our source code, written in C++, is available at https://bitbucket.org/
stringsanitization. The results have been averaged over 10 runs.
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Fig. 2. Distortion vs. number of sensitive patterns and their total number |S| of occur-
rences in W (first two lines on the X axis).

https://bitbucket.org/stringsanitization
https://bitbucket.org/stringsanitization
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Fig. 3. Distortion vs. length of sensitive patterns k (and |S|).

Data Utility. We first demonstrate that TPM incurs very low distortion, which
implies high utility for tasks based on the frequency of patterns (e.g., [19]).
Figure 2 shows that, for varying number of sensitive patterns, TPM incurred on
average 18.4 (and up to 95) times lower distortion than BA over all experiments.
Also, Fig. 2 shows that TPM remains effective even in challenging settings, with
many sensitive patterns (e.g., the last point in Fig. 2b where about 42% of the
positions in W are sensitive). Figure 3 shows that, for varying k, TPM caused on
average 7.6 (and up to 14) times lower distortion than BA over all experiments.

Next, we demonstrate that TPM permits accurate frequent pattern mining :
Fig. 4 shows that TPM led to no τ -lost or τ -ghost patterns for the TRU and
MSN datasets. This implies no utility loss for mining frequent length-k sub-
strings with threshold τ . In all other cases, the number of τ -ghosts was on aver-
age 6 (and up to 12) times smaller than the total number of τ -lost and τ -ghost
patterns for BA. BA performed poorly (e.g., up to 44% of frequent patterns
became τ -lost for TRU and 27% for DNA). Figure 5 shows that, for varying
k, TPM led to on average 5.8 (and up to 19) times fewer τ -lost/ghost patterns
than BA. BA performed poorly (e.g., up to 98% of frequent patterns became
τ -lost for DNA).

9
 0

22
 0

22
 0

37
 0

0
10
20
30
40
50

30
606

60
1254

120
2667

240
6103

# sensitive patterns 
|S|

Lo
st

 a
nd

 G
ho

st TPM
BA

(a) OLD

18
 0

16
 0

6
 0

7
 0

0

10

20

30

30
324

60
756

90
1355

120
2410

# sensitive patterns 
|S|

Lo
st

 a
nd

 G
ho

st

TPM
BA

(b) TRU

13
15

28
40

30
59

35
82

0

50

100

150

30
6030

60
12128

90
18276

120
24502

# sensitive patterns 
|S|

Lo
st

 a
nd

 G
ho

st

TPM
BA

(c) MSN

1
0

9
0

14
0

47
0

0

20

40

60

25
163

100
607

200
1167

500
3061

# sensitive patterns 
|S|

Lo
st

 a
nd

 G
ho

st

TPM
BA

(d) DNA

Fig. 4. Total number of τ -lost and τ -ghost patterns vs. number of sensitive patterns
(and |S|). x

y on the top of each bar for BA denotes x τ -lost and y τ -ghost patterns.
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Fig. 5. Total number of τ -lost and τ -ghost patterns vs. length of sensitive patterns k
(and |S|). x

y on the top of each bar for BA denotes x τ -lost and y τ -ghost patterns.

We also demonstrate that PFS-ALGO reduces the length of the output
string X of TFS-ALGO substantially, creating a string Y that contains less
redundant information and allows for more efficient analysis. Figure 6a shows
the length of X and of Y and their difference for k = 5. Y was much shorter
than X and its length decreased with the number of sensitive patterns, since
more substrings had a suffix-prefix overlap of length k−1 = 4 and were removed
(see Sect. 4). Interestingly, the length of Y was close to that of W (the string
before sanitization). A larger k led to less substantial length reduction as shown
in Fig. 6b (but still few thousand letters were removed), since it is less likely for
long substrings of sensitive patterns to have an overlap and be removed.
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Fig. 6. Length of X and Y (output of TFS-ALGO and PFS-ALGO, resp.) for varying:
(a) number of sensitive patterns (and |S|), (b) length of sensitive patterns k (and |S|).
On the top of each pair of bars we plot |X|−|Y |. Runtime on synthetic data for varying:
(c) length n of string and (d) length k of sensitive patterns. Note that |Y | = |Z|.

Efficiency. We finally measured the runtime of TPM using prefixes of the syn-
thetic string SYN whose length n is 20 million letters. Figure 6c (resp., Fig. 6d)
shows that TPM scaled linearly with n (resp., k), as predicted by our analysis in
Sect. 5 (TPM takes O(n+ |Y |+kδσ + δσθ) = O(kn+kδσ + δσθ) time, since the
algorithm of [18] was used for MCK instances). In addition, TPM is efficient,
with a runtime similar to that of BA and less than 40 s for SYN.
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7 Related Work

Data sanitization (a.k.a. knowledge hiding) aims at concealing patterns mod-
eling confidential knowledge by limiting their frequency, so that they are not
easily mined from the data. Existing methods are applied to: (I) a collection of
set-valued data (transactions) [21] or spatiotemporal data (trajectories) [1]; (II)
a collection of sequences [11,13]; or (III) a single sequence [4,15,22]. Yet, none
of these methods follows our CSD setting: Methods in category I are not appli-
cable to string data, and those in categories II and III do not have guarantees
on privacy-related constraints [22] or on utility-related properties [4,11,13,15].
Specifically, unlike our approach, [22] cannot guarantee that all sensitive pat-
terns are concealed (constraint C1), while [4,11,13,15] do not guarantee the
satisfaction of utility properties (e.g., Π1 and P2).

Anonymization aims to prevent the disclosure of individuals’ identity and/or
information that individuals are not willing to be associated with [2]. Anonymiza-
tion works (e.g., [2,5,7]) are thus not alternatives to our work (see [3] for details).

8 Conclusion

In this paper, we introduced the Combinatorial String Dissemination model. The
focus of this model is on guaranteeing privacy-utility trade-offs (e.g., C1 vs. Π1
and P2). We defined a problem (TFS) which seeks to produce the shortest string
that preserves the order of appearance and the frequency of all non-sensitive
patterns; and a variant (PFS) that preserves a partial order and the frequency
of the non-sensitive patterns but produces a shorter string. We developed two
time-optimal algorithms, TFS-ALGO and PFS-ALGO, for the problem and
its variant, respectively. We also developed MCSR-ALGO, a heuristic that pre-
vents the disclosure of the location of sensitive patterns from the outputs of
TFS-ALGO and PFS-ALGO. Our experiments show that sanitizing a string
by TFS-ALGO, PFS-ALGO and then MCSR-ALGO is effective and efficient.
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