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Abstract—Most of the latest context-based applications capture
the mobility of a user using Inertial Measurement Unit (IMU)
sensors like accelerometer and gyroscope which do not need
explicit user-permission for application access. Although these
sensors provide highly accurate mobility context information,
existing studies have shown that they can lead to undesirable
leakage of location information. To evade this breach of location
privacy, many of the state-of-the-art studies suggest to impose
stringent restrictions over the usage of IMU sensors. However,
in this paper, we show that typing and smartphone engagement
patterns can act as an alternative modality to sniff the mobility
context of a user, even if the IMU sensors are not sampled
at all. We develop an adversarial framework, named ConType,
which exploits the signatures exposed by typing and smartphone
engagement patterns to track the mobility of a user. Rigorous ex-
periments with in-the-wild dataset show that ConType can track
the mobility contexts with an average micro-F1 of 0.87 (±0.09),
without using IMU data. Through additional experiments, we
also show that ConType can track mobility stealthily with very
low power and resource footprints, thus further aggravating the
risk.

Index Terms—Smartphone; Typing; Mobility

I. INTRODUCTION

The majority of the current commercially available smart-
phone operating systems allow hassle-free access to inertial
measurement unit (IMU) sensors like accelerometer, gyro-
scope, etc., which are primarily used for activity detection of
users. Subsequently, the applications that log IMU information
does not ask the user for explicit permissions to access
these sensors [1]. This allows a majority of the state-of-the-
art mobility context detection techniques to leverage on the
high-frequency continuous sampling of these IMU sensors for
application usage [2], [3]. Although such uncontrolled access
of IMU sensors has benefited us with seamless services from
several context-dependent and location-sensitive applications,
however, it has also led us to the more significant concerns
about the location privacy of a user [1], [4].

Location privacy is usually defined as the ability of a
user to control the access of third parties to her (his) lo-
cation information1. With smartphone usage becoming more
and more prevalent, several independent research works have
started looking into the potential sources that can breach the
location privacy of a user [5]. Most of these research works

1https://www.igi-global.com/dictionary/privacy-trust-management-
schemes-wireless/17408 Access: February 23, 2020

point at one common source of such leakage – the IMU
sensors [6], [7]. Although, IMU sensors are explicitly used
to detect the mobility context of a user accurately, however,
accurate mobility information coupled with spatio-temporal
information can disclose the approximate location of a user
at different times of the day [4]. Some of the recent papers
have also revealed that such a privacy breach is possible
even if the specific location services like GPS information is
turned-off [8]. This further raises the concern, as unlike GPS,
applications capturing IMU sensor logs do not need explicit
permissions from the user [1]. Indeed, a standard solution, in
this context, would be to impose restrictions on IMU usage.
However, smartphones being a device which receives inputs
from several modalities like camera, microphone, and screen
interactions like typing, swyping etc., can have other alternate
sources of information which, if appropriately exploited, may
reveal the mobility context details of a user. This mobility
information can then be augmented with existing techniques
to sniff a user’s location.

Thus, in this paper, we explore the possibility of identifying
an alternative modality that can provide continuous monitoring
of user mobility, even if the IMU sensors are not sampled
at all. In this context, we find screen-interactions like typing
to be a possible source of such information. Notably, the
keystroke dynamics during typing can be a good indicator of
the mobility context of a user; for instance, while walking
or commuting in a crowded bus, people are likely to get dis-
tracted frequently, hence prefer to type short messages quickly
(or slowly, depending on the individual) or tend to commit
frequent mistakes [9]. Hence, smartphone typing may act as a
promising indicator to capture mobility traits. Although typing
on a smartphone may not be possible during all possible
activities, nevertheless, a user may type while walking or
traveling in a vehicle, apart from the static condition.

With several smartphone applications interacting with users
through typing, a user typically spend quite a significant
amount of time interacting with her smartphone through
screen interactions (at least an hour everyday [10], [11]). This
observation also opens up the vulnerability posed by keystroke
dynamics for sniffing the mobility context during typing.
However, a user cannot type during activities like running or
cycling, so an adversary (say, a malicious application) can use
typing patterns to detect the mobility contexts only when it is
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possible. Considering the set of activities available under the
Google Activity Recognition API (static, walking, running,
in-vehicle, on bicycle, tilting, unknown) [12], we observe that
typing may be feasible under three activities – static, walking
and in-vehicle; so we may consider the keystroke dynamics
to track these three activities. This approach essentially shows
that even if someone completely restricts IMU sampling, then
also one can glean information about mobility contexts from
their typing and smartphone engagement patterns.

We further explore this vulnerability posed by the screen-
interactions by developing an adversarial framework named
ConType, which can track the mobility of a user (‘static,’
‘walking’ and ‘in-vehicle’) using typing and smartphone en-
gagement patterns. Notably, we do not capture any already-
explored privacy sensitive information like the actual key-
logging events (except a few special keystrokes like the
backspace, space bar, etc.); instead, we extract keystroke fea-
tures like tap duration, inter-tap duration, keystroke pressure,
and velocity, etc. We extract a set of interesting features
from these data, which help us in classifying the above three
mobility contexts. At the outset, ConType uses a machine
learning model to track the three mobility contexts from these
features.

We have implemented ConType as an Android application
(Android 8.0 Oreo or higher) which comprises of a custom-
made keyboard (for keystroke feature extraction) along with
the ConType decision engine. The prototype has been thor-
oughly tested in-the-wild with 25 users from approximately
3-million valid typing instances. Considering the mobility
contexts returned by Google Activity Recognition API as the
baseline, we observe that ConType can sniff various mobility
contexts with an micro-F1 score of ≈ 0.87 (±0.09), even
if the IMU sensors are completely blocked from the usage.
Additionally, we observe that ConType also has a very low
energy footprint; this shows that information can be leaked
without much user attention, such as huge battery drainage or
resource blockage.

II. RELATED WORK

Mobility context detection is not a new topic in the research
community; over the past decade, there have been a plethora
of research works in this field [13], [14]. Most of these works
exploits IMU sensors like accelerometer and gyroscope or
the traces from other sensors like GPS and acoustic for fine
grained mobility context (say, vehicle type) detection [15],
[16]. However, despite all these successes in detecting the mo-
bility just by using IMU sensors and GPS information, there
has been a consistent criticism of these sensors for leaking
out private information regarding the location of users [7].
Most of these works concentrate on detecting the mobility first
and then subsequently use the mobility along with the spatio-
temporal information to predict the location of the user [4],
[8]. Furthermore, these works have also shown that even with
location services (or GPS) explicitly turned off, these schemes
allow the smartphone applications (malicious or not) to detect
the location of the user with an appreciable accuracy [1], [8].

Subsequently, several research works have come up with
proper definitions and threat models that deal with such pri-
vacy breaches involving leakage of location information [5]–
[7]. However, a common approach suggested by most of these
works is in devising policies that restrict the usage of IMU
sensors. Understanding these limitations, we search for an
alternative modality which can be still provide the mobility
information even though IMU sensors are not used.

On the other hand, although typing patterns have been used
to detect soft-biometric traits, to the best of our knowledge,
we have found no related literature in this field except [17]
which analyses the probability of usage of a particular group
of applications on smartphones in different physical activity
contexts like stationary, walking, and in-vehicle. This work
concludes that the likelihood of usage of specific groups of
applications differ across various physical activity contexts and
also summarizes the major application types used in different
physical activity sessions. For example, they have found that
the usage of social apps is more when the users are stationary
whereas the communication apps (like the phone call, VoIP
apps, etc.) are used more often when the users are in motion
(both walking or in-vehicle).

III. DATA COLLECTION FRAMEWORK

We first design an experimental apparatus for collecting
keystroke data from smartphone users in-the-wild. Although
the majority of the users use the default Android keyboard
like the Gboard app developed by Google, it does not have
the support for keystroke feature logging. Further, to validate
the performance of ConType, we also need the ground truth
context data. Therefore, we developed a custom keyboard for
ConType (shown in Figure 1), which contains (i) a Keyboard
Logger: a QWERTY keyboard to collect application usage and
keystroke interaction data and (ii) the Ground Truth Collection
Unit: an integrated ground truth context collection system.
Also, the app uploads the collected data automatically on the
server for further processing. In the following, we illustrate
the details of each component of the developed app.

A. Keyboard Logger
To capture the smartphone engagement data of different

users, we design a software keyboard, shown in Figure 2, for
smartphones based on Android Input Method Editor (IME)
facility. The keyboard provided by this application is similar in
functionality to the general QWERTY keyboard, provided by
default. In addition to this standard functionality, the keyboard
has additional capabilities of capturing user’s keystroke inter-
action patterns during typing. As key-logging has a significant
privacy concern, the app does not log any content and only
captures the keystroke interaction data illustrated in Table I.

B. Ground Truth Collection Unit
This component of the developed Android application auto-

matically records the ground-truth mobility contexts leverag-
ing on the Google Activity Recognition API2. This API returns

2Any activity recognition model can be fitted in place of this API. There
is no strict dependence on this API.
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TABLE I: Raw data captured using the keyboard app. Here t represents the time instance of a keypress event.

Factors Notation Significance
Key-press Event

Time-stamp st The time-stamp of the key-press event.

Application at The name of the application with which the user is interacting through typing at time instance t.
Special Key-codes kt The key-codes of some specific keys like ‘backspace’, ‘space bar’, and some special characters like ‘@,’ ‘*’ and ‘\ˆ.’

Pressure pt The amount of pressure exerted by the user on the smartphone touchscreen during typing.
Velocity vt The velocity of typing at time instance t in pixels/sec.

Tap Duration dt The amount of time a particular key is kept pressed while typing.
Inter-Tap
Duration rt

This denotes the amount of time between two subsequent key-press events. This is calculated
from key-press event time-stamp.

Fig. 1: Data Collection Unit

Fig. 2: ConType Keyboard

eight physical activity labels with an associated confidence
value to mark the likelihood of occurrence of the specified
physical activity. The eight physical activity labels returned by
the API include - (a) Still (Static), (b) Walking, (c) Running,
(d) On Foot, (e) On Bicycle, (f) In-Vehicle, (g) Tilting,
and (h) ‘Unknown.’ We perform an initial noise removal by
logging only those activity labels which have the associated
confidence value ≥ 70. As mentioned earlier, typically users
can type over a smartphone during three among the above
eight activities – static, walking and in-vehicle; so ConType
uses an opportunistic approach to derive these three activities
from the keystroke interaction patterns.

C. Privacy and Trust Concerns during Keystroke Logging

As keylogging has a serious privacy concern, we would
like to highlight that ConType does not log any alphanumeric
keys, and the logging is restricted to the keystroke interaction
patterns only, specifically the features enumerated in Table I.
Also, the logging application does not export the logged
raw data to any other application for further analysis. The
communication to the ConType server is done via a secure
channel over the Internet. The users have also been informed
about the data being collected by the ConType keylogger unit.
Precisely, we have followed the well-accepted standards of
privacy non-intrusive logging strategy mentioned in [11] to
prevent any privacy violation during the deployments.

IV. PILOT STUDY

In this section, we show the results from a thorough pilot
study to find out the opportunities and challenges for extracting
out the mobility context of a user from her typing patterns.

A. Typing Patterns for Tracking Mobility Context

To explore the vulnerabilities exposed by the keystroke
dynamics as a signature for mobility context detection, we
recruited 13 volunteers (primarily college students who use
different modes of transports daily during their travel from
home to college and back) for the pilot study. The volunteers
belong to the age group 18-35 (8-males and 5-females) which
introduce sufficient diversity in the collected data [18]. We ask
the volunteers to type texts over different Android apps which
they regularly use and provide data3 in different mobility
contexts with one and two-handed modes of typing. All these
participants were asked to provide typing data without any
constraints, and hence, no typing or time constraints were
imposed on them.

B. Opportunities

The main intuition behind exploiting keystroke interaction
patterns as a potential source for tracking mobility context
information is the fact that the typing behavior of humans
changes with the change in their mobility. Recent studies show
that keystroke interaction patterns can detect the soft-biometric
characteristics, such as age, handedness, etc. [18], [19] of a
user. We leverage on those studies to explore the potential
of inter-tap duration (ITD) to detect mobility contexts across
different users. Here, the ITD is measured by the difference
of time between the subsequent keystrokes made by the user
on the designed keyboard app.

We compute the distribution of ITD of the users, partic-
ipating in the pilot study, under the three targeted mobility
contexts – static, walking and in-vehicle. Fig. 3 shows the
distribution of inter-tap duration of two representative users in
a diverse mobility context. We observe a considerable amount
of distinction in the distribution of inter-tap duration for a
user concerning the various mobility context. This gives us an
indication that such features can be used to differentiate the
mobility contexts of a user.

C. Challenges

Albeit promising, typing patterns exhibit challenges in ex-
tracting the mobility context. We observe that even for the
same user, the typing patterns vary significantly. Precisely, for
a typical individual, the typing interval varies between 80-500
ms [20], which eventually results in the variation. As shown

3Prior consents have been taken following ethical norms of data collection.
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Fig. 3: Distribution of inter-tap duration (in log scale) in
different mobility contexts for 2 different users.

Fig. 4: Variation in the inter-tap duration (in log scale) for the
2 different users (represented by two different colors) in same
mobility context – Static (left) and Walking (right).

in Figure 4, even for the same users, we see that the data
forms separate clusters based on a simple feature like ITD,
and the distribution of the feature across these two clusters are
profoundly different albeit the underlying mobility context is
same. From further investigation, we could understand that
these variations are because of different modes of typing
with normal and unusual modes of typing instances present
for the same user even in the same mobility context. For
instance, a user may generally type using both the hands
simultaneously; however, under some unusual circumstances
like while traveling in a crowded metro, she sometimes uses
one hand for typing and the other hand for support. In Fig. 4,
we mark the cluster as ‘usual’ for which we get a maximum
number of samples and the second cluster as ‘unusual’ with
lesser number of samples indicating rare behavior.

Based on these observations, we develop the adversarial
framework, named ConType, which uses the typing and smart-
phone engagement patterns to infer the mobility context of a
user without sampling IMU data. The details are as follows.

V. DEVELOPMENT OF ConType

ConType uses an opportunistic approach to glean smart-
phone app engagement and typing patterns to extract the
mobility context of a user whenever possible. As we have
mentioned earlier, we consider the three mobility levels when
a typing engagement is most feasible. The keystroke and app
engagement pattern analysis model of ConType consists of two

Fig. 5: ConType framework

major components – the client (smartphone) and the server-
side (see Figure 5). The client-side of ConType primarily
contains the data collection apparatus, as described in Sec. III,
whose primary objective is to gather the data, pre-process, and
then upload it to the server for processing. On the other hand,
the server-side of ConType detects the three mobility contexts
by using the smartphone engagement data (as described in
Table I) for predicting the mobility context. The details follow.

A. Developing the ConType Server-Side

The typing and app engagement data collected through
ConType keyboard is analyzed at the server for the infer-
ence of the mobility context of the user. It can be noted
that the popular sensor-based context detection services, like
the Google Activity Recognition API, also use a server-side
module for processing the collected data [21]. The server
builds up a model for activity classification, and as the data
arrives from the clients, it returns one of the three activity
levels – static, walking and in-vehicle, entirely based on the
smartphone engagement patterns. The step-wise procedure for
training and inference of the activity levels from the typing
and app engagement data are as follows.

B. Sessionizing Typing Data

For feature extraction from the typing data (as summarized
in Table I), we first need to sessionize the raw data [10]. The
raw typing data which contains keystroke interaction patterns
like pressure (pt), velocity (vt), tap (dt) and inter-tap duration
(rt), needs to be aggregated to form blocks so that appropriate
features can be extracted. We identify that choosing a proper
session length is challenging. A small session length is still
prone to noise whereas a large session length reduces the
dataset size exponentially. In order to circumvent, we introduce
Activity Session Length (ASL), which demarcates the typing
data with the same ground-truth context labels obtained from
the Google Activity Recognition API. For a user i, we denote
the jth activity session by N i

j with the corresponding session
length nij . However, as ASL can vary randomly across differ-
ent time intervals, we choose a more principled session length
to sessionize the typing data, by computing the minimum ASL
(mi) observed from the collected data in the training phase as
mi=min{ni1, ni2, . . . , nij−1, n

i
j}. Here the session length mi
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indicates the smallest stable time window in which the user i
stays in a specific mobility context. We then use this computed
minimum ASL to sessionize the data, obtained for the user i,
during runtime.

Fig. 6: Sessionizing ground truth

Thus, the session length mi for a user i is used to
form blocks Bit in the typing data, with t as the start-
ing instance of the typing event. Therefore, a block of
sessionized typing data for the ith user can be rep-
resented as Bit={Eit , Eit+1, . . . , E

i
t+mi−1}, where Et =

{at, kt, pt, vt, dt, rt} is the tuple containing the 7 keystroke
interaction data.

C. Feature Extraction.

From each of the blocks Bit with session length mi, starting
at time t, we construct the following features.

1) Application Usage (D0): This feature is obtained by
taking the application (at) that most frequently appeared
within a block Bit . The main intuition behind constructing
this feature is to capture the distribution of application usage
over different mobility contexts.

2) Keystroke Interaction Statistics (D1-D20): These fea-
tures are computed by applying statistical operations like
mean, standard deviation, median, min and max on the
keystroke interaction data, such as pressure(pt), velocity (vt),
tap (dt) and inter-tap duration (rt) within a block Bit . These
features capture the change in the typing interactions across
different mobility contexts.

3) Word-based Features (D21-D25): This feature is in-
tended to capture the general human tendency to commit errors
& type shorter messages while in motion. For computing these
features, we leverage on the keycodes (kt) and use them to
obtain the error counts and word typing velocity in a session.
We first count the number of backspaces (D24) and special
characters (D25) like ‘*’ and ‘.̂’ to count errors. Next, we
count the number of blank spaces in the typing session, and
subsequently compute the number of words typed (D21) in a
session. Finally, we calculate the maximum word length (D23)
in a block, and obtain the word typing velocity (D22) as the
ratio of number of words (D21) and session length mi.

4) Typing Mode-based Feature (D26): From the pilot study
(Sec. IV-B), we realize that one of the primary sources of
variation in the keystroke interaction is due to the difference
between normal (say, typing in one hand) and the unusual
(say, two-handed modes of typing) mode of typing [22].
Importantly, the typing mode as a feature (say, handedness)

can contribute to the ease of typing, which may indicate the
mobility context of the user. However, obtaining the exact
mode of typing (one hand or two hand) in an in-the-wild
collected dataset is difficult; therefore, it becomes nearly
impossible to develop a supervised model for identifying these
rare typing instances. Thus, we develop an unsupervised model
for classifying the normal and unusual modes of typing.
Inspired by the recent literature [22], we rely on the two
primary indicators which can act as prominent discriminators
of typing mode (handedness) – (a) tap duration (dt) and (b)
inter-tap duration (rt). We perform a k-means clustering on
the un-sessionized typing data (with k = 2) based on the two
features described above. Once the clusters are obtained, we
perform Mann-Whitney Test [23] to check for the significance
of the clusters. If the clusters are significant (p-value < 0.05),
we classify the individual typing instances in two different
clusters; the smaller cluster is characterized as the unusual
mode of typing for that particular user. However, if the clusters
are not significant, we consider all the data points as a single
cluster. Finally, we compute the feature ζt (binary variable) in
a block Bit , which indicates the typing instance at t as normal
or unusual based on its presence in the identified clusters.

5) Temporal Information (D27): This feature captures the
temporal behavior of continuing in a particular mobility con-
text for a specific user. We model the transition of mobility
context of an user from one session to the next as a Markov
model. The state space of this Markov model contains the
mobility context classes – ‘static,’ ‘walking’ and ‘in-vehicle’.
The state transition probability from one state to another
indicates the probability to move from one mobility class to
another within a typing session. The process to learn the state
transition probabilities, which is represented as a 3×3 matrix
P , is described as follows. We first calculate the total number
of mobility context transitions over the entire sessionized
typing data, let this be denoted by η. Now, the probability of a
transition from state e to f can be denoted by Pef =

ηef
η . Here,

e,f ∈ {static, walking, in-vehicle} and ηef is the total number
of times there is a transition from e to f in the sessionized data.
Finally, we compute the feature by considering the maximum
transition probability obtained from the product of the activity
label for the previous typing session, represented in the form
of a one-hot vector, and the transition matrix.

D. Prediction of the Mobility Context
ConType typically uses a Random-Forest based learning

model to predict the mobility context of a user. However, as
the signatures for mobility contexts are sometime dependent
on factors like age, gender, etc., we can use a personalized
feature selection to boost up the performance of ConType. For
this, we need ground-truth from the IMU data; therefore, when
the IMU data is available for some time for some mobility
contexts (for example, scenarios like when IMU was available
before the user turned it off), we choose the top-5 features
using a personalized feature selection algorithm 4. The feature

4https://scikit-learn.org/stable/modules/feature selection.html Last
Accessed: February 23, 2020
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Fig. 7: Ground-truth mobility classes

selection algorithm essentially uses the keyboard interaction
data and associated ground-truth context labels, collected dur-
ing the training phase, to rank the features according to their
importance using an Ensemble classifier [24] (total number
of estimators = 250). Finally, once the features are selected
judiciously for a user, in the training phase, the selected
features are used to develop a personalized learning model
(based on Random-Forest or Support Vector Machine), which
is then used to predict the mobility during runtime.

VI. PERFORMANCE EVALUATION

Since the problem of predicting mobility contexts is inher-
ently a multi-class problem, we use the well-adopted metric
micro-F1 [25] to evaluate the accuracy of context detection by
the ConType framework. We first discuss the detailed exper-
imental setup and then analyze the performance of ConType
from various angles.

A. Data Collection & Preparation

We start by describing the data collection drive and prepar-
ing the dataset for evaluation of ConType.

1) In-the-Wild Study: We extend the data collection to
gather in-the-wild data by recruiting volunteers from different
parts of the country, mainly comprising of students who daily
commute to their universities or academic institutions. We
asked the volunteers to use the ConType app continuously for
the entire duration of 2 months without imposing any other
constraints. To encourage participation in the data collection
drive, we have given a token incentive of US$ ≈ 42 to each
participant. Although initially, 53 volunteers turned up for the
data collection drive, many of them left the drive within the
first 2 weeks, on reasons like usage of a different keyboard.

Finally, the collection drive had 30 participants who con-
tributed data for the entire period, with a mean duration
of ground-truth contexts across all users of 984.57 hours.
Moreover, we observe that the participants in this experiment
used a total of 392 different applications.

2) Typing Data Preparation: To sessionize the typing data,
we use the session length of mi for creating blocks for user
i. Since session length mi is obtained from the automated

ground-truth labels received from the Google Activity Recog-
nition API, there can be many labels which are spurious and
do not account for the change in the stable mobility context.
For example, say, the user was sitting in a chair while typing,
then the user may walk for a while and take the next chair
to sit again. Such an activity change for a short duration can
not be captured through ConType as the user has not typed
anything significant while walking. To remove such spurious
labels, we consider only those ground-truth activity sessions
which have a length ≥ 60 secs. Additionally, we compute
the distribution of ground-truth activity labels across different
users. As shown in Figure 7, it can be observed that almost all
the users, except one, have a high number of typing samples
under the ‘Static’ mobility class. Besides, we also observe
that 73.33% of users have all the 3 mobility classes present in
their data. Thus, to evaluate the system in a principled way,
we first divide the entire dataset for each user into two disjoint
training and test dataset. For this purpose, we use a split ratio
of 70 to 30. Once the dataset is split into the training and the
testing dataset, we balance the training dataset using Synthetic
Minority Over-Sampling Technique (SMOTE) [26]. We then
use the balanced data for feature selection and training the
model. The trained model is then evaluated on the held-out
test dataset.

During the evaluation of the system, we found that out of the
30 users only 25 users (with a total of ≈ 3 million valid typing
instances) had sufficient distribution of data in all the mobility
classes to train and test the models following the approach
mentioned above. Hence for the rest of the experiments, we
consider data from these users only.

B. Context Detection Accuracy

We first analyze the centralized model for ConType, where
each user’s data is tested on the model (random forest-based)
trained with the data of all other users other than him (her).
From the evaluation results reported in Figure 8, we observe
that ConType provides a median micro-F1 score of ≈ 0.81.
However, it can be noted that the centralized model has a
high standard deviation as for some users, the centralized
framework fails to capture the personalized typing behavior. To
evaluate the personalized feature selection model, we utilize
the top 5 selected features from the typing and smartphone en-
gagement engagement data, along with the ground-truth labels
obtained from the automated ground truth collection unit. We
choose to compare between Random Forest (RF) (with number
of estimators = 10) and Support Vector Machine (SVM)
(with Random Bias Function kernel) for the implementation
of the model. We observe that ConType with RF-based model
performs the best (has a higher median) and has an average
micro-F1 score ≈ 0.87 and low standard deviation of ± 0.09
across all users

We next analyze the class-wise feature importance across
all the users. We represent a subset of those features in
Fig. 9 which appear for at least 3 users across all the three
mobility classes. From the figure, we can see that temporal
information appears as an essential feature for almost all the
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TABLE II: Analysis of percentage (%) CPU and memory footprint of ConType

Devices
IMU

ConTypeStatic Walking In-Vehicle
0.1
sec

15
secs

60
secs

0.1
secs

15
secs

60
secs

0.1
sec

15
secs

60
secs

Redmi 5
CPU 5.91

(±10.19)
2.96

(±2.62)
1.48

(±1.24)
22.92

(±17.50)
6.45

(±4.54)
1.95

(±0.44)
32.74

(±3.76)
10.35

(±10.67)
3.92

(±0.59)
1.75

(±0.96)

Mem 4.68
(±0.14)

4.75
(±0.13)

4.36
(±0.12)

3.62
(±0.14)

3.62
(±0.27)

4.21
(±0.18)

4.15
(±0.16)

4.38
(±0.13)

4.34
(±0.16)

3.13
(±0.29)

Motorola
Moto
G5

CPU 23.95
(±5.28)

3.57
(±0.30)

3.33
(±0.70)

29.98
(±5.80)

8.86
(±6.27)

7.29
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Fig. 8: Accuracy of ConType

Fig. 9: Distribution of top-5 features

users across all the mobility conditions. Other vital features
include application usage patterns and keystroke interaction
statistics. Besides, the features like max duration, median
pressure, and min ITD served as essential features, for a
significant number of users, to discern the mobility classes
static, walking, and in-vehicle, respectively.

C. Profiling ConType

We next profile ConType to see the resource footprint of
the application. It can be noted that the risk of privacy breach
gets aggravated if the proposed technique has less resource
footprint, thus keeping the user unaware about the background
analysis that is running in her device. We look the CPU,

memory and the energy consumption footprint of ConType,
as discussed next.

1) Resource Consumption: We subsequently measure the
resource and energy footprints of ConType to analyze its
traceability in terms of resource and power consumption while
detecting the mobility context. We have profiled ConType by
measuring the CPU and Memory consumption using Android
debugging tools like dumpsys and top respectively. We
evaluate the framework on two commercially available smart-
phones – Redmi 5 (price $112) and Motorola Moto G5. As
earlier, we have used the Android app AndroSensor [27] for
continuous sensor polling at different polling frequencies.

From the results shown in Table II, we observe that for both
the devices, ConType has a relatively low resource footprints
in terms of both CPU and memory consumption. ConType
uploads the data to the server in batches for analysis and
mobility detection. In this process, the client app compresses
the entire data into a zipped archive and uploads it to a remote
server. We separately compute this overhead and observe that
during this phase, the app consumes CPU in the range 6.5-
11% depending on the network connectivity and the number
of apps running in the foreground. Moreover, we also observe
that while not in use, the client keyboard application does not
consume any excess CPU or memory resources.

2) Power Consumption: We further analyze the energy
footprint of ConType, while typing, using a High Voltage
Power Monitor (HVPM) from Monsoon solutions5 and com-
pare it with the following two cases – (a) idle: the smartphone
(Motorola Moto G5) is kept untouched without any screen
activity or foreground app running but with WiFi connectivity,
(b) sensor based polling: continuous polling of the IMU
sensors during the three mobility contexts with varying update
intervals of – 0.1 sec, 15 secs and 60 secs for each of the
mobility contexts. We record the power consumption logs for
each of the baselines for 2 minutes each.

We next perform a pairwise Wilcoxon Rank-sum Test [28]
(with α = 0.01) on the power consumption logs obtained for
each of the above mentioned cases. From the corresponding
box-plot shown in Fig. 10, we see that ConType consumes
significantly (all the pairwise comparisons yield p-value <
0.01) lesser energy footprint than all other baselines. Notably,
the power consumption of ConType is just 1.5% more than

5https://www.msoon.com/high-voltage-power-monitor (Access:February
23, 2020)
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Fig. 10: Power consumption of ConType

the power consumption when the smartphone kept in idle state.
This allows ConType to sniff mobility context of the user much
more stealthily in comparison to the IMU sensors which have
a high energy and resource footprint.

VII. CONCLUSION

As smartphones have become smarter, several context-
dependent services have been developed over this platform.
While a large number of smartphone users tend to use apps that
run continuous mobility context recognition as a background
service, information leakage concerning the location privacy
of a user is a concerning issue. Majority of the methodologies
developed over the last few years for evading such privacy
breaches point to a single solution of restricting the IMU
usage. This paper shows that there can be alternate modalities,
like screen interactions (in the form of typing and smartphone
engagements), that can be exploited to track mobility context
even if the IMU-based sampling is completely avoided. The
developed adversarial framework, ConType, gleans the smart-
phone engagement and typing patterns to track the mobility
context of a user with no IMU sampling involved. Further-
more, the developed framework has a very low resource and
energy footprints, thus make it more difficult to trace while
tracking the mobility of a user.
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