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Abstract: Kolmogorov complexity is the length of the ultimately compressed version of a file
(i.e., anything which can be put in a computer). Formally, it is the length of a shortest program
from which the file can be reconstructed. We discuss the incomputability of Kolmogorov
complexity, which formal loopholes this leaves us with, recent approaches to compute or approximate
Kolmogorov complexity, which approaches are problematic, and which approaches are viable.
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1. Introduction

Recently there have been several proposals regarding how to compute or approximate in some
fashion the Kolmogorov complexity function. There is a proposal that is popular as a reference in
papers that do not care about theoretical niceties, and a couple of proposals that do make sense but
are not readily applicable. Therefore, it is timely to survey the field and show what is and what is
not proven.

The plain Kolmogorov complexity was defined in [1] and denoted by C in the text [2] and its
earlier editions. It deals with finite binary strings, strings for short. Other finite objects can be encoded
into single strings in natural ways. The following notions and notation may not be familiar to the
reader so we will briefly discuss them. The length of a string x is denoted by l(x). The empty string of 0
bits is denoted by ε. Thus, l(ε) = 0. Let x be a natural number or finite binary string according to the
correspondence

(ε, 0), (0, 1), (1, 2), (00, 3), (01, 4), (10, 5), (11, 6), . . . .

Then l(x) = blog(x + 1)c. The Kolmogorov complexity C(x) of x is the length of a shortest string x∗

such that x can be computed from x∗ by a fixed universal Turing machine (of a special type called
“optimal” to exclude undesirable such machines). In this way C(x) is a definite natural number
associated with x and a lower bound on the length of a compressed version of it by any known or as
yet unknown compression algorithm. We also use the conditional version C(x|y).

The papers by R.J. Solomonoff published in 1964, referenced as [3], contain informal suggestions
about the incomputability of Kolmogorov complexity. Says Kolmogorov, “I came to similar conclusions
[as Solomonoff], before becoming aware of Solomonoff’s work, in 1963–1964.” In his 1965 paper [1]
Kolmogorov mentioned the incomputability of C(x) without giving a proof: “[. . .] the function Cφ(x|y)
cannot be effectively calculated (generally computable) even if it is known to be finite for all x and y.”
We give the formal proof of incomputability and discuss recent attempts to compute the Kolmogorov
complexity partially, a popular but problematic proposal and some serious options. The problems of
the popular proposal are discussed at length while the serious options are primarily restricted to brief
citations explaining the methods gleaned from the introductions to the articles involved.
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2. Incomputability

To find the shortest program (or rather its length) for a string x we can run all programs to see
which one halts with output x and select the shortest. We need to consider only programs of length at
most that of x plus a fixed constant. The problem with this process is known as the halting problem [4]:
some programs do not halt, and it is undecidable which ones they are. A further complication is that
we must show there are infinitely many such strings x for which C(x) is incomputable.

The first written proof of the incomputability of Kolmogorov complexity was perhaps in [5] and
we reproduce it here following [2] to show what is and what is not proved.

Theorem 1. The function C(x) is not computable. Moreover, no partial computable function φ(x) defined on
an infinite set of points can coincide with C(x) over the whole of its domain of definition.

Proof. We prove that there is no partial computable φ as in the statement of the theorem. Every infinite
computably enumerable set contains an infinite computable subset, see e.g., [2]. Select an infinite
computable subset A in the domain of definition of φ. The function ψ(m) = min{x : C(x) ≥ m, x ∈ A}
is (total) computable (since C(x) = φ(x) on A), and takes arbitrarily large values, since it can obviously
not be bounded for infinitely many x. Also, by definition of ψ, we have C(ψ(m)) ≥ m. On the other
hand, C(ψ(m)) ≤ Cψ(ψ(m)) + cψ by definition of C, and obviously Cψ(ψ(m)) ≤ l(m). Hence, m ≤
log m up to a constant independent of m, which is false from some m onward.

That was the bad news; the good news is that we can approximate C(x).

Theorem 2. There is a total computable function φ(t, x), monotonic decreasing in t, such that
limt→∞ φ(t, x) = C(x).

Proof. We define φ(t, x) as follows: For each x, we know that the shortest program for x has length at
most l(x) + c with c a constant independent of x. Run the reference Turing machine U (an optimal
universal one) for t steps on each program p of length at most l(x) + c. If for any such input p the
computation halts with output x, then define the value of φ(t, x) as the length of the shortest such
p, otherwise equal to l(x) + c. Clearly, φ(t, x) is computable, total, and monotonically nonincreasing
with t (for all x, φ(t′, x) ≤ φ(t, x) if t′ > t). The limit exists, since for each x there exists a t such that U
halts with output x after computing t steps starting with input p with l(p) = C(x).

One cannot decide, given x and t, whether φ(t, x) = C(x). Since φ(t, x) is nondecreasing and goes
to the limit C(x) for t → ∞, if there were a decision procedure to test φ(t, x) = C(x), given x and t,
then we could compute C(x). However, above we showed that C is not computable.

However, this computable approximation has no convergence guaranties as we show now.
Let g1, g2, . . . be a sequence of functions. We call f the limit of this sequence if f (x) = limt→∞ gt(x) for
all x. The limit is computably uniform if for every rational ε > 0 there exists a t(ε), where t is a total
computable function, such that | f (x) − gt(ε)(x)| ≤ ε, for all x. Let the sequence of one-argument
functions ψ1, ψ2, . . . be defined by ψt(x) = φ(t, x), for each t for all x. Clearly, C is the limit of
the sequence of ψs. However, by Theorem 1, the limit is not computably uniform. In fact, by the
well-known halting problem, for each ε > 0 and t > 0 there exist infinitely many x such that |C(x)−
ψt(x)| > ε. This means that for each ε > 0, for each t there are many xs such that our estimate φ(t, x)
overestimates C(x) by an error of at least ε.

3. Computing the Kolmogorov Complexity

The incomputability of C(x) does not mean that we cannot compute C(x) for some xs.
For example, if for individual string x we have C(C(x)|x) = c for some constant c, then this means
that there is an algorithm of c bits which computes C(x) from x. We can express the incomputability
of C(x) in terms of C(C(x)|x), which measures what we may call the “complexity of the complexity
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function.” Let l(x) = n. It is easy to prove the upper bound C(C(x)|x)) ≤ log n + O(1). However, it is
quite difficult to prove the lower bound [6]: For each length n there are strings x of length n such that

C(C(x)|x) ≥ log n− log log n−O(1)

or its improvement by a game-based proof in [7]: For each length n there are strings x of length n
such that

C(C(x)|x) ≥ log n−O(1).

This means that x only marginally helps to compute C(x); most information in C(x) is extra information
related to the halting problem.

One way to go about computing the Kolmogorov complexity for a few small values is as follows.
For example, let T1, T2, . . . be an acceptable enumeration of Turing machines. Such an acceptable
enumeration is a formal concept ([2] Exercise 1.7.6). Suppose we have a fixed reference optimal
universal Turing machine U in this enumeration. Let U(i, p) simulate Ti(p) for all indexes i and
(binary) programs p.

Run Ti(p) for all i and p in the following manner. As long as i is sufficiently small it is likely that
Ti(p) < ∞ for all p (the machine Ti halts for every p). The Busy Beaver function BB(n) : N → N was
introduced in [8] and has as value the maximal running time of n-state Turing machines in quadruple
format (see [8] or [2] for details). This function is incomputable and rises faster than any computable
function of n.

Reference [9] supplies the maximal running time for halting machines for all i < 5 and for
i < 5 it is decidable which machines halt. For i ≥ 5 but still small there are heuristics [10–13].
A gigantic lower bound for all i is given in [14]. Using Turing machines and programs with outcome
the target string x we can determine an upper bound on C(x) for reference machine U (by for each Ti
encoding i in self-delimiting format). Please note that there exists no computable lower bound function
approximating C(x) since C is incomputable and upper semicomputable. Therefore it cannot be lower
semicomputable [2].

For an approximation using small Turing machines we do not have to consider all programs. If I
is the set of indexes of the Turing machines and P is the set of halting (or what we consider halting)
programs then

{(i, p)}x = {(i, p) : Ti(p) = x} \ {(i, p) : Ti(p) = x ∧ ∃i′ ,p′(Ti′(p′) = x

∧ |(i, p)| ≤ min{|i′|, |p′|}},

with i, i′ ∈ I, p, p′ ∈ P. Here we can use the computably invertible Cantor pairing function [15]
which is f : N ×N → N defined by f (a, b) = 1

2 (a + b)(a + b + 1) + b so that each pair of natural
numbers (a, b) is mapped to a natural number f (a, b) and vice versa. Since the Cantor pairing function
is invertible, it must be one-to-one and onto: |(a, b)| = |a|+ |b|. Here {(i, p)}x is the desired set of
applicable halting programs computing x, i.e., if either |i′| or |p′| is greater than some |(i, p)| with
(i, p) ∈ {(i, p)}x while Ti′(p′) = x then we can discard the pair concerned from {(i, p)}x.

4. Problematic Use of the Coding Theorem

Fix an optimal universal prefix Turing machine U. The Universal distribution (with respect to U) is
m(x) = ∑ 2−l(p) where p is a program (without input) for U that halts. The prefix complexity K(x) is
with respect to the same machine U. The complexity K(x) is similar to C(x) but such that the set of
strings for which the Turing machine concerned halts is prefix-free (no program is a proper prefix of
any other program). This leads to a slightly larger complexity: K(x) ≥ C(x). The Coding theorem [16]
states K(x) = − log m(x) + O(1). Since − log m(x) < K(x) (the term 2−K(x) contributes to the sum
and 2l(x) + O(log x) is also a program for x) we know that the O(1) term is greater than 0.
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In [17] it was proposed to compute the Kolmogorov complexity by experimentally approximating
the Universal distribution and using the Coding theorem. This idea was used in several articles and
applications. One of the last is [18]. It contains errors or inaccuracies for example: “the shortest
program” instead of “a shortest program,” “universal Turing machine” instead of “optimal universal
Turing machine” and so on. Explanation: there can be more than one shortest program, and Turing
machines can be universal in many ways. For instance, if U(p) = x for a universal Turing machine,
the Turing machine U′ such that U′(qq) = U(q) for every q and U′(r) = 0 for every string r 6= qq for
some string q, is also universal. Yet if U serves to define the Kolmogorov complexity C(x) then U′

defines a complexity of x equal to 2C(x) which means that the invariance theorem does not hold for
Universal Turing machines that are not optimal.

Let us assume that the computer used in the experiments fills the rôle of the required optimal
Universal Turing machine for the desired Kolmogorov complexity, the target string, and the universal
distribution involved. However, the O(1) term in the Coding theorem is mentioned but otherwise
ignored in the experiments and conclusions about the value of the Kolmogorov complexity as reported
in [17,18]. Yet the experiments only concern small values of the Kolmogorov complexity, say smaller
than 20, so they are likely swamped by the constant hidden in the O(1) term. Let us expand on
this issue briefly. In the proof of the Coding theorem, see e.g., [2], a Turing machine T is used to
decode a complicated code. The machine T is one of an acceptable enumeration T1, T2, . . . of all
Turing machines. The target Kolmogorov complexity K is shown to be smaller than the complexity KT
associated with T plus a constant c representing the number of bits to represent T and other items:
K(x) ≤ KT(x) + c. Since T is complex since it serves to decode this code, the constant c is huge, i.e.,
much larger than, say, 100 bits. The values of x for which K(x) is approximated by [17,18] are at most
5 bits, i.e., at most 32. Unless there arises a way to prove the Coding theorem without the large constant
c, this method does not seem to work. Other problems: The distribution m(x) is apparently used as
m(x) = ∑i∈N ,Ti(ε)=x 2−l(ε)/i, see ([19] Equation (6)) using a (noncomputable) enumeration of Turing
machines T1, T2, . . . that halt on empty input ε. Therefore ∑x∈N m(x) = ∑i∈N ,Ti(ε)<∞ 2−l(ε)/i and
with l(ε) = 0 we have ∑x∈N m(x) = ∞ since ∑x∈N 1/x = ∞. By definition however ∑x∈N m(x) ≤ 1
: contradiction. It should be m(x) = ∑i∈N ,Ti(p)=x 2−l(p)−α(i) with ∑i∈N α(i) ≤ 1 as shown in ([2]
pp. 270–271).

5. Natural Data

The Kolmogorov complexity of a file is a lower bound on the length of the ultimate compressed
version of that file. We can approximate the Kolmogorov complexities involved by a real-world
compressor. Since the Kolmogorov complexity is incomputable, in the approximation we never know
how close we are to it. However, we assume in [20] that the natural data we are dealing with contain
no complicated mathematical constructs like π = 3.1415 . . . or Universal Turing machines, see [21].
In fact, we assume that the natural data we are dealing with contains primarily effective regularities
that a good compressor finds. Under those assumptions the Kolmogorov complexity of the object is
not much smaller than the length of the compressed version of the object.

6. Safe Computations

A formal analysis of the intuitive idea in Section 5 was subsequently and independently given
in [22]. From the abstract of [22]: “Kolmogorov complexity is an incomputable function. . . . By
restricting the source of the data to a specific model class, we can construct a computable function
to approximate it in a probabilistic sense: the probability that the error is greater than k decays
exponentially with k.” This analysis is carried out but its application yielding concrete model classes
is not.
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7. Short Lists

Quoting from [23]: “Given that the Kolmogorov complexity is not computable, it is natural to ask
if given a string x it is possible to construct a short list containing a minimal (plus possibly a small
overhead) description of x. Bauwens, Mahklin, Vereshchagin and Zimand [24] and Teutsch [25] show
that surprisingly, the answer is YES. Even more, in fact the short list can be computed in polynomial
time. More precisely, the first reference showed that one can effectively compute lists of quadratic size
guaranteed to contain a description of x whose size is additively O(1) from a minimal one (it is also
shown that it is impossible to have such lists shorter than quadratic), and that one can compute in
polynomial-time lists guaranteed to contain a description that is additively O(log n) from minimal.
Finally, Ref. [25] improved the latter result by reducing O(log n) to O(1)”. See also [26].

8. Conclusions

The review shows that the Kolmogorov complexity of a string is incomputable in general,
but may be computable for some arguments. To compute or approximate the Kolmogorov complexity,
several approaches have recently been proposed. The most popular of these is inspired by L.A. Levin’s
Coding theorem and consists of taking the negative logarithm of the so-called universal probability
of the string to obtain the Kolmogorov complexity of very short strings (this is not excluded by
incomputability as we saw). This probability is approximated by the frequency distributions obtained
from small Turing machines. As currently stated, the approach is problematic in the sense that it
is only suggestive and cannot be proved correct. Nonetheless, some applications make use of it.
Proper approaches either restrict the domain of strings of which the Kolmogorov complexity is desired
(so that the incomputability turns into computability) or manage to restrict the Kolmogorov complexity
of a string to an item in a small list of options (so that the Kolmogorov complexity has a certain
finite probability).
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