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Optical coherence tomography (OCT) is a high-resolution imaging technique with great versatility of applications. In cardiology, OCT has
remained hitherto as a research tool for characterization of vulnerable plaques and evaluation of neointimal healing after stenting. However,
OCT is now successfully applied in different clinical scenarios, and the introduction of frequency domain analysis simplified its application to
the point it can be considered a potential alternative to intravascular ultrasound for clinical decision-making in some cases. This article
reviews the use of OCT for assessment of lesion severity, characterization of acute coronary syndromes, guidance of intracoronary stenting,
and evaluation of long-term results.
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Introduction
Coronary angiography is the workhorse invasive imaging technique
for diagnostic and interventional procedures. The simple injection of
a radiopaque contrast medium provides an accurate real-time lumi-
nogram, which can translate into accurate and highly reproducible
measurements for clinical decision-making and for research applica-
tions.1,2 However, angiography looses accuracy in the presence of
overlapping vessels, foreshortening, or calcium in the vessel wall.
Furthermore, angiography has limited ability to characterize tissue
and atherosclerotic plaques, beyond the detection of calcium and
grossly ulcerated plaques or dissections. Thus, there are some scen-
arios in which an experienced interventional cardiologist requires
complementary information to that provided by angiography.

Intravascular ultrasound (IVUS) can improve the accuracy of the
coronary luminogram in cases of overlapping, foreshortened or
calcified vessels, imaging also the vessel wall, and giving information
about the plaque burden, plaque morphology, or calcium distribu-
tion. Optical coherence tomography (OCT) uses near-infrared
light (NIR) to generate cross-sectional images of the coronary ar-
teries. NIR has shorter wavelength and higher frequency than
ultrasound; therefore, OCT images have 10-fold higher resolution

than IVUS images, at the expense of lower penetration into the
tissue. The higher resolution of OCT enables the visualization
and measurement of details that had remained elusive for angiog-
raphy and IVUS hitherto, whereas its lower tissue penetration
determines most of OCT limitations (Table 1). Although OCT
started in cardiology as a research tool, it has the potential to
become a routine tool for diagnostic application and guidance of
therapeutic interventions. This article analyses advantages and lim-
itations of OCT compared with other intravascular imaging
methods for a widespread array of clinical applications such as as-
sessment of lesion severity, characterization of acute coronary syn-
dromes (ACS), guidance of intracoronary stenting, and evaluation
of long-term healing post-stenting.

Lesion assessment
pre-intervention

Assessment of lesion severity
Previous studies have shown that OCT can study coronary plaque
morphology and identify thrombus, intimal rupture, lipid-laden
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plaques, and thickness of the fibrous cap. Potentially, OCT also
provides accurate quantitative measurements that can guide clini-
cians to decide whether a coronary lesion deserves treatment.

Different observational studies validated IVUS for the assess-
ment of lesion severity3 – 5 An absolute minimal lumen cross-
sectional area (MLCSA) of ,4 mm2 was strongly correlated with
a fractional flow reserve (FFR) of ,0.75,4 with a coronary flow
reserve of ,2,3 or with perfusion defects in single-photon emis-
sion computed tomography.5 More recent studies have questioned
these findings and the concept of using absolute MLCSA for the
assessment of lesion severity.6 –8 FFR has the intrinsic advantage
of providing a cut-off value independent of the vessel size, with
solid evidence linking results and clinical outcome.9,10 When
larger studies compared IVUS MLCSA, and FFR, the cut-off
values were lower than those traditionally accepted.7,8

OCT has been validated in vitro and in vivo for lumen measure-
ments, demonstrating higher accuracy11,12 and reproducibility13

than IVUS. However, and contrary to IVUS, OCT has not been
validated for the assessment of functional severity in coronary
stenosis hitherto. There are no studies comparing FFR and

OCT MLCSA, although they would be interesting for several
reasons: IVUS consistently overestimates lumen areas with
respect to OCT11,14; therefore, the eventual cut-off values
would be probably different. OCT can be of particular advantage
for intermediate in-stent restenosis (Figure 1) because the very
soft neointimal plaque can sometimes be missed by IVUS and
because OCT can unravel as well as IVUS the prevalent mechanism
of restenosis (incomplete expansion vs. intimal proliferation) due
to the ability to visualize struts deep in the vessel wall taking advan-
tage of the powerful optical reflectance of the stent struts.

Optical coherence tomography in acute
coronary syndromes
Patients hospitalized with ACS remain at high risk of adverse events,
with a reported rate of death or non-fatal myocardial infarction of
15.8% at 6 months.15 In vivo investigation of coronary plaque morph-
ology may provide insights into mechanisms leading to ACS and may
facilitate the identification of coronary lesions and patients who may
be at risk of a future ACS. A number of intracoronary imaging mo-
dalities have assessed coronary plaque morphology in patients with
ACS16 and their prognostic significance.17 The high spatial reso-
lution of OCT enables identification of coronary plaque features
previously undetectable for conventional intracoronary imaging
methods. This may contribute to a better understanding of the
pathophysiology of ACS and lead to the development of manage-
ment strategies aimed at reducing the risk of future adverse events.

OCT allows high-resolution interrogation of atherosclerotic
coronary plaques in vivo, based on validated measurements of
vessel wall and lumen dimensions18,19 and characterization of
plaque constituents.20– 23 The first clinical use of intracoronary
OCT using a prototype system demonstrated the differential
prevalence of thin cap fibroatheroma (Figure 2) in patients with
acute ST elevation ACS (STEACS) (72%), non-ST elevation ACS
(NSTEACS) (50%), and stable angina pectoris (SAP) (20%).24

More recently, Kubo et al.25 showed the presence of plaque
rupture in 73% of the patients with acute STEACS, which was
only detectable in 47 and 40% of cases by angioscopy and IVUS,
respectively. Thin-capped fibroatheroma (TCFA) was observed in
83% of the cases by OCT as the underlying plaque morphology.
Furthermore, these investigators demonstrated that the sensitivity
of IVUS to detect thrombus was only 33%, raising to 100% for
OCT. Finally, OCT identified plaque erosion in 23% of the cases
in which IVUS and angioscopy failed to detect it.25 These early in
vivo data were consistent with previous histopathological assess-
ments of coronary plaque morphology and mechanism of plaque
instability in patients after sudden cardiac deaths presumed sec-
ondary to ACS26,27 and demonstrate the superiority of OCT
over other conventional intracoronary imaging modalities for
plaque characterization in patients with ACS.25

Following these initial reports, a number of investigators have
exploited the exquisite resolution of OCT to obtain new mechan-
istic insights into the development of ACS24,25,28– 33 (Table 2).
Studies in the culprit arteries of patients with STEACS have
demonstrated the presence of plaque rupture in 25–77%, intra-
luminal thrombus in 20–100% of the cases, and TCFA in
51–85% of the cases.24,28,31–33 While some studies reported

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 1 Comparative technical summary of the three
main imaging modalities used in interventional
cardiology for diagnostic and for interventional
purposes

Angiography IVUS OCT

Radiation type X-radiation Ultrasound NIR light

Frequency 3 × 103–3 × 107THz 20–45 MHz 192 THz

Wavelength (mm) 1025–1022 35–80 1.3

Axial resolution (mm) 59–137 100–200 10–20

Lateral resolution
(mm)

NA 200–300 20–90

Rotation speed (Hz) NA 30 16–160

Pull-back speed (mm/
s)

NA 0.5–1 1–20

Tissue penetration
(mm)

200–450 10 1–3

Scan diameter—field
of view (mm)

NA 15 7–11

Usefulness for

Plaque/tissue
characterization

+ ++ +++

Expansion/sizing + +++ +++
Apposition 2 ++ +++
Vascular injury + ++ +++
Intervention
guidance

++ + +

Assessment of
restenosis/NIH

+++ +++ ++

Assessment of
coverage

2 2 +++

The usefulness of each imaging technique for different applications has been
graded from ‘not useful’ (2) to ‘very useful’ (+++), according to the rationale
explained in the text. IVUS, intravascular ultrasound; NA, not applicable; NIH,
neointimal hyperplasia; OCT, optical coherence tomography.
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Figure 1 A 51-year-old male with non-ST-segment elevation myocardial infarction was treated with implantation of a bare-metal stent. Six months later, the patient complained of exertional
Canadian Cardiovascular Class II angina. Single-photon emission computed tomography showed an inferior perfusion defect after exercise. Optical coherence tomography showed severe resten-
osis of the stent, with predominantly homogeneous density, compatible with fibrous tissue, low peri-strut density, and rich microvasculature around the struts. The point of minimum lumen area
(MLA) was 2.02 mm2. (B) Fractional flow reserve, however, was 1.0 at basal conditions and 0.82 after maximal vasodilation. The optimal treatment of this case remains controversial.

J.L.G
utiérrez-C

hico
et

al.
372

by guest on November 13, 2015 Downloaded from 



a prevalence of plaque rupture and thrombus similar to those in
postmortem examinations,31,33 others have reported lower fre-
quencies of these features in patients with STEACS.24,28,32 This dis-
crepancy may be due to the timing of the OCT study, prior use of
thrombolysis and/or glycoprotein IIb/IIIa inhibitor, and heavy
thrombus burden, which may obscure the underlying plaque.

While these initial studies have suggested that plaque rupture of
a TCFA is a major mechanism underlying ACS, several recent
reports have raised important new questions. First, recent data
suggest that ruptured plaques in ACS had thicker fibrous caps if
the angina was exertion-triggered than when symptoms occurred
at rest.34 Plaque rupture is considered the main mechanism of
both STEACS and NSTEACS. The superior resolution of OCT
offers insight into potential subtle differences in the pathological
changes underlying these two ACS. Ino et al. performed OCT
studies in patients with both STEACS and NSTEACS and
showed that the prevalence of TCFA, plaque rupture, and throm-
bus were lower in patients with NSTEACS.33 These investigators
also showed that the sites of plaque rupture were differentially
located with respect to the direction of blood flow, with the ma-
jority of rupture sites in the STEACS population occurring up-
stream.33 Furthermore, it is clear that TCFA can be observed in
both the culprit and non-culprit arteries of patients with ACS28

as well as patients with stable coronary disease.24,28,29,31 These
investigators have also shown that TCFAs were observed to
cluster in the proximal LAD, but were more evenly distributed
throughout the left circumflex artery and right coronary artery,35

consistent with previous histopathological reports.36 Plaque
morphology alone may be insufficient to identify lesions at risk

of becoming unstable, as in prospective studies, many plaques
with these apparently ‘high-risk’ morphological features remain
clinically silent.28

Assessment of intracoronary
devices

Assessment during stent implantation
The widespread application of a non-occlusive technique using
monorail OCT catheters and the high pull-back speed (up to
20 mm/s) allowed by newer generation FD-OCT systems revived
the interest in OCT for procedural guidance of coronary interven-
tions. Automatic measurement of lumen values helps to take deci-
sions in a timely fashion. The additional contrast dose required for
OCT acquisition is a potential drawback, but this amount can be
minimized by expert operators using it only in key steps once an
angiographic optimisation has been already achieved. Arrhythmias
and chest discomfort caused in the past by the need of transient
proximal balloon occlusion and of a prolonged selective contrast
injection are not anymore of concern using a non-occlusive tech-
nique and the fast pull-back of FD-OCT.37

Before stenting, OCT provides a wealth of information on lesion
characteristics such as the presence and type of thrombus, TCFA,
plaque ulceration, or superficial calcification that can help to guide
the procedure, suggesting the need for ancillary devices or for
dedicated stents (e.g. covered stents). For cases of in-stent resten-
osis, OCT provides information on the degree and localization of
neointimal hyperplasia and on the stent area. For complex

Figure 2 Thin-capped fibroatheroma in optical coherence tomography, defined as a plaque with lipid content in two or more quadrants and
thickness of the fibrous cap ≤65 mm.
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procedures, like after recanalization of chronic total occlusions
(Figure 3), OCT can orientate about the extent of calcific and fi-
brotic changes and detect the presence of subintimal wire posi-
tions, distal dissections, or double channels potentially useful to
determine the length of the segment to stent. Although there is
general consensus about the ability of OCT to provide detailed in-
formation potentially useful to guide the intervention, there is cur-
rently no evidence that an OCT-guided percutaneous coronary
intervention (PCI) has any advantage over conventional IVUS or
angiographic guidance.

For OCT, the selection of balloon diameter is most often
based on the lumen rather than on the vessel area/diameter.
The initial criteria proposed by Colombo and colleagues38 for
IVUS were based on a combination of vessel and lumen area/
diameter, and the Milan group has recently proposed simplified
criteria (AVIO) to select optimal balloon size based on vessel
area measurements. In several trials, the criteria for IVUS opti-
mization relied on a comparison of the MLCSA of the stented
segment with the distal reference area or with the mean refer-
ence vessel area.39 – 41 This information is readily available with
OCT, with the advantage of a reliable and fast automatic
contour detection.

Expansion and sizing
OCT can quickly and accurately evaluate the result immediately
after stent implantation, providing information on expansion,
sizing, and apposition of the stent unmatched by angiography. A
minimum stent area (MSA) lower than both the nominal stent
and reference vessel areas defines underexpansion, whereas an
MSA lower than the reference vessel area, but higher than the
nominal stent area, defines undersizing. Although the concepts
are clear, they are often difficult to translate into operational defi-
nitions for clinical application or research, so several variations can
be found in the literature. OCT can measure MSA and lumen area
of the reference vessel semi-automatically, thus giving a quick and
accurate estimation of the expansion and sizing of the stent.

Apposition
Strut apposition is part of the criteria for optimal stent deploy-
ment. Imaging and pathological studies showed that incomplete
stent apposition (ISA) is correlated with thrombus detection and
late/very late stent thrombosis (L/VLST). ISA may delay neointimal
healing of the stent42–44 and incomplete endothelialization of
the struts is a common morphological finding in fatal cases of
L/VLST.45,46 OCT is the most precise and sensitive technique to
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Table 2 Optical coherence tomographic findings in culprit and non-culprit lesion from in vivo observational studies

Reference Population Plaque rupture Intracoronary
thrombosis

TCFA Fibrous cap
thickness
(mm)

Time to OCT
imaging

Jang et al.24 n ¼ 20, STEACS STEACS STEACS STEACS STEACS STEACS
25% 20% 72% 47 4.6+5.3 days

n ¼ 20, NSTEACS NSTEACS NSTEACS NSTEACS NSTEACS NSTEACS
15% 25% 52% 53.8 3.3 + 1.7 days

n ¼ 17, SAP SAP SAP SAP SAP SAP
12% 35% 20% 102.6 —

Kubo et al.25 n ¼ 30, STEACS 73% 100% 83% 49+21 3.8+1.0 h

Fujii et al.28 n ¼ 35, STEACS;
n ¼ 20, SAP;
3-vessel study

STEACS STEACS STEACS — —
Culprit Non-culprit Culprit Non-culprit Culprit Non-culprit
46% 31% 95% 45% 77% 77%
SAP SAP SAP
Culprit Non-culprit Culprit Non-culprit Culprit Non-culprit
10% 15% 25% 15% 25% 30%

Sawada
et al.29

n ¼ 129, SAP,
plaques in culprit
artery

— — 29% — —

Tanaka
et al.30

n ¼ 83, NSTEACS 52% 82% 22% — 29+26 h

Kubo et al.31 n ¼ 26, STEACS STEACS STEACS STEACS STEACS STEACS
77% 100% 85% 57+12 4.4+1.2 h

n ¼ 16, SAP SAP SAP SAP SAP SAP
7% 0% 13% 180+65 —

Toutouzas
et al.32

n ¼ 55, STEACS 49% 65% 51% NS 3.08+0.97 h

Ino et al.33 n ¼ 40, STEACS STEACS STEACS STEACS STEACS STEACS
70% 78% 78% 55+20 3.9 h

n ¼ 49, NSTEACS NSTEACS NSTEACS NSTEACS NSTEACS NSTEACS
47% 49% 27% 109+55 14.5 h

NS, not specified; NSTEACS, non-ST-segment elevation acute coronary syndrome; OCT, optical coherence tomography; SAP, stable angina pectoris; STEACS, ST-segment
elevation acute coronary syndrome; TCFA, thin-capped fibroatheroma.

J.L. Gutiérrez-Chico et al.374

by guest on N
ovem

ber 13, 2015
D

ow
nloaded from

 



evaluate apposition, being able to detect even subtle degrees of
ISA that would remain unnoticed for other imaging techniques. Ap-
position is defined as the contact of the stent struts with the vessel
wall. In metallic stents, the struts cast an optical shadow that hides
the body of the strut and its abluminal side, thereby the contact
between the strut and the vessel wall cannot be directly assessed
by OCT, able to detect only the reflection produced at the adlum-
inal face of the strut. Apposition is indirectly assessed by measuring
the distance between the adluminal reflection of the strut and the
vessel wall and comparing this distance with the strut thickness.
ISA is then defined as a strut–vessel distance greater than the
strut thickness (metal and polymer) with the addition of a correc-
tion factor47 (Figure 4). Table 3 shows the strut and polymer thick-
ness for different types of modern drug-eluting stents (DESs). The
use of a correction factor in the formula improves the specificity of

the binary definition of apposition, following two different
approaches. The first one consists of adding an empirical margin,
usually ranging between 10–20 mm42,44,48– 55 and up to 30 mm56

to take into account the axial resolution of the current OCT
systems. The second approach corrects for strut ‘blooming’: the
intense signal generated by the reflection of light against the metallic
struts has an axial thickness itself. The true edge of the strut lies
somewhere in the middle of the blooming. The so-called correction
for blooming consists of measuring the blooming thickness in a
random sample of study struts and then adding to the analysis of ap-
position a correction factor equal to half of the blooming thickness,
ranging between 1857,58 and 20 mm59,60 in various studies. Although
intense theoretical debate around these methodological issues is still
ongoing, the practical impact of choosing one approach or the other
is minimal, and maybe its importance should not be overemphasized.

Figure 3 Coronary angiography of a 66-year-old patient with a heavily diseased right coronary artery and functional occlusion of the mid-
segment after dilatation with a 2.0 mm balloon. Optical coherence tomography imaging reveals the presence of multiple additional microchan-
nels measuring between 0.08 and 0.26 mm, explaining the easy crossing with a tapered hydrophilic wire (Fielder XT, Asahi, Japan).
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Bioresorbable intracoronary devices are made of polylactide, a crys-
tallised translucent polymer that can be penetrated by optical radi-
ation. In these devices, the abluminal side of the strut and its
contact with or detachment from the vessel wall can be directly eval-
uated by OCT; therefore, the strut thickness is not required for the
analysis of apposition.61,62 A subclassification of well-apposed struts
into embedded or protruding has been proposed,47 depending on
whether the strut–vessel distance is less or equal or greater than
half of the corrected strut + polymer thickness, respectively. This
discrimination might be of interest because of the flow disruption
and potential increased thrombogenicity caused by protruding
struts. This further subdivision, however, is of limited practical
value for guidance of treatment because embedding is critically de-
pendent on the composition of the subendothelial plaque

components and not correctable, unlike apposition, with appropri-
ate sizing and expansion at higher pressure.

In the struts jailing side branches, with no vessel wall behind, the
evaluation of apposition is not possible. Initially, these struts were
assimilated to ISA struts or excluded from the analysis.57 –60

However, it could make sense to consider them as an independent
category of apposition, since recent evidence suggests that their
biological meaning is substantially different from that of ISA
struts.44,63 The definition non-apposed side-branch struts
(NASB) has been proposed for this category of struts.44,51,53,64

Vascular injury: dissections
OCT is very sensitive to detect subclinical dissections and micro-
dissections, as well as other forms of vascular injury, like wire per-
forations, that usually remain unnoticed by angiography or IVUS
(Figure 5).65– 67 Subclinical dissections and microdissections
appear often at stent edges (edge dissections), but there is no evi-
dence that they carry adverse prognostic implications. Likewise, it
is uncertain whether the ‘sealing’ of subclinical dissections unveiled
by OCT, for instance by overlapping additional stents, will translate
into any clinical benefit for the patient.

Optical coherence tomography-guided coronary
intervention
A small study on patients with ACS has proposed some criteria for
guidance of percutaneous coronary intervention using FD-OCT. In
intermediate (40–70% coronary stenosis) or hazy lesions, the de-
cision to intervene was taken according to the following OCT

Figure 4 Assessment of intervention results immediately post-stent deployment. The cross-sections shows several points of mild tissue pro-
lapse (asterisk) and incomplete stent apposition in the right lower quadrant. The measured strut–vessel distance was 450 mm (strut
thickness ¼ 81 mm).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 3 Strut and polymer thickness in different types
of metallic stents

Strut (mm) Polymer (mm) Total (mm)

Cypher Select 140 14 154

Taxus Element 132 16 148

Xience V 81 8 89

Resolute 91 6 97

Biomatrix 120 11 131

Vision 81 — 81
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criteria: (i) MLCSA ,3.5 mm2 or (ii) presence of thrombus indica-
tive of unstable plaque. The result after stent deployment was
assessed by OCT and post-dilation/additional stent implantation
was deemed necessary in case of: (i) underexpansion, (ii) significant
ISA, (iii) edge dissection extending beyond 200 mm, or (iv) large
plaque prolapse. This approach translated into high procedural
success and good clinical results up to 5 months.37 Another
small study on patients with stable angina applied also OCT criteria
for guidance of elective PCI68 and reported separately results in a
specific subgroup of bifurcational lesions.69 Changes in the conven-
tional strategy were prompted by serial OCT examinations in the
majority of patients but, despite high-pressure post-dilatation and
routine use of kissing-balloon dilatation, ISA remained high at the
end of the procedure, particularly in calcified lesions and at the
take-off of side branches (Figure 6).69 Although these pilot

studies prove the feasibility of OCT-guided coronary interventions
and propose operative decision algorithms, we do not have to date
any evidence that OCT-guided interventions translates into any ad-
vantage in terms of clinical outcomes when compared with con-
ventional angiographic or IVUS guidance.

There is no evidence hitherto that the optimization of subtle
degrees of ISA detected by OCT is associated with any clinical ad-
vantage. A recent study demonstrated that strut–vessel distances
,270 mm are spontaneously corrected by the neointimal reaction
in 100% of the cases (distances ,400 mm, in 93% of the cases).43

Assessment at follow-up
IVUS has been classically the tool to quantify neointimal hyperpla-
sia, but it lacks the axial resolution to evaluate the completeness of
neointimal coverage in the DES era, when the average late lumen

Figure 5 Proximal intraluminal filling defect (white arrow) in angiography after stent implantation (yellow line). Optical coherence tomog-
raphy shows a thick proximal dissection in need of further stenting (B).
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loss in modern second-generation stents is as low as 0.1–0.2 mm.
OCT has 10-fold greater resolution than IVUS and has become an
experimental tool for the evaluation of completeness of coverage
in vivo. The interest for the completeness of coverage, and thereby
for OCT, raised in parallel to the concerns about the risk of late
and very late stent thrombosis associated with DESs.70,71 Several
pathology studies pointed to delayed neointimal healing as the
underlying substrate in cases of fatal stent thrombosis.45,46

Quantitative analysis: volumetric analysis
Per cent neointimal volume obstruction is traditionally measured
with IVUS to assess neointimal hyperplasia within stents and is
used as an endpoint in trials comparing the performance of a
DES vs. another DES or vs. a bare-metal stent (BMS).57–60,64

OCT can provide the same information with greater accuracy.18

Areas and volumetric parameters can also be used to characterize
ISA. Corrected ISA volume expresses the absolute ISA volume as a
percentage of the stent volume, similarly to the above explained

per cent neointimal volume obstruction. However, recent studies
suggest that absolute parameters, like absolute ISA volume or
maximal ISA area, or maximal strut–vessel distance per strut,
are better predictors of the neointimal reaction to malapposi-
tion.43 Several sequential studies have reported that ISA areas
and volumes tend to decrease spontaneously over time up to 24
months in different types of stents,43,51,53 but one study addressing
the long-term coverage of SES with serial OCT measurements
found an increase in ISA between 24 and 48 months.72

Quantitative analysis: per-strut analysis
OCT also offers a detailed assessment strut by strut, which is far
beyond the possibilities of any other intracoronary imaging
technique.

The analysis of apposition at follow-up is performed following
the same principles explained for the post-implantation study.
The neointimal healing response after stenting tends to reduce
the percentage of ISA struts over time up to 24 months in BMS
and DES,43,51,53 although one study has reported exactly the op-
posite in SES between 24 and 48 months.72 A crenellated
pattern at follow-up (i.e. containing many protruding struts) is
associated with higher percentage of uncovered struts than
smooth patterns of neointimal coverage.43

The assessment of neointimal coverage after stenting is the most
important current research application of OCT. Coverage is eval-
uated as a binary outcome strut by strut (Figure 7) and has been
used as a primary endpoint in most OCT trials and studies hither-
to.59,64,73,74 It is considered a surrogate for the completeness of
neointimal healing, which is believed to be protective against
stent thrombosis. Also the thickness of coverage can be also

Figure 6 Left main stem (LM) stenting immediately post-
implantation as seen by angiography (upper panel) and optical co-
herence tomography three-dimensional rendering (lower panel).
Notice the guide wire placed in the circumflex (asterisk) to
straighten the angle, and the detailed depiction of the circumflex
opening after the kissing-balloon technique.

Figure 7 Covered struts in a drug-eluting stent 9 months after
implantation. Notice the thin layer of tissue covering the struts
and the typical corrugated appearance (crenellated pattern),
found more often in drug-eluting stents.
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Table 4 Summary of the percentage of uncovered struts and average thickness of coverage in the optical coherence
tomographic studies published hitherto

Study Design Stent FUP
(months)

Uncovered
struts (%)

NIT (mm) Significance

Takano et al.83 Descriptive SES 3 15.0 29+ 41 NA

Matsumoto (2007)48 Descriptive SES 6 9 52.5a NA

Katoh et al.50 Descriptive, sequential SES 6 10.4 112+ 123 NA
12 5.7 120+ 130

Yao et al.52 Descriptive SES 6 10.5 42+ 28 NA
12 7.9 88+ 32

Ishigami et al.56 Descriptive SES ,9 14.8 53+ 24 NA
9–24 11.7 70+ 41
.25 4.1 99+ 40

Takano et al.84 Descriptive SES 24 5.0 71+ 93 NA

Takano et al.72 Descriptive, sequential SES 24 3.2 77+ 76 NA
48 0.9 123+ 103

Davlouros in press92 Descriptive PES 6 8.6 205+ 160 NA

Kim (2009)93 Descriptive ZES 3 0.1 137a NA

Inoue et al.55 Descriptive EES 8 1.7 80a NA

Serruys 200961 Descriptive, sequential BVS 1.0 6 0 — NA
24 0 —

Serruys et al.62 Descriptive BVS 1.1 6 3.2 — NA

Chen et al.78 Comparative, observational BMS 7 0.3 200–500 S
BMS 45 0.3 220–610
SES 9 7.0 40–120

Murakami (2009)82 Comparative, observational SES 6 15.0 31+ 39 S
PES 5.0 118+ 141

Kim et al.81 Comparative, observational SES 9 12.5 86+ 53 S
PES 4.9 181+ 105

Kim et al.80 Comparative, observational ZES 9 0.3 251+ 110 S
SES 12.3 86+ 53

Choi (2012)79 Comparative, observational EES 9 4.4 115+ 52 S
SES 10.5 89+ 58

Davlouros (in press)94 Comparative, observational BES 6 0.41 59+ 28 S
B-PES 0.21 202+ 98

Guagliumi et al.58 Comparative, randomized PES 13 5.7 170+ 120 S
BMS 1.1 340+ 170

Guagliumi et al.60 Comparative, randomized ZES 6 0.0 332a NS
BMS 2.0 186a

Miyoshi et al.54 Comparative, randomizedb SES 6 12.7 50a S
PES 6.6 90a

Moore et al.74 Comparative, randomized SES 3 11.7 77+ 26 S
PF-SES 2.8 191+ 87

Guagliumi et al.59 Comparative, randomized PES 6 5.3 200+ 100 NS
B-PES HD 7.0 220+ 150
B-PES LD 4.6 240+ 150

Barlis et al.73 Comparative, randomized BES 9 0.6 68a S (uncovered str)
NS (NIT)SES 2.1 57a

Gutiérrez-Chico (2011)53 Comparative, randomized, sequential BES 9 2.8–1.5 58–86a NS (24 m)
SES 24 5.7–1.8 42–62a

Gutiérrez-Chico (2011)64 Comparative, randomized R-ZES 13 7.4 116+ 99 NS
EES 5.8 142+ 113

Gutiérrez-Chico et al.51 Comparative, randomized DCB + BMS 6 8.1 104c NS
BMS + DCB 5.3 132c

NIT values are mean+ SD or minimum–maximum. Sample size (n) expressed as patients, lesions, stents, and struts (str). Significance expressed as significant (S), non-significant
(NS), or non-applicable (NA). BES, biolimus-eluting stent; BMS, bare-metal stent; B-PES, paclitaxel-eluting stent with biodegradable polymer; BVS, bioresorbable vascular scaffold;
DCB, drug-coated balloon; EES, everolimus-eluting stent; HD, high dose; LD, low dose; NIT, neointimal thickness; PES, paclitaxel-eluting stent; PF-SES, polymer-free
sirolimus-eluting stent; R-ZES, zotarolimus-eluting stent with Biolynx polymer (ResoluteTM); SES, sirolimus-eluting stent; ZES, zotarolimus-eluting stent with phosphorylcholine
polymer.
aMedian.
bWithin the same patient and the same coronary artery: randomization proximal vs. distal.
cCorrected mean (log transform).
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quantified strut by strut. Coverage assessed by OCT correlates
with histological neointimal healing and endothelialization after
stenting in animal models.75,76 An important caveat is the inability
of OCT to detect thin layers of neointima below its axial reso-
lution (10–20 mm, limited sensitivity) and to discern between
neointima and other material like fibrin or thrombus (limited spe-
cificity). The latter becomes an issue at very early phases after
stenting, when the prevalence of struts covered by fibrin is high.
Endothelial cells can be found on the metallic surface of the
stent as early as Day 5 after implantation in a swine model, but
these endothelial cells restore the endothelial continuity very
seldom, and areas devoid of endothelium appear covered by
granulation tissue or fibrin.77 Thus, DESs are completely covered
with fibrin (not with neointima) 1–3 days after implantation, but
the low discriminative power of OCT results in false coverage
rates of 45–76%.76 The analysis of optical density might overcome
this limitation in the future and discern between neointima and
fibrin.76 Since the greatest interest is to assess intimal coverage
at late follow-up, months or years after stent implantation, when
the prevalence of fibrin-covered struts is low, the practical
impact of this limitation is minimal.75

Table 4 summarizes all the OCT studies reporting coverage of intra-
coronary devices published hitherto, with the corresponding percent-
age of uncovered struts and average thickness of coverage for each
stent. SES is the most extensively studied stent, with data assessing
coverage between 3 and 48 months.42,48–50,52–54,56,57,63,72–74,78–85

More recently, large OCT trials have focused on PES and second-
generation stents.58,64 The absolute measurements are difficult to
compare because studies addressed different populations, different

clinical settings, and used different methodology of analysis. Moreover,
only a few studies are truly sequential.42,43,50,51,53,61,72 However, irre-
spective of these limitations, these studies provide a raw estimation of
the coverage rates at each time point for the different stents examined
(Figure 8). Coverage of DESs with durable polymers is delayed with
respect to that of BMS, with the exception of ZES with phosphoryl-
choline polymer. DESs with biodegradable polymers and bioresorb-
able vascular scaffolds show coverage rates in the range of those
reported for BMS. Interestingly, the coverage of BMS shifts to the
range of PES, when it is implanted in combination with paclitaxel-
coated balloon, what serves as an additional proof of concept of the
effectiveness of this drug-delivery technology.51

The analysis of strut coverage by OCT has contributed to a better
understanding of the neointimal healing response in specific scenarios.
Coverage of ISA and NASB struts is delayed compared with well-
apposed struts.42,44 Coverage ofNASB struts inDESs is delayed in com-
parison to NASB struts in BMS.63 Finally, coverage of ISA struts is
delayed with respect to NASB struts in DESs.44 These findings
suggest that the detachment of struts from the vessel wall poses
higher risk of delayed coverage than a correct apposition in DES, but
this risk is higher if the detachment is due to malapposition (ISA) than
to the presence of a side branch (NASB). A possible explanation for
these differences is the fact that ISA is caused by the presence of
more severely diseased vessel segments resulting in distorted stent
geometry and irregular drug release, impairing healing. This phenom-
enon is not present in NASB struts, which are also protected by the
continuous flow through the side-branch origin.44 Similarly, the cover-
age of overlapping segments is delayed compared with non-overlapping
segments in DES86 and with overlapping segments in BMS.57

Figure 8 Reported coverage rates of the different stent types. Bars represent the maximum and minimum per cent of uncovered struts
reported in peer-reviewed publications at each time point. In the case of one single study available, the value is represented by a square.
Unweighted interpolation lines connect the values for each stent type, thus estimating the coverage rate of each device. BES, biolimus-eluting
stent; BMS, bare-metal stent; BVS, bioresrobable vascular scaffold; DCB-BMS, combination of drug-coated balloon with bare-metal stent; EES,
everolimus-eluting stent; PES, paclitaxel-eluting stent; R-ZES, zotarolimus-eluting stent with ByoLinx polymer (ResoluteTM); ZES,
zotarolimus-eluting stent with phosphorylcholine polymer.
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While there starts to be consensus about accepting the
coverage assessed by OCT as a valid surrogate for neointimal
coverage, the association of coverage with thrombosis propen-
sity is more controversial due to the lack of sufficiently large
longitudinal studies. The largest OCT studies only included hun-
dreds of patients, so they were grossly underpowered to detect
a phenomenon with so low incidence as stent thrombosis. An
interesting source to explore this association was the OCT sub-
studies conducted within large clinical trials. Paradoxically, OCT

substudies in those trials without significant differences in
thrombosis found differences in coverage,58,73 whereas the
OCT substudies of those trials with significant differences in
thrombosis did not find any difference in coverage rates64

(Table 5). Methodological issues or the long-term evolution of
coverage53 might be the key to understand this apparent
paradox. OCT has opened a new perspective over the neointi-
mal healing process, and the lessons learned from it must be still
properly understood.
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Table 5 Discrepancy between the rates of definite and probable stent thrombosis in clinical trials comparing different
types of stents and the coverage measured in the corresponding optical coherence tomographic substudies of these trials

Clinical trial LEADERS 9m95 HORIZONS-AMI96 RESOLUTE-AC97

Patients (n) 1707 3006 2292

Stents BES vs. SES PES vs. BMS R-ZES vs. EES

Differences in definite + probable ST? NO NO YES
2.6 vs. 2.2% 3.2 vs. 3.4% 1.6 vs. 0.7%
P ¼ 0.66 P ¼ 0.77 P ¼ 0.05

OCT substudy73,58,64

Patients (n) 56 118 58

Differences in coverage? YES YES NO
0.6 vs.2.1% 5.7 vs. 1.1% 7.4 vs. 5.8%
P ¼ 0.04 P , 0.0001 P ¼ 0.378

BES, biolimus-eluting stent; BMS, bare-metal stent; EES, everolimus-eluting stent; PES, paclitaxel-eluting stent; R-ZES, zotarolimus-eluting stent with Biolynx polymer (ResoluteTM);
SES, sirolimus-eluting stent; ST, stent thrombosis.

Figure 9 Restenosis of a bare-metal stent implanted at the ostium of the left circumflex (white arrow) in the 5th month post-implantation.
After plain old balloon predilatation, optical coherence tomography shows optically homogeneous neointima with uneven disruption and per-
sistence of a large amount of restenotic tissue.
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Qualitative assessment
Besides the quantification of NIH and stent coverage, OCT can
make a qualitative evaluation of the covering tissue.87,88 Several
patterns have been described, according to the optical homogen-
eity or to the presence of neovascularization,87 but their
meaning is still uncertain. Heterogeneous patterns have been ini-
tially described in the TaxusTM (Boston Scientific, Natick, MA,
USA) stent,89 but later on in many other stents.43,55,64 Optically,
heterogeneous tissue has been also associated with focal and
edge restenosis,87 with the presence of fibrinoid or proteogly-
cans,90,91 and with the resolution of acute ISA (layered patterns).43

It has been hypothesized that it might also correspond to endothe-
lialisation over thrombotic material, with no demonstration so far.

Early in-stent restenosis (,6 months) is optically homogeneous,
especially in BMS (Figure 9), while very late restenosis (.5 years)
presents images of lipid pools and calcification, suggesting a prom-
inent role of atherosclerosis progression as a pathogenic
mechanism.88

Final conclusions
While the introduction of intracoronary OCT has significantly
advanced our understanding of plaque morphology and mechan-
isms underlying ACS, considerable further work is required to es-
tablish robust criteria offering advantages over established clinical
parameters and biomarkers for risk stratification. With the devel-
opment of frequency-domain OCT, the technique has become ap-
plicable for guidance of coronary interventions with a greater
potential for immediate quantification of stent apposition and ex-
pansion compared with IVUS. Follow-up studies indicate that
malapposed struts are prone to slower and incomplete coverage
and detect differences among various stent platforms.

An enormous amount of work is still required to validate the
clinical relevance of the various OCT applications. At this stage,
it is fair to say that the perception that OCT is only a playtool gen-
erating ‘pretty pictures’ is ungenerous towards a technique which
has the potential to become a generally accepted auxiliary tech-
nique in the research and practice of interventional cardiology.
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