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Abstract
We study the problem of fitting task-specific learn-
ing rate schedules from the perspective of hyper-
parameter optimization, aiming at good generaliza-
tion. We describe the structure of the gradient of
a validation error w.r.t. the learning rate sched-
ule – the hypergradient. Based on this, we intro-
duce MARTHE, a novel online algorithm guided
by cheap approximations of the hypergradient that
uses past information from the optimization trajec-
tory to simulate future behaviour. It interpolates be-
tween two recent techniques, RTHO [Franceschi et
al., 2017] and HD [Baydin et al., 2018], and is able
to produce learning rate schedules that are more
stable leading to models that generalize better.

1 Introduction
Learning rate (LR) adaptation for first-order optimization
methods is one of the most widely studied aspects in opti-
mization for learning methods, in particular neural networks.
Recent research in this area has focused on developing com-
plex schedules that depend on a small number of hyperparam-
eters [Loshchilov and Hutter, 2017; Orabona and Pál, 2016]
or proposed methods to optimize LR schedules w.r.t. the
training objective [Schaul et al., 2013; Baydin et al., 2018;
Wu et al., 2018]. While quick optimization is desirable, the
true goal of supervised learning is to minimize the general-
ization error, which is commonly estimated by holding out
part of the available data for validation. Hyperparameter op-
timization (HPO), a related but distinct branch of the liter-
ature, specifically focuses on this aspect, with less empha-
sis on the goal of rapid convergence on a single task. Re-
search in this direction is vast and includes model-based,
model-free, and gradient-based approaches (see [Hutter et
al., 2019] for an overview). Additionally, works in the
area of learning to optimize [Andrychowicz et al., 2016;
Wichrowska et al., 2017] have focused on the problem of
tuning parameterized optimizers on whole classes of learning
problems but require prior expensive optimization and are not
designed to speed up training on a single task.
∗Contact Author, Equal Contribution.
†Contact Author, Equal Contribution.

The goal of this paper is to automatically compute in an
online fashion a learning rate schedule for stochastic opti-
mization methods (such as SGD) only on the basis of the
given learning task, aiming at producing models with associ-
ated small validation error. We study the problem of finding
a LR schedule under the framework of gradient-based hyper-
parameter optimization [Franceschi et al., 2017]: we consider
an optimal schedule η∗ = (η∗0 , . . . , η

∗
T−1) ∈ RT+ as a solution

to the following constrained optimization problem
min{fT (η) = E(wT (η)) : η ∈ RT+} (1)

s.t. w0 = w̄, wt+1(η) = Φt(wt(η), ηt)

for t = {0, . . . , T − 1} = [T ], where E : Rd → R+

is an objective function, Φt : Rd × R+ → Rd is a (pos-
sibly stochastic) weight update dynamics, w̄ ∈ Rd repre-
sents the initial model weights (parameters) and finally wt
are the weights after t iterations. We can think of E as ei-
ther the training or the validation loss of the model, while
the dynamics Φ describe the update rule (such as SGD, SGD-
Momentum, Adam etc.). For example in the case of SGD,
Φt(wt, ηt) = wt − ηt∇Lt(wt), with Lt(wt) the training loss
on the t-th minibatch. The horizon T should be large enough
so that the training error can be effectively minimized to avoid
underfitting. A too large value of T does not necessarily harm
since ηk = 0 for k > T̄ is still a feasible solution, imple-
menting early stopping in this setting. There is vast empirical
evidence that the LR is among the most critical hyperparam-
eters affecting the performances of learnt statistical models.
Beside convergence arguments from the stochastic optimiza-
tion literature, for all but the simplest problems, non-constant
schedules yield generally better results [Bengio, 2012].

Problem (1) can be in principle solved by any HPO tech-
nique. However, most HPO techniques, including those
based on hypergradients [Maclaurin et al., 2015] or on a
bilevel programming formulation [Franceschi et al., 2018;
MacKay et al., 2019] would not be suitable for the present
purpose since they require multiple evaluations of f (which,
in turn, require executions of the weight optimization rou-
tine). This clearly defeats one of the main goals of deter-
mining LR schedules, i.e. speed. In fact, several other re-
searchers [Almeida et al., 1999; Schraudolph, 1999; Schaul
et al., 2013; Franceschi et al., 2017; Baydin et al., 2018;
Wu et al., 2018] have investigated related solutions for de-
riving greedy update rules for the learning rate. A common
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characteristic of methods in this family is that the LR up-
date rule does not take into account information from the
future. At a high level, we argue that any method should
attempt to produce updates that approximate the true and
computationally unaffordable hypergradient of the final ob-
jective with respect to the current learning rate. In rela-
tion to this, [Wu et al., 2018] discuss the bias deriving from
greedy or short-horizon optimization. In practice, different
methods resort to different approximations or explicitly con-
sider greedily minimizing the performance after a single pa-
rameter update [Almeida et al., 1999; Schaul et al., 2013;
Baydin et al., 2018]. The type of approximation and the type
of objective (i.e. the training or the validation loss) are in
principle separate issues although comparative experiments
with both objectives and the same approximation are never
reported in the literature. The validation loss is only used in
experiments reported by Franceschi et al. [2017].

In this work, we make a step forward in understanding the
behavior of online gradient-based hyperparameter optimiza-
tion techniques by (i) analyzing in Section 2 the structure of
the true hypergradient that could be used to solve Problem (1)
if wall-clock time was not a concern, and (ii) by studying in
Section 3 some failure modes of previously proposed meth-
ods along with a detailed discussion of the type of approxi-
mations that these methods exploit. In Section 4, based on
these considerations, we develop a new hypergradient-based
algorithm which reliably produces competitive learning rate
schedules aimed at lowering the final validation error. The
algorithm, which we call MARTHE (Moving Average Real-
Time Hyperparameter Estimation), has a moderate computa-
tional cost and can be interpreted as a generalization of the
algorithms described by Baydin et al. [2018] and Franceschi
et al. [2017]. In Section 5, we empirically compare the qual-
ity of different hypergradient approximations in a small scale
task where true hypergradient can be exactly computed. In
Section 6, we present a set of real world experiments show-
ing the validity of our approach. We finally discuss potential
future applications and research directions in Section 7.

2 Structure of the Hypergradient
We study the optimization problem (1) under the perspec-
tive of gradient-based hyperparameter optimization, where
the learning rate schedule η = (η0, . . . , ηT−1) is treated as
a vector of hyperparameters and T is a fixed horizon. Since
the learning rates are positive real-valued variables, assum-
ing both E and Φ are smooth functions, we can compute the
gradient of f ∈ RT , which is given by

∇fT (η) = ẇᵀ
T∇E(wT ), ẇT =

dwT
dη
∈ Rd×T , (2)

where “ᵀ” means transpose. The total derivative ẇT can
be computed iteratively with forward-mode algorithmic dif-
ferentiation [Griewank and Walther, 2008; Franceschi et al.,
2017] as

ẇ0 = 0, ẇt+1 = Atẇt +Bt, (3)

with At =
∂Φt(wt, ηt)

∂wt
, Bt =

∂Φt(wt, ηt)

∂η
. (4)

The Jacobian matrices At and Bt depend on wt and ηt, but
we will leave these dependencies implicit to ease our no-
tation. In the case of SGD1, At = I − ηtHt(wt) and
[Bt]j = −δtj∇Lt(wt)ᵀ, where subscripts denote columns
(starting from 0), δtj = 1 if t = j and 0 otherwise and Ht is
the Hessian of the training error on the t−th mini-batch.

Given the high dimensionality of η, reverse-mode differ-
entiation would result in a more efficient (running-time) im-
plementation. We use here forward-mode both because it is
easier to interpret and because it is closely related to the com-
putational scheme behind MARTHE, as we will show in Sec-
tion 4. We note that stochastic approximations of Eq. (2) may
be obtained with randomized telescoping sums [Beatson and
Adams, 2019] or hyper-networks based stochastic approxi-
mations [MacKay et al., 2019].

Eq. (3) describes the so-called tangent system [Griewank
and Walther, 2008] which is a discrete affine time-variant
dynamical system that measures how the parameters of the
model would change for infinitesimal variations of the learn-
ing rate schedule, after t iterations of the optimization dy-
namics. Notice that the “translation matrices” Bt are very
sparse, having, at any iteration, only one non-zero column.
This means that [ẇt]j remains 0 for all j ≥ t: ηt affects only
the future parameters trajectory. Finally, for a single learning
rate ηt, the derivative (a scalar) is

∂fT (η)

∂ηt
= [∇fT (η)]t =

[(
T−1∏
s=t+1

As

)
Bt

]ᵀ
t

∇E(wT ) (5)

= −∇Lt(wt)ᵀPT−1t+1 ∇E(wT ), (6)

where the last equality holds true for SGD. Eq. (5) can be read
as the scalar product between the gradients of the training
error at the t-th step and the objective E at the final iterate,
transformed by the accumulated (transposed) Jacobians of the
optimization dynamics, shorthanded by PT−1t+1 in (6). As it is
apparent from Eq. (5), given wt, the hypergradient of ηt is
affected only by the future trajectory and does not depend
explicitly on ηt.

In its original form, where each learning rate is left free to
take any permitted value, Problem (1) presents a highly non-
linear setup. Although in principle it could be tackled by a
projected gradient descent method, in practice this is not fea-
sible even for relatively small problems: evaluating the gradi-
ent with forward-mode is inefficient in time since it requires
maintaining a large matrix tangent system. Evaluating it with
reverse-mode is inefficient in memory since the entire weight
trajectory (wi)

T
i=0 should be stored2. Furthermore, it can be

expected that several updates of η are necessary to reach con-
vergence – each update requiring the computation of fT and
the entire parameter trajectory in the weight space. Since this

1Throughout we use SGD to simplify the discussion, however,
similar arguments hold for any smooth optimization dynamics such
as those including momentum terms.

2Techniques based on implicit differentiation [Pedregosa, 2016;
Agarwal et al., 2017] or fixed-point equations [Griewank and Faure,
2002] (also known as recurrent backpropagation [Pineda, 1988])
cannot be readily applied to compute ∇fT since the training loss
L does not depend explicitly on η.
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approach is computationally very expensive, we turn out at-
tention to online updates where ηt is required to be updated
online based only on trajectory information up to time t.

3 Online Gradient-Based Adaptive Schedules
Before developing and motivating our proposed technique,
we discuss two previous methods to compute the learning
rate schedule online. The real-time hyperparameter optimiza-
tion (RTHO) algorithm suggested in [Franceschi et al., 2017],
reminiscent of stochastic meta-descent [Schraudolph, 1999],
is based on forward-mode differentiation and uses informa-
tion from the entire weight trajectory by accumulating par-
tial hypergradients. Hypergradient descent (HD), proposed
in [Baydin et al., 2018] and closely related to the earlier work
by Almeida et al. [1999], aims at minimizing the loss with
respect to the learning rate after one step of optimization. It
uses information only from the past and current iterate.

Both methods implement an update rules of the type

ηt = max [ηt−1 − β∆ηt, 0] , (7)

where ∆ηt is an online estimate of the hypergradient, β >
0 is a step-size or hyper-learning rate and the max ensures
positivity3. To ease the discussion, we omit the stochastic
(mini-batch) evaluation of the training error L and possibly
of the objective E.

The update rules4 are given by

∆RTHOηt =

[
t−1∑
i=0

P t−1i+1Bi

]ᵀ
∇E(wt); (8)

∆HDηt = Bᵀ
t−1∇E(wt) (9)

for RTHO and HD respectively, where P t−1t := I . Thus
∆RTHO = ∆HD + r((wi, ηi)

t−2
i=0): the correction term r can

be interpreted as an “on-trajectory approximations” of longer
horizon objectives as we will discuss in Section 4.

Although successful in some learning scenarios, we argue
that both these update rules suffer from (different) patholog-
ical behaviors, as HD may be “shortsighted”, being prone to
underestimate the learning rate (as noted by Wu et al. [2018]),
while RTHO may be too slow to adapt to sudden changes of
the loss surface or, worse, it may be unstable, with updates
growing uncontrollably in magnitude. We exemplify these
behaviors in Figure 1, using two bidimensional test functions5

from the optimization literature, where we set E = L and we
perform 500 steps of gradient descent. The Beale function,

3Updates could be also considered in the logarithmic space, e.g.
by Schraudolph [1999]; we find it useful, to let η reach 0 whenever
needed, offering a natural way to implement early stopping.

4In [Franceschi et al., 2017], the hyperparameter is updated ev-
ery K iterations. Here we focus on the case K = 1 which better
allows for a unifying treatment. HD is developed using as objective
the training loss L rather than the validation loss E. We consider
here without loss of generality the case of optimizing E.

5We use the Beale function defined as L(x, y) = (1.5 −
x + xy)2 + (2.25 − x + xy2)2 + (2.625 − x + xy3)2 and
a simplified smoothed version of Buking N.6: L(x, y) =√

((y − 0.01x)2 + ε)1/2 + ε, with ε > 0.

on the left, presents sharp peaks and large plateaus. RTHO
consistently outperforms HD for all probed values of β that
do not lead to divergence (Figure 1 upper center). This can
be easily explained by the fact that in flat regions gradients
are small in magnitude, leading to ∆HDηt to be small as
well. RTHO, on the other hand, by accumulating all avail-
able partial hypergradients and exploiting second order in-
formation, is capable of making faster progress. We use a
simplified and smoothed version of the Bukin function N.6 to
show the opposite scenario (Figure 1 lower center and right).
Once the optimization trajectory closes the valley of mini-
mizers y = 0.01x, RTHO fails to discount outdated infor-
mation, bringing the learning rate first to grow exponentially,
and then to suddenly vanish to 0, as the gradient changes di-
rection. HD, on the other hand, correctly damps η and is able
to maintain the trajectory close to the valley.

These considerations suggest that neither ∆RTHO nor ∆HD

provide globally useful update directions, as large plateaus
and sudden changes on the loss surface are common features
of the optimization landscape of neural networks [Bengio et
al., 1994; Glorot and Bengio, 2010]. Our proposed algorithm
smoothly interpolates between these two methods, as we will
present next.

4 MARTHE
In this section, we develop and motivate MARTHE, an al-
gorithm for computing LR schedules online during a single
training run. This method maintains a moving-average over
approximations of (5) of increasingly longer horizon, using
the past trajectory and gradients to retain a low computational
overhead. Further, we show that RTHO [Franceschi et al.,
2017] and HD [Baydin et al., 2018] outlined above, can be
interpreted as special cases of MARTHE, shedding further
light on their behaviour and shortcomings.
Shorter horizon auxiliary objectives. For K > 0, define
gK(u, ξ), with ξ ∈ RK+ as

gK(u, ξ) = E(uK(ξ)) s.t. u0 = u, (10)
ui+1 = Φ(ui, ξi) for i = [K]. (11)

The gKs define a class of shorter horizon objective functions,
indexed by K, which correspond to the evaluation of E after
K steps of optimization, starting from u ∈ Rd and using ξ as
the LR schedule6. Now, the derivative of gK with respect to
ξ0, denoted g′K , is given by

g′K(u, ξ) =
∂gK(u, ξ)

∂ξ0
= [B0]

ᵀ
0 P

K−1
1 ∇E(uK) (12)

= −∇L(u)ᵀPK−11 ∇E(uK), (13)
where the last equality holds for SGD dynamics. Once
computed on subsets of the original optimization dynamics
(wi)

T
i=0, the derivative reduces for K = 1 to g′1(wt, ηt) =

−∇E(wt+1)∇L(wt)
ᵀ (for SGD dynamics), and for K =

T − t to g′T−t(wt, (ηi)
T−1
i=t ) = [∇f(η)]t. Intermediate val-

ues of K yield cheaper, shorter horizon approximations of
(5).

6Formally, ξ and u are different from η and w from the previous
sections; later, however, we will evaluate the gK ’s on subsequences
of the optimization trajectory.
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Figure 1: Loss surface and trajectories for 500 steps of gradient descent with HD and RTHO for Beale function (left) and (smoothed and
simplified) Bukin N.6 (right). Center: best objective value reached within 500 iterations for various values of β that do not lead to divergence.

Approximating the future trajectory with the past. Ex-
plicitly using any of the approximations given by g′K(wt, η)
as ∆ηt is, however, still largely impractical, especially for
K � 1. Indeed, it would be necessary to iterate the map Φ
for K steps in the future, with the resulting (wt+i)

K
i=1 itera-

tions discarded after a single update of the learning rate. For
K ∈ [t], we may then consider evaluating g′K exactlyK steps
in the past, that is evaluating g′K(wt−K , (ηi)

t−1
i=t−K). Select-

ing K = 1 is indeed equivalent to ∆HD, which is computa-
tionally inexpensive. However, when past iterates are close to
future ones (such as in the case of large plateaus), using larger
K’s would allow in principle to capture longer horizon de-
pendencies present in the hypergradient structure of Eq. (5).
Unfortunately the computational efficiency of K = 1 does
not generalize to K > 1, since setting ∆ηt = g′K would
require maintaining K different tangent systems.
Discounted accumulation of g′ks. The definition of the
gKs, however, allows one to highlight the recursive nature
of the accumulation of g′K . Indeed, by maintaining the vector
tangent system,

Z0 = [B0(u0, ξ0)]0 (14)
Zi+1 = µAi(ui, ξi)Zi + [Bi(ui, ξi)]i for i ≥ 0, (15)

with Zi ∈ Rd, computing the moving average

SK,µ(u, ξ) =
K−1∑
i=0

µK−1−ig′K−i(ui, (ξj)
K−1
j=i ) = Zᵀ

K∇E(uK)

from SK−1 requires only updating (14) and recomputing the
gradient of E. The total cost of this operation is O(c(Φ))
per step both in time and memory using fast Jacobians vector
products [Pearlmutter, 1994] where c(Φ) is the cost of com-
puting the optimization dynamics (typically c(Φ) = O(d)).
The parameter µ ∈ [0, 1] allows to control how quickly
past history is forgotten. One can notice that ∆RTHOηt =
St,1(w0, (ηj)

t−1
i=0), while µ = 0 recovers ∆HDηt. Values of

µ < 1 help discounting outdated information, while as µ in-
creases so does the horizon of the hypergradient approxima-
tions. The computational scheme of Eq. (14) is quite similar
to that of forward-mode algorithmic differentiation for com-
puting ẇ (see Section 2 and Eq. (3)); however, the “tangent
system” in Eq. (14), exploiting the sparsity of the matrices
Bt, only keeps track of the variations with respect to the first
component ξ0, drastically reducing the running time.

Algorithm 1 MARTHE; requires β, µ, η0[= 0]

Initialization of w and Z0 ← 0
for t = 0 to T do
ηt ← max [ηt−1 − β∆ηt, 0] {Update LR if t > 0}
Zt+1 ← µAt(wt, ηt)Zt + [Bt(wt, ηt)]t {Eq. (15)}
wt+1 ← Φt(wt, ηt) {Parameter update}

end for

Algorithm 1 presents the pseudocode of MARTHE. The
runtime and memory requirements of the algorithm are dom-
inated by the computation of the variables Z. Being these
structurally identical to the tangent propagation of forward
mode algorithmic differentiation, we conclude that the run-
time complexity is only a multiplicative factor higher than
that of the underlying optimization dynamics Φ and requires
two times the memory (see Griewank and Walther [2008],
Sec. 4).

5 Optimized Schedules and Quality of
MARTHE Approximations

In this section, we empirically compare the optimized LR
schedules found by approximately solving Problem 1 by gra-
dient descent (denoted LRS-OPT), where the hypergradient
is given by Eq. (5), against those generated by MARTHE, for
a wide range of hyper-momentum factors µ (including HD
and RTHO) and hyper-learning rates β. We are interested
in understanding and visualizing the qualitative similarities
among the schedules, as well as the effect of µ and β on the
final performance measure. To this end, we trained three-
layers feed forward neural networks with 500 hidden units
per layer on a subset of 7000 MNIST [LeCun et al., 1998]
images. We used a cross-entropy loss and SGD as optimiza-
tion dynamics Φ, with a mini-batch size of 100. We further
sampled 700 images to form the validation set and defined
E to be the validation loss after T = 512 optimization steps
(about 7 epochs). For LRS-OPT, we randomly generated dif-
ferent mini-batches at each iteration, to prevent the schedule
from unnaturally adapting to a specific progression of mini-
batches7. We initialized η = 0.01 ·1512 for LRS-OPT and set

7We retained, however, the random initialization of the network
weights, to account for the impact that this may have on the initial
part of the trajectory. This offers a fairer comparison between LRS-
OPT and online methods, which compute the trajectory only once.
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Figure 2: Left: schedules found by LRS-OPT (after 500 iterations of SGD) on 4 different random seeds. Center: comparison between
optimized and MARTHE schedules for one seed, for indicative values of µ. We report the schedule generated with the hyper-learning rate β
that achieves the best final validation accuracy. Right: Average validation accuracy of MARTHE over 20 random seeds, for various values of
β and µ. The best performance of 94.2% is obtained with µ = 0.99. For reference, the average validation accuracy of the network trained
with η = 0.01 · 1512 is 87.5%, while LRS-OPT obtains an average accuracy of 96.1%. For µ ∈ [0.9, 1), when MARTHE converges it
consistently outperforms HD and it performs at least as well as RTHO, but converges for a wider range of β.

η0 = 0.01 for MARTHE, and repeated the experiments for 4
random seeds.

Figure 2 (left) shows the LRS-OPT schedules found after
5000 iterations of gradient descent: the plot reveals a strong
initialization (random seed) specific behavior of η∗ for ap-
proximately the first 100 steps. The LR schedule then sta-
bilizes or slowly decreases up until around 50 iterations be-
fore the final time, at which point it quickly decreases (recall
that, in this setting, all ηi, including η0, are optimized “in-
dependently” and may take any permitted value). Figure 2
(center) present a qualitative comparison between the offline
LRS-OPT schedule and the online ones, for indicative values
of µ. Too small values of µ result in an underestimation of
the learning rates, with generated schedules that quickly de-
cay to very small values – this is in line with what observed
in [Wu et al., 2018]. For too high values of µ (µ = 1 i.e.
RTHO [Franceschi et al., 2017] in the figure) the schedules
linger or fail to decrease, possibly causing instability and di-
vergence. For certain values of µ, the schedules computed
by MARTHE seems to capture the general behaviour of the
optimized ones. Finally, Figure 2 (right) shows the average
validation accuracy (rather than loss, for easier interpretation)
of MARTHE methods varying β and µ. Higher values of µ
translate to higher final performances – with a clear jump oc-
curring between µ = 0.9 and µ = 0.99 – but may require a
smaller hyper learning rate to prevent divergence.

6 Experiments
We performed an extensive set of experiments in order to
compare MARTHE, RTHO, and HD. We also considered a
classic LR scheduling baseline in the form of exponential de-
cay (Exponential) where the LR schedule is defined by ηt =
η0γ

t. The purpose of these experiments is to perform a thor-
ough comparison of various learning-rate scheduling meth-
ods, with a focus on those that are (hyper-)gradient based,
in the fairest possible manner: indeed, these methods have
very different running-time per iteration – HD and Exponen-
tial being much faster than MARTHE and RTHO – as well
as different configuration spaces. It would be unfair to com-
pare them using the number of iterations as computational
budget. We therefore designed an experimental setup that al-

lowed us to account for it: we implemented a random search
strategy over the respective algorithms’ configuration spaces
and early-stopped each run with a 10-epochs patience win-
dow. We repeatedly drew configurations parameters (hyper-
hyperparameters) and run respective experiments until a fixed
time budget of 36 hours was reached. The proposed experi-
mental setting tries to mimic how machine learning practi-
tioners may approach the parameter-tuning problem.

We used two alternative optimization dynamics: SGDM
with the momentum hyperparameter fixed to 0.9 and Adam
with the commonly suggested default values β1 = 0.9 and
β2 = 0.999. We fixed the batch size to 128, the initial learn-
ing rate η0 = 0.1 for SGDM and 0.003 for Adam, and the
weight decay (i.e. 2-norm) to 5 ·10−4. For the adaptive meth-
ods, we sampled β in [10−3, 10−6] log-uniformly, and for our
method, we sampled µ between 0.9 and 0.999. Finally, we
picked the decay factor γ for Exponential log-uniformly in
[0.9, 1.0].

In our first set of experiments, we used VGG-11 [Simonyan
and Zisserman, 2014] with batch normalization [Ioffe and
Szegedy, 2015] after the convolutional layers, on CI-
FAR10 [Krizhevsky and Hinton, 2009], and SGDM as the
inner optimizer. In the second set of experiments, we used
ResNet-18 [He et al., 2016] on CIFAR100 [Krizhevsky and
Hinton, 2009], in this case with Adam. For both CIFAR10
and CIFAR100, we used 45000 images as training images
and 5000 images as the validation dataset. An additional set
of 10000 test images was finally used to estimate generaliza-
tion accuracy. We used standard data augmentation, including
mean-std normalization, random crops and horizontal flips.
Gradients were clipped to an absolute value of 100.0.

We kept track of the model with the best validation ac-
curacy found so far, reporting in Figure 3 (left and center)
the relative mean test accuracy (solid line) and minimum and
maximum (limits of the shaded regions) across 5 repetitions.
Inspecting the figure, it is possible to identify which method
is the best performing one for any give time budget, both in
average and in the worst/best case scenario. Figures 3 (right)
shows examples of the LR schedules obtained by using the
different methods.

We performed all experiments using AWS P3.2XL in-
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Figure 3: Left and center: we randomly draw parameters from each algorithm’s configuration space (hyper-hyperparameters) and run the
resulting experiments using early stopping with a patience window of 10 epochs. We keep track of the best model (i.e. the model with
the highest validation accuracy) found so far and we report the relative test accuracy as a function of time. The solid line represents average
accuracy, while shaded regions depict minimum and maximum accuracy across different seeds. On the left we show results for the experiments
with VGG networks trained on CIFAR10 with SGDM as inner optimization method. The center plot reports experiments with ResNet models
trained on CIFAR100 with Adam as optimization dynamics. Right: samples of learning rate schedules that lead to the best found model for
each scheduling method and for the relative seed. Experiments on CIFAR10 (top) and CIFAR100 (bottom).

stances, each providing one NVIDIA Tesla V100 GPU. Fi-
nally, our PyTorch implementation of the methods and the
experimental framework to reproduce the results is available
at https://github.com/awslabs/adatune.

6.1 Discussion
In the analysis of our results, we will mainly focus on the
accuracy on the test dataset achieved by different methods
within a fixed time budget. For all the experiments, results
summarized in Figure 3 show that both Exponential and HD
were able to obtain a reasonably good accuracy within the
first 4 hours, while RTHO and MARTHE required 6 hours
at least to reach the same level of accuracy. This is due to
the fact that the wall-clock time required to process a sin-
gle minibatch is different: MARTHE takes approximately 4
times the wall-clock time of HD; there is negligible wall-
clock time difference between MARTHE and RTHO or be-
tween HD and Exponential. MARTHE was able to surpass
all the other methods consistently after 10 hours.

Our experimental protocol resulted in HD and Exponen-
tial getting more trials compared to RTHO and MARTHE (in
average around 24 trials for the first two compared to 8 of
RTHO and MARTHE). Despite the fact that MARTHE could
only afford fewer trials, it could still achieve better perfor-
mance, suggesting that it is able to produce better learning
rate schedules more reliably. Moreover, MARTHE maintains
a better peak accuracy compared to RTHO showing the effec-
tiveness of down-weighting outdated information.

Our experimental setup helped us investigate the robust-
ness of the methods with respect to the choice of the hyper-
hyperparameters8. To that end, we can see from Figure 3
(left) that the average and worst case test set accuracies (mea-
sured across multiple seeds) of MARTHE are better in com-
parison to the other methods. This is a strong indication that

8We note that it is not common in the existing literature to
mention the necessity of tuning hyper-hyperparameters for adaptive
learning-rate methods, although different datasets and/or networks
may require some tuning that may strongly affect the results.

MARTHE demonstrated superior adaptability with respect to
different hyper-hyperparameters and seeds compared to other
methods. This is also reflected by the result that MARTHE
outperforms other strategies on a consistent basis if given a
sufficient time budget (4-6 hours in our experiments): the
higher computational cost of MARTHE is outbalanced by the
fact that it needs fewer trials to reach the same performance
level of faster methods like Exponential or HD.

Overall, our experiments reveal that RTHO and MARTHE
provide better performance, giving a clear indication of the
importance of the past information. Due to its lower com-
putational overhead, Exponential should be still preferred
under tight budget constraints, while MARTHE with µ ∈
[0.9, 0.999] should be preferred if enough time is available.

7 Conclusion
Finding a good learning rate schedule is an old but crucially
important issue in machine learning. This paper makes a
step forward, analyzing previously proposed online gradient-
based methods and introducing a more general technique
to obtain performing LR schedules based on an increas-
ingly long moving average over hypergradient approxima-
tions. MARTHE interpolates between HD and RTHO, and
its implementation is fairly simple within modern automatic
differentiation, adding only a moderate computational over-
head over the underlying optimizer complexity.

In this work, we studied the case of optimizing the learning
rate schedules for image classification tasks; we note, how-
ever, that MARTHE is a general technique for finding online
hyperparameter schedules (albeit it scales linearly with the
number of hyperparameters), possibly implementing a com-
petitive alternative in other application scenarios, such as tun-
ing regularization parameters [Luketina et al., 2016]. We plan
to further validate the method both in other learning domains
for adapting the LR and also to automatically tune other cru-
cial hyperparameters. We believe that another interesting fu-
ture research direction could be to derive or learn adaptive
rules for µ and β.
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