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Classifying human motor imagery abilities from heart rate variability
analysis: a preliminary study

Antonio Lanata1,∗, Laura Sebastiani2, Stefano Di Modica1, Enzo Pasquale Scilingo1, and Alberto Greco1

Abstract— This study investigates the assessment of motor
imagery (MI) ability in humans through the analysis of heart-
beat dynamics. Previous studies have demonstrated that MI
processes strongly influence the autonomic nervous system
(ANS) activity and, consequently, this reflects on the dynamics
of ANS correlates such as the Heart Rate Variability (HRV).
Here, we propose to extract a set of linear and nonlinear
features from the HRV signals to characterize good and bad
imagers. The feature set was used as input of a pattern
recognition system based on the support vector machine in
order to automatically recognize good and bad imagers using
only cardiovascular information. To this aim, we designed
an experiment where twenty volunteers performed visual and
kinaesthetic imagery tasks. Results showed an accuracy of
classification between good and bad imagers over 74%.

I. INTRODUCTION

Motor Imagery (MI) is an explicit mental simulation of ac-
tions, which allows conscious access to the neural processes
involved in the planning and preparation of a movement [1].
Indeed, neuroimaging techniques have observed an overlap in
the brain circuits involved in the imagination and execution
of the same movement [2]. There are multiple kinds of MI.
It can be experienced mentally simulating a scene in which
an action is performed, i.e., making a visual representation
of the action (i.e., visual imagery (VI)). Alternatively, MI
can also be experienced feeling the execution of an action,
i.e., based on kinaesthetic information about the movement
(kinaesthetic imagery (KI)) [3].
Several studies have demonstrated many positive effects of
MI in both healthy subjects and patients when it is correctly
executed. Specifically, MI can improve basic motor skills
and sports performance and can offer beneficial, noninvasive
support to standard rehabilitation therapies [4].
However, measuring the ability to perform MI is a chal-
lenging task. To date, there are two main methods: (i)
through self-administered questionnaires (Motor Imagery
Questionnaire-3 (MIQ-3)and (i) calculating the mental
chronometry (MC), i.e., the temporal discrepancy between
the actual and the imagined motor task duration [5]. Both
these methods are completely or partially based on the
subjective perception of the imagination process. Indeed,
although the MC grounds on the fact that executed and
imagined tasks show overlapped neural patterns and similar
temporal duration [6], it is calculated asking the subject to

This work was not supported by any organization
1AL, SDM, EPS, and AG are with the Department of Information

Engineering & the Research Centre E. Piaggio, School of Engineering,
University of Pisa, Pisa, Italy.

2 LS is with the Department of Translational Research and New Tech-
nologies in Medicine and Surgery, University of Pisa, Pisa, Italy

∗ Corresponding author: antonio.lanata@unipi.it
978-1-7281-5751-1/20/$31.00 ©2020 IEEE

declare when the imagery process ended. As a matter of fact,
none of them does actually provide an objective measure of
the inter-individual physiological differences underlying MI
abilities.

The aforementioned limitations have led to propose
physiologically-based methods for a more objective assess-
ment of MI ability [7]. Particularly, brain activity infor-
mation has been used to measure the real engagement of
an individual in an MI task as well as the goodness of
the mental representation [8]. However, due to the well-
known brain-heart interaction, it would be interesting to
investigate possible specific patterns in the cardiovascular
dynamics related to the ability to perform an MI process [9].
Indeed, during the preparation phase of action, anticipated
cardio-vascular and respiratory adaptations are well-known
physiological processes to face the forthcoming expenditure
of energy. Moreover, the cerebral activations as well as the
ventilatory and cardiovascular responses are similar during
the execution and imagery of the same motor task [10], [11].

In light of this, here, we propose a pattern recognition
analysis based on cardiovascular dynamics to classify two
groups of subjects labeled as good and bad imagers according
to their MC.

II. METHODS

A. Experimental protocol

The study was performed in accordance with the ethical
standards of the Declaration of Helsinki and approved by
the Bioethics Committee of the University of Pisa. Twenty
volunteers (9 females; aged 25 ± 5 years), with no history
of medical or neurological disorders, have been enrolled in
the study.

The task consisted of pressing or imagining to press a
sequence of “buttons” on a touch-screen of a tablet following
a specific order. More specifically, the experiment composed
of three sessions:

• MT: the subject performed the motor task by pressing
each button in the right sequence.

• VI: the subject imagined himself/herself seeing his/her
hand touching the screen in the right sequence.

• KI: the subject imagined to feel the same sensations
he/she would feel while performing the motor task.

The two imagery tasks (i.e., VI and KI) always came after the
motor one, but their order was counterbalanced randomized
among participants. The duration of each task was measured
by an experimenter with a chronometer. At the end of each
imagery task, the performance was evaluated by computing
the MC as the absolute difference between the duration of
execution of the motor tasks and the duration of execution
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of the imagined tasks. After the experiment, participants
have been clustered into two groups according to the MC
score distribution: good imagers (MC < MedianMC) and bad
imagers (MC ≥ MedianMC). Throughout the experiment, the
ECG signal was continuously using the ECG100C Electro-
cardiogram Amplifier from BIOPAC inc., with a sampling
rate of 500 Hz. The inter-beat (RR) time series were extracted
using the Pan-Tompkins algorithm. Artifact removal was pro-
cessed using Kubios HRV software. Thirty-two features have
been extracted from both the time and frequency domains
and using nonlinear methods. Among the many nonlinear
techniques, we implemented the Recurrence Quantification
Analysis (RQA) to extract nonlinear information from HRV
dynamics. More details on extracted feature can be found in
[12], [13].

B. Classification Analysis
A classification analysis has been performed to automat-

ically recognize good and bad imagers using cardiovascular
features exclusively. Specifically, we implemented a support
vector machine with recursive feature elimination (SVM-
RFE) on the feature-vector composed of 32 features. The
RFE algorithm is an example of an embedded feature se-
lection method that follows a backward feature selection
strategy. The SVM-RFE goal is to maximize the recognition
accuracy and, simultaneously, explore the importance of the
features related to the motor imagery process, removing
irrelevant, noisy, and redundant features. To estimate the
out-of-sample error, we performed a leave-one-subject-out
cross-validation to mitigate the risk of a biased accuracy
estimation. Particularly, we iteratively split the dataset into a
training set of all the data except the samples belonging to
a single remaining subject, which instead constitute the test
set.

III. RESULTS

The results of the classification analysis are shown in Fig-
ure 1. The accuracy trend is shown as a function of the num-
ber of selected features. The peak of accuracy corresponds
to the subset of features that most contribute to discriminate
the good vs bad imagers. The most informative features are:
average of RR series (meanRR), average of the second
derivative of the RR series (meanDER2), standard devi-
ation of the second derivative of the RR series (stdDER2),
high frequency power (HF power), and normalized low fre-
quency power percentage (LF power prc). It is worthwhile
noting that these first five features achieved a maximum
classification accuracy equal to 74.36%. Moreover, the class
of the good imagers was recognized with 69.23%, whilst the
bad imagers were recognized with 79.49%.

IV. DISCUSSION AND CONCLUSION

In this preliminary study, we proposed a machine learning
approach for the assessment of human MI ability through the
analysis of heartbeat dynamics. Particularly, we studied if
the mental process associated with a good or bad MI perfor-
mance is also projected on the cardiovascular dynamics. We
demonstrated that a specific subset of five features in time
and frequency domain allows to automatically distinguish
good from bad imagers with good accuracy. Moreover, it
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Fig. 1. Classification accuracy trend as a function of recruited features

is worthwhile noting that these features contain information
about both the parasympathetic activity and the modulation
of cardiac autonomic outflows due to the baroreflex. These
findings are in line with a previous study which indicated that
only the individuals able to imagine a motor task accurately
show the autonomic correlates (e.g. vagal withdrawl) of
movement. Future endeavors will be directed towards the
interpretation of the selected pattern and further investigation
of the non-linear features.
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