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C O R O N A V I R U S

Evidence for host-dependent RNA editing 
in the transcriptome of SARS-CoV-2
Salvatore Di Giorgio1,2*, Filippo Martignano1,2*, Maria Gabriella Torcia3,  
Giorgio Mattiuz1,3†‡, Silvestro G. Conticello1,4†‡

The COVID-19 outbreak has become a global health risk, and understanding the response of the host to the 
SARS-CoV-2 virus will help to combat the disease. RNA editing by host deaminases is an innate restriction 
process to counter virus infection, but it is not yet known whether this process operates against coronaviruses. 
Here, we analyze RNA sequences from bronchoalveolar lavage fluids obtained from coronavirus-infected 
patients. We identify nucleotide changes that may be signatures of RNA editing: adenosine-to-inosine changes from 
ADAR deaminases and cytosine-to-uracil changes from APOBEC deaminases. Mutational analysis of genomes 
from different strains of Coronaviridae from human hosts reveals mutational patterns consistent with those observed 
in the transcriptomic data. However, the reduced ADAR signature in these data raises the possibility that ADARs 
might be more effective than APOBECs in restricting viral propagation. Our results thus suggest that both APOBECs 
and ADARs are involved in coronavirus genome editing, a process that may shape the fate of both virus and patient.

INTRODUCTION
Emerging viral infections represent a threat to global health, and 
the recent outbreak of novel coronavirus disease 2019 (COVID-19) 
caused by severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2, novel coronavirus, 2019-nCoV) exemplifies the risks (1, 2). 
As viruses are obligate intracellular parasites, organisms have evolved 
innate immune mechanisms to sense and counter the viruses. 
Among these mechanisms, RNA and DNA editing mediated by 
endogenous deaminases can provide a potent defense against spe-
cific viruses. Two deaminase families are present in mammalian 
species: The ADARs (adenosine deaminases that act on RNA) 
target double-stranded RNA (dsRNA) for deamination of adenines 
into inosines (A-to-I) (3, 4), and the APOBECs deaminate cytosines 
into uracils (C-to-U) on single-stranded nucleic acids [single-
stranded DNA (ssDNA) and single-stranded RNA (ssRNA)] (5, 6). 
During viral infections, ADARs act either directly, through hyper-
mutation of the viral RNA, or indirectly, through editing of host 
transcripts that modulate the cellular response (7–18). On the other 
hand, APOBECs target the viral genome, typically DNA inter-
mediates (19–26), either through C-to-U hypermutation or through 
a non-enzymatic path that interferes with reverse transcription 
(27, 28). Although some APOBEC3 proteins can interfere in vitro with 
Coronaviridae replication, it is not clear whether their enzymatic 
activity is involved (29). Ultimately, though, these restriction systems 
can also be exploited by the viruses to support their infectivity and 
increase their evolutionary potential (9, 11–15, 30–32).

RESULTS
To assess whether RNA editing could be involved in human host 
responses to SARS-CoV-2 infections, we started from publicly 

available RNA sequencing datasets from bronchoalveolar lavage 
fluids (BALF) obtained from patients diagnosed with COVID-19. 
While transcriptomic data for all samples could be aligned to the 
SARS-CoV-2 reference genome, the quality of the sequencing varied 
and only eight samples had coverage and error rates suitable for the 
identification of potentially edited sites (data S1). We called single-
nucleotide variants (SNVs) on these eight samples (33, 34) using 
REDItools 2 (35–37) and JACUSA (38) using the following thresholds: 
reads supporting the SNV ≥4, allelic fraction ≥0.5%, coverage ≥20, 
quality of the reads >25, base quality >35 (fig. S1A). The two 
pipelines gave comparable results with ~50% of the SNV positions 
called by both (figs. S1B and S2). We identified 910 SNVs common 
to REDItools 2 and JACUSA, ranging from 24 to 238 SNVs per 
sample (Fig. 1 and data S3). Given the thresholds used to call the 
SNV, samples with lower sequencing depths displayed lower 
numbers of SNVs.

While the weight of each SNV type varies across samples (Fig. 1), 
a bias toward transitions is always present, which is even more evident 
when all mutational data are pooled (Fig. 2, A and B). This pattern 
holds true even when only SNVs recurring in more samples are 
considered (Fig. 2C).

The SNV frequency and number of transversions are compatible 
with the mutation rates observed in coronaviruses [10–6/−7; (39)] and 
commonly associated to the RNA-dependent RNA polymerases (RdRps). 
RdRps are error prone and are considered the main source of muta-
tions in RNA viruses. However, the coronavirus nsp14-ExoN gene 
provides a form of error correction (40), which is probably the reason 
mutation rates in coronaviruses are lower than those observed in RNA 
viruses with smaller genomes. The mutational spectrum in SARS 
quasispecies presents a very weak bias toward U-to-G. Inactivation of 
nsp14-ExoN error correction reveals the mutational spectrum of the 
RdRp, which is quite different from the pattern we observe (i.e., main 
changes are C-to-A, followed by U-to-C, G-to-U, A-to-C, and 
U-to-G) (41). Hence, we would consider that SNVs deriving from 
RdRp errors represent a marginal fraction of the SNVs in the SARS-
CoV-2 samples.

The bias toward transitions—mainly A>G/T>C changes—resembles 
the pattern of SNVs observed in human transcriptomes (42) or in 
viruses (8, 10, 18), where A>G changes derive from deamination of 
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A-to-I mediated by the ADARs. It is thus likely that the A>G/T>C 
changes seen in SARS-CoV-2 are also due to the action of ADARs.

C>T and G>A SNVs are the second main group of changes and 
could derive from APOBEC-mediated C-to-U deamination. Unlike 

A-to-I editing, C-to-U editing is a relatively rare phenomenon in the 
human transcriptome (42), and with regard to viruses, it has been 
associated only with positive-sense ssRNA rubella virus (32), where 
C>T changes represent the predominant SNV type. The observa-
tion that only A-to-I editing is present in RNA viruses that infect 
nonvertebrate animals, where RNA-targeting APOBECs are not 
present (10, 18), supports the hypothesis that APOBECs are in-
volved in the RNA editing of this human-targeting virus.

A third group of SNVs, A>T/T>A transversions, is also present 
in these samples. While this type of SNV has been reported in other 
genomic studies (43), its origin is still unknown.

A>G and T>C changes are evenly represented with respect to SNV 
frequency (Fig. 2A), the number of unique SNVs (Fig. 2, B and C), 
and their distribution across the viral genome (Fig. 2D). As ADARs 
target dsRNA, this suggests that dsRNA encompasses the entire 
genome. While dsRNA in human transcripts is often driven by 
inverted repeats, the most likely source of dsRNA in the viral tran-
scripts is replication, where both positive and negative strands are 
present and can result in wide regions of dsRNA.

Unlike A-to-I changes, C-to-U changes are biased toward the 
positive-sense strand (Fig. 2, B to D; P < 0.0001). Because ADARs 
and APOBECs selectively target dsRNA and ssRNA, this distribu-
tion could arise from the presence at all times of RNA in a dynamic 
equilibrium between double-strandedness—when negative-sense 
RNA is being transcribed—and single-strandedness—when nascent 
RNA is released. Although some areas seem to bear fewer SNVs, 
these reduced SNV frequencies might be related to lower sequencing 
depth in those regions.

As APOBEC deaminases preferentially target cytosines within 
specific sequence contexts, we analyzed the nucleotide context of 
A-to-I and C-to-U SNVs in the viral genome (Fig. 3, A and B). A 
slight depletion of G bases in position −1 is present at A-to-I edited 
positions. This depletion is not as strong as the signal previously 
reported in human transcripts (44–47). The low editing frequencies 
we observe resembles the editing present on human transcripts con-
taining Alu sequences, which were found in a limited number in those 
early datasets. There is no evidence of a sequence context preference 
if we use a larger dataset such as REDIportal (48), which includes 
>1.5 M sites in Alu repeats (fig. S3).

On the other hand, C-to-U changes preferentially occur down-
stream from uridines and adenosines, within a sequence context 
that resembles the one observed for APOBEC1-mediated deamination 
([AU]C[AU]) (49, 50).

We then aligned available genomes from SARS-CoV-2, Middle-East 
respiratory syndrome–related coronavirus (MERS-CoV), and SARS-
CoV to test whether RNA editing could be responsible for some of 
the mutations acquired through evolution. The genomic alignments 
reveal that a substantial fraction of the mutations in all strains could 
derive from enzymatic deaminations (Fig. 4, A to C), with a preva-
lence of C-to-U mutations, and a sequence context compatible with 
APOBEC-mediated editing also exists in the genomic C-to-U SNVs 
(Fig. 4, D to F).

DISCUSSION
Our data source—metagenomic sequencing—raises the question 
whether the low-level editing we observe (~1%) reflects the actual levels 
of editing of viral transcripts within human cells. Aside from a small 
fraction of cellular transcripts edited at high frequency, most 
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Fig. 1. SNVs identified in SARS-CoV-2 transcriptomes. The bar charts show the 
number of SNVs identified in each SARS-CoV-2 transcriptome for each SNV type 
(e.g., A>C, AC). The sequencing depth for each sample is indicated.
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Fig. 2. SNV identified in SARS-CoV-2 transcriptomes. (A) Allelic fraction and (B) number of SNVs for each nucleotide change in the entire dataset and (C) for SNVs re-
curring in at least two samples. (D) Distribution of SNVs across the SARS-CoV-2 genome. A-to-G (blue) and C-to-U (red) SNVs are grouped in 400-nucleotide (nt) bins and 
plotted above (AG and CT) or below the line (TC and GA) based on the edited strand. Dots (white/black) indicate recurring SNVs. Genetic organization of SARS-CoV-2 (top). 
The dark/white shading indicates the viral coding sequences; coverage distribution of all analyzed samples (bottom).
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ADAR-edited sites in the human transcriptome (typically inside 
Alu sequences) present editing levels of ~1% (4, 42, 51). It has been 
shown that a fraction of the cellular transcripts are hyperedited by 
ADARs (52–54). While we were unable to observe hyperedited reads 
in the metagenomic samples, it is possible that hyperedited transcripts 
fail to be packaged into the virus.

With regard to APOBEC-mediated RNA editing, its detection 
in the viral transcriptomes is already indicative, as this type of 
editing is almost undetectable in human tissues (42). This enrich-
ment points either toward an induction of APOBECs triggered 
by coronavirus infection or to specific targeting of the APOBECs to 
the viral transcripts. APOBECs have been proved effective against 
many viral species in experimental conditions, yet, until now, 
their mutational activity in clinical settings has been shown only 
in a handful of viral infections (19–26) through DNA editing and, 
in rubella virus, on RNA (32).

As in rubella virus, we observe a bias in APOBEC editing toward 
the positive-sense strand. This bias and the low editing frequencies 
might be indicative of the dynamics of the virus, from transcription 
to selection of viable genomes. It is reasonable to assume that sites 
edited on the negative-sense strand will result in a mid-level editing 
frequency, as not all negative-sense transcripts will be edited (Fig. 5A). 
On the other hand, editing of the positive-sense strand can occur 
upon entry of the viral genome, thus yielding high-frequency editing 
(Fig. 5B), or after viral genome replication, resulting in low-frequency 
editing (Fig. 5C). The lack of a sizable fraction of highly edited C>T 
SNVs suggests that APOBEC editing occurs late in the viral life cycle 
(Fig. 5C). Yet, because they occur earlier, G>A SNVs should be closer 
in number to C>T SNVs and with higher levels of editing, which is 
not what we observe (Fig. 2, A to C). The overrepresentation of C>T 

SNVs could be due to an imbalance toward positive-sense transcripts, 
as these are continuously generated from the negative-sense ones 
(and double-stranded hybrid RNAs are lost). However, the editing 
frequencies of G>A SNVs should be much higher, as G>A SNVs are 
generated upstream to the C>T ones. A more fitting explanation is 
that editing of the negative-sense transcripts results in loss of the 
edited transcript (Fig. 5D), possibly because editing triggers nonsense-
mediated decay (55), thus lowering the chances of the edited site to 
be transmitted.

A B

Fig. 3. Sequence contexts for SARS-CoV-2 RNA edited sites. (A) Local sequence 
context for A-to-I and C-to-U edited sites in the viral transcriptome and (B) for 
recurring sites.

Severe acute respiratory syndrome coronavirus 2
SARS-CoV-2

SARS-CoV

DA

Severe acute respiratory syndrome coronavirus

SN
V 

co
un

t
SN

V 
co

un
t

SN
V 

co
un

t

FC

Middle-East respiratory syndrome coronavirus
MERS-CoV

EB
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Because most of the APOBECs are unable to target RNA, the only 
well-characterized cytidine-targeting deaminases are APOBEC1, mainly 
expressed in the gastrointestinal tract, and APOBEC3A (56), whose 
physiological role is not clear. As with A-to-I editing, it will be important 
to assess the true extent of APOBEC RNA editing in infected cells.

The functional meaning of RNA editing in SARS-CoV-2 is yet to 
be understood: In other contexts, editing of the viral genome determines 
its demise or fuels its evolution. For DNA viruses, the selection is indirect, 
as genomes evolve to reduce potentially harmful editable sites [e.g., (18)], 
but for RNA viruses, this pressure is even stronger, as RNA editing directly 
affects the genetic information and efficiently edited sites disappear.

A comparison of the SNV datasets from the transcriptomic and 
genomic analyses reveals a different weight of A-to-I and C-to-U 
changes (Figs. 2B and 4A), with an underrepresentation of A-to-I in 
the viral genomes. As our analysis underestimates the amount of 
editing due to the strict parameters used, the underrepresentation 
of A-to-I changes could be explained by the possibility that A-to-I 
editing is more effective in restricting viral propagation, thus re-
ducing the number of viral progeny showing evidence of these 
changes. In contrast, the remnants of less effective C-to-U 
editing are retained in viral progeny and get fixed during viral 
adaptation.
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Fig. 5. Model of APOBEC RNA editing on SARS-CoV-2 transcriptome. The four panels model the editing frequencies and the C>U/G/A ratios expected from four 
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An analysis of mutation outcomes is difficult due to the low 
numbers of events collected so far, but there are some possibly suggestive 
trends (data S2). C-to-U changes leading to stop codons are over-
represented in the transcriptomic data but—as expected—disappear 
in the genomic dataset. This might point—again—to an antiviral 
role for these editing enzymes. There is also an underrepresentation 
of C>T missense mutations, but its meaning is difficult to interpret.

Last, this analysis is a first step in understanding the involvement 
of RNA editing in viral replication, and it could lead to clinically 
relevant outcomes: (i) If these enzymes are relevant in the host 
response to coronavirus infection, a deletion polymorphism quite 
common in the Chinese population, encompassing the end of 
APOBEC3A and most of APOBEC3B (57, 58), could play a role 
in the spread of the infection. (ii) Because RNA editing and selec-
tion act orthogonally in the evolution of the viruses, comparing 
genomic sites that are edited with those that are mutated could 
lead to the selection of viral regions potentially exploitable for 
therapeutic uses.

MATERIALS AND METHODS
Sequencing data
RNA sequencing data available from projects PRJNA601736, 
PRJNA603194, and PRJNA605907 were downloaded from the 
National Center for Biotechnology Information (NCBI; https://www.
ncbi.nlm.nih.gov/sra/) using the FASTQ-dump utilities from the 
SRA-toolkit with the following command line:

prefetch -v SRR* && fastq-dump --outdir /path_dir/ | 
--split-files /path_dir/SRR*.sra

Because most of the reads of samples from PRJNA605907 were 
missing their mate, forward-reads and reverse-reads from these 
samples have been merged in a single FASTQ, which is treated as a 
single-end experiment. Details of the sequencing runs are summa-
rized in data S1.

Data preprocessing
SRR11059940, SRR11059941, SRR11059942, and SRR11059945 showed 
a reduced quality of the sequencing in the terminal part of the reads. 
We used TRIMMOMATIC (59) to trim the reads of those samples 
to 100 base pairs (bp), with the following command line:

rimmomatic SE SRR*.fastq SRR*.trimmed.fastq 
CROP:100

We aligned the FASTQ files using Burrows-Wheeler Aligner (60) 
using the official sequence of SARS-CoV-2 (NC_045512. 2) as ref-
erence genome. After the alignments, BAM files were sorted using 
SAMtools (61).

The command line used for paired-end samples is as follows:

bwa mem NC_045512.2.fa SRR*_1.fastq SRR*_2.
fastq | samtools sort –O BAM -o SRR*_.bam

The command line used for single-end samples is as follows:

bwa mem NC_045512.2.fa SRR*.fastq | samtools 
sort –O BAM -o SRR*_.bam

The aligned bams have been analyzed with QUALIMAP (62). 
Because of a high error rate reported by QUALIMAP, samples 
SRR11059943 and SRR10971381 have been removed from the 
analysis.

SNV calling
A diagram of the entire pipeline is shown in fig. S1A. We used 
REDItools 2 (35, 37) and JACUSA (38) to call the SNVs using the 
following command line:

python2.7 reditools.py -f SRR*.bam -o SRR10903401_
stat_table_allPos.txt -S -s 0 -os 4 -m /homol_
site/SRR*_homopol.txt -c SRR*_homopol.txt -r /
Reference/NC_045512.2.fa -a SRR*_stat_table_allPos.
txt -q 25 -bq 35 -mbp 15 -Mbp 15

jacusa call-1 -p 20 -r SRR*.vcf -a B,I,Y -s -f V -q 35 -m 
25 SRR*.srt.bam

With regard to REDItools 2, we removed all SNVs within 15 nucleo-
tides from the beginning or the end of the reads to avoid artifacts 
due to misalignments.

To avoid potential artifacts due to strand bias, we used the AS_
StrandOddsRatio parameter, calculated following GATK guidelines 
(https://gatk.broadinstitute.org/hc/en-us/articles/360040507111-AS-
StrandOddsRatio), and any mutation with an AS_StrandOddsRatio > 4 
has been removed from the dataset.

Bcftools (61) has been used to calculate total allelic depths on the 
forward and reverse strand (ADF and ADR) for AS_StrandOddsRatio 
calculation, with the following command line:

mpileup -a FORMAT/AD,FORMAT/ADF,FORMAT/
ADR,FORMAT/DP,FORMAT/SP -O v -A -C -I -d 
1000000 -q 25 -Q 35 -f NC_045512.2.fa -o SRR*.
vcf SRR*.srt.bam

Mutations common to the datasets generated by REDItools 2 and 
JACUSA were considered (n = 910; fig. S2 and data S3). The threshold 
we used to filter the SNVs is based on minimum coverage (20 reads), 
number of supporting reads (at least four mutated reads), allelic 
fraction (0.5%), quality of the mapped reads (>25), and base quality 
(>35). In the dataset, there were only six SNVs with allelic fractions 
in the range of 30 to 85% (C>T, 1; T>C, 3; G>T, 2). Because there 
were no SNVs with higher allelic fractions, we presume that all sam-
ples originated from the same viral strain.

Recurring SNVs have been defined as the SNVs present in at least 
two samples. To overcome the problem of samples with lower se-
quencing depth, we used the positions of the SNVs common to both 
REDItools 2 and JACUSA to call again the SNVs irrespectively of 
the number of supporting reads.

Data manipulation
R packages (Biostrings, rsamtools, ggseqlogo ggplot2, and splitstackshape) 
and custom Perl scripts were used to handle the data.

Sequence context analysis
Logo alignments were calculated using ggseqlogo, using either the 
pooled dataset or the dataset of recurring SNVs. Logo alignments of the 
human edited sites were performed using ADAR sites from REDIportal 
(48) that were shared by at least four samples. SARS-CoV-2, SARS, 
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and MERS genomic data were prepared for the Logi alignment 
using the GenomicRanges R package (63).

SNV calling in genomic data from SARS-CoV-2, SARS, and MERS
The viral genomic sequences of MERS (taxid:1335626) and SARS 
(taxid:694009) were selected on NCBI Virus (https://www.ncbi.
nlm.nih.gov/labs/virus/vssi/#/) using the following query: Host : 
Homo Sapiens (human), taxid:9606; -Nucleotide Sequence Type: 
Complete. They were aligned using the “Align” utility. Consensus 
sequences of SARS and MERS genomes were built using the “cons” 
tool from the EMBOSS suite (http://bioinfo.nhri.org.tw/gui/) with 
default settings. SARS-CoV-2 genomic sequences were downloaded 
from GISAID (https://www.gisaid.org/) and aligned with MUSCLE (64).

SNVs have been called with a custom R script, by comparing viral 
genome sequences to the respective consensus sequence or, for 
SARS-CoV-2, to the NC_045512.2 reference sequence. SNVs, viral 
consensus sequences, and Coronaviridae genome sequence identi-
fiers are provided in data S3 to S5.

SNV annotation
SNVs (from both genomic and somatic SNV sets) occurring on 
coding sequences have been annotated with custom R scripts to 
determine the outcome of the nucleotide change (nonsense/missense/
synonymous mutation). A summary is reported in data S2.

Statistical analysis
fisher.test() function from the R base package has been used for all 
the statistical tests. To test the significance of C-to-U bias on the 
positive strand, we compared C>T/G>A SNV counts to the count of 
C/G bases on the reference genome. For P values of “RNA vs Reference,” 
“DNA vs Reference,” and “genome vs RNA,” 2 × 2 contingency 
tables have been generated as shown in data S2.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/25/eabb5813/DC1
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