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ON COMPACT AFFINE QUATERNIONIC CURVES AND

SURFACES

GRAZIANO GENTILI, ANNA GORI, AND GIULIA SARFATTI

Abstract. This paper is devoted to the study of affine quaternionic
manifolds and to a possible classification of all compact affine quater-
nionic curves and surfaces. It is established that on an affine quater-
nionic manifold there is one and only one affine quaternionic structure.
A direct result, based on the celebrated Kodaira Theorem that stud-
ies compact complex manifolds in complex dimension 2, states that the
only compact affine quaternionic curves are the quaternionic tori and
the primary Hopf surface S3 × S1. As for compact affine quaternionic
surfaces, we restrict to the complete ones: the study of their fundamen-
tal groups, together with the inspection of all nilpotent hypercomplex
simply connected 8-dimensional Lie Groups, identifies a path towards
their classification.

1. Introduction

The definition of slice regularity for functions of one and several quater-
nionic variables (see, e.g., [14, 15]) has led to a renewed interest for a direct
approach to the study of quaternionic manifolds. Quaternionic manifolds,
as spaces locally modelled on Hn in a slice regular sense, are presented in
[12] with the name of quaternionic regular manifolds, and the closely related
class of quaternionic toric manifolds is studied in [13]. In this setting, the
class of affine quaternionic manifolds - i.e. those manifolds with an atlas
whose transition functions are quaternionic affine - reveals to be of natural
interest, both because of the well established interest for affine complex man-
ifolds, and for the reason that most of the natural quaternionic manifolds
already studied are indeed affine quaternionic manifolds. In his seminal pa-
per, [26], Sommese introduces the class of quaternionic manifolds as those
differentiable 4n-dimensional manifolds whose transition functions preserve
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the standard right quaternionic structure of R4n. This definition forces the
transition maps, and hence the manifolds, to be quaternionic affine.

The main purpose of this paper is to find a path towards a classification
of all compact affine quaternionic curves and surfaces.

The well celebrated Kodaira Theorem, [20], allows Vitter [27], Mat-
sushima [23] and Inoue, Kobayashi, Ochiai [17] to classify all compact com-
plex manifolds in complex dimension 2 admitting a complex affine structure.
Since affine quaternionic curves are affine complex surfaces, we can use this
classification to identify all 1-dimensional compact affine quaternionic man-
ifolds.

In quaternionic dimension 2, the lack of a classification of affine compact
complex manifolds of dimension 4 advises us to change point of view in order
to classify compact affine quaternionic surfaces. To identify the subclass of
compact, geodesically complete (or complete for short), affine quaternionic
surfaces we adopt in fact the approach used in [7], based on the study of
their fundamental groups, and prove the following result.

Theorem 1.1. If the subgroup Γ ⊆ Aff (2,H) acts freely and properly dis-
continuously on H2, and H2/Γ is compact, then Γ contains a unipotent (see
Definition 3.17) normal subgroup Γ0 of finite index such that Γ/Γ0 is iso-
morphic to a finite subgroup of S3.

A nilmanifold is defined as a compact coset space of the form N/K, where
N is a connected, simply connected nilpotent Lie group and K is a discrete
subgroup (K is the fundamental group of the nilmanifold). A theorem of
Malcev, [22], states that a given abstract group is the fundamental group
of a suitable nilmanifold if and only if it is a finitely generated nilpotent
group with no elements of finite order. Using this result we obtain further
properties of the subgroup Γ0 appearing in Theorem 1.1:

Corollary 1.2. In the hypotheses of Theorem 1.1, the unipotent subgroup
Γ0 of Γ turns out to be isomorphic to a discrete subgroup i(Γ0) of a suit-
able nilpotent, hypercomplex, connected, simply connected, 8-dimensional Lie
group N such that N/i(Γ0) is compact. Moreover N/i(Γ0) is affine quater-
nionic, and the same holds for N .

The corollary asserts in particular that any geodesically complete, compact,
affine quaternionic surface is finitely covered by a suitable nilmanifold whose
fundamental group is isomorphic to Γ0. This fact - together with the clas-
sification of all nilpotent hypercomplex simply connected 8-dimensional Lie
Groups given by Dotti and Fino, [7] - indicates a path towards the classifica-
tion of compact, complete, affine quaternionic surfaces. As an application,
in the last Section we are able to classify all affine quaternionic surfaces
arising in the case of a real Heisenberg group.
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2. affine quaternionic manifolds

In this setting the Dieudonné determinant detH plays a similar role as the
usual one. To each quaternionic matrix we can associate a complex matrix
via the algebra homomorphism

ψ :M(n,H)→M(2n,C)

defined by

ψ(A+Bj) =

(
A −B
B A

)
,

and it turns out that (detH(M))2 = det(ψ(M)) ≥ 0, where the right hand
term is the usual determinant of ψ(M), see [1]. Hence, the group of quater-
nionic n × n invertible matrices GL(n,H) can be introduced in the usual
fashion via the Dieudonné determinant.

For Q = t(q1, q2, . . . , qn) ∈ Hn, we can define the group of all quaternionic
affine transformations

Aff (n,H) = {Q 7→ AQ+B : A ∈ GL(n,H), B = t(b1, b2, . . . , bn) ∈ Hn}

which is included in the class of (right) slice regular functions, [15]. In
complete analogy with what Kobayashi does in the complex case, we give
the following:

Definition 2.1. A differentiable manifold M of 4n real dimensions has a
quaternionic affine structure if it admits a differentiable atlas whose transi-
tion functions are restrictions of quaternionic affine functions of Aff (n,H).

In particular, differentiable manifolds endowed with a quaternionic affine
structure are quaternionic regular [12], [13]. The following result allows to
describe the entire class of quaternionic affine manifolds.

Lemma 2.2. Let M be a differentiable manifold of dimension 4n. Then M
admits an affine quaternionic structure if, and only if, there is an immersion

ψ : M̃ → Hn of the universal covering M̃ of M such that, for every covering
transformation γ we have ψ ◦γ = Xγ ◦ψ for some affine transformation Xγ

of Hn.

The holomorphic analogue of the previous lemma, can be found, e.g., in
[19]. We recall that the quaternionic manifolds studied by Sommese, [26],
all admit a quaternionic affine structure. Many significant examples can be
found in his paper.

A large class of affine quaternionic manifolds can be constructed by means
of a subgroup Γ ⊂ Aff (n,H) which acts freely and properly discontinuously
on Hn. Indeed the quotient space

M = Hn/Γ

admits an atlas whose transition functions are the slice regular functions
belonging to Γ ⊂ Aff (n,H), and hence has a quaternionic affine structure.
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The latter class of manifolds consists of all geodesically complete quater-
nionic affine manifolds, see, e.g., [11].

The relation between affine complex structures and flat connections in
the complex setting has been deeply investigated during the past years. In
particular in the complex setting a theorem of Matsushima [23] states that
there is a one-to-one correspondence between affine structures and affine
holomorphic connections which are torsion-free and flat. Vitter [27], Inoue,
Kobayashi e Ochiai [17] gave a classification of all manifolds admitting such
connections in complex dimension 1 and 2.
A similar correspondence holds also in the quaternionic setting. But the
quaternionic structures are much more rigid. A manifold is said to admit a
GL(n,H)-structure if it can be endowed with two anticommunting almost
complex structures, see [25, page 48]. On such manifolds, also called almost
quaternionic by Sommese in [26], it is possible to define a connection, the
Obata connection, which is torsion free, and it is the only one with this
property. Moreover the Obata connection turns out to be flat if and only if
the GL(n,H)-structure is integrable (if and only if M is quaternionic in the
sense of Sommese).

For an almost quaternionic manifold, having an integrable GL(n,H)-
structure is equivalent to the nullity of three tensors which, in the quater-
nionic setting, play the role of the Nijenhuis tensor, [24]. Summarizing

Proposition 2.3. A manifold M has an integrable GL(n,H)-structure if
and only if it is affine quaternionic and equivalently if and only if the torsion-
free Obata connection of M is flat.

Moreover

Remark 2.4. An affine quaternionic manifold is hypercomplex, since the
integrability of the GL(n,H)-structure implies that it can be endowed with
two anti-commuting complex structures.

Thanks to the one-to-one correspondence between affine structures and flat
torsion free holomorphic connections in the complex setting, and the unique-
ness of the Obata connection on an affine quaternionic manifold, we obtain
that

Corollary 2.5. On an affine quaternionic manifold there is one and only
one affine quaternionic structure.

In the complex setting the situation is quite different. Indeed a fixed affine
compact complex manifold may have a number of distinct affine structures
which all induce the given complex structure, that is, it may have affine
structures which are complex analytically but not affinely equivalent. As
an example of this phenomenon, consider a complex 1-dimensional torus
T = C/Λ. The usual affine coordinate on T is the coordinate z of the
universal cover of T , defined locally on T . But there are other distinct affine
structures on T , in fact, for all a ∈ C, a 6= 0, there is an affine structure on
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T whose coordinate is

1

a
(eaz − 1) =

∞∑
k

ak−1zk

k!

where z is the usual affine coordinate mentioned above.

3. Towards a classification of affine quaternionic manifolds in
low dimension

In order to classify all the affine quaternionic manifolds in low dimensions,
one can try to argue as in the complex case. If M is an affine quaternionic
manifold of quaternionic dimension 1, i.e., an affine quaternionic curve,
it is also a complex affine surface. In complex dimension 2 the Kodaira
Theorem gives a list of compact complex manifolds on which one can study
the affine structures or, equivalently, the affine holomorphic flat connections.
Indeed Vitter, [27], goes through the seven classes identified by Kodaira, and
lists explicitly all possible affine complex structures on the following classes
of affine complex surfaces: tori, affine Hopf surfaces, quotients of Abelian
varieties (by cyclic groups of order 2, 3, 4 or 6), fiber bundles of 1-dimensional
tori over a 1-dimensional torus, and quotients of these bundles.

Among the complex linear transformations of C2 those that are also
quaternionic linear transformations of H are represented, as we have seen,
by non zero matrices of the form(

a −b
b a

)
with a, b ∈ C. Examining Vitter’s classification, it is not difficult to see that
there are no other quaternionic curves, with the exception of the quater-
nionic tori that have already been studied in [4] and the primary Hopf sur-
face S3 × S1.

In quaternionic dimension 2, some examples of affine quaternionic man-
ifolds are given by slice affine quaternionic Hopf surfaces, [2], and by some
tori that one can construct by adapting the strategy in [27] to complex
dimension 4.

Since we cannot refer to a classification of affine, compact, complex mani-
folds of dimension 4, we restrict to the class of complete, affine quaternionic
manifolds in dimension 2, i.e, those of the form H2/Γ with Γ ⊂ Aff (2,H) act-
ing freely and properly discontinuously on H2. In this setting we adopt the
approach used in [10], based on the study of the fundamental groups of affine
compact complex surfaces. Our aim, indeed, is to find necessary conditions
on a discrete subgroup Γ of the group of quaternionic affine transformations
Aff (2,H) so that its action on H2 is free and properly discontinuous. In what
follows we identify Aff (2,H) with the group of invertible 3×3 matrices with
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quaternionic entries of the forma b r
c d s
0 0 1


In this section we study properties of a subgroup Γ of the group Aff (2,H),
acting freely on H2. The action of A ∈ Γ on H2 on the left maps (x, y) in
(x′, y′) where {

x′ = ax+ by + r

y′ = cx+ dy + s

With the usual notation, we denote with h(A) the matrix

(
a b
c d

)
in

GL(2,H), called the holonomy part of A.

We first recall a few definitions and well known facts about eigenvalues
and eigenvectors in the quaternionic setting. We refer to [6],[21] for an
exhaustive treatment of quaternionic linear algebra. In the study of spectral
theory in the quaternionic setting one has to define what is an eigenvalue for
a matrix A, indeed, once chosen the left action of the matrix, one can state
the “right eigenvalue problem” and the “left eigenvalue problem” according
to the position of the eigenvalue. We will focus on the right eigenvalue
problem.

Definition 3.1. Let A be a n × n-quaternionic matrix. Then λ ∈ H is a
right eigenvalue for A if and only if there exists a nonzero v ∈ Hn such that

Av = vλ.

In this case v is called an eigenvector of A.

Remark 3.2. If λ ∈ H is an eigenvalue of a quaternionic matrix A, then all
the elements in the 2-sphere Sλ = {u−1λu : 0 6= u ∈ H} of all conjugates of
λ turn out to be eigenvalues of A: if Av = vλ, then A(vu) = (vu)u−1λu for
any invertible u ∈ H.

Remark 3.3. If v is an eigenvector of a quaternionic matrix A, with
eigenvalue λ, then vµ with µ ∈ H, µ 6= 0, is an eigenvector with respect to
the eigenvalue µ−1λµ in the sphere Sλ.

Proposition 3.4. Let M ∈M(n,H) be a quaternionic matrix. Then λ ∈ H
is a right eigenvalue of M if and only if there exists a complex λ̃ ∈ Sλ such
that

detH(M − λ̃In) = 0.

Proof. The quaternion λ is a right eigenvalue of M if and only if every
element in Sλ is. Let λ̃ ∈ Sλ be a complex eigenvalue of M ; then λ̃ is an
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eigenvalue of ψ(M), and hence

0 = det(ψ(M)− λ̃I2n) = det(ψ(M − λ̃In)) = (detH(M − λ̃In))2.

�

We point out that right eigenvalues are shared by similar matrices: if Av =
vλ, then M−1AM(M−1v) = (M−1v)λ for any invertible quaternionic matrix
M . The same is not true when considering left eigenvalues. In addition, a
quaternionic matrix is diagonalisable if and only if its complex representation
is diagonalisable.

Lemma 3.5. Let the subgroup Γ ⊆ Aff (2,H) act freely on H2. Then each
element of h(Γ) has 1 as an eigenvalue.

Proof. Let A ∈ Γ. The point (x, y) ∈ H2 is fixed by

A =

a b r
c d s
0 0 1


if and only if {

(a− 1)x+ by = −r
cx+ (d− 1)y = −s

If 1 is not an eigenvalue of h(A), then (A − I) ∈ GL(2,H) and hence the
linear system has a solution; thus the action is not free. �

Let us now define two groups of quaternionic matrices,

G1 =


a b r

0 1 s
0 0 1

 : a, b, r, s,∈ H, a 6= 0


and

G2 =


1 b r

0 d s
0 0 1

 : b, r, s, d ∈ H, d 6= 0

 ,

which play a key role in the study of subgroups of Aff (2,H) acting freely on
H2.

Proposition 3.6. Let the subgroup Γ ⊆ Aff (2,H) act freely on H2. Then
Γ is conjugate in Aff (2,H) to a subgroup of G1 or G2.

Proof. Suppose first that Γ contains an element A such that h(A) has an
eigenvalue λ 6= 1. Then, we can diagonalise h(A) via a matrix P in GL(2,H).
Suppose

B ∈
(
P 0
0 1

)
Γ

(
P 0
0 1

)−1
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Write h(B) =

(
a b
c d

)
, then Ph(A)P−1h(B) =

(
λ 0
0 1

)
h(B) =

(
λa λb
c d

)
.

By the previous lemma, both h(B) and Ph(A)P−1h(B) have 1 as an eigen-
value, so there exist (x, y) and (z, w) ∈ H2 such that{

ax+ by = x

cx+ dy = y
and

{
λaz + λbw = z

cz + dw = w
.

Suppose first that y 6= 0 and w 6= 0. Hence, up to a rescaling of the
eigenvector (note that, in general, thanks to Remark 3.3, the corresponding
eigenvalue changes, remaining in the same sphere; in the present case the
real eigenvalue does not change), we can suppose that y = w. In this case,
subtracting the second equations of the systems, we get c(x− z) = 0 which
implies either c = 0 or x = z.

• If c = 0 then d = 1 (since y 6= 0);
• If x = z we get λ = 1 (a contradiction) or x = z = 0. If x = z = 0

then b = 0 (and hence again d = 1 since y 6= 0).

Suppose now that x 6= 0 and z 6= 0; then again we can assume that x = z,
and with straightforward computations we get d(y−w) = y−w; thus d = 1
or y = w.

• If d = 1 then c = 0 (since x 6= 0);
• if y = w 6= 0 we get λ = 1 (a contradiction) or y = w = 0. If
y = w = 0 then c = 0 and a = 1.

If now y = 0 (and necessarily x 6= 0) and z = 0 (and necessarily w 6= 0), we
get c = 0 and a = 1. If instead x = 0 (and necessarily y 6= 0) and w = 0
(and necessarily z 6= 0, we get b = 0 and d = 1.
So the possibilities for h(B) are: if b = 0,(

a 0
c 1

)
;

or, if c = 0 (
a b
0 1

)
;

Note that we cannot have both kinds of h(B) occurring, for if both(
a b
0 1

)
,

(
a′ 0
c′ 1

)
where in Ph(Γ)P−1 with b 6= 0 and c′ 6= 0 also their

product

(
aa′ + bc′ b

c′ 1

)
would belong to it, but it is easy to prove that this

matrix does not have 1 as eigenvalue. Hence we have that(
P 0
0 1

)
Γ

(
P 0
0 1

)−1
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is contained in G1 or in the group of all quaternionic matrices of the

form

a 0 r
c 1 s
0 0 1

 ; the latter is conjugate to G2 via an element of type0 1 0
1 0 0
0 0 1

 and we are done.

Now suppose every element of h(Γ) has both eigenvalues 1. If h(Γ) is the
identity, we are done, otherwise some conjugate of Γ contains an element of

the form L =

1 1 u
0 1 v
0 0 1

 . Let C =

a b r
c d s
0 0 1

 be an arbitrary element

of this conjugate of Γ. Then h(C) =

(
a b
c d

)
and h(LC) =

(
a+ c b+ d
c d

)
have 1 as eigenvalue with molteplicity 2. A direct computation implies again
that c = 0 and a = d = 1. �

In the complex case, G1 and G2 turn out to be solvable; we point out that
this is not the case in the quaternionic setting due to the non commutativity
of H.

Lemma 3.7. If the subrgroup Γ ⊆ Aff (2,H) acts freely on H2 and h(Γ) is
abelian then Γ is conjugate in Aff (2,H) to a subgroup of the group of all

matrices of the form

1 0 r
0 d s
0 0 1

 with d 6= 0 or to a subgroup of the group

of all matrices of the form

1 b r
0 1 s
0 0 1


Proof. The proof given for the complex case in [Fillmore, Lemma 2.4] can
be easily adapted to matrices with quaternionic entries. �

Lemma 3.8. If

a b r
0 1 0
0 0 1

 has no fixed points in H2 then a = 1 and b = 0.

Proof. If b 6= 0 then (0,−b−1r, 1) is a fixed point. Now, suppose b = 0; if a 6=
1 then (−(a− 1)−1r, y, 1) is a fixed point. Hence the assertion follows. �

Lemma 3.9. If the subgroup Γ ⊆ G1 acts freely on H2 then h(Γ) is abelian
and there exists a complex plane containing all a such that(

a b
0 1

)
∈ h(Γ).
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Proof. Let

A =

a b r
0 1 s
0 0 1

 B =

a′ b′ r′

0 1 s′

0 0 1


be elements of Γ. By direct computation, it is easy to verify that their
inverse elements are the quaternionic matrices

A−1 =

a−1 −a−1b −a−1r + a−1bs
0 1 −s
0 0 1



B−1 =

a′−1 −a′−1b′ −a′−1r′ + a′−1b′s′

0 1 −s′
0 0 1

 .

Moreover, for some c ∈ H,

ABA−1B−1 =

aa′a−1a′−1 aa′(−a−1a′−1b′ − a−1b) + ab′ + b c
0 1 0
0 0 1

 .

From the fact that ABA−1B−1 acts without fixed points, applying Lemma
3.8, we get that

(ABA−1B−1)12 = 0 and aa′a−1a′
−1

= 1

which immediately imply that a and a′ belong to the same complex plane,
and that h(Γ) is abelian. �

Now, combining Lemmas 3.7 and 3.9, we get

Corollary 3.10. If the subgroup Γ ⊆ Aff (2,H) acts freely on H2, then Γ is
conjugate in Aff (2,H)) to a subgroup of G2.

Lemma 3.11. If the subgroup Γ ⊆ Aff (2,H) is abelian and acts freely on H2

then it is conjugate in Aff (2,H) to a subgroup of the group of all matrices of

the form

1 0 r
0 d 0
0 0 1

 with d 6= 0 or to a subgroup of the group of all matrices

of the form

1 b r
0 1 s
0 0 1

 .

Proof. Since h(Γ) is abelian we can use Lemma 3.7 and conjugate Γ into the

group of all

1 b r
0 1 s
0 0 1

 and we are done, or into the group of all

1 0 r
0 d s
0 0 1

 .
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In the latter case: if all entries d = 1 we are done. Otherwise suppose d 6= 1
for some element A in Γ. After a conjugation with

C =

1 0 0
0 1 (1− d)−1s
0 0 1

 ,

the matrix A is taken to

1 0 r
0 d 0
0 0 1

 and all the other elements to A′ =1 0 r′

0 d′ s′

0 0 1

 . Now, since Γ is abelian, we have that CAC−1A′ = A′CAC−1

which implies that d′d = dd′ (so d and d′ belong to the same complex plane),
and ds′ = s′. Thus if there exists s′ 6= 0 we get d = 1, a contradiction. �

In what follows in addiction to the hypothesis that the action of Γ on H2 is
free, we will assume that Γ acts properly discontinuously and that H2/Γ is
compact. This has important consequences that we collect here.
We recall the First Theorem of Bieberbach, see, e.g., [3, Theorem 1].

Theorem 3.12. Let G be a subgroup of Aff (n,C), acting freely and properly
discontinuously on Cn and such that Cn/G is compact. Then the subgroup

G̃ ⊆ G of pure translations is generated by n linearly independent transla-

tions and G/G̃ ' h(G) is a finite group.

As a direct consequence we get

Lemma 3.13. If the subgroup Γ ⊆ Aff (2,H) acts freely, properly discontin-
uously on H2 and H2/Γ is compact, then the set of translational parts (r, s)

of elements of the form

a b r
0 1 s
0 0 1

 of Γ contains a basis for H2 as a real

vector space.

Proof. The proof easily follows taking into account that Aff (2,H) can be
identified as a subgroup of Aff (4,C). �

We can now solve completely the abelian case: indeed, applying the previous
Lemma, we understand that the first possibility of Lemma 3.11 does not
occur; thus we have

Corollary 3.14. If the subgroup Γ ⊆ Aff (2,H) is abelian and acts freely and
properly discontinuously on H2, and H2/Γ is compact, then it is conjugate in

Aff (2,H) to a subgroup of the group of all matrices of the form

1 b r
0 1 s
0 0 1

 .
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Lemma 3.15. If the subgroup Γ ⊆ Aff (2,H) acts properly discontinuously
on H2, and contains elements

A =

1 b r
0 d s
0 0 1

 and B =

1 f u
0 h v
0 0 1


such that AB 6= BA, then d is a root of unity.

The proof is similar to the one in the complex case, but the computations
are much more complicated, due to the non commutativity of quaternions.

Proof. By direct computation we obtain that for any n ∈ N

An =

1 b(d− 1)−1(dn − 1) b(d− 1)−2(dn − 1)s+ nr − bn(d− 1)−1s
0 dn (d− 1)−1(dn − 1)s
0 0 1


Hence

Cn = A−nBAnB−1 =

1 fn un
0 hn vn
0 0 1


where

hn = d−nhdnh−1

fn = f(dn − 1)h−1 + b(d− 1)−1(dn − 1)(1− d−nhdn)h−1

un = fh−1v − fdnh−1v − b(d− 1)−1(dn − 1)h−1v

+ b(d− 1)−1(dn − 1)d−nhdnh−1v + f(d− 1)−1(dn − 1)s

− b(d− 1)−1(dn − 1)d−nh(d− 1)−1(dn − 1)s

− b(d− 1)−1(dn − 1)d−nv + b(d− 1)−2(dn − 1)2d−ns

vn = −d−nhdnh−1v + d−nh(d− 1)−1(dn − 1)s+ d−nv − d−n(d− 1)−1(dn − 1)s

Suppose that d is not a root of unity. Let us show that, in this case, Cn 6= Cm
for n 6= m.

Assume first that hd 6= dh. Then Cn = Cm if and only of hn = hm, that
is if and only if n = m.

If instead h and d commute, then the entries of Cn become

hn = 1

fn = [fh−1 + b(d− 1)−1(h−1 − 1)](dn − 1)

un = −f(dn − 1)[h−1v − (d− 1)−1s]− b(d− 1)−1(dn − 1)(h−1v − v)

+ b(d− 1)−2(2− d−n − dn)(s− hs)− b(d− 1)−1(1− d−n)v

vn = (1− d−n)[−v + (d− 1)−1(hs− s)]
Suppose that Cn = Cm for n 6= m. Then fn = fm and vn = vm that is{

fh−1 + b(d− 1)−1(h−1 − 1) = 0
−v + (d− 1)−1(hs− s) = 0
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which is equivalent to {
f(d− 1) + b(1− h) = 0
−(d− 1)v + (1− h)s = 0

(3.1)

The first equation in system (3.1) is equivalent to the fact that the
holonomies h(A) and h(B) commute. Recalling that d 6= 1, we have that
h(A) can be diagonalised, thus also h(B) can be diagonalised via the same
matrix (direct computation: indeed suppose that h(B) cannot be diago-
nalised, since they commute they can be simultaneously triangulated, and
they still commute, thus f = fd which implies f = 0 since d 6= 1). Hence,
up to conjugation,

A =

1 0 r
0 d s
0 0 1

 and B =

1 0 u
0 h v
0 0 1


and if the second equation in System (3.1) is satisfied, A and B commute,
in contradiction with our hypothesis. Therefore the matrices Cn are all
distinct.

Let us show that, in both cases, if d is not a root of unity, the action of
Γ is not properly discontinuous.
Suppose first that |d| = 1. Consider the sequence of points (xn, yn) ∈ H2

obtained applying the matrices Cn to the point (0, 1),

xn = fn + un
yn = dn + vn

Up to subsequences, dn goes to 1 as n goes to infinity, thus hn goes to 1 and
fn, un and vn go to 0. Hence the orbit of (0, 1) has (0, 1) as an accumulation
point.
Suppose now that |d| > 1, and consider the orbit of (0, v − h(d− 1)−1s). In
this case

xn = fn(v − h(d− 1)−1s) + un
yn = dn(v − h(d− 1)−1s) + vn

Up to subsequences, hn tends to a ∈ H, |a| = 1 as n tends to infinity (if d
and h commute hn = 1 for any n). Hence, with long but straightforward
computations, we get

xn = b(d− 1)−1[(d− 1)−1(d−n − 1)s+ (1− d−n)h(d− 1)−1s− (1− d−n)v]
yn = −d−nhdn(d− 1)−1s+ d−nh(d− 1)−1(dn − 1)s+ d−nv − (d− 1)−1(1− d−n)s

Taking into account the fact that d−nhdn is bounded, since in modulus
equals |h|, we obtain that (xn, yn) has an accumulation point.
The case where |d| < 1 can be treated analogously, considering the orbit

through the same point via the matrices C̃n = AnBA−nB−1.
�

In order to state and prove the next result, we define and list all (up to
conjugation) finite subgroups of unitary quaternions; to do this we use the
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notations and approach of the book [5] by Conway and Smith. Let I, J ∈ H
be purely imaginary unit quaternions, with I ⊥ J , and let {1, I, J, IJ = K}
be a basis for H having the usual multiplication rules. For

σ =

√
5− 1

2
, τ =

√
5 + 1

2

we consider the unitary quaternions

II =
I + σJ + τK

2
; IO =

J +K√
2

; ω =
−1 + I + J +K

2
;

IT = I; en = e
πI
n .

and define the finite subgroups of the sphere S3 generated as follows:

2I = 〈II, ω〉, 2O = 〈IO, ω〉, 2T = 〈IT, ω〉,
2D2n = 〈en, J〉, 2Cn = 〈en〉, 1Cn = 〈en

2
〉 (n odd).

The following result holds (see, e.g., [5, Theorem 12, page 33]).

Theorem 3.16. Every finite subgroup of the sphere S3 of unitary quater-
nions is conjugated to a subgroup of the following list:

2I, 2O, 2T, 2D2n, 2Cn, 1Cn(n odd).

Recall the following

Definition 3.17. A group G is said to be unipotent if all of its elements
are unipotent, i.e., for all g ∈ G, there exists n ∈ N such that (g − 1)n = 0.

We are now ready to state and prove

Theorem 3.18. If the subgroup Γ ⊆ Aff (2,H) acts freely and properly
discontinuously on H2, and H2/Γ is compact, then Γ contains a unipotent
normal subgroup Γ0 of finite index such that Γ/Γ0 is isomorphic to a finite
subgroup of S3.

Proof. We can assume from the previous results that, up to conjugation, Γ
is contained in G2. Suppose first that Γ contains a central element A of the

form

1 b r
0 d s
0 0 1

 with d 6= 1. Conjugate Γ by

M =

1 b(d− 1)−1 0
0 1 (1− d)−1s
0 0 1

 ∈ G2
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then M−1AM =

1 0 r′

0 d 0
0 0 1

. Since this element is central in M−1ΓM , all

its elements of are of the form

1 0 u
0 h 0
0 0 1

. And this is in contradiction with

Lemma 3.13 since the translational parts of Γ̃ form a basis for H2. Thus,
for any central element in Γ, d = 1. Since Γ is the fundamental group of the
compact manifold H2/Γ, it is finitely generated. Let

Ai =

1 bi ri
0 di si
0 0 1

 , for 1 ≤ i ≤ k,

be the set of generators of Γ. If Ai is central, di = 1. If Ai is not cen-
tral by Lemma 3.15 we have that di is a root of unity. Consider then the
homomorphism ϕ : Γ→ S3 defined as

ϕ(Ai) = ϕ

1 bi ri
0 di si
0 0 1

 = di.

Let Γ0 denote the kernel of ϕ. Then Γ0 is normal and unipotent, and Γ/Γ0

is isomorphic to a subgroup of S3. Now recall that if Γ̃ denotes the subgroup

of pure translation in Γ, by Theorem 3.12, Γ/Γ̃ is finite. Taking into account

that Γ̃ ⊆ Γ0, we conclude that Γ/Γ0 ⊆ Γ/Γ̃ is isomorphic to a finite subgroup
of S3. �

Let us give an explicit example of affine quaternionic manifold of quater-
nionic dimension 2.

Example 3.19. Consider the following transformations in Aff (2,H):

A =

1 0 0
0 1 1
0 0 1

 , B =

1 −1 0
0 1 I
0 0 1

 , C =

1 0 1
0 1 0
0 0 1

 ,

D =

1 0 J
0 1 0
0 0 1

 , S =

1 0 J
2

0 −1 I
0 0 1

 ,

where I, J,K,L ∈ S are imaginary units. If Γ0 = 〈A,B,C,D〉 and Γ =
〈A,B,C,D, S〉, then H2/Γ0 and H2/Γ are affine quaternionic manifolds. In
particular, they are the quaternionic analogs of examples (f) and (b) in
Vitter’s paper.

To identify all possible subgroups Γ0 appearing in Theorem 3.18, we need
to recall here

Definition 3.20. A subgroup H of a Lie group G is called uniform if G/H
is compact (H is the closure of H).
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The following results, used in the sequel, concern nilpotent Lie groups and
nilmanifolds.

Theorem 3.21. [11, Theorem 7.1]. Let M be a compact complete affine
manifold with nilpotent fundamental group. Then M is an affine nilmani-
fold.

Theorem 3.22. [22, Corollary, p. 293]. Nilmanifolds having isomorphic
fundamental groups are isomorphic.

Theorem 3.23. [22, Theorem 6, p. 296]. A group Λ is isomorphic to a
uniform, discrete subgroup in a connected, simply connected, nilpotent Lie
group if, and only if,

(1) Λ is finitely generated;
(2) Λ is nilpotent;
(3) Λ has no torsion.

Now, if the subgroup Γ0 ⊆ Γ ⊆ Aff (2,H) is, as in Theorem 3.18, finitely
generated, without torsion elements and unipotent - and thus nilpotent -
then it is isomorphic via a map i to a uniform, discrete (closed) subgroup
i(Γ0) of a unique connected, simply connected, nilpotent Lie group N . Now
the fact that Γ/Γ0 is finite and H2/Γ0 is compact forces N to have real
dimension 8. Since Γ0 is nilpotent, then Theorem 3.21 implies that H2/Γ0

is an affine nilmanifold. On the other hand, the nilmanifolds H2/Γ0 and
N/i(Γ0) having isomorphic fundamental groups, are isomorphic thanks to
Theorem 3.22. As a consequence, the quotient N/i(Γ0) is an affine quater-
nionic manifold; thus it is hypercomplex, and the same holds for its covering
N (see Remark 2.4). Summarizing,

Corollary 3.24. In the hypotheses of Theorem 3.18, the unipotent subgroup
Γ0 of Γ turns out to be isomorphic to a uniform, discrete subgroup i(Γ0) of a
suitable nilpotent, hypercomplex, connected, simply connected, 8-dimensional
Lie group N . Moreover N/i(Γ0) is affine quaternionic, and the same holds
for N .

Dotti and Fino, in [7], give a classification of all possible hypercomplex,
simply connected, nilpotent lie groups of real dimension 8. In this classifi-
cation one can find, in particular, those N that carry an affine quaternionic
structure. Indeed, all hypercomplex, simply connected, nilpotent lie groups
of real dimension 8 carry such a structure, as stated in

Theorem 3.25. [9, Proposition 2.1]. Every hypercomplex structure on a
8-dimensional, nilpotent Lie group is flat and hence affine quaternionic.

At this point, the next step would be to find explicitly, and possibly list,
all subgroups Γ ⊆ Aff (2,H) acting freely and properly discontinuously on
H2, and such that H2/Γ is compact. In order to do this, one could exploit the
mentioned classification of Dotti and Fino: first identify all uniform discrete
subgroups of a nilpotent, hypercomplex (or equivalently affine quaternionic),
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simply connected, 8-dimensional Lie Group N , and then restrict to those
such that Γ/Γ0 is one of the finite subgroups of S3 listed above. In the
next section we apply this procedure to the case of Abelian hypercomplex
structures.

4. The Abelian case

Let N be a nilpotent, hypercomplex, simply connected, 8-dimensional Lie
group, let n denote its Lie algebra, and recall that a complex structure J
on N is called Abelian if J satisfies the condition [X,Y ] = [JX, JY ] for all
X,Y ∈ n. We will start by considering here the case in which the group
N admits an Abelian hypercomplex structure, i.e., three abelian complex
structures.

In order to state the mentioned results by Dotti and Fino, [8], we first
recall the definition of groups of Heisenberg type (for short, type H) clas-
sified in [18]. The (2n + 1)-dimensional real Heisenberg group admits two
realisations: one, as a subgroup of GL(n+ 2,R)

H(n,R) =


1 a c

0 I bT

0 0 1

 : a, b ∈ Rn, c ∈ R

 (4.2)

and the other as a subgroup of GL(n+ 2,C)

H1(n) =


1 z Imw

0 I −z̄T
0 0 1

 : z ∈ Cn, w ∈ C

 (4.3)

Using complex coefficients in (4.2) and quaternionic coefficients in (4.3) one
obtains the complex Heisenberg groups of matrices

H2(n) = H(n,C) =


1 ξ z

0 I ωT

0 0 1

 : ξ, ω ∈ Cn, z ∈ C


and the quaternionic Heisenberg groups of matrices

H3(n) =


1 q Imh

0 I −q̄T
0 0 1

 : q ∈ Hn, h ∈ H


The three families H1(n), H2(n) and H3(n) so obtained are two step nilpo-
tent groups with centers of dimension 1, 2 and 3 respectively. The groups
H1(n) and H3(n) correspond to the nilpotent part in the Iwasawa decom-
position of the isometry group of the complex hyperbolic space and quater-
nionic hyperbolic space respectively. The groups H1(2), H2(1) and H3(1) are
the real, complex and quaternionic Heisenberg groups of dimension 5, 6, 7,
respectively.
In [8] Dotti and Fino prove that a nilpotent 8-dimensional simply connected
Lie group admitting an invariant Abelian hypercomplex structure is either
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a real Euclidean space or a trivial extension of a group of type H; indeed
using the following

Lemma 4.1. Let N be an 8-dimensional nilpotent Lie group with an Abelian
hypercomplex structure. Then N is either Abelian, or 2-step nilpotent with
a 4-dimensional center.

they thus obtain

Theorem 4.2. [8, Theorem 4.1] Let N be an 8-dimensional nilpotent Lie
group. Then N carries an Abelian hypercomplex structure if and only if N
is either Abelian or isomorphic to a trivial extensions of a group of type H
with center of dimension i = 1, 2 or 3, i.e., respectively, to N1 = R3×H1(2),
N2 = R2 ×H2(1) or N3 = R×H3(1).

The groups N1, N2 can carry only Abelian hypercomplex structures since
their commutator subgroups are 1-dimensional and 2-dimensional respec-
tively. On the other hand N3 does admit also non-Abelian hypercomplex
structures.

We will now turn our attention to find all uniform, discrete subgroups
L of N1. In this case, the uniform discrete subgroups can be completely
classified using a result in [16].

Indeed, for x, y row vectors in Rn, let

λ(x, y, t) =


1 x t

0 I yT

0 0 1


Definition 4.3. For r = (r1, r2, . . . , rn) ∈ (Z+)

n
such that rj divides rj+1

with 1 ≤ j ≤ n, let rZn denote the n-uples x = (x1, x2, . . . , xn) for which
xi ∈ riZ with 1 ≤ i ≤ n. Define

Λr = {λ(x, y, t) : x ∈ rZn, y ∈ Zn, t ∈ Z}

It follows easily that Λr is a uniform discrete subgroup of H1(n). With this
notation it is proved that

Theorem 4.4. [16, Theorem 2.4]. The subgroups Λr classify the uniform
discrete subgroups of H1(n) up to automorphism. That is, if Λ is any uni-
form discrete subgroup of H1(n) then there exists a unique r for which some
automorphism of H1(n) maps Λ to Λr. Moreover for all r, s as in Definition
4.3, Λr and Λs are isomorphic if and only if r = s.

One can easily see that the generic discrete uniform subgroup of H1(2) cor-
responds to those appearing in Fillmore Sheuneman’s paper, [10, Theorem
4.1].
Let now Γ0 ⊂ Γ subgroups of Aff (2,H) be as in Section 3. For the sake of
simplicity, we will use the same names to indicate their isomorphic images
in N . A discrete uniform subgroup Γ0 of N1 must be isomorphic to one of
the form Θ × Λr, where Θ is a lattice in R3; thus the corresponding group
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Γ is the finite extension of Γ0 via a finite subgroup (see the list) of S3. And
this concludes the case of N1.

For the groups of type H3(n) a class of discrete uniform subgroups is given
by the lattices Λ(1, n) ⊆ H3(n) consisting of matrices with integer entries; we
denote an element of Λ(1, n) by (a1, b1, ..., an, bn, c). For m ∈ N, and m ≥ 2,
let us take the sublattice ∆(1, n;m) = {(a1, b1, ..., an, bn, c) ∈ Λ(1, n) | a1 ∈
mZ} is contained in Λ(1, n); then H3(n)/∆(1, n;m) is again a nilmanifold
and there is an m : 1 covering H3(n)/∆(1, n;m)→ N(1, n) = H3(n)/Λ(1, n)
with deck transformation group Λ(1, n)/∆(1, n;m) = Zm.

As an application, we are able to exhibit other classes of examples of affine
quaternionic surfaces when of N = N3 = R×H3(1), where, explicitly,

H3(1) = {

1 a+ ib+ jc+ kd iα+ jβ + kγ
0 1 −a+ ib+ jc+ kd
0 0 1

 : a, b, c, d, α, β, γ ∈ R}

When we take Λ(1, 3) as a discrete, uniform subgroup of H3(1),

Λ(1, 3) = {

1 a1 + ib1 + ja2 + kb2 ia3 + jb3 + kc
0 1 −a1 + ib1 + ja2 + kb2
0 0 1

 : ai, bi, c ∈ Z}

we obtain that Γ0 = Z×Λ(1, 3) and, again, Γ will be a finite extension of Γ0

via a finite subgroup (see the list) of S3. A second class of examples can be
constructed by taking Γ0 = (Z×∆(1, 3;m)) ⊂ (Z× Λ(1, 3)) (with m ∈ N).
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