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Abstract
BACKGROUND
An altered (dysbiosis) and unhealthy status of the gut microbiota is usually
responsible for a reduction of short chain fatty acids (SCFAs) concentration.
SCFAs obtained from the carbohydrate fermentation processes are crucial in
maintaining gut homeostasis and their determination in stool samples could
provide a faster, reliable and cheaper method to highlight the presence of an
intestinal dysbiosis and a biomarker for various gut diseases. We hypothesize
that different intestinal diseases, such as celiac disease (CD), adenomatous
polyposis (AP) and colorectal cancer (CRC) could display a particular fecal
SCFAs’ signature.

AIM
To compare the fecal SCFAs’ profiles of CD, AP, CRC patients and healthy
controls, using the same analytical method.

METHODS
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In this cross-sectional study, we defined and compared the SCFAs’ concentration
in fecal samples of 9 AP, 16 CD, 19 CRC patients and 16 healthy controls (HC).
The SCFAs’ analysis were performed using a gas-chromatography coupled with
mass spectrometry method. Data analysis was carried out using Wilcoxon rank-
sum test to assess pairwise differences of SCFAs’ profiles, partial least squares-
discriminate analysis (PLS-DA) to determine the status membership based on
distinct SCFAs’ profiles, and Dirichlet regression to determine factors influencing
concentration levels of SCFAs.

RESULTS
We have not observed any difference in the SCFAs’ amount and composition
between CD and healthy control. On the contrary, the total amount of SCFAs was
significantly lower in CRC patients compared to HC (P = 0.044) and CD (P =
0.005). Moreover, the SCFAs’ percentage composition was different in CRC and
AP compared to HC. In detail, HC displayed higher percentage of acetic acid (P
value = 1.3 × 10-6) and a lower amount of butyric (P value = 0.02192), isobutyric (P
value = 7.4 × 10-5), isovaleric (P value = 0.00012) and valeric (P value = 0.00014)
acids compared to CRC patients. AP showed a lower abundance of acetic acid (P
value = 0.00062) and higher percentages of propionic (P value = 0.00433) and
isovaleric (P value = 0.00433) acids compared to HC. Moreover, AP showed
higher levels of propionic acid (P value = 0.03251) and a lower level of isobutyric
acid (P value = 0.00427) in comparison to CRC. The PLS-DA model demonstrated
a significant separation of CRC and AP groups from HC, although some degree
of overlap was observed between CRC and AP.

CONCLUSION
Analysis of fecal SCFAs shows the potential to provide a non-invasive means of
diagnosis to detect patients with CRC and AP, while CD patients cannot be
discriminated from healthy subjects.

Key words: Short chain fatty acids; Microbiota; Colorectal cancer; Adenoma; Celiac
disease
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Core tip: An altered gut microbiota is usually responsible for a reduction of short chain
fatty acids (SCFAs) concentration. In this study, we analyse through gas-
chromatography coupled with mass spectrometry the fecal SCFAs’ concentration in
patients with various gut diseases [celiac disease (CD), adenomatous polyposis (AP) and
colorectal cancer (CRC)]. Altought the small sample size of study does not allow us to
reach definitive conclusions, our findings suggest the existence of a fecal SCFAs
fingerprint in patients with CRC amd AP distinguishable from healthy controls. On the
contrary, no differences between celiac patients and healthy controls was observed.
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INTRODUCTION
Nowadays, it is well known that multiple factors can alter the normal composition of
the  gut  microbiota  (GM)  favoring  the  onset  of  intestinal  diseases,  such  as
inflammatory bowel disease (IBD), celiac disease and colorectal cancer (CRC)[1-3]. The
diet represents one of the main documented element responsible for changes in the
structural and functional relationship between gut microbiota and the host[4].  The
fermentative bacterial  metabolism of dietary components,  especially indigestible
fibers, produces a large amount of biologically active compounds such as short chain
fatty  acids  (SCFAs)[5-7].  SCFAs are  saturated  fatty  acids  composed by  one  to  six
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carbons of  which acetic  (C2),  propionic  (C3),  and butyric  (C4)  are  in  the  largest
quantity[8,9]with a generally constant respective molecular ratio of 60:20:20 in the colon
as well as in the feces[10]. Beside these, other SCFAs, as iso-Butyric (C4), valeric (C5)
and iso-Valeric (C5),  are present in lower amounts.  They can be absorbed by the
colonic epithelium providing energy or enter the bloodstream playing a relevant role
in  the  regulation  of  the  metabolism of  fatty  acids,  glucose,  and  cholesterol[11-14].
Moreover, thanks to their ability to induce the production of antimicrobial peptides
and to modulate the number and functions of  Regulatory T cells  (Tregs),  SCFAs
contribute to the modulation of host immune responses[15-17]. An unhealthy GM status
is responsible for a reduction of SCFAs’ concentration, which is essential for the host
in order to prevent intestinal diseases[18]. In fact, they preserve the epithelial barrier
functionality and contrast the onset of inflammatory reactions by the transcriptional
regulation of tight junction proteins, particularly the claudin-1[19].  In addition, the
SCFAs sustain the proliferation and differentiation of colonocytes and protect colonic
epithelium by increasing the expression of mucin 2 and modulating both oxidative
stress and immune response[20]. Different studies have well documented an alteration
in SCFAs’ composition in some human pathologies, such as IBD[8], irritable bowel
syndrome[21], diarrhea[22] and cancer[23] and for this reason, they represent a target to
measure  intestinal  health  and  have  been  proposed  as  potential  diagnostic
biomarkers[24].  Moreover, the SCFAs’ evaluation in stool samples could provide a
faster, reliable and cheaper method to highlight the presence of an intestinal dysbiosis
instead of the microbiota characterization. Besides, genomics approaches cannot shed
light on real fermentation processes and functional microbiota changes (metabolite
production). Anyway, the high variability in protocols and analytical methods (i.e.,
capillary  electrophoresis,  chromatography,  nuclear  magnetic  resonance)  for  the
SCFAs’ determination[25], make difficult to compare literature data and bringing out
real differences in SCFAs’ profiles of the various intestinal diseases.

The principal objective of the research was to compare the fecal SCFAs’ profile of
patients with different intestinal diseases,  in detail  adenomatous polyposis (AP),
celiac disease (CD) and CRC, to healthy controls (HC), applying the same protocols
and analytical conditions gas chromatography-mass spectrometry (GC-MS) for their
evaluation in order to point out whether these pathologies displayed a particular fecal
SCFAs signature.

MATERIALS AND METHODS

Study design and biological samples
In this  cross-sectional  study,  we used the biological  samples of  44 patients  with
different gut diseases (19 patients with CRC, 9 patients with AP, 16 patients with CD)
and 16 healthy controls, collected for different studies between January 2016 and
February 2019 at the Careggi Hospital and University of Florence, Italy. All patients’
fecal samples were taken at diagnosis, before starting any treatment (i.e.,  surgical
resection, chemotherapy, gluten-free diet). All patients were on an omnivorous diet
and none of them reported special dietary habits or dietary restrictions. Moreover,
any one reported antibiotic drugs or probiotic/prebiotic products intake during the
last 3 mo. Clinical characteristics of patients are shown in Table 1. The study has
received the local Ethics Committee approval (CE: 11166_spe and CE: 10443_oss) and
an informed written consent has been obtained from each participant.

Instrumental and chemicals
The SCFAs’ analysis was performed by Agilent GC-MS system composed with 5971
single  quadrupole  mass  spectrometer,  5890  gas-chromatograph  and  7673
autosampler.  Methanol and tert-Butyl methyl ether (Chromasolv grade),  Sodium
bicarbonate and Hydrochloric  acid (Reagent grade),  [2H3]Acetic,  [2H3]Propionic,
[2H7]iso-Butyric and [2H9]iso-Valeric, used as internal standards (ISTDs), acetic acid,
propionic acid, butyric acid, isobutyric acid, valeric acid and isovaleric acid (analytical
standards grade) were purchased by Sigma-Aldrich (Milan, Italy). MilliQ water 18
MΩ was obtained from Millipore's Simplicity system (Milan, Italy).

GC-MS method
The SCFAs in the samples were analyzed as free acid form using a Supelco Nukol
column 30 m length, 0.25 mm internal diameter and 0.25 µm of film thickness with the
temperatures program as follows: Initial temperature of 40 °C was held for 1 min,
then  it  was  increased  to  150  °C  at  30  °C/min,  finally  grow  up  to  220  °C  at  20
°C/min[26]. A 1 µL aliquot of extracted sample was injected in splitless mode (splitless
time 1 min) at 250 °C, while the transfer line temperature was 280 °C. The used carrier
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Table 1  Clinical characteristics of patients

ID patients State Number Male/female ratio, n (%) Age, median (IQR) BMI, median (IQR)

HC healthy control 16 7 (14/2) 46 (9) 23.8 (1.5)

CD celiac disease 16 0.5 (6/12) 35.5 (21) 22.1 (3.7)

AP adenomatous polyposis 9 1.2 (5/4) 68 (28) 24.9 (3.9)

CRC colorectal cancer 19 8.5 (17.2) 80 (13.5) 24.5 (4.5)

HC: Healthy control; CD: Celiac disease; AP: Adenomatous polyposis; CRC: Colorectal cancer; BMI : Body mass index; IQR: Interquartile range.

gas was helium and its flow rate maintained at 1 mL/min for whole run time. The MS
acquisition was carried out in single ion monitoring by apply a proper dwell time (20
ms for each ion monitored) to guarantee a detection frequency of 4 cycle/s.

The quantitative determination of SCFAs in each sample was carried out by the
ratio  between  the  area  abundance  of  the  analytes  with  the  area  abundance  of
respective labeled internal standard (isotopic dilution method). The value of this ratio
was named peak area ratio (PAR) and it was used as abundance of each analyte in the
quantitative  evaluation.  The  ionic  signals  of  SCFAs’  and  the  reference  internal
standards used for the quantitation of each SCFAs were reported in the Table 2.

Standard solutions and calibration curves
The stock solutions of each analyte and each ISTDs were prepared in mQ water at 50
mg/mL and stored at 4 °C. Since the quantity of each SCFA in the samples could be
different, different concentration ranges of each analyte were defined. Therefore, to
easily build up these calibration levels, two working mixtures of analytes (Mix 1 and
Mix 2)  and a  mixture  of  ISTDs in  10  mM NaHCO3  solution were  prepared.  The
compositions and the concentrations of these mixtures are reported in the Table 3.

A five levels calibration curve was prepared by adding proper volumes of Mix 1 or
2 solution, 50 μL of ISTDs mixture, 1 mL of tert-butyl methyl ether and 50 µL of 1.0
mol/L HCl solution in microcentrifuge tube. Then, each tube was shaken in vortex
apparatus for 2 min, centrifuged at 10000 rpm for 5 min, and finally the solvent layer
was transferred in autosampler vial and analyzed three times by GC-MS method.
Final concentrations of calibration levels are shown in the Table 4.

Sample preparation
Fecal samples were collected in 15 mL falcon tubes and stored at -80 °C. Just before
the analysis, each sample was thawed, weighted (between 0.5-1.0 g) and added of
sodium  bicarbonate  10mM  solution  (1:1  w/v)  in  a  1.5  mL  centrifuge  tube.  The
obtained suspension was briefly stirred in vortex apparatus, extracted in ultrasonic
bath (for 5 min) and then centrifuged at 5000 rpm (for 10 min). The supernatant was
collected and transferred in 1.5 mL centrifuge tube (sample solution). The SCFAs were
finally extracted as follow: An aliquot of 100 µL of sample solution (corresponding to
0.1 mg of stool sample) was added of 50 μL of ISTDs mixture, 1 mL of tert-butyl
methyl ether and 50 µL of 1.0 M HCl solution in 1.5 mL centrifuge tube. Afterwards,
each tube was shaken in vortex apparatus for 2 min, centrifuged at 10000 rpm for 5
min, and finally the solvent layer was trasferred in autosampler vial and analyzed by
GC-MS  method.  Each  samples  were  prepared  and  processed,  by  the  method
described above, three times.

Calibration curves
Calibration  curves  of  analytes  were  obtained  by  plotting  the  PAR,  between
quantitation ions of each analyte and relative ISTD, vs the nominal concentration of
the calibration solution. A linear regression analysis was applied to obtain the best
fitting function between the calibration points.

In order to obtain reliable limit of detection (LOD) and limit of quantitation values,
the standard deviation of response and slope approach was employed. The estimated
standard deviations of responses of each analyte were obtained by the calculated
standard deviation of y-intercepts of regression lines. The obtained linear regressions
coefficients, the r-squared and the estimated LOD values for each analyte are reported
in the Table 5.

Statistical analysis
Statistical analysis on the SCFAs’ composition were implemented in R (version 3.5.3,
2019-03-11)  and  all  the  graphs  were  plotted  with  ggplot2  (v.  3.1.1).  Pairwise
differences in SCFAs’ composition, between patient groups defined by state, were
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Table 2  Retention times, ionic signals, internal standards for each short chain fatty acid

SCFA Rt(min) Quan. Ion(m/z) Qual ion(m/z) ISTD[quant. ion (m/z)]

Acetic 5.65 60 - [2H3]Acetic[63]

Propionic 6.08 74 73 [2H3]Propionic[77]

iso-Butyric 6.22 73 88 [2H7]iso-Butyric[77]

Butyric 6.53 60 73 [2H3]Propionic[77]

iso-Valeric 6.73 60 87 [2H9]iso-Valeric[63]

Valeric 7.08 60 87 [2H9]iso-Valeric[63]

SCFA: Short chain fatty acid; Rt: Retention time; ISTD: Internal standard.

assessed using Wilcoxon rank-sum test.
A partial  least  squares discriminant analysis  (PLS-DA) was performed with R

package “DiscrMiner” (v. 0.1-29) in order to sharpen the separation between groups
(States) of the diverse SCFA’s percentages composition. Dirichlet regression was
estimated with the package “DirichletReg” (v. 0.6-3.1) in order to assess which factors
influence SCFAs’ concentration levels, accounting for gender and age. P values of less
than 0.05 were considered statically significant, no multiplicity correction was applied
and findings are interpreted as hypothesis generating.

RESULTS

Pairwise comparisons: Pre-neoplastic and neoplastic diseases show a distinct
SCFAs’ profile
The concentration of SCFAs (μmol/g) was not significantly different in stools of CD
and AP patients compared to HC. On the contrary, the total amount of SCFAs was
significantly lower in CRC patients compared to HC (P = 0.044) and CD (P = 0.005)
(Table 6). In detail, CRC patients showed lower concentration of acetic acid compared
to CD patients and HC (P < 0.001). Since the previous results may be influenced by
the  total  amount  of  SCFAs’  concentration  level,  we  have  repeated  the  same
comparisons on the SCFAs’ percentage compositions: HC and CD shared a similar
profile, which was different in comparison to CRC and AP patients (Figure 1).

In detail, the percentage of each SCFA did not differ between HC and CD (Figure
2), but changed in CRC and AP patients compared to HC. In particular, HC displayed
a higher percentage of acetic acid (P value = 1.3 × 10-6) and a lower amount of butyric
(P value = 0.02192), isobutyric (P value = 7.4 × 10-5), isovaleric (P value = 0.00012) and
valeric (P value = 0.00014) acids compared to CRC patients. Regarding AP patients,
they  showed  a  lower  abundance  of  acetic  acid  (P  value  =  0.00062)  and  higher
percentages of propionic (P value = 0.00433) and isovaleric (P value = 0.00433) acids
compared to HC. Moreover, AP showed higher levels of propionic acid (P value =
0.03251) and a lower level of isobutyric acid (P  value = 0.00427) in comparison to
CRC.

Characterization of state specific SCFAs’ profile
The PLS-DA model performed on the SCFAs’ percentages matrix, confirmed that an
almost perfect  overlap of HC and CD patients groups exists,  while CRC and AP
patients showed a separation from the other two groups and were not coinciding
(Figure 3). Anyway, along the first component, two CRC patients and two AP patients
were included in the HC and CD patients groups.

Dirichlet’s regression
Since the confounding effects of age and sex differences between groups of patients,
cannot be excluded, the covariates of sex, age and status were tested using Dirichlet
regression.The Dirichlet regression was estimated with sex, age and unhealthy status
as covariates and the assigned baseline was the healthy status. As reported in Table 7,
in the new model the difference between HC and CD patients wasn’t relevant in any
regression on SCFAs. The coefficient of CRC and AP were statistically significant (or
close to 0.05 significance level) for acetic, propionic and butyric acids. The covariates
effect in a Dirichlet regression can be investigated looking at the plots of the SCFAs’
percentages expected values (Figure 4). The Dirichlet’s model shows that HC and CD
patients have a higher percentage of acetic acid and lower levels of the other SCFAs
than  CRC  and  AP  patients.  The  effect  of  age  on  the  levels  of  the  acetic  acid  is
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Table 3  Compositions and concentrations of standard and internal standards mixtures

Mixt-
ure Acetic ac. (µg/mL) Propionic ac.

(µg/mL)
Butyric ac.
(µg/mL) isoButyric ac. (µg/mL) Valeric ac.

(µg/mL) isoValeric ac. (µg/mL)

Mix 1 10000 5000 5000 1000 1000 1000

Mix 2 1000 500 500 100 100 100

[2H3]Acetic
(µg/mL)

[2H3]Propionic
(µg/mL)

[2H7]iso-Butyric
(µg/mL)

[2H9]iso-Valeric
(µg/mL)

ISTDs 1000 500 100 100

ISTDs: Internal standards

statistically significant, although the expected values curves have slopes of small
magnitude. In particular, with the increasing age of CRC, AP, CD patients and HC
occurs  a  reduction  of  acetic,  propionic  and valeric  acids  percentages,  while  the
butyric, isobutyric and isovaleric acids percentages increase.

DISCUSSION
In this study, we evaluated the fecal SCFAs’ profiles (in term of quality and quantity)
of patients with different intestinal diseases, namely colorectal cancer, adenoma and
celiac disease, using gas-chromatography coupled with mass spectrometry. The study
of SCFAs by GC-MS could represent an innovative way to discover non-invasive
biomarkers of a disorder. Changing of the metabolic content of various human body
fluids has been yet proposed for the diagnosis of different pathological conditions and
for shedding light on their pathogenic mechanisms. Indeed, alteration of the fecal
metabolites patterns in patients with different pathologies, such as inflammatory
bowel diseases, preterm infants with necrotising enterocolitis, children with celiac
disease, and obese patients with non-alcoholic fatty liver disease has been previously
demonstrated[27-30]. Generally, SCFAs are reduced in dysbiotic conditions[31]. In fact,
changes in the microbiota of patients with various disease have been linked with
decreased bacterial diversity and fecal quantities of SCFAs (for example for the loss of
butyrogenic gut bacteria such as F. prausnitzii)[32-34].

In recent years, various strategies have been applied to detect SCFAs in biological
specimens, enclosing high performance liquid chromatography[35], electrochemical
detection[36], mass spectrometry (MS)[37], gas chromatography (GC)[38] and capillary
electrophoresis[39]. However, owing to SCFAs’ chemical properties (i.e., volatility) and
the advantages of the detectors that can be associated to these instruments, the GC-
MS is the most frequently used analytical technique. Moreover, the GC-MS system
take the advantages of the isotopic dilution method in quantitative evaluation. In fact,
this method employs an isotopologue of the analyte as internal standard, providing
specificity, accuracy and robustness to the obtained quantitative data.

Our data documented a significant reduction of total SCFAs in stool samples of
CRC patients compared with HC. In addition, the total amount of SCFAs in adenoma
patients  tend to be lower compared to healthy subjects  even if  not  significantly.
SCFAs, generated by the intestinal microbiota from the metabolism of undigested
carbohydrates, are fundamental in keeping up the colonic mucosa wellbeing. An
alteration in the fecal SCFAs’ profile may be the result of gut microbiota dysbiosis,
inflammatory  changes  or  both.  The  literature  data  regarding  the  fecal  SCFAs’
composition in patients with the above mentioned gut diseases (CRC, AP) show a
large  discrepancy in  the  results[36-39].  In  line  with  our  data,  various  studies  have
demonstrated a decreased production of SCFAs in CRC patients compared to non-
CRC[40,41]. But others authors have observed a higher amount of fecal acetic acid and a
lower  amount  of  fecal  butyric  acid  in  CRC  patients  compared  to  healthy
individuals[42,43]. Butyric acid, produced by anaerobic bacterial fermentation of dietary
fiber,  has  important  homeostatic  functions  in  human  colon  and  it  has  been
demonstrated, both in vivo and in vitro, to be important in the prevention of colon
cancer[44-46].  Some reasons of  the  anticancer  effect  include its  impact  on genetic/
epigenetic modulation, signaling pathways and immune response[44,46]. For example,
butyric  acid  is  able  to  increase  the  Tregs’  number,  resulting  in  decreased
inflammation[47].

Although our study confirmed the reduction of the SCFAs amount in CRC, we
have shown a lower relative concentration of fecal acetic acid and higher relative
concentrations of butyric, isobutyric, valeric and isovaleric acids in CRC patients
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Table 4  Concentrations of each analyte in the calibration levels

Calibration
levels Acetic ac. (g/mL) Propionic ac.

(g/mL) Butyric ac. (g/mL) isoButyric ac.
(g/mL) Valeric ac. (g/mL) isoValeric ac.

(g/mL)

1 10.0 5.0 5.0 1.0 1.0 1.0

2 20.0 12.5 12.5 2.5 2.5 2.5

3 50.0 25.0 25.0 5.0 5.0 5.0

4 100.0 50.0 50.0 10.0 10.0 10.0

5 250.0 125.0 125.0 25.0 25.0 25.0

compared  to  healthy  controls.  This  is  interesting  because,  even  if  a  butyrate
insufficiency has been usually implicated in cancer development[48,49], butyrate is also
able to stimulate the proliferation of  colon epithelial  cells,  and depending on its
concentration, lead to cancer development, suggesting a double-edged role (“butyrate
paradox”)[50].  Moreover, its ability to suppress inflammation by promoting Tregs’
differentation, could be no longer protective in the end stages of cancer, since the
Tregs can be co-opted by tumors assuming a pro tumorigenic role and so, favoring the
tumor immunoescape[51].  Interestingly, the higher amount of butyric acid in CRC
patients could depend also by the fact that cancerous colonocytes prefer the glucose
utilization as primary energy source instead of oxidize butyrate and recently, Anna
Han  and  coll.  have  demonstrated  that  butyrate  decreased  its  own  oxidation  in
cancerous colonocytes[52].

According to our findings, a recent study demonstrated that patients with CRC and
adenoma have lower concentration of total organic acids and acetic acid, and that
adenoma patients  show a  SCFAs’  profile  intermediate  to  the  CRC and the  non-
adenoma subjects[41]. We have demonstrated that the total amount and the relative
percentage  of  all  the  examined SCFAs (with  the  exception of  propionic  acid)  in
adenoma group is intermediate to the CRC patients and HC. Moreover, the PLS-DA
model performed on the SCFAs’ percentages matrix, confirmed that CRC and AP
patients  showed  a  distinct  separation  from  the  healthy  subjects  and  were  not
coinciding. Of note, the existence of a distinct and intermediate SCFAs’ profile in AP
compared to CRC and HC sustain the theory that the CRC develops in an intestinal
environment that has already changed instead of being the tumor progression that
modifies the local environment[43].  Besides, the presence of a distinct fecal SCFAs’
profile  both  in  AP  and  CRC  patients,  make  the  analysis  of  the  fecal  SCFAs
composition a reliable biomarker for the disease detection.

Otherwise, the total amount of SCFAs in CD patients tend to be higher compared to
HC,  even  not  significantly.  Accordingly,  previous  works  found  that  SCFAs  in
untreated and trated CD patients  were more copious than in healthy adults[53,54].
Anyway, our study did not find a significant separation between CD patients and
healthy controls, with no compositional differences in the levels of SCFAs. This is in
contrast  with  previous  data  that  showed  a  different  SCFAs’  profile  in  celiac
patients[2,55], even if those findings often regard pediatric patients, with a significant
difference in age compared to our CD group[55]. After all, as we demonstrated, the age
significantly affects the composition of SCFAs, thus explaining the contrasting results
present in literature. Even so, the Dirichlet regression model clearly demonstrated
that  differences  in  state  specific  SCFAs’  profiles  stand  after  accounting  for  the
potential  confounding  effect  of  sex  and  age;  particularly,  we  observed  strong
differences of  the concentration levels  of  acetic  acid,  and relevant  differences of
concentration levels of propionic and butyric acid.

In conclusion, the small sample size of study does not allow us to reach definitive
conclusions  and our  findings  remain  exploratory  but  we  has  clearly  shown the
existence of a fecal SCFAs fingerprint in patients with CRC, with a clear separation
(with significant qualitative and quantitative differences) in the SCFAs’ composition
compared to healthy control. In addition, AP patients have showed a characteristic
SCFAs’ profile, distinguishable from CRC and healthy subjects. On the contrary, no
separation between celiac patients and healthy controls was obtained regarding the
SCFAs’ composition profile. Finally, the fecal SCFAs’ analysis through GC-MS could
be considered as noninvasive and reliable diagnostic marker for the detection of
adenoma and CRC patients.
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Table 5  Linear regressions data, R-squared and limit of detection values obtained for each analyte

Compound Slope PAR (µg/mL) Intercept PAR (µg/mL) R2 LOD SDY-I (µg/mL)

Acetic 0.027 - 0.025 0.996 11.3

Propionic 0.088 - 0.142 0.996 5.9

Butyric 0.213 - 0.552 0.993 7.9

Isobutyric 0.357 - 0.153 0.994 1.4

Valeric 0.406 - 0.297 0.993 1.6

Isovaleric 0.459 - 0.327 0.991 1.7

PAR: Peak area ratios; R2: r-squared; LOD: Limit of detection; SDY-I: Standard deviation of y-intercepts.

Table 6  Median ± standard deviation of each short chain fatty acid’ concentration (μmol/g) in patients and healthy controls

SCFA (μmol/g) HC CD CRC AP
Intergroup comparisons (P value)

HC/CD HC/CRC HC/AP CD/CRC CD/AP CRC/AP

Acetic acid 30.9 ± 14.4 37.6 ± 17.9 15.4 ± 7.2 19.0 ± 17.2 0.254 < 0.001 0.0567 < 0.0001 0.031 0.772

Propionic acid 7.6 ± 4.3 8.3 ± 4.4 5.5 ± 2.9 7.8 ± 7.1 0.615 0.230 0.559 0.116 0.357 0.809

Butyric acid 7.1 ± 5.9 8.0 ± 5.8 6.7 ± 5.2 9.0 ± 12.4 0.401 0.756 0.636 0.502 0.357 0.629

isoButyric acid 0.7 ± 0.3 1.2 ± 0.6 1.4 ± 1.1 0.9 ± 0.9 0.008 0.116 0.889 0.831 0.357 0.187

isoValeric acid 0.5 ± 0.2 0.7 ± 0.6 1.3 ± 1.1 2.0 ± 3.9 0.273 0.032 0.802 0.115 0.590 0.460

Valeric acid 0.9 ± 0.7 1.2 ± 0.7 1.4 ± 1.0 1.1 ± 1.1 0.128 0.151 1.00 0.635 0.522 0.356

Total 47.7 ± 22.9 56.8 ± 27.4 32.5 ± 17.5 39.8 ± 39.3 0.380 0.044 0.187 0.005 0.084 0.846

P values assessed with Wilcoxon test. The intergroup comparisons were assessed using the Wilcoxon test. SCFA: Short chian fatty acid; HC: Healthy
control; CD: Celiac disease; AP: Adenomatous polyposis; CRC: Colorectal cancer.

Table 7 P values of the Wald test conducted on the Dirichlet regression coefficients

Acetic ac. Propioni ac. Butyric ac. Isobutyric ac. Isovaleric ac. Valeric ac.

HC (Intercept) 5.56 × 10-12 4.29 × 10-5 0.00359 0.27547 0.09552 0.28869

State CD 0.145841 0.35339 0.12181 0.07597 0.16228 0.03966

State CRC 2.07 × 10-5 0.00536 0.00975 0.31373 0.42884 0.28591

State AP 0.000213 0.07797 0.06314 0.20993 0.79231 0.36639

Age 0.003016 0.92196 0.74284 0.38750 0.25510 0.19196

Sex 0.838224 0.01121 0.00118 0.00195 0.00213 0.00328

HC: Healthy control; CD: Celiac disease; AP: Adenomatous polyposis; CRC: Colorectal cancer.
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Figure 1

Figure 1  Barplot of relative abundances of fecal short chain fatty acids’ of healthy controls and celiac disease, colorectal cancer, adenomatous polyposis
patients.
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Figure 2

Figure 2  Representation of each short chain fatty acid percentage in celiac disease, colorectal cancer, adenomatous polyposis patients and healthy
controls. The differences between States were assessed using the Wilcoxon test. aP < 0.05 vs HC, bP < 0.01 vs HC, cP < 0.05 vs CRC and dP < 0.01 vs CRC.
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Figure 3

Figure 3  Partial Least Squares Discriminant Analysis scores plot. PLS-DA: Partial Least Squares Discriminant Analysis; HC: Healthy control; CD: Celiac disease;
CRC: Colorectal cancer; AP: Adenomatous polyposis.

WJG https://www.wjgnet.com September 28, 2019 Volume 25 Issue 36

Niccolai E et al. SCFA profiles in gut diseases

5553



Figure 4

Figure 4  Expected proportions from the dirichlet regression model (lines) vs short chain fatty acids’ observed values (points), color coded by state. HC:
Healthy control; CD: Celiac disease; CRC: Colorectal cancer; AP: Adenomatous polyposis.

ARTICLE HIGHLIGHTS
Research background
An alterated status of the gut microbiota is usually responsible for a reduction of short chain
fatty acids (SCFAs), the major metabolites produced by bacterial fermentation, that are essential
in maintaining gut homeostasis. Different studies have documented an alteration in SCFAs’
composition in various human pathologies, that may reflect a dysbiotic condition affecting the
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healthy status.

Research motivation
The SCFAs’ determination in stool samples could provide a faster, reliable and cheaper method
to highlight the presence of an intestinal dysbiosis. Anyway, the high heterogeneity of methods
used  for  their  determination  (i.e.,  gas  chromatography,  high  performance  liquid  chro-
matography, nuclear magnetic resonance, capillary electrophoresis) make difficult to compare
literature data and bringing out real differences in SCFAs’ profiles of various disorders. Indeed,
the use of a standardized protocol for their evaluation is essential to understand if the fecal
SCFAs signature could represent a potential biomarker in the clinical practice, for example for
the detection of different gut diseases.

Research objectives
The main objective of  this  study was to  compare the fecal  SCFAs’  profile  of  patients  with
adenomatous polyposis (AP), celiac disease (CD) and colorectal cancer (CRC) to healthy controls
(HC),  applying  the  same  protocols  and  analytical  conditions  gas  chromatography-mass
spectrometry (GC-MS) for their evaluation, in order to point out whether these pathologies
displayed a particular fecal SCFAs signature.

Research methods
In  this  cross-sectional  study,  we defined and compared the  SCFAs’  concentration in  fecal
samples of 44 patients with different gut diseases (19 with CRC, 9 with AP, 16 with CD) and 16
healthy controls. The SCFAs’ analysis were performed using a GC-MS method. Data analysis
was carried out using Wilcoxon rank-sum test to assess pairwise differences of SCFAs’ profiles,
partial least squares-discriminate analysis (PLS-DA) to determine the status membership based
on  distinct  SCFAs’  profiles,  and  Dirichlet  regression  to  determine  factors  influencing
concentration levels of SCFAs.

Research results
In our study, we have not observed any difference in the SCFAs’ amount and composition
between CD and healthy control. On the contrary, the total amount of SCFAs was significantly
lower  in  CRC patients  compared to  HC and CD.  Moreover,  the  percentage  of  each  SCFA
changed  in  CRC  and  AP  patients  compared  to  HC.  In  particular,  HC  displayed  a  higher
percentage of acetic acid and a lower amount of butyric, isobutyric, isovaleric and valeric acids
compared to CRC patients. Regarding AP patients, they showed a lower abundance of acetic
acid and higher percentages of propionic and isovaleric acids compared to HC. Moreover, the
PLS-DA model performed on the SCFAs’ percentages matrix,  confirmed that  CRC and AP
patients showed a distinct separation from the healthy subjects and were not coinciding. Overall
the small sample size of this study does not allow us to reach definitive conclusions, and our
findings remain exploratory.

Research conclusions
In this study we have analyzed, for the first  time, the fecal SCFAs’ profile of patients with
different gut diseases (AP, CD and CRC) and healthy subjects, applying the same protocols and
analytical conditions (GC-MS). Even if the small sample size of study does not allow us to reach
definitive conclusions, our findings shown the existence of a fecal SCFAs fingerprint in patients
with CRC, with a clear separation (with significant qualitative and quantitative differences) in
the SCFAs’ composition, compared to healthy control. In addition, AP patients have showed a
characteristic SCFAs’ profile, distinguishable from CRC and healthy subjects. On the contrary,
no separation between celiac patients and healthy controls was obtained regarding the SCFAs’
composition profile. If confirmed in larger cohorts of patients, we think that the fecal SCFAs’
analysis through GC-MS could be considered as a noninvasive and reliable diagnostic marker for
the detection of adenoma and CRC patients.

Research perspectives
By comparing the fecal SCFAs signatures of different gut disease using the same analytical
method, we realized the clinical and diagnostic potential of our preliminary result, suggesting
the use of SCFAs as potential biomarker in adenomatous polyposis and colorectal cancer. In our
future research we will enlarge the sample size of this study to confirm the specific fecal SCFAs
fingerprints in CRC and AP, in order to develop a non-invasive diagnostic protocol to be used in
gastrointestinal  clinical  practice.  The  best  method  for  future  research  is  to  continue  the
comparison of  fecal  SCFA profile  in  cohorts  of  patients  with different  diseases,  where the
microbiota has been shown to be involved. Examining a statistically significant number of
patients with the same protocol used in this study, will be crucial to reach definitive conclusions.
If our result will be confirmed, the fecal SCFAs’ analysis through GC-MS could be proposed as
an innovative, noninvasive and reliable diagnostic method for the detection of adenoma and
CRC patients and, in future, for other pathologies.
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