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ABSTRACT 

The Cypress Hills Formation and Flaxville gravel are laterally extensive deposits of gravel and 
conglomerate. They cap surficial erosion surfaces in southern Alberta and SasKatchewan, Canada, and 
northern Montana, U.S.A. As detrital sediments, their probable origin is inextricably linked with the question 
of transport. Most of the clasts are exotic, with the probable source areas in the Rocky Mountains of 
Montana or Idaho. A variety of potential sediment transport mechanisms is examined and paleohydrologic 
principles applied to evaluate the probable depositional environment. The probable depositional 
environment is of great significance in evaluating the diluviallpostdiluvial boundary in the northern Great 
Plains. 

INTRODUCTION 

The Cypress Hills are erosional remnants of an extenSive, planar, surficial erosion surface located in 
southeastern Alberta and southwestern Saskatchewan, Canada. The Cypress Hills plateau forms the 
highest topography between the Rocky Mountains and Labrador [SO, p.80). The Flaxville Plain is a remnant 
of a similar erosion surface located approximately 100 km south of the Cypress Hills with its western edge 
approximately 100m lower than the eastern edge of the Cypress Hills. (See Figure 1 in Oard and Klevberg 
[40].) The Cypress Hills and Flaxville Plain extend approximately 500 km from west to east. Both erosion 
surfaces are capped with coarse gravel composed of well-rounded pebbles, cobbles, and boulders. With 
minor exceptions, the lithologies are exotic [27, 62, 66). Some of the gravel in the Cypress Hills has been 
cemented to conglomerate with calcium carbonate. This rock unit averages 40 meters thick and is known 
as the Cypress Hills Formation [66, p.143). Interbeds of cross-bedded sand and basal pockets of poorly 
sorted, unstratified sediments are present in the eastern Cypress Hills Formation and Flaxville gravel. Lime 
cement is present in some sand interbeds in the Flaxville gravel, forming a weak sandstone. Both the 
Cypress Hills Formation and Flaxville gravel are underlain primarily by silts, clays and weakly cemented 
sandstones [49). Additional background information on general geology, geomorphology, paleontology and 
stratigraphy of the Cypress Hills and Flaxville Plain can be found elsewhere in this volume [40). 

The origin of the Cypress Hills Formation and Flaxville gravel has been a conundrum for uniformitarians for 
decades. The following features are difficult to explain from a uniformitarian perspective: 

The presence of laterally extensive, planar, surficial erosion surfaces, exceptionally flat, which 
truncate subjacent strata; 

The presence of laterally extensive sheets of coarse gravel that mantle the erosion surfaces; and, 

Exotic clasts apparently transported 300 to 700 km over slopes of less than 0.1 degrees. 

Typical erosion processes produce noticeable relief due to differential weathering, but this is not observed 
in the Cypress Hills or Flaxville Plain. Could the gravel itself be the resistant caprock? This question is 
linked to the question of whether a hiatus existed between erosion and deposition, a conventional way of 
thinking in the field of geology. This may be a hindrance to understanding probable genetic processes. 
Two clues to the relation between the Cypress Hills and Flaxville erosion surfaces and the superjacent 
gravel deposits are the nature of the erosion surfaces and the presence of local lithologies throughout the 
gravels. The erosion surfaces are addressed in Oard and Klevberg [40). Incorporation of concretions and 
petrified wood from the subjacent Frenchman/Ravenscrag Formations into the gravel indicates that the 
gravel that caps these erosion surfaces was itself the corrasive aqent. Because the predominant lithologies 
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are exotic, genetic interpretations of the Cypress Hills Formation and Flaxville gravel must be bound to the 
question of sediment transport. The problem of the origin of these deposits is a problem in paleohydrology. 

POSSIBLE SEDIMENT TRANSPORT MECHANISMS 

Depositional Characteristics 

Both the Cypress Hills and Flaxville gravels are composed of coarse, poorly-sorted gravel consisting of well­
rounded pebbles, cobbles, and boulders, principally of lithologies resistant to abrasion, which exhibit 
abundant percussion marks (Figure 1). The iron oxide patina is also uniform throughout the gravels, yet 
apparently absent from subjacent strata. Fines are virtually absent from the deposits, yet they predominate 
in the weakly lithified subjacent sediments. Much of the gravel observed was clast supported with varying 
degrees of imbrication. Where conglomerate was observed, some of it was matrix supported. Stratification 
and cross-bedding are evident in sand interbeds which become more abundant in the eastern Cypress Hills 
[66; 27]. Additional information on the characteristics of the deposits is found in Oard and Klevberg [40]. 

Sediment Transport Mechanisms 

Myriad sediment transport 
mechanisms have been 
identified, and work by 
sedimentologists in recent 
decades has provided an 
increasing recognition of 
the depOSitional 
characteristics of many of 
these processes. It is 
important to note that very 
different processes can 
often produce similar 
depositional features, and 
many sediment transport 
processes grade into one 
another [18] . 
Nonetheless, these 
processes can be 
categorized in a general 
way to enhance our 
understanding of the 
transport mechanisms 
and depositional features 

Figure 1 Close-up of quartzite cobble showing percussion marks. 
Knife blade is 6.4 cm long. 

that result. A summary of sediment transport mechanisms is presented in Table 1. 

Analysis of Possible Sediment Transport Mechanisms 

Coarse sediment transport does not occur with air as the working fluid due to the relatively low density and 
viscosity of air. The exception is volcanic eruptions, where pyroclastic surges and similar processes can 
result in rapid deposition of clasts from sand size to boulders. These deposits differ markedly from the 
Cypress Hills and Flaxville gravels in lithology, texture, lateral extent, and spatial configuration. 

Coarse sediment transport by subaqueous mechanisms occurs readily by a variety of processes. Gravel 
is typically transported by traction currents (e.g. rivers, ocean currents) as bedload. Density currents, in 
particular turbidity currents, may also transport coarse sediments great distances [39]. Coarse sediments 
may also be transported as suspended load by very energetic currents [3, 26, 61]. Subaqueous 
depositional processes appear feasible for the transport of the gravels and are analyzed in greater detail 
below. 
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Table 1 
SUMMARY OF SEDIMENT TRANSPORT MECHANISMS 

FLUIDITRANSPORT TRANSPORT 
MECHANISM PROCESS TYPE DEPOSITIONAL FEATURES 

Air'! Traction' Predominantly high-angle 
Subaerial cross-bedded sands (dunes), 

well-sorted, few large clasts 

DensityS Pyroclastics; generally volcanic 
sands, finely stratified to 
unstratified (Nuees 
ardentes!lahar deposits) 

Suspensions Loess (open-structured silt) 

Water'll Traction Predominantly low- to high-
Subaqueous angle cross-bedded sands (and 

coarser sediments), including 
ripples, dunes, plane beds, and 
antidunes (determined by flow 
regime); sole markings; vary 
from poorly to well sorted, 
clasts angular to well rounded; 
often erosional base and 
transitional top 

Density Turbidites; graded sands (may 
include gravels), silts and 
clays; flysch; ungraded beds 
(diamict) and planar 
stratification; sole markings 

Suspension Load-casts (sands); nepheloid 
clays 

Subaerial Gravityl Slump, toppling failure, Generally unstratified, poorly 
Mass Wasting wedge failure, sorted deposits; can range from 

rockslide, rock glacier, clay to boulder size; may be 
mudflow, grain flow, clast-supported; may exhibit 
debris flow, reverse grading (diamict) 
hyperconcentrated 
flow, earthflow, creep, 
solifluction 

Subaqueous Gravity! Submarine landslides Generally unstratified, poorly 
Mass Wasting sorted deposits; can range from 

clay to boulder size; slip on one 
or more planes; usually has 
hummocky surface (diamict) 

Ice3! Beneath, in or upon ice Generally unstratified, poorly· 
Glacial (till and moraine) sorted deposits; can range from 

clay to boulder size (diamict) 
. . 

'Subaenal transport and depOSition, including steam and volcanic gases . 
2Subaqueous transport and deposition, including hyperpycnal flows. 

REFERENCES 

6, 14, 47, 54, 
60 

6,21,31,32, 
35, 41,47,54, 
64 

34, 42, 51, 52, 
53,54,58,60 

17,54,60 

22, 23, 24, 54, 
59,60 

3Glacial transport and deposition; see subaqueous for glaciofluvial and glaciomarine. 
'Particles supported by bed but moved along bed by current. 
sDriving force provided by difference in density between sediment-laden fluid and surrounding fluid. 
6Particles supported by fluid and transported within the moving mass of fluid. 
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Subaerial mass wasting mechanisms have been observed to transport coarse sediments. Subaerial 
mass wasting is expressed in a wide variety of processes, from relatively rigid slumps and toppling 
failures, to relatively fluid debris flows and mudslides. In nature, some of these processes grade into 
one another. Although debris flows and hyperconcentrated flows have long been recognized [28, p.386]. 
the importance of these processes has been more widely acknowledged in recent decades due to 
increased observation and their often devastating impact on urban developments. Debris flow processes 
have even been invoked to explain some of the surface features observed on Mars [10]. 

Subaqueous mass wasting generally occurs as submarine landslides. These may resemble subaerial 
mass wasting processes or transition to turbidity currents. Mass wasting processes, both subaerial and 
subaqueous, can produce many of the features observed in the Cypress Hills and Flaxville gravels, and 
are therefore analyzed in greater detail below. 

Ice, as a very viscous fluid, is capable of supporting very coarse sediments. Deposition of sediments 
by glaciers has been observed in historic times. These deposits (till, moraine, etc.) tend to be 
unstratified; poorly sorted (often rich in fines); with angular, often striated clasts; and with an irregular 
surface. By contrast, the Cypress Hills (with the exception of the eastern part) and Flaxville Plain are 
characterized by poorly-sorted, well-rounded gravel, deficient in fines, with stratified interbeds and 
relatively flat bounding surfaces devoid of glacial topographic features. Geologists generally agree that 
most of the Cypress Hills and Flaxville Plain were not glaciated [9, 29). Although catastrophic glacial 
melting or outburst flooding Ookulhlaup) might be invoked as possible transport processes, they are 
fluvial in nature and are therefore addressed in the subaqueous process evaluation which follows. 

DEPOSITIONAL CHARACTERISTICS OF SEDIMENT TRANSPORT PROCESSES 

Sediment transport processes can be very complex, and often more than one process can result in a 
given depositional characteristic. For example, turbidity currents, debris flows and glacial processes can 
produce hummocky terrain, outsized clasts in a fine-grained matrix (diamict), striated clasts, and 
unstratified deposits [6; 31; 32; 36; 39; 54; 55; 64, pp.40,41]. Other criteria would be needed to 
distinguish these processes. Traction currents can produce plane-bedded sands in both lower and 
upper flow regimes, though the flow intensities are very different [21, p.139). Criteria other than the 
attribute of plane bedding would be necessary to distinguish between lower and upper flow regimes. 
Matrix or clast support may depend on the relative importance of current winnowing, sediment load, and 
the effect of fluctuations in intensity on the inequality of threshold bed shear stress for deposition and 
erosion of fine-grained sediments. In addition to the sediment transport and deposition process, the 
characteristics of a sediment body also depend on the characteristics of the source sediment. More than 
one process may act on detrital grains between the time of erosion and deposition. The depositional 
features summarized in Table 1 are presented as a general guide to typical transport processes and 
their effects. Each sediment body should be examined carefully in the field to obtain as many data as 
practicable, recognizing that a certain conclusion as to genetic process is not possible scientifically. 
Genetic speculation must be guided by the degree of probability according to each possible depositional 
process. 

Possible depositional processes identified above are summarized in Table 2. For comparison, attributes 
of the Cypress Hills Formation and Flaxville gravel are included. The presentation in Table 2 reflects 
some of the variety of effects produced by particular processes as well as differences within the Cypress 
Hills and Flaxville deposits, viz. poorly developed stratification and grading in much of the gravel and 
matrix support limited to portions of the lithified gravel. 

As indicated in Table 2, the best correspondence between typical depositional effects of sediment 
transport processes and attributes of the Cypress Hills and Flaxville gravels is found with the 
fluvial/traction current, though turbidity current and fluidized sedimenUhyperconcentrated flow processes 
also show a significant degree of correspondence. The worst correspondence is found with falls/slides. 
This is expected, as rockfalls, landslides, and similar mass wasting processes are localized, largely 
mechanical failures. They are included in the table for completeness and as a control against which to 
evaluate the other processes. 
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Table 2 
DEPOSITIONAL CHARACTERISTICS OF SEDIMENT TRANSPORT PROCESSES 

TYPE OF FLOW ST' GR2 SO' IM4 CBs RO· PM7 Cl" MX' OF'· REFERENCES 

FluvialfTraction N 2,6,13, 21,54, 
Current 64 

Turbidity Current N/R \. 8, 16, 17, 18, 19, 

U 
31,32,35,37, 
43,46,55 

Mudflow! R 12, 13, 19, 20, 
Debris Flow 

U 
? 43,46,58 

Fluidized Sediment N/R 
....• 

5, 12, 13, 19,20, 
Flowl ? 42,43,46,58 

Hyperconcentrated 
Flow 

U 

Grain Flow! 12,13, 19, 20, 
Debris Flow ? 34,43,46,58 

Falls!Slides 14 

Cypress Hills! \ 27,66 
Flaxville Gravels 

(observed) 

Shading Indicates flow type produces deposits exhlblling given attnbute; partial shading Indicates flow 
process sometimes produces given attribute depending on other variables. 

, Stratification 6Rounding of clasts 
2Grading (Normal, Reverse, Ungraded) 
3Sorting 

7Percussion marks (speculative) 
·Clast-supported fabric 
9Matrix-supported fabric 
'ODownstream fining 

41mbrication 
sCross-bedding 

Stratification 

Where a paucity of sand occurs, the gravel deposits are generally massive, though poorly developed 
stratification is evident even in the western Cypress Hills (Figure 2; see also Figure 3 in (40)). 
Stratification develops further with sand interbeds in the eastern Cypress Hills and Flaxville gravel. 
Stratification is typical of fluvial/traction deposits [6, p.118; 54, pp.172-177). Turbidities typically produce 
sharp, erosional bases and stratified (though locally massive) deposits [6, pp.122,123; 54, pp. 178-185). 
Debris flows generally lack stratification; though multiple flows could conceivably produce distinct beds 
[6, p.161), this has not observed (34). Hyperconcentrated flows (if defined as quasi-Newtonian) can 
produce weak stratification [58). 

Grading 

Grading is poorly developed in 
the Cypress Hills Formation, 
especially in the western part, 
but becomes more evident to 
the east (27). Compound 
normal grading was observed 
by the authors at the 
Conglomerate Cliffs in the 
central Cypress Hills (see 
Figure 3 in (40)). Normal 
grading is typical of traction 
deposits, though reverse 
grading and massive deposits 
are also observed [54, p.177). 
Normal grading is also typical 
of turbidites [6, p.122), though 
reverse grading occurs in beds 
interpreted as proximal 
turbidites (31). This is not true 
of debris flows, as stated by 

Figure 2 Horseshoe Canyon, an amphitheater on 
the northwest flank of the Cypress Hills. Slope exposes 
ca. 30 m of coarse gravel and carbonate-cemented 
conglomerate. 



Pierson & Scott [42, p.1511]: "In Newtonian mixtures, and in non-Newtonian mixtures with very low 
shear strength, any sand and gravel particles present are free to settle out of suspension, although fall 
velocities will be decreased. . .. Such mixtures can be termed nonhomogeneous ... because the fluid 
and granular phases are free to act independently (at least partially) of each other while flowing. 
Suspensions in the volume concentration range of 20-60% . ., termed 'hyperconcentrated' . 
generally show this behavior." Grain flow or debris flow deposits are typically ungraded [6, p.163]. 

Sorting 

Well-sorted sediments imply hydraulic action (fluvial/traction current transport process), though lack of 
sorting does not disprove a fluvial/traction process. ''The correlation is best documented for the fine to 
coarse sand sizes, with sorting improving (decrease of standard deviation) toward the finer sand sizes 

Sediments coarser than this are moved by currents that also carry and deposit some finer 
materials" [6, pp.1 04, 1 06]. Poorly sorted materials typify turbidites [54, p.173]. Diamicts, sediments 
composed of large clasts in a fine-grained matrix, are formed both subaerially and subaqueously by 
mudflows and debris flows [6, p.161; 21, p.188; 54, p.174]. Sorting is unlikely to develop in the laminar 
flow within a debris flow [6, p.161]. 

Imbrication 

Imbrication implies deposition by a fluvial/traction current process. "Imbrication is well developed, by 
pebbles of appropriate shape, in tractional deposits that are sufficiently well sorted to permit the particles 
to come into contact with each other, i.e. in deposits where the larger, platy pebbles are not separated 
from each other by a 'matrix' of smaller particles" [6, p.108]. Where clasts have been transported in 
suspension by turbidity currents or debris flow processes, imbrication would not be expected. However, 
imbrication could occur in turbidites if bedload transport of larger clasts occurred after they dropped out 
of suspension. Although imbrication is not typical of debris flow or hyperconcentrated flow, a rough 
alignment of a-axes parallel with the flow direction (roughly 90° from imbrication) was observed in a 
hyperconcentrated flow on Mount St. Helens, Washington, U.S.A. [58]. 

Cross-Bedding 

Cross-bedding is pervasive in traction deposits and turbidites [6, pp.117 -132], though it is replaced by 
planar bedding at the transition to upper flow regime and at very low current speeds [21, pp.138-146; 
54, pp.174-185]. It is not observed in hyperconcentrated flows or debris flows [6, p.161; 21, p.188; 58]. 

Rounding 

Several weathering processes contribute rounding of clasts, one of the most important being abrasion 
in fluvial transport [6, pp.68-70]. Presumably, abrasion and rounding would also occur in turbidity 
currents. Rounded clasts have been observed in deposits formed from hyperconcentrated flows [42]. 
However, rounding is not diagnostic of hyperconcentrated flows. "Roundness data show that at least 
69 percent of the -3 to -5 c!> (8-32 mm) size range in the main body of the first lahar of Pine Creek age 
originated as eroded stream alluvium. A similarly high degree of rounding is present in the 'ball-bearing 
bed', but some of this rounding reflects grinding action during lahar transport"[51 , p. 39]. Fluid debris 
flows are also typified by flow not conducive to clast rounding. Hampton states, "A rigid plug of some 
thickness always exists in a debris flow" [18, p.842]. Clast rounding may therefore result from abrasion 
in transport or weathering processes preceding transport; however, it is generally indicative of turbulent 
fluid transport. 

Percussion Marks 

Intuitively, percussion marks indicate very violent collisions between clasts. Approximately half of the 
cobbles observed in the Cypress Hills Formation and Flaxville gravel display percussion marks. A 
paucity of research on this topic prevents a detailed analysis of percussion marks, but they evidently 
imply turbulent transport. Turbulent transport is expected from a fluvial/traction process or the basal 
portion of a turbidity current. It is unlikely with a fluidized mass wasting (debris flow) process: ''Thus it 
appears that the Reynolds number is quite low (of the order of 10 to 100) so that it is probable that the 
flow is indeed laminar in nature"[6, p.161]. An exception may be hyperconcentrated or grain flows in 
which dispersive pressure (particle interaction) is the prinCipal clast support mechanism. 

Clast-Supported Fabric 

Clast-supported fabric may be generated by a variety of processes. In fluvial/traction current transport, 
clast support may be indicative of current competence or winnowing effects. Dense turbidity currents 
may produce clast-supported gravel or conglomerate, often reversely graded [31]. Scott et al [53, p.5) 
state: "Both cohesive and noncohesive debris flows can leave behind clast-supported whaleback bars 
at sites of rapid energy loss." Speaking of hyperconcentrated flows, they continue [53, p. 9]: "The most 
obvious feature that differentiates these deposits from debris flow deposits is their undispersed, entirely 
clast-supported texture." Clast-supported texture may occur in all of these transport processes when 
the source area is well-sorted sediment. 366 



Matrix-Supported Fabric 

Matrix support is not typical of traction deposits [54, p.104). though matrix may be deposited with coarse 
sediments, resulting in poorly sorted deposits [6, pp.1 04, 1 06]. Matrix support may also reflect sediment 
supply. Matrix support is typical of certain facies in turbidites [6, 31, 32, 35, 46, 54]. It is also typical of 
thick debris flows, but not hyperconcentrated flows, as observed by Pierson & Scott [42, p.1513]: "An 
increase of 3-4% [of water] by weight can dilute the slurry to the pOint where it cannot hold gravel-size 
particles in suspension. The lahar clearly flowed easily, and the unsorted, nonstra·tified deposits indicate 
that gravel was held in suspension." 

Matrix support of three types is observed in the subject deposits. Lime-cemented conglomerate of the 
Cypress Hills Formation is locally matrix-supported but appears fluvial in origin [40]. Deposits capping 
ridges east of Glacier National Park, U.S.A., (see Figure 1 in [40]), equated with the Flaxville surface by 
Alden [1] resemble debris flow deposits. Leckie and Cheel [27, p.1924] interpret the matrix-supported 
basal deposits of the eastern Cypress Hills Formation as debris flows based on lack of stratification, 
outsized clasts, and "disorganized" fabric, as well as fossil content. They interpret these as bank 
collapse deposits, noting the lack of conditions, such as steep slopes (high initial potential energy), 
generally required for debris flow genesis, and the localized lateral extent of the deposits. If they truly 
mean disorganized rather than unorganized, then vestiges of the organization (stratification) must be 
present. Since they assert that these basal deposits are intimately associated with turbulent deposits, 
the latter may be the case, implying fluvial genesis of the basal deposits. Lack of fossil content in the 
coarse, ''turbulent'' superjacent sediments may have resulted from highly energetic, abrasive sediment 
transport conditions. 

Downstream Fining 

Downstream fining is typical of traction currents [2; 54, p.174] and turbidity currents [32]. It is not 
typically observed in viscous debris flows, where most of the sediment is transported as a relatively rigid 
plug [18, p.842]. More fluid debris flows may produce complex spatial particle size distributions: 
"Previous sections point to two key phenomena that characterize unsteady, nonuniform debris flow 
motion: (1) Fluid pressures greater than hydrostatic pressures exist in debris flows and can enhance 
flow efficiency, but cannot exist during steady, uniform motion. (2) Debris flows move as a surge or 
series of surges, in which coarse-grained heads that lack high fluid pressure restrict the downslope 
motion offiner-grained debris that may be nearly liquified by high fluid pressure. A coherent theory 
that predicts the coupled evolution of these phenomena is currently unavailable"[lverson, p.277]. 
Pierson & Scott [42, p.1513] concur: "Dense, non-Newtonian slurries flowing in open channels may 
exhibit characteristics that are quite different from normal streamflow: (1) a steep, lobate snout at the 
flow front, commonly containing a high concentration of boulders; (2) lateral levees composed of the 
coarsest particles available; (3) a tendency to flow in pulses or surges; (4) a tendency for the coarsest 
particles in the mixture to be segregated toward the surface and the center of the flow; and (5) a 
tendency for shear to be concentrated at flow boundaries and for rigid plugs to form toward the center 
of the flow." 

ENERGY CONSTRAINTS 

An additional means of evaluating the probability of possible genetic processes is an energy analysis. 
The minimum work required to transport the minimum volume of observed sediment the minimum 
distance must be less than minimum initial available energy. The work done on the system is equal to 
the product of the resisting force (or stress on a unit width basis) and transport distance. Initial energy 
may be provided by a combination of potential and kinetic energy. Potential energy would have been 
available to all transport processes following creation of the Cypress Hills and Flaxville erosion surfaces. 
Additional potential energy may have been available if the source areas for the sediments were 
significantly higher than these erosion surfaces. Kinetic energy may have br."ln available from currents 
(hydraulic process) or explosions (volcanic processes), though evidence of the latter is not observed in 
the Cypress Hills or Flaxville Plain. 

Table 3 summarizes physical characteristics of the sediment transport processes addressed above 
relative to characteristics of deposits. The stress terms listed in Table 3 represent fluid shear and are 
not directly comparable to bed shear stress when the velocity profile is not known. They are, however, 
representative of the fluid behavior. Gradations between the fluid types/grain support mechanisms do 
occur in nature, though the transitions may be abrupt [42, p.1512]. 
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Table 3 
PHYSICS OF SEDIMENT TRANSPORT PROCESSES 

CLAST SUPPORT 
TYPE OF FLOW MECHANISM 

FluvialfTraction Streambed 
Current 

Turbidity Current Turbulence 

Mudflow/ Matrix Strength 
Debris Flow 

Fluidized Sediment 
Flow/ Pore Fluid 

Hyperconcentrated Expulsion 
Flow 

Grain Flow/ Dispersive 
Debris Flow Pressure 

Falls/Slides Failure Surface 

T 

II 
du/dy 

fluid shear stress 
kinematic viscosity 
vertical velocity gradient 

Newtonian Fluids 

TYPE OF 
FLUID 

Newtonian 

Newtonian 

Bingham 
Plastic 

Pseudoplastic 

Pseudoplastic 

Solid/Discrete 
Block 

STRESS TERM REFERENCES 

T = lJ·du/dy 4,6,21 
(laminar) 

T = 1J.(du/dy)2 
(turbulent} 

Similar to 6, 18 
fluvial/traction but 
with two interfaces 

T = Ty + IJm.du/dy 6,18,21 

T = T~ + IJm.du/dy+ 6, 18,21 
(du/dy)2 

T = Ttc7 IJm·du/dy+ 
du/dy)2 

4,6,21 

Various 60,63 

yield strength 
viscosity of mixture 
turbulent-disperSive parameter 

Rivers flow under the impetus of gravity alone. Flow is determined by available water, bed slope, and 
energy dissipative factors (e.g. bed shear stress). Currents in lakes and oceans are dependent on wind 
and thermal gradients. At relatively low sediment concentrations, these current systems behave as 
Newtonian fluids. As shown in Table 3, shear stress is directly proportional to the fluid viscosity and the 
velocity gradient (laminar flow) or square of the velocity gradient (turbulent flow). Turbidity currents are 
driven by density differences and loss of gravitational potential energy. Unlike fluvial systems, turbidity 
currents have resisting shear forces on both the bottom and top of the flow. 

Non-Newtonian Fluids 

As described by Iverson [20, p.247]. subaerial mass flow processes are more complex than Newtonian 
processes: " ... debris flow motion involves a cascade of energy that begins with incipient slope 
movement and ends with deposition. As a debris flow moves downslope, its energy degrades to higher 
entropy states .... " Newtonian or non-Newtonian behavior is very dependent on sediment mineralogy. 
"Sediment-water mixtures that have negligible amounts of silt and clay dispersed in the fluid phase 
appear to maintain Newtonian behavior up to very high concentrations: as grea~ as 50% by volume for 
mixtures containing coarse particles of relatively uniform size ... or as great as 35% by volume for more 
poorly sorted sediment . . .. With increasing amounts of silt and/or clay, sediment-water mixtures may 
acquire a yield strength. Mixtures that contain predominantly silt acquire a yield strength in the range 
of 30-35% volume concentration Clay-rich mixtures may exhibit yield strength at volume 
concentrations as low as 10% or less ... "[42, p.1511]. 

Non-Newtonian fluids may be modeled as Bingham plastics or pseudoplastics. To compare flow 
resistance of a Bingham plastic to a Newtonian fluid, evaluation of both the yield strength (negligible for 
Newtonian fluids) and viscosity is necessary. "Fluid bulk densities of debris-flow slurries typically range 
from about 1.8 to 2.3 g/cm3 ... or roughly 50 to 75% sediment by volume, depending on grain-size 
distribution. Such mixtures are on the order of 104 to 111 times more viscous than water, and they 
characteristically possess a finite yield strength. . . . The yield strength must be overcome by applied 
stress before deformation (flow) is possible"[45, p.285]. The driving force must therefore be of greater 
magnitude for a Bingham plastic than a Newtonian fluid. This is observed in practice, where debris flows 
are not normally observed on slopes of less than 5° [6, p.161], whereas Newtonian fluids (e.g. rivers) 
flow on very slight slopes. The importance of an adequate driving force is stressed by Hampton [18, 
p.843]: "If a debris flow is to remain in motion, internal resistance must be continuously overcome by 
the downslope pull of gravity, irrespective of whether the matrix is strong enough to support all of the 
grains." 
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A rigid plug normally forms in the center of a debris flow, restricting shear to the interface between the 
plug and the surrounding sediments [18, p.842]. The resulting motion can be·a combination of grain 
interaction ("grain temperature" or "dispersive pressure"), matrix yield strength, and fluid expulsion, with 
a complex, surging behavior [S, p.159-1S3; 20; 34; 54, p.193-195]. 'The Bingham plastic model is well 
suited to homogeneous suspensions of fine particles, particularly at low rates of deformation. The 
analysis of coarse sediment mixtures is somewhat more complex and involves an additional shear stress 
due to particle impact. The dispersive shear stress is shown to increase with three parameters: the 
second power of the particle size, the volumetric sediment concentration, and the second power of the 
rate of deformation. It is important to recognize that the dispersive stress is proportional to the product 
of these three parameters; therefore, high values of all parameters are required to induce a significant 
dispersive shear stress"[21, p.189]. Debris flows are often supported by suddenly mobilized pore fluid 
pressures; the flows persist until the pore fluid escapes [S, p.159,1S0]. Although a reduction in flow 
resistance has been postulated with high sediment concentrations in hyperconcentrated flows, this has 
not been supported by field data [42, p.1522]. 

Although the physics (and even the terminology) of debris flows, mudflows, and hyperconcentrated flows 
is not well worked out, analogues exist that permit a rough estimate of energy constraints. Iverson [20, 
p.249) tabulates the ratio of runout distance to elevation loss (UH) for several mudflows and debris 
flows. The UH values observed range from 2 to 25, the largest value being for the Osceola mudflow in 
Washington, U.S.A. Iverson [20, p.248] notes a roughly logarithmic relationShip between UH and 
volume. Extrapolating from the approximately 10· m3 of the Osceola mudflow to 10' m3 for the Cypress 
Hills Formation, a liberal estimate for UH would be 30. On this baSiS, the initial elevation of the center 
of mass necessary to produce the Cypress Hills Formation as a fluidized sedimen·t flow would be 10 000 
m for the proximate end of the Cypress Hills (300 km distance) and 24 000 m for the distal end of the 
Flaxville Plain (700 km). 

The work of Iverson [20, p.248) indicates that even these estimates are far too liberal for sediment 
resembling the gravels of the Cypress Hills and Flaxville Plain: "When the sand-gravel mix is replaced 
by well-sorted gravel, however, the influence of water on the outcome of experiments changes: dry 
gravel produces UH>2, but water-saturated gravel produces UH<2. Thus water enhances the mobility 
of poorly sorted debris flow sediments in a manner not manifested by mixtures of well-sorted gravel and 
water, and experiments with water-gravel mixtures provide a poor surrogate for experiments with realistic 
debris-flow materials." This may indicate that the viscous resistance of the water (providing negligible 
pore pressure) more than compensates for any reduction it affords in grain surface friction. Runout 
distance is greater for fine-grained mudflows [70], reaching up to 120 km in the Cascade and Andes 
Mountains [20, p.249; 44]. Debris flows require significant initial potential energy (i.e. steep slopes), 
tend to be localized, and are generally depositional rather than erosional [S, 45, 70]. 

Falls/Slides 

Mechanical failures, e.g. slumps, rockslides, and toppling failures, tend to be highly localized and 
relatively immobile. These relatively rigid mass wasting mechanisms are incapable of movement on 
slopes as low as those observed in the study area. 

FLUID MECHANICS OF HYPERCONCENTRATED FLOWS 

Most hyperconcentrated flows have been studied in mountainous regions, since they are typically 
confined to steep mountain drainages [S, p.1S3; 12; 20; 45; S5; 70]. However, hyperconcentrated flows 
were inferred by lord and Kehew [30] for formation of the Souris, Des lacs and Moose Mountain 
spillways through catastrophic drainage of glacial lakes. By dividing the estimated volume of sediment 
eroded by the estimated volume of glacial Lake Regina, they estimated 20% sediment by volume [3~ , 
p.S72). Because the estimated depths appeared excessive, they concluded that use of the DuBoys­
Limerinos-Shields-Manning method produced erroneous results, and that the flow was actually 
hyperconcentrated. They correctly noted that the abundance of montmorillonite (a water-sensitive clay 
of the smectite group) in the sediments in which the channels are incised could produce a significant 
yield strength in the fluid [30, p.S72). Although they propose a hyperconcentrated flow, Lord and Kehew 
acknowledge that depOSits in the center of the channel are indicative of Newtonian flow [25; 3D, p.S71]. 
By estimating flow depth from the channels and accommodating the effect of a mobile bed on the value 
of n, they were able to reconcile these differences using the Manning equation, obtaining values in 
agreement with an empirical relationship for jokulhlaups [3~ , p.S71), though channel dimensions were 
difficult to estimate (25). 

Lord and Kehew [3~, p.S71) recognize a significant disparity between the critical shear stress (Te) values 
of Shields and those of methods derived for coarse sediments. This disparity arises partly from the 
differences caused by streambed armoring and shielding, which were probably minor in the Souris, Des 
Lacs and Moose Mountain spillways [3~ , p.S72]. A more serious problem arises from extrapolation of 
Shield's equation for sand entrainment in 1 m flows to coarse sediments and deep flows. If buoyancy 
effects are important, Te is reduced even further. 

Neglect of the change in density for heavily sediment laden flows can also lead to significant errors. If 
the flow transported 20% sediment by volume, the estimated flow depth is reduced by 25%. If Te = 58 
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Pa, the resulting flow depth would be 24 m; for 'tc = 115 Pa, flow depth would be 47 m. These flow 
depths are even less than Lord and Kehew estimated from geomorphology. However, viscosity also 
increases with sediment load, and increased viscosity would require increased depth to maintain flow. 
Using the methods of O'Brien and Julien [21, p.190], the viscosity of the postulated Souris fluid may have 
been 8 to 10 times the viscosity of clear water. Although still Newtonian on both theoretical [21, p.190] 
and sedimentological grounds [30, p.671], the resulting fluid would begin to exhibit yield strength. Such 
a fluid would be called "hyperconcentrated" according to some [42] but not others [6]. 

For hyperconcentrated flows, Julien [21, p.191] provides the following relationships between sediment 
loads and yield strength and dynamic viscosity, respectively: 

(1 ) 
where Cy > 0.05 
Cy volume fraction sediment 
'tv yield strength (in Pal 

(2) 
where Cy > 0.05 
1-1 kinematic viscosity of clear water 
I-Im kinematic viscosity of mixture 

The above equations describe water-sediment mixtures in which the sediment is predominantly sand. 
Since silt and clay are not observed in the Cypress Hills Formation and Flaxville gravel , these equations 
are most appropriate. "Simplifications of the quadratic rheological model are possible under the 
following conditions: (1) The Bingham model is applicable when n ,- 1 [dimensionless excess shear 
stress term]; moreover, the fluid is Newtonian when 't <<1:" [21, p.193]. The effects of high sediment 
loads on fluid mixture properties can be inferred from the values in Table 4, in which 'tc (critical stress 
for bedload movement, adjusted for buoyancy) is substituted for 't (bed shear stress). 

Table 4 
EFFECTS OF SEDIMENT CONCENTRATION ON FLUID PROPERTIES 

Cy 

(%j' 
limo 1 03 

(Nos/m2) 2 
P 

(kg/m3) 3 

0 1.31 1000 

5 2.78 1085 

10 3.79 1170 

15 5.35 1255 

20 7.80 1340 

25 11.7 1425 

30 18.1 1510 

35 28.4 1595 
'Volume percentage sediment (sand) 
2Dynamic viscosity of mixture x 103 
3Mixture density 
·Kinematic viscosity (v) x 10· 

IJ/po10· 'tv 'tc 
4 (Pa)· (Pa)" 

1.31 0.00 115 

2.56 0.10 69 

3.24 0.12 65 

4.26 0.14 62 

5.82 0.16 58 

8.21 0.18 54 

12.0 0.21 51 

17.8 0.24 47 
5Yleld strength of mixture 
·Critical shear stress based on clast size in 
clear water, reduced to compensate for 
buoyancy effects 

Several characteristics of the fluid mixture described in Table 4 are evident: 

Viscosity increases with increasing sediment load. This acts to increase the force resisting flow 
of the fluid . 

Density increases with increasing sediment load. This acts to increase the driving force on the 
fluid. 

Viscosity increases more rapidly than density, resulting in a net increase in resistance to flow. 

A yield strength is evident at sediment concentrations as low as 5%. 

Yield strength is much smaller than shear stress, indicating the fluid behavior is Newtonian. 

Because sediment effects can be complex and partially compensate for each other, they are generally 
neglected in general engineering practice unless sediment concentrations are particularly high and fluid 
behavior becomes significantly non-Newtonian. Hyperconcentrated flows approximate Newtonian flows 
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[12, p. 288; 13, p.116), and the transition to non-Newtonian flow is relatively abrupt [12, p.289-291]. 
Flows with yield strengths of less than about 10 to 40 Pa are approximately Newtonian, even with 
sediment volume concentrations as high as 50% [13, pp.114,116). Based on the characteristics of the 
deposits in the study area, energy constraints, and the properties of hyperconcentrated flows, the 
paleohydrology of the Cypress Hills Formation and Flaxville gravel is best modeled as Newtonian flow. 

PALEOHYDROLOGICAL ANALYSIS 

Sediment transport capabilities of a current system may be evaluated in terms of competence, the 
maximum particle size or weight the current is capable of moving, and capacity, the maximum amount 
of bed load a current can transport. Minimum values of stream competence can be inferred from 
observed clast dimensions. Paleohydraulic estimation of capacity is not as tractable. Typical 
engineering equations for open channel flow are often difficult to apply to paleohydraulic reconstructions, 
since data available to the engineer (e.g. design depth and width) are not available to the geologist 
seeking to apply field data to the study of earth history. Various laboratory and field studies have 
provided data enabling correlation of competence with current speed, flow depth, and other hydraulic 
variables. Definite values for discharge, velocity, and other paleohydraulic parameters cannot be 
provided without historic data; geologic data provide only constraints by analogy to observed fluvial 
processes. Therefore, these methods enable calculation of minima based on competence; actual flows 
may have been substantially greater, especially if governed by capacity. 

Several similar equations (e.g. Chezy, Manning) are in common use for the design of open channels. 
These and computational analogues may be reviewed by the interested reader in introductory texts to 
fluid mechanics or open channel flow. In general, these equations describe relationships in steady, 
uniform flow. Flash floods are examples of unsteady flow, flow in which the velocity and discharge 
change with time. Most river channels are examples of nonuniform flow, in which depth, width, and 
cross-sectional area vary with distance. Nonetheless, equations developed for engineered channels 
have been applied to unsteady flow [12) and nonuniform flow [56) in modern (historic) settings with 
minimal error. Myriad empirical relationships have been established between particle size and hydrauliC 
parameters, many of which have been summarized by Maizels [33]. Church, Wolcott and Maizels [11) 
provided corrections to Maizels' article and showed the basic equivalence of the various methods, based 
in part on the observation that the ratio dsJdso (dn = opening size passing n% of particles in the mixture) 
for most modern fluvial deposits is approximately 2: 1. They recommended use of the Keulegan 
Equation. Like most open channel flow equations, the Keulegan Equation requires knowledge of flow 
depth. 

Various methods for estimating "to from particle size have been developed [69). Considerable variation 
exists due to other stream variables; however, the methods of Costa [12), G. Williams [68) and Baker 
and Ritter [69) appear consistent with field data for coarse sediment transport and most applicable to 
the Cypress Hills and Flaxville sediments. These methods were employed to obtain various values of 
minimum current speed and bed shear stress for the study area. Particle sizes used in the calculations 
below were intermediate diameters from the largest in situ clasts of unequivocal fluvial origin observed 
by the authors. 

Table 5 
BASIS FOR SHEET FLOW INTERPRETATION OF GRAVEL DEPOSITS 

EVIDENCE AGAINST CHANNEL OR BAJADA EVIDENCE FOR SHEET DEPOSITION 
DEPOSITION 

Lack of small, discontinuous stream terraces Vast, gravel-capped erosion surfaces 

Lack of cut-and-fill or channel structures Laterally extensive, continuous sheet or veneer 
of gravel 

Lack of rapid lateral facies changes Continuous gravel sheet showing slight 
development of laterally continuous 
stratification 

Lack of interfingering or fan-shaped deposits Continuous gravel conformable with erosion 
characteristic of alluvial fan and bajada surface 

Based on the nature of the observed gravel deposits, sheet flow (width»depth) is assumed (see Table 
5). This approximates uniform flow. For steady flow, the head loss must equal the loss in potential 
energy along the flow path. Peak flow approximates steady, uniform flow and is of chief interest to this 
study since it coincides with maximum stream competence. Using the momentum equation for 
incompressible flow, and recognizing that steady flow implies a balance between the resisting bed shear 
stress "t and driving gravitational force, the net unit force parallel to the bed can be expressed as: 

hysin8 ="t 
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h 
Y 
8 

depth of flow 
unit weight 
slope angle 

The minimum shear stress is determined from the maximum particle size using an arithmetic mean of 
the methods of Costa and Baker and Ritter as modifed by Williams. The flow depth is determined from 
a free-body diagram equating the component of theweight parallel to the slope with the bed shear force. 
Having solved Equation (3) for h, the friction factor can be calculated from the Keulegan Equation [11, 
p.476): 

f 
h 
d 

= 
the friction factor 
flow depth 

f = [2.03·log( 12.2htd))·2 

particle diameter (b-axis larges clast) 

(4) 

The Keulegan Equation is not sensitive to the choice of particle size. Values such as dso, dso, or q,.. 
might be more appropriate in most cases. However, the assumption of Church, Wolcott and Maizels that 
d8..tdso = 2: 1 is not applicable to the Flaxville gravels. Calculations by one of us from grain-size 
distribution data from several gravel pits in the Turner, Montana, area show d84tdso values averaging 3: 1, 
indicating the distributions are skewed to the coarser particles. 

For most flow conditions, suspended sediment effects are insignificant [11, p. 477) (see Table 4), and 
they are therefore neglected in these calculations. By L'Hopital's Rule, the value of the hydraulic radius 
approaches the flow depth as the channel width increases. Substituting the flow depth for the hydraulic 
radius, and using the friction factor obtained from the Keulegan Equation, the magnitude of the mean 
velocity is calculated from the Chezy Equation: 

V 
g 
S 

= 

V = .f(8ghStf) 

mean current speed 
acceleration due to gravity 
slope (small angle approximation) 

(5) 

Having obtained flow depth and mean current speed, unit discharge can be estimated. The Froude 
Number is calculated from V and g; a Froude Number of unity indicates critical flow, at which specific 
energy is a minimum and flow unstable. A Froude Number less than one indicates subcritical flow. 
Values for independent variables and results of calculations are summarized in Table 6 below. 

Table 6 
PALEOHYDRAULIC COMPETENCE ESTIMATES 
T B dL d ransport as e oa 

LOCATION' d 'tm1n h· Slope Vmin 

(mm)2 (Ntm2)3 (~;~ (m/s)5 

Flat Top Mtn. - 240 122 3.2 0.00385 4.4 
Cypress Hills 

Cypress Hills 229 115 7.7 0.001515 5.1 

Cypress Hills 229 115 15.5 0.00076 5.7 
(sinuosity = 2) 

Turner 229 115 11.2 0.001051 5.4 

Opheim 210 100 6.5 0.001578 4.7 

Flaxville 190 91 13.3 0.0007 5.1 

Flaxville 190 91 26.5 0.00035 5.6 
(sinuosity = 2) 

Flaxville 190 91 39.8 0.00023 5.9 
(sinuosity = 3) 

I· SinUosity at indicated location assumed to be unity unless othelWlse indicated 
'Dimension of intermediate diameter of largest particle in millimeters 
'Minimum shear stress in Newtons per square meter based on maximum particle size 
'Minimum depth in meters to produce steady flow at minimum shear stress 

q FI 
(m3ts)" 

14 0.79 

39 0.58 

88 0.46 

60 0.52 

30 0.59 

67 0.45 

148 0.35 

235 0.30 

'Minimum mean current speed in meters per second calculated using Keulegan and Chezy Equations 
' Discharge in cubic meters per second per meter width 
' Froude Number: Fr> 1 = supercritical flow; Fr < 1 = subcritical flow 
' Reynolds Number: Re < 2·10' = laminar flow; Re > 10' = turbulent flow 
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4.38.107 

1.20.108 

2.67.108 

1.84.108 

9.23.107 

2.05,108 

4.53.108 

7.17.108 



The above calculations assume transport of gravel as bed load. Ubiquitous percussion marks indicate 
that at least part of the transport was via intermittent suspension. The percussion marks cover well­
rounded cobbles of hard quartzite, indicating some distance of transport before the observed percussion 
marks formed. That these percussion marks are also evident in samples from the Flaxville Plain 
indicates significant chemical or physical weathering did not take place before the rocks were deposited 
in their present locations. 

The minimum mean current speed (VrrVn) for suspended load transport can be estimated from the settling 
velocity of suspended particles (V,) based on the observation that the ratio of Vmi.IV, is at least 12 [6, p. 
100]. Assuming equant quartzite particles (for simplicity), the terminal velocity'of the particles can be 
balanced with the drag force resulting from current turbulence. This results in the following expression: 

Vmln = 
Fe 
Co 
A 
p 

Vmin ~ 12.5i(2FoI(CoAp)) 

minimum average speed of the current 
drag force 
drag coefficient relative to turbulence (i.e. counteracting gravity) 
particle area normal to the gravitational gradient 
fluid density 

(6) 

The drag coefficient is determined from a figure for axisymmetric bodies [48, p. 425]. For 100 mm 
cobbles, this equates to a minimum mean current speed of 14 mls. In the observed deposits, equant 
particles are uncommon, and most are oblate or bladed. For bladed particles, the estimates become 
less precise due to changes in A and CD with rotation in the current. Assuming that larger rocks inherited 
percussion marks from impacts by smaller cobbles, a conservative estimate for maximum particle size 
in suspension would be 150 mm. A reasonable estimate for transport of the 150 mm (b-axis) bladed 
cobble in suspension is a V rrVn in excess of 30 m/s. Evidence indicating that rocks as large as 150 mm 
have been transported in suspension has been documented from a gravel-capped erosional surface 
below the Flaxville surface elevation near Great Falls, Montana, approximately 100 km from the probable 
source area (26). If the percussion marks were formed during transport from the vicinity of Flat Top 
Mountain to the Cypress Hills, the most potentially energetic study reach, the resultant unit discharge 
may have been in excess of 200 m3/s per unit width, as shown in Table 7. 

Table 7 
PALEOHYDRAULIC COMPETENCE ESTIMATES 
T S d d ransport as uspen ed Loa 

LOCATION' d Shape3 Vmin F 
(mm)2 (m/s)4 

Flat Top Mountain 100 Equant 14 0.02 
-Cypress Hills 

150 Bladed 30 0.02 
'Slope of study reach = 0.00385 
'Dimension of intermediate diameter of largest particle in millimeters 
'Shape of particle 

hmin 
(m)6 

15 

55 

'Minimum current speed in meters per second for particle transport in suspension 
'Friction factor calculated using Keulegan Equation 
'Minimum depth in meters to produce steady flow at minimum indicated current speed 
'Froude Number 
' Unit discharge in cubic meters per second per meter width 

GENETIC INTERPRETATION 

Fr7 q 
(m3/s)8 

1.16 211 

1.30 1,662 

The indicated discharges are not typical of modern flash floods. As a comparison, the great flood of 
1964 on the upper Missouri River resulted from a rainfall of 75 to 150 mm across the basin in a 36-hour 
period and the failure of dams to restrain the runoff (7). Discharge of the Missouri River at Fort Benton, 
Montana (110040'W, 47°49'N), was 2,192 m3/s , or approximately 11 m3/s per meter of channel width at 
a current speed of approximately 2.7 m/s. The minimum discharge values for the Cypress Hills and 
Flaxville Plain, respectively (Table 6), are three to six times this value per meter width. The area of the 
present Missouri Basin upstream of its confluence with the Milk River (see Figure 1 in [40)) is 
approximately 168,000 km2. Assuming a drainage basin for the Flaxville "river" of 250,000 km2 and a 
runoff coefficient identical to that of the upper Missouri basin, the amount of precipitation in 36 hours 
required to produce the minimum Flaxville discharge would be 115 to 230 mm. However, as pointed out 
above, this assumes a channel width identical to that of the Missouri River at Fort Benton (200 m) and 
a sinuosity of 1.0 for the Flaxville "river," a deposit not exhibiting characteristics of channelized flow. 
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Even this estimate, probably grossly below the actual discharge, indicates that modem flash flood 
analogues may be orders of magnitude too small to explain these deposits. 

Large amounts of glacial ice could provide the necessary water for these discharges. Melting of roughly 
15 m of ice per 24-hour period could provide all of the water necessary to meet the estimated minimum 
discharge requirements listed in Table 6. However, melting of 15 m of ice in 24 hours begs a term 
beyond "catastrophic melting!" Oard [38] has estimated melting rates of 7 to 18 m per year at the 
periphery of continental glaciers. One possibility would be damming of water behind ice, followed by 
failure of the ice dam. Jokulhlaups (glacial outbursts) tend to result in local floods that are quickly 
channelized [22, 23, 24]. Such a mechanism on a much larger scale has been proposed for the 
Spokane Flood postulated to have formed the channeled scablands of eastem and central Washington 
[3] . However, the Cypress Hills and Flaxville Plain differ markedly from the channeled scab lands or 
modem glacial outwash terrains. Shaw et al. [57] have proposed catastrophic subglacial flooding of a 
magnitude comparable to that indicated from Table 6 to explain drumlins, flutes, and many other features 
in Saskatchewan and Alberta, though a means for generating floods of such magnitude is difficult to 
envision. Paleocurrent directions, lack of surface features, and the relationship of other benches are 
significant differences between the Cypress-Flaxville deposits and the features described by Shaw, et. 
al. [57]. 

The above calculations are conservative. They do not account for limitations of stream capacity, nor do 
they include estimates of erosional energy required to break up and remove the source rocks or shear 
off strata over enormous areas of the northem Great Plains. They do not account for the volumes of 
water and energy required to remove enormous volumes of sediments indicated by erosional remnants. 
That the gravel was itself an erosive agent is indicated by the presence of Ravenscrag concretions in 
the Cypress Hills Formation. The lack of subjacent lithologies elsewhere may result from their friable 
nature and the ease with which silt and clay particles can be transported relative to gravel. Lithification 
of the gravel to form conglomerates of the Cypress Hills Formation and Flaxville deposits resulted from 
the presence of calcium carbonate. If the lime cement originated with the abundant limestone in the 
presumed source area of the Montana Rockies, this indicates the limestone was almost completely 
pulverized or dissolved before reaching the Cypress Hills and Flaxville Plain. For glacial ice to provide 
the necessary water would require melting of roughly 15 m of ice per 24-hour period! 

The flow conditions inferred for the deposition of the Cypress Hills Formation and Flaxville gravel are 
compatible with a diluvial interpretation. Strong currents could be expected to form as the land masses 
began to emerge during the latter part of the Deluge (Genesis 8:1-5). No hiatus need have occurred 
between the erosion of the enormous volumes of sediments from the area [40] and the formation of the 
Cypress Hills and Flaxville Plain. An origin in late diluvian time would explain the rapid formation of the 
erosion surfaces, the great transport distances of the gravels, the highly energetic currents, the huge 
discharges, and sheet nature of the deposits. These phenomena might be expected during the 
Recessive Stage of Walker's geochronologic paradigm [67] or the Upper Flood Division of Froede [15]. 

SUMMARY AND CONCLUSIONS 

Based on the data and interpretations presented above, the following conclusions conceming the 
depositional origin of the Cypress Hills Formation and Flaxville gravel are presented: 

Planar, surficial erosion surfaces capped by gravel largely of exotic lithologies but containing 
minor amounts of subjacent lithologies implies formation of the erosion surfaces by corrasion due 
to highly energetic transport of the gravel from apparent source areas west and south of the 
Cypress Hills and Flaxville Plain. 

Attributes of the sediments are generally compatible with fluvial/traction current, turbidity current, 
and hyperconcentrated flow interpretations. On a sedimentological basis, the most likely process 
is the fluvial/traction current. 

Energy constraints preclude transport by a non-Newtonian flow process. 

Paleohydrologic analysis is not particularly sensitive to sediment loading when smectite clays 
(particularly montmorillonite) are absent. The Cypress Hills Formation and Flaxville gravel are 
lacking in fines. A Newtonian analysis is therefore appropriate. 

A Newtonian paleohydrologic analysis of the gravels/conglomerates indicates minimum 
discharges far in excess of modem floods or jokulhlaups, in excess of even the most catastrophic 
glacial outburst hypotheses. 374 



The depositional environment inferred for the Cypress Hills Formation and Flaxville gravel is compatible 
with a diluvial interpretation. Deposition by regional currents in late diluvian time appears the most 
plausible genetic interpretation for these deposits. 
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