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Abstract—Three turbulence closure schemes, designed for stratified shallow water flows, are
presented. They are based upon k- theory and use respectively two, one or zero transport
equations for turbulent variables. The models are first tested on the evolution of a wind-driven
turbulent layer in a stratified fluid. The results are at least qualitatively in agreement with
observational and experimental data. A discussion is given about the existence of self-similar
solutions. The models are compared next with the observational data of the Rhine outflow area.
The periodic variation in the density structure, forced by wind and tides and which is clearly visible
in the data, is predicted by the model. A physical interpretation of the model results is given in the
absence of wind forcing. The effects of estuarine circulation, tidal straining and mixing on the
development or breakdown of stratification are well represented by the model calculations.

1. INTRODUCTION

It is widely acknowledged that the parameterization of vertical diffusion of momentum and
scalar quantities (heat, salinity) often represents a crucial weakness in the current
generation of shelf sea circulation models (Gesamp, 1991), especially for regions where
thermal or haline stratification occur: vertical diffusion by turbulent fluctuations is both
rarely negligible, since in shallow water bottom and surface friction often penetrate the
whole water column, and is difficult to describe mathematically because it is highly non-
linear. In the northern North Sea thermal stratification occurs in summer, where the
tendency of solar radiation to stratify the surface layer is stronger than mixing induced by
wind and tide (Simpson and Hunter, 1974). Haline stratification may occur in the Region Of
Freshwater Influence (ROFI) of major rivers, where the tendency to stratify is here
provided by freshwater run-off. For example, much of the Dutch coastal zone may become
stratified by the discharge of the river Rhine (van der Giessen etal., 1990). Observations by
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Simpson et al. (1993) indicate significant semi-monthly and semi-diurnal variability in this
stratification. A similar pattern has been observed in Liverpool Bay (Simpson etal., 1991).

For computational efficiency, and perhaps for program simplicity and reliability, most
models do not resolve turbulent fluctuations but parameterize their effect through a
turbulence closure scheme. Each quantity (momentum, temperature, salinity) is split into
a mean and a fluctuating part. Although exact equations exist for those mean quantities,
they contain unknown second-order correlations between the fluctuating components of
momentum and the buoyancy, i.e. the Reynolds shear stresses and the turbulent fluxes of
scalar quantities (temperature, salinity). Closure assumptions therefore need to be
introduced. The turbulent fluxes can in principle be determined as the solutions of at least
10 transport equations after making model assumptions for the higher order correlations.
Since this involves a considerable amount of computing time, the equations are usually
reduced to an algebraic system. Examples of such simplifications are proposed by Mellor
and Yamada (1974, 1982), or Gibson and Launder (1976). For a review see Rodi (1984).
The parameterizations introduced in the original system of equations require the determi-
nation of two additional turbulent quantities. A commonly used variable is the turbulent
kinetic energy k for which a transport equation can be derived. Less agreement exists
about an optimum choice for the second parameter. Mellor and Yamada (1982) suggest to
use the turbulent length scale ! which can be determined from a separate transport
equation for the product kI (Mellor and Herring, 1973), or prescribed algebraically. For
shallow water flows the boundary layer approximation can be applied so that the algebraic
system for the turbulent fluxes can be further simplified. The expressions for the vertical
fluxes of momentum or salinity (temperature) then reduce to their known forms as the
product of an eddy viscosity or diffusivity times the vertical gradient of momentum or
salinity (temperature). Additional improvements are considered by Galperin et al. (1988).

Turbulence energy models using k — [ (or k — ki) theory have been incorporated into
circulation models for the ocean and shelf seas by e.g. Blumberg and Mellor (1987), Oey
and Chen (1992), Rosati and Miyakoda (1988), Davies and Jones (1990), Johns et al.
(1992). An alternative theory, which uses the dissipation rate & of turbulent energy instead
of the mixing length scale, is advocated by Launder and Spalding (1974), Rodi (1987). The
prime difference with the k — [ version is the use of a modelled transport equation for e. It
has the advantage that it does not require a wall proximity function to give the correct
behaviour near a solid wall. A parameterized ¢-equation can be derived from the more
general exact vorticity equation (Tennekens and Lumley, 1972). Applications of k — ¢
theories to circulation problems in shelf and coastal seas are discussed by e.g. Kochergin
(1987), Baumert and Radach (1992), Baum and Caponi (1992).

This paper deals with the presentation and testing of three turbulence closure schemes,
denoted by KEPS2, KEPS1, KEPS0. They differ by the number of transport equations
used for turbulent variables and are based upon k — ¢ theory. The turbulent fluxes are
expressed in terms of the local values of k, £ and the local gradient of the corresponding
mean quantity using the boundary layer approximation and the assumption that the
Reynolds stresses are in a state of near isotropy (Mellor and Yamada, 1982; Galperin et al.,
1988). The transition layer where turbulence decays into a field of internal waves (see e.g.
Hopfinger, 1987) is taken into account by imposing limiting conditions on the turbulent
variables, The KEPS2 model uses transport equations for k and . Since the latter equation
involves more model assumptions, it is replaced by an algebraic length scale prescription in
the second model (KEPS1). The k-equation is also reduced to an algebraic relation in the
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third model (KEPS0) using the assumption of local equilibrium between production and
dissipation of turbulent energy. This model is similar to the Mellor—Yamada level 2
scheme. The KEPSO model has the advantage that it requires practically the same amount
of computing time as simpler eddy viscosity parameterizations, such as the relations of
Munk and Anderson (1948) while it is derived on a more physical basis. On the other hand,
it appeared that the level 2 scheme is sensitive to numerical instabilities depending on time
step and vertical grid spacing (Frey, 1991). The models are first tested on the evolution of a
turbulent layer driven by a constant wind stress. This simple test case allows a direct
comparison with observational and laboratory data and with the analytical theory. To
validate their performance in coastal zones with a strong stratification they are also
compared with the observational data of the Rhine outflow area.

2. MODEL EQUATIONS
2.1 General theory

A rotating Cartesian coordinate system is used with the origin at the sea surface and the
z-axis directed upwards along the vertical. The turbulent equations of motion, using the
Boussinesq approximation, are given by

aU; U, oP *Y;
—+ U, —= =——+bd +v—-—uu 1
af ka zk3ka ax; i3 ax}':' ax, < k> ( )
8U; _
axl‘

(€9

where U, u; represent respectively the ensemble mean and fluctuation velocity, f the
Coriolis frequency, v the coefficient of molecular kinematic viscosity and (uu;) the
turbulent momentum fluxes, using angle brackets for ensemble averages of turbulent
quantities. The reduced pressure and the buoyancy are defined by

P:£+gz 3)
Po
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where p denotes the pressure, g the acceleration of gravity, p the density and py a reference
density. The density (buoyancy) is related to the temperature T and the salinity S through
an equation of state. For simplicity, it is assumed that the transport equations for 7 and §
can be combined into a single equation for the buoyancy, given by

ab ab b @

il ox, =4y o2 < u) ©)
where 4, is the molecular diffusion coefficient for the buoyancy, 8 the fluctuation
buoyancy and (u;8) are the turbulent buoyancy fluxes. The last terms on the right-hand
side of equations (1) and (5) can be decomposed into a horizontal and a vertical diffusion
term. The former terms are neglected in the present study.

The vertical fluxes of momentum and buoyancy are written in the form
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Fig. 1. Variation of the stability coefficients S, (solid) and S (dashes) as function of @y in the case
of stable stratification.

- (MW) = VTUZJ - (VW) = VTVza - (Wﬁ) = ‘;{'sz (6)

where the subscript z denotes a derivative with respect to the vertical coordinate. In the
k — & formulation the eddy coefficients take the form

'VT=Suk2/£, AT:Sbkz/S (7)

where k represents the turbulent kinetic energy and e the dissipation of k& by molecular
viscosity. The stability coefficients S, and §,, are expressed as function of stratification in
the following way

0.091 + 0.023a

“~ 14 0.714ay + 0.067a%, ®)
0.125
S T e —
> 14 0.603ay ©
where
2
By %NZ (10)

and N is the Brunt—Viisild frequency, defined by N° = ab/dz. Details of the calculations
which are based upon the theory described in Rodi (1984), the local equilibrium
assumption and the boundary layer approximation are described in the Appendix. The
reduction of turbulence in the presence of a stable density gradient can be seen in Fig. 1
which shows the evolution of S, and 5, as function of ay. To close the system of equations
suitable expressions must be derived for the turbulent quantities k and &. The following
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three models, whose complexity depends on the number of transport equations used for
either k or &, will be considered:

(1) transport equations for k and & (KEPS2);
(2) transport equation for k, algebraic expression for ¢ (KEPS1);
(3) algebraic expressions for k and ¢ (KEPS0).

The transport equations generally include source and sink terms and terms representing
advection and diffusion.

2.2 KEPS2-model

A transport equation for the turbulent energy k can be derived in the usual way by
adding the diagonal components of equations (A1) for the turbulent fluxes (uu;). If one
assumes gradient diffusion of the form

ok
—(uk) = Vrg Ty, (11)

i
the resulting equation takes the form

ak ok _ 9 [vrok
—+U—=—|FL—=|+P,+G—
at  lox; ox; (crk ax,.) i RO a2

where
P.=v{l2+V?3), G=—-Ab,. (13)

The parameterized equation for the turbulent dissipation is given by (Launder and
Spalding, 1974; Rodi, 1984):

de de 9 [vroe £ £
+ U = (;f-é"x-:) + Cle I(' (PS + C3SG) — Gy, E' (14)
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The following values are adopted for four of the empirical parameters (Launder and
Spalding, 1974):

(€15 €265 Oy, 0) = (1.51,1.92,1.0, 1.3). (15)

The parameter c;, is determined from the relation

s

Cle = Cg — o
Ve,0,

(16)

valid for a near-wall local equilibrium flow in the absence of stratification where k = 0.4 is
von Karman’s constant and

¢, = 8,(0) = 0.091. (17)

Following Rodi (1987), c3, takes the value of 1 in the case of an unstable stratification
(N? < 0) and 0.2 for stably stratified flows.
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2.3. KEPS1-model

The KEPS1-model is a simplified version of the previous one. Instead of solving a
transport equation for & which involves more model assumptions than the corresponding
equation for k, the turbulent dissipation is modelled according to

k3/2

£ = EDT (18)

where &, is a constant and / a prescribed algebraic turbulent length scale. The parameter g
is determined for an equilibrium neutral flow near a wall where [ is equal to « times the
distance to the wall. This gives

gg = c/* = 0.166. (19)

Various expressions exist in the literature for the mixing length /. Two formulations will
be considered in the test cases, discussed below. The first is the Blackadar (1962) formula

.. W
#z,flg+ 1 20)

where z, represents either the distance to the surface or to the bottom so that [— [
sufficiently far from the boundary. A commonly used value for [ is the one proposed by
Mellor and Yamada (1974):

H H
ID—yJ %z 2, /J H2de, (21)
0 0

where H is the total water depth and y a constant situated in the range 0.1-0.4. The
Blackadar formula depends explicitly on turbulence energy via (21), but seems less
appropriate when two boundary layers are present (at the surface and at the bottom). In
that case the following simpler formulation, proposed by e.g. Robert and Ouellet (1987)
and used by Simpson and Sharples (1992) in their simulations for Liverpool Bay, will be
used:

P= Kzl = Z*/mm (22)

where z, is the distance from the bottom.

2.4. KEPSO-model

Further simplification can be obtained by neglecting the material derivative and
diffusion term in the k-equation so that the production of turbulent kinetic energy is always
balanced by dissipation, i.e. P; + G = ¢. Using (13), (7) and (A13) one readily verifies that

OIMSH = aNSb = 1. (23)

Substituting expressions (8) and (9) for S, and S, into (23) and taking account of the
definitions of a,, and a, the following relation is obtained

4 2
% + (d,N* + d,M?) % + d;M?N? + d,N*=0 (24)
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where
(dy. d, da, dy) = (0.839, —0.091, —0.023, 0.081) (25)

and M = (aU/oz)* + (9V/dz)* is the squared shear frequency. The solution for £2/A2 is
given by the largest of the two roots of (24). It can then be shown that

(1) /i is real;

(2) &/k*, S,, S, and @, are positive when the Richardson number Ri=
N?/M? < Ri, = 0.28 while turbulence ceases when Ri > Ri,;

(3) ayand N” have the same sign.

The turbulent variables k and ¢ are determined from the algebraic expressions (24) and
(18) where [ is prescribed either from (20) and (21) or (22).

Miles (1961) and Howard (1961) showed that Ri > 0.25 is a sufficient condition for shear
flow stability. This value has also been confirmed by measurements in the ocean (Kundu
and Beardsley, 1991). Although Ri. has a somewhat larger value than this critical
Richardson number, it is explained below that turbulence already decays at smaller values
of Ri.

2.5 Limiting conditions

Evidence has been found that the size of turbulent eddies is limited in the presence of a
stable stratification. This is supported by observational data (Dillon, 1982; Crawford,
1986) and by laboratory measurements (Dickey and Mellor, 1980; Stillinger et al., 1983;
Itsweire et al., 1986). A detailed discussion can be found in the review papers by Hopfinger
(1987) and Gregg (1987). The problem can be defined in terms of the Ozmidov scale Ly
and the overturn length scale L,, defined by

La= (6IN?Y2, L= =22, (26)

The data indicate that turbulence can only exist when L,/Lx =< 0.8, although higher values
are not excluded (Galperin et al., 1989). When the ratio L /L attains its critical value, the
largest turbulent eddies decay into internal waves.
The analysis has the following implications on the model equations. Using (26), (A12),
(6), (7) and (A13) one finds that
£ = (2e3p) 2} 2a! (@)
R
The right-hand side of (27) increases while S, and S, [see equations (8) and (9)] decrease as
a function of a,. Those quantities are accordingly limited by conditions of the form
AN < Ape, Sy = Syc, Sp = Spe. From the definition of a, and equation (18) it follows that

EF Emip = a;’g"sz (28)
(ZkL)lui = (aNC/Q) 1"280 = K (29)

Galperin et al. (1989) suggest that 0.3 < K =< 0.6. Itsvalue is related to the critical values
of the Richardson number Ri and the flux Richardson number Ry= —G/P. Using (13)
and (7)—(10) it is possible to express Ri and R, as a function of ay (or K) and the
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Fig. 2. Variation of the Richardson number as function of the ratio of total production to
dissipation of turbulence energy using a limiting condition of the form (29): K = = (solid), K = 0.5
(dashes), K = 0.3 (dots).

ratio (P, + G)/e. Figure 2 shows the variation of Ri as a function of this ratio for different
values of K. It can be seen that lowering the value of K, which is equivalent to decreasing
the value of the ratio L/Ly, reduces the Richardson number and therefore increases the
stabilizing effect of stratification on turbulence. Following Galperin et al. (1989) the value
of K = 0.53 is adopted. This implies that Ri, = 0.22 and Ry, = 0.16, assuming equilibrium
between production and dissipation of turbulence, i.e. P;+ G =¢, at the critical layer.
The value of Ry, is close to 0.15, proposed by Osborn (1980). It is also well situated
between the observed oceanic bounds 0.11 <Ry <0.32 (Moum et al., 1989) and
0.11 < Ry, = 0.26 (Oakey, 1982). With this value for K one finds that

Apne = 204, Emin = O.ZZkN. (30)
In the case of an unstable stratification a lower bound for ayis imposed by requiring that
a,y, defined by (A13), remains positive, when the assumption is made that P, + G = «.

The derivation is analogous to the one described in Galperin et al. (1988). Using (23), (8)
and (9) a,, can be expressed as a function of a, and remains positive provided that

ay= —1.37. (31)

If (31) is satisfied, it can in addition be shown from (8) and (9) that S, and S, always remain
finite and positive.

2.6 Boundary conditions and method of solution

For the test cases, discussed below, the momentum and turbulence equations are solved
without the horizontal diffusion and advection terms. The equations of motion accordingly

reduce to
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—_W_%ngaz(( r+v) U) (32)
k1% 10P d
=122 o) @

The horizontal pressure gradients may contain either a barotropic—due to tidal forcing—
or a baroclinic—due to a horizontal density gradient—component. The equation for the
density is given by [see equation (5)]:

p_3 9p
L= ((AT +2) az). (34)

When transport equations are used for k (KEPS2, KEPS1) and ¢ (KEPS2), the relevant
equations are (12) and (14) without the horizontal diffusion and advection terms.
The following boundary conditions will be applied;

ptvr+ 9[22 a") (s oyl

at the surface:

(Ar+ 1b) o
k=1z/(pVc,)
&= (r,/p)*/(xz,) (35)
at the bottom:
aU o
o7+ (52, 5) = pColUI(ULY) = (oo )

d
(1T+z,,)5£=
Z

=1,/ (P\/ )
& = (r/p)**/(xzp) (36)

where 7, 7, are the surface and bottom stress, z, and z, the distances from the surface and
the bottom, and Cp is the bottom drag coefficient. The boundary conditions for k and ¢ are
obtained by assuming equilibrium between production and dissipation of turbulence and a
mixing length of the form / = kz, and «z, near the surface and the bottom.

The equations are solved numerically with a forward time-differencing scheme, evaluat-
ing the vertical diffusion terms implicitly. The Coriolis terms are determined alternatively
at the old and the new time levels. A finite difference discretization in space with a
staggered grid in the vertical is adopted where v, A, k, [ and ¢ are stored between the
points where the velocity components and the density are determined. The buoyancy term
G is evaluated as the product of the old value of A7 with the new value of the buoyancy
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gradient. Sink terms in the k- and e-equations are evaluated quasi-implicitly as recom-
mended by Patankar (1980) and Baumert and Radach (1992). Since the currents are
evaluated one half grid distance above the bottom, the bottom drag coefficient is given by

Cp = (In(0.5A2/25)/x) 2 (37)

where the roughness length z; is chosen corresponding to a C g value (drag coefficient ata
reference height of 1 m) of 0.004. To prevent £ becoming infinite the boundary conditions
for & are applied one grid distance below the surface and above the bottom. The form of the
boundary conditions for k and ¢, which assume that the free surface acts as a sold
boundary, is a commonly made assumption (e.g. Blumberg and Mellor, 1987). Alternative
surface conditions which remove this constraint have been proposed by Rodi (1984).
Numerical experiments with a wind-driven mixed layer (not shown) have been performed
showing that the modified conditions have no significant effect on the model results.

3. EVOLUTION OF A WIND-DRIVEN SURFACE LAYER

The entrainment of a turbulent boundary layer, driven by a constant surface stress, into
a stably stratified fluid is a well-known problem which has been studied both experiment-
ally and theoretically. In the absence of the Coriolis force the problem has the interesting
property that self-similar solutions exist for the equation of motion and density when the
initial density profile is given by a power law or a step function in z (Kundu, 1981; Mellor
and Strub, 1980; Kranenburg, 1983). This implies that the current U and the density p can
be written in the form

U(z,1) = U()F(n) (38)
p(z,0) = pp — ApG(n) (39)

where # = z/h(t), h(¢) is the depth of the turbulent layer, p, the density at the base of the
layer, Ap = g — p, and U, f the mean values of current and density over the turbulent
layer. When the initial stratification is linear, it can be shown that

h(2) = (2Ri)"u(/No)". (40)

The solution now only depends on the two initial parameters u, (surface friction velocity)
and N, (initial buoyancy gradient) and the overall Richardson number Ri, defined by

Ri = N3p4(QU0P). (41)

The parameter Riis constant in space and time if one assumes that the Richardson number
is equal to a critical value Ri. at the bottom of the turbulent layer. The theory of sections
2.4 and 2.5 shows that this will be true for the three turbulence schemes provided that
production and dissipation of turbulence are in balance at z= —h(f). From the self-
similarity theory it follows then that Ri depends only on the choice of the turbulence
scheme. The validity of the self-similarity hypothesis depends also on the implicit
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Fig. 3. Evolution of the turbulent layer depth (m) vs the dimensionless time ¢V, according to the
self-similarity relation (40) with Rf = 0.53 and the KEPS2 model.

assumption that the turbulent fluxes of momentum and density can also be cast into a
self-similar form. As shown by Kundu (1981) this requires that

vrAr =), (@2)

Although this appears to be true for a two-layer stratification, this is not the case for the
linearly stratified problem. To test the self-similarity hypothesis the KEPS2 model is run
with Ng = 107%s"" and u, = 10">ms™'. Time step and vertical grid spacing are given by
Az=0.5m and At=50s. To remove the effects of the bottom boundary layer a
sufficiently large water depth of H = 100 m is chosen. The turbulent layer depth is defined
as the point where the condition |p(z) — piy(2)| < 0.01|p(2) ~ p,| is first satisfied where
Pin(z) is the initial density profile and p, the surface density. The simulation yields an
almost constant value of Ri when tN, = 200-300. Figure 3 shows the evolution of A(¢). The
results compare well with the theoretical curve using the value Ri = 0.53 obtained from the
calculations. Similar results apply for the two other models. Profiles of the dimensionless
velocity F(») and density G(») at different times are illustrated in Fig. 4(a) and (b). One
observes a mixed layer which extends to a depth of z=—0.4h. A transition layer is
situated beneath this layer where the density continuously increases towards its undis-
turbed initial value. A similar density structure has been measured by Kranenburg (1984)
for the case of a two-layer stratification. It is clear that after removal of the initial
conditions (tNg = 100) self-similarity prevails (at least for tNy = 1200) throughout the
turbulent layer with exception of the surface layer where a reduction in surface velocity can
be observed. This appears to contradict the earlier results of Kundu (1981). In his
simulations the self-similarity breaks down when a sharp pycnocline forms at the bottom of
the turbulent layer. This occurs when tN; = 500 which is much earlier than the simulation
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period of tNy = 1200 used in the present case. As a final test Fig. 4(c) shows a time series of
eddy viscosity profiles using the dimensionless form (42). It can be seen that self-similarity
is well approximated in the transition layer (z << —0.4 h). Within the surface layer viscosity
increases stronger in time than expected from the self-similarity form (42). This explains
the reduction in surface shear and velocity, observed in Fig. 4(a).

Laboratory experiments on mixed layer deepening under the action of a surface stress
were conducted by Kato and Phillips (1969) who used an annular tank which contained
initially a fluid with a constant density gradient. Contrary to the self-similar solution (40),
they found that the turbulent layer increases in time like 1. Price (1979a) showed that the
Kato—Phillips data are influenced by the presence of the side-walls. This effect was
eliminated by the inclusion of a side-wall friction term in the equation of motion. A similar
analysis was performed by Thompson (1979). It then appeared that the data are in good
agreement with a relation of the form (40), giving support to the self-similarity hypothesis. It
is now clear that a comparison between numerical and experimental or observational results
should concentrate in the first place on the evaluation of the critical parameter Ri. Aseries of
values obtained from experimental and observational data and previous model simulations
is listed in Table 1. Most of them are situated within the range Ri = 0.6-0.8. Exceptions are
the value Ri = 1, which was assumed a priori by Pollard etal. (1973) and Ri = 0.35 obtained
by Mellor and Durbin (1975) with a local equilibrium scheme similar to the KEPS0O model.

Values of Ri for the three models using different initial conditions and two vertical
resolutions Az=0.5m and Az=2m are given in Table 2. Vertical profiles of the
dimensionless velocity and density at the end of the simulation (tNo = 1200) are illustrated
in Fig. 5(a) and (b). The algebraic length scale in the KEPS1 and KEPSO models is
prescribed by the Blackadar formula (20) and (21) with y =0.2 and stratification
accounted for by the limiting condition (29) for L. The results of the KEPS2 and KEPS1
model are very similar yielding a value somewhat below the one obtained by Price (1979a)
and below the range derived by Thompson (1979) from the Kato—Phillips data. The bulk
Richardson number is practically independent of the initial conditions and the vertical grid
resolution. The results with the KEPS0O model are less satisfactory. In the case where
Az = 2 m the overall Richardson number varies more strongly with the initial conditions.
When the vertical resolution is reduced to Az =0.5m, it can be seen that Ri strongly
depends on the initial conditions and has a much lower value. A comparison with Mellor
and Durbin (1975)’s value Ri = 0.35 seems to indicate that the latter result must be related
to the local equilibrium assumption in the turbulent energy equation. The model also
produces a ‘jiggling’ pattern both in density and in current, situated in the middle of the
layer. This behaviour is related to strong oscillations in space and time of the profiles of
eddy viscosity and diffusivity (not shown). A similar problem has been reported by Frey
(1991) who used the Mellor—Yamada level 2 equilibrium closure scheme. He showed that
this instability disappears when Azis taken sufficiently large or At sufficiently small. Taking
account of those limitations it can be verified that the KEPSO model is more closely in
agreement with the other two models.

4. TIDALLY INDUCED PERIODIC STRATIFICATION

In the previous section a rather idealized problem was considered (no Coriolis force,
constant wind stress), enabling comparison of the different turbulent closures in a simple
way using only the constant surface stress and initial density gradient as input parameters.
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Table 1. Values of the global Richardson number Ri according to different

authors

Source Method Ri
Pollard et al. (1973) Analytical 1.0
Mellor and Durbin (1975) Equilibrium & — I turbulence

model 0.35
Price {1979a) Data of Kato—Phillips experi-

ments ~0.6
Price (1979b) Oceanographic measurements ~0.6
Thompson (1979) Data of Kato—Phillips experi-

ments 0.7-1.0
Kundu (1981) Gibson-Launder k — £ turbu-

lence model 0.6
Trowbridge (1992) Analytical 0.74

In this section a more realistic case of shelf sea stratification will be studied where the
horizontal pressure and density gradient and the Coriolis force will be included. The
turbulence models will be applied to simulate the periodic variation of stratification in a
region where freshwater (buoyancy) is supplied by the river Rhine. This ecologically
important ROFI extends northeastwards along the Dutch coast from the mouth of the
river Rhine and typically up to a distance of ~30 km from the coast (Fig. 6). The time
evolution of stratification and currents was studied by shipboard CTD, fixed moorings
and H/F radar in September and October 1990 (Simpson et al., 1993; Bos et al., 1992). A
time series of the bottom-surface density difference [Fig. 10(c)] shows that the water
column was almost completely mixed during the period of springs (6-10 October) which
coincides with a period of strong winds [Fig. 10(a)]. Stratification redevelops during
neaps (12-16 October) which is a period of low winds. This semi-monthly variability is
modulated by semi-diurnal oscillations which are small at springs but increase in ampli-
tude during neaps.

The basic approximation necessary to represent the physics with the aid of a one-
dimensional model is that the horizontal advection of freshwater and the baroclinic
pressure gradient are modelled using the assumption of an across shore horizontal density

Table 2. Dependence of the global Richardson number Ri on wind
stress and stratification for different resolutions

Ni(sTHyx 10  w(ms ) x10* KEPS2 KEPS1 KEPS0

Az=0.5m
1.0 1.0 0.53 0.51 0.45
1.0 2.0 0.53 0.51 0.13
10.0 2.0 0.54 0.53 0.41
10.0 4.0 0.55 0.54 0.10
Az=2m
1.0 1.0 0.49 0.47 0.54
1.0 2.0 0.52 0.49 0.62
10.0 2.0 0.49 0.49 0.64

10.0 4.0 0.53 0.52 0.75
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gradient, constant over depth and time. The momentum and density equations are then
similar to those applied successfully by Simpson and Sharples (1992) to describe the
springs—neaps cycle in Liverpool Bay. Horizontal advection and diffusion of momentum
and the turbulent quantities k£ and ¢ are neglected so that (32) and (33) apply here where
the x-axis is now oriented southeastwards antiparallel to the horizontal density gradient
and the y-axis northeastwards parallel to the coast (Fig. 6). The vertical coordinate z
increases from — H at the bottom to # at the surface, where # is the surface elevation. The
across shore pressure gradient is evaluated by integrating the equation of vertical
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hydrostatic equilibrium and using the assumption that dp/dx is independent of depth (see
Officer, 1976). This gives

10P laJ'f
-~ —=—— 1| pgdz
pox pox |,
n
=4ga_n—§J’ ,a_pdz
ox p|J,0x
ox pj,ox
an  lap
=—g—+t+-—pz 43
gax paxgz (“3)

Density gradients in the along shore direction are typically much smaller than in the across
shore direction and are neglected here. The momentum equations then take the form

U an lap 3 9

BL o pyre g B2 0P g5 e i 4o — 44
) e az((vT %) alzf) (44)
av an 8 AV

LY u=—g 4+ 2 (vp+v) =) 45
o TIUT 8 ay oz ((VT e az) (45)
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Fig. 6. Map of the Dutch coastal zone with location of the mooring and direction of the
coordinate axes.
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The equation of density now contains a term representing horizontal advection of density:

s T L (AT + A, ) (‘;;’) (46)

at ax

Equations (44)—(46) describe the vertical and temporal structure of current and density,
considering the horizontal derivatives (37/dx, an/dy, dp/dx) as applied forcing terms. The
across shore surface pressure gradient dz/dx is found by supposing that the sea surface
adjusts to ensure that the vertically integrated across shore current is always zero. This
crucial assumption is justified theoretically by Visser et al. (1994), who argue that when
close (i.e. much smaller than the barotropic Rossby radius) to the coast, where U = 0
exactly, this is a good approximation, and is supported by current measurements, which
show oppositely directed bottom and surface across shore currents. The across shore
surface slope can now be eliminated by substracting equation (44) and its depth averaged
counterpart, using the assumption U = 0, to obtain,

- =12 ) (ore 0T “7)

where a bar denotes a depth averaged value. The along shore pressure gradient is
modelled by assuming that the tidal elevation can be approximated as a progressive
(Kelvin) wave propagating up the Dutch coast. Thus,

n= ZNI Moi(x) COS( (t = ”) ¢’0;) (48)

where i ranges over N tidal constituents with angular speed w,, amplitude 5,; and phase ¢,
and ¢ = VgH is the tidal propagation speed. Thus,

g gz = ; A; cos (wt — ¢). (49)

The two dominant tidal components (M, and ;) will be considered in the subsequent
analysis. Using 7o, = 0.62 m, 7y, = 0.15 m and H = 20 m one obtains

(Ay, Ay) = (0.61,0.16) X 10" *ms 2 (50)

while optimum agreement with the data is obtained by choosing ¢, = 45°, ¢, = 15°,

A first series of simulations has been made with only one (M,) tidal component and
without wind stress. In this way insight can be gained into the physical processes, leading to
stratification or destratification, and a clear comparison can be made between the different
schemes. The models are run using Az = 180 s, Az = 1 m. The across shore density gradient
is estimated from CTD transects (Bos et al., 1992) as p~'ap/ox = —2.3 x 10~ m!. Time
series of the bottom-surface density difference according to the KEPS2 and KEPS1 models
are shown in Fig. 7. In the latter case a mixing length is used of the form (22) with [ limited
according to (29). Both models predict a semi-diurnal variation in stratification on which a
small inertial oscillation is superimposed. Due to the interaction between the two types of
oscillation the amplitude of the semi-diurnal oscillation varies with the period
T =2n/(w; — f) = 5.4 times the tidal period where w; is the frequency of the M,-tide. It
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Fig. 7. Bottom-surface density difference in kg m~ according to the KEPS2 (solid) and KEPS1
(dashes) model with one tidal forcing component and without wind stress.

can be seen that the results are practically the same. In view of this small difference only
the simpler KEPS1 model will be considered in the subsequent analysis.

The time evolutions of different quantities during two tidal periods are displayed in Fig.
8(a)—(f). Contour plots of the across shore and along shore currents, the density and the
eddy viscosity are shown in Fig. 8(a)-(d). Time series of the bottom-surface density
difference and the depth averaged along shore velocity are shown in Fig. 8(e)—(f}. The
presence of a residual stratification [Fig. 8(c)] can be deduced by solving the time-
independent momentum equations (44) and (45) for a constant eddy viscosity. Details can
be found in Heaps (1972). It then appears that an offshore flow is produced near the
surface and an onshore flow near the bottom. This across shore circulation advects fresh
(salt) water near the surface (bottom) producing a stratified water column. As described
by Visser et al. (1994) the tidal currents which are predominantly along shore, rotate
anticyclonically with depth. This can be seen by comparison of Figs 8(a) and (b). The
across shore and along shore velocities are ~90° out of phase in agreement with the current
observations in the near-shore region (Bos et al., 1992). The tidal across shore circulation
advects freshwater, increasing stratification over the half tidal cycle of offshore surface
current and reducing stratification during onshore surface current. Extrema of stratifi-
cation, as represented by the bottom-surface density difference [Fig. 8(e)], occur at
moments of across shore current reversal. A detailed description of the effect of tidal
straining can be found in Simpson et al. (1990) for Liverpool Bay. The evolution of
turbulence during a tidal cycle can be deduced from Fig. 8(d). A bottom boundary layer
due to the tidal shear of the along shore current is clearly visible. Within this layer
turbulence varies with a quarterly diurnal period. Comparison with Fig. 8(b) shows that
viscosity is maximal when |V| has its largest value. A second turbulence maximum is
situated near the middle of the fluid column (z= —12 m). Contrary to the bottom layer
turbulence evolves here on a semi-diurnal time scale in response to advection-induced
semi-diurnal variation of stratification.
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A second test has been performed where the KEPS1 model is run still without wind
stress but with two components (M, and S,) in the tidal forcing. The time evolution over a
springs-neaps cycle of the depth averaged along shore velocity and the bottom-surface
density difference, together with their values averaged over a M,-tidal cycle, are shown in
Fig. 9(a) and (b). It can be seen that stratification is reduced at springs, while it increases
during neaps. The semi-diurnal oscillations are larger at springs than during neaps. The
evolution can be explained physically by analysing the time-evolution equation for the
potential energy anomaly, defined by

LB f G- gz 51)

which represents the amount of energy, required to bring about complete mixing (Simpson
et al., 1990). Integrating the density equation (46) over the vertical one obtains

D gap [° g ap
—==" Uzdz + = — dz. 52).
ot HaxJ_H S I w2

The first term on the right describes the influence on stratification of the advection by the
across shore current. The second one represents the (tidal) mixing rate. The time
evolution of the two quantities are illustrated in Fig. 9(c) and (d). Comparison of Figs 8(b)
and (d) shows that turbulence is generated mainly by the along shore current. At neaps
turbulent mixing is therefore minimal. This is not compensated by an analogous increase in
stratification, which explains the reduction of the tidal mixing rate at neaps visible in Fig.
9(d). This figure shows also that the tidally averaged across shore current decreases during
neaps, which can be explained in the following way. Heaps (1972)’s analytical study shows
that the viscous term in the across shore momentum equation increases with respect to the
Coriolis acceleration during springs, producing an increased shear flow in the across shore
direction. At neaps, when viscosity is reduced, the Coriolis term becomes more dominant
except near the sea bed where bottom friction is still important. This tendency towards a
geostrophic balance increases the along shore current with respect to the across shore
component. Figure 9(d) shows that the increase of averaged stratification at neaps is due to
the fact that tidal mixing decreases more rapidly than the advective term just before neaps.
The opposite is true just before springs. Tidal mixing now grows more strongly than the
advective term so that stratification is reduced at springs.

Finally, simulations have been made with the KEPS1 model using meteorological
forcing data and with two tidal components. The simulated period ranges from 1 to 20
October 1990 which covers an entire springs—neaps cycle. Figure 10(a)—(c) show time
series of respectively the magnitude and direction of the surface stress and the bottom-
surface density difference, which are taken from Simpson et al. (1993). The wind stress is
calculated using the drag relation (Geernaert et al., 1986)

7 = p,1072(0.43 + 0.097|U, )| U10|Uso (53)

where Uy is the wind velocity at 10 m above the surface, measured at Hook of Holland,
and p, the density of air. The density difference, measured between 1 and 16 m below the
surface, has been obtained at a mooring, situated at 52.2°N, 4.1° E and at a distance of
7 km from the coast (Fig. 6).

The density difference and the depth averaged along shore velocity according to the
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Fig. 9. (a) Time series of the depth averaged along shore current inms™! (solid) and its average

over a M,-tidal cycle (dashes) with two tidal forcing components. (b) As (a), now for the

bottom-surface density difference (kg m™). (c) Time series of the advective term (kg m™' s7%) in

the potential energy anomaly equation (52). (d) Time series of the tidal mixing rate (kg m ! s7%),
its tidal average (dashes) and the tidally averaged advection term (dots).

model simulations are illustrated in Fig. 10(d) and (e), respectively. It can be observed that
the model reproduces at least some aspects of the data. Stratification is weak during
springs (6-10 October) while strong during neaps (12-16 October). The isolated peaks at 5
and 89 October, which are associated with a sharp decrease in wind stress, are well
predicted by the model. Wind effects influence the results in two ways. Advection by wind-
induced currents can enhance or reduce stratification depending on the wind direction.
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Additional simulations (not shown) indicate that stratification increases for low onshore
winds, which may explain the maximum at 8-9 October. The opposite is true for offshore
winds. On the other hand, wind mixing will reduce the vertical density gradient in the

surface layer.

Fig. 10 (on following pages). (a) Magnitude of wind stress (N m™2) during the period of 1-20 October 1990
using meteorological data at Hook of Holland. (b) Direction of the wind stress (degrees) during the period of 1-
20 October 1990 (0°: onshore, 180°: offshore). (c) Observed values of the density difference (kg m ) between
1 and 16 m below the surface at 52,2° N, 4.1° E during the period of 1-20 October 1990. {d) Time series of the
bottom-surface density difference (kg m™) according to the KEPS1 model and using meteorological forcing
data. (e) As (d), now for the depth averaged along shore velocity (m s™). (f) As (d), now for the advective term
(kg m~! s7%) in the potential energy anomaly equation (52). (g) As (d), now for the tidal and wind mixing
rate (kg m~1s73).
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The sharp maxima, visible in the data at 2 October and during 12-15 October, appear to
be underestimated by the model by a factor ~2. A clear explanation is lacking.
Improvements could in principle be made by increasing the horizontal density gradient.
Additional simulations showed that while this increases the stratification during neaps, the
large semi-diurnal oscillations are not produced. It should be noted however that other
data sets, obtained at a different mooring station during the same period, show a less
significant increase in stratification (Bos et al., 1992). The results are clearly not in
agreement with those obtained in the absence of wind forcing [Fig. 9(b)]. To illustrate this,
the time evolution of the two terms on the right of (52) (advective term and mixing rate)
with wind forcing are shown in Fig. 10(f) and (g). It can be seen that the across shore
currents and their semi-diurnal oscillations are now larger at neaps than during springs in
agreement with the observations (Visser et al., 1994). Comparison of Figs 9(d) and 10(g)
shows that turbulent mixing is mostly produced by the wind. Probably the main cause of
discrepancies between model and observations is the representation of the horizontal
density gradient, which is taken as depth and time independent. Forcing the model with
time-varying measured density gradients may improve the results (A. J. Souza, private
communication). Along shore advection of freshwater, not represented by the model, may
also contribute to the observed stratification signal (A. Visser, private communication).

5. SUMMARY AND CONCLUSIONS

Three turbulence closure schemes, designed for stratified flows in shallow waters, have
been presented and tested. They may be considered as three versions of the same model
with the exception that each one uses a different number of transport equations for
turbulence variables. The models are first tested on the evolution of a wind-driven
turbulent layer without Coriolis force. The rate of entrainment predicted by the KEPS2
and KEPS1 models agrees well with the observational data and the results of laboratory
experiments. The evolution of the turbulent layer depth, density and current profiles are in
good agreement with the self-similarity hypothesis. Contrary to the earlier investigation by
Kundu (1981) the development of a sharp interface at larger times is not confirmed by the
present study. In analogy with Frey (1991) the KEPS0 model is susceptible to numerical
instabilities arising when At is too high or Az too small.

The model results are at least qualitatively in agreement with data when applied to
simulate the stratification in the Rhine plume, despite model simplifications—neglection
of along shore advection, simplified tidal forcing parameters and constant horizontal
density gradient. The springs—neaps cycle of stratification is fairly predicted by the
simulations. The large semi-diurnal oscillations which according to the data reach
amplitudes of the order of 4-6 kg m ~3 at neaps, are also visible in the model runs but with a
lower amplitude. In analogy with the theory explained in Simpson et al. (1990) and Heaps
(1972) the processes which induce or destroy stratification are advection by the wind-
induced and tidal residual currents, tidal straining and turbulent mixing.

The results of the KEPS2 and KEPS1 models are very similar. This indicates that there is
no need, at least for the type of problems discussed in this paper, for solving an additional
equation for the turbulent dissipation. At the next stage, the turbulence models will be
incorporated into an existing three-dimensional baroclinic circulation model (Ruddick et
al., 1994). This may allow for a better quantitative comparison with the observations and
will be the subject of forthcoming investigations.
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APPENDIX

Expressions (8) and (9) for the stability coefficients S, and S, are derived in the following way. Equations (1)
and (5) contain the nine unknown correlations {t;u;) and (1;8). Following the work of Launder (1975), Launder et
al. (1975}, Gibson and Launder (1978) the following modelled transport equations are adopted

d d d £ 2
= () + Uy a () = — éx—k (g + Py + Gyi— ¢ E((ufuj) - 3—(5,-]-k)

2 o, oU;
- CZI(Pl'f = 3—6,-',1”5) — Ca3 (E+ a—x")k
2 2 2
= Cy3 (DU — iéqps) —C3 (G‘I = 3*6,](;) - 3—865}: (AI)
d 0 a ab
o {uB) + Uka (uf) = — ax, () — () 8,
au;
= gl + (e~ 1) () S0 055 (A2)
Bxk

where k = T, (u?)/2 represents the turbulent kinetic energy, ¢ its dissipation by molecular viscosity and

au, !
Py = —{uau) a;'" (ujuee) oy (A3)
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Gy = OB + OpluiB) (A4)
D= —(uiuk)%—ujuk>%u7f (AS)
Ps=%ZPi.E’ G=;—ZG& (A6)
i i
T T ) (A7)

The unknown correlation (42) which appears in equation (A2) is determined from the transport equation

3 . ™ 3, ab
2+ U (= — — ) ——
anf(ﬁ) k&xk(ﬁ) axy, (i) = 2ud) ax, cagk

LE‘

8. (A8)

Launder (1975), Launder et al. (1975), Gibson and Launder (1978) determined the empirical constants by
reference to laboratory experiments. The following values are adopted:

(1, G2y €3, €1 CapoCap) = (1.5,0.55,0.5,3.0,0.33,0.8). (A9)

Instead of solving the 10 partial differential equations, together with a separate transport equation for the
quantity &, the problem can be greatly simplified by making the local equilibrium assumption (Mellor and
Yamada, 1974, 1982; Hossain and Rodi, 1982). If the time derivative, advective and diffusive transport of the
turbulent stresses and fluxes are neglected, the model equations reduce to the following algebraic expressions

2 k
(wu) = gaijk + El_e((l — )Pyt (1= )Gy

U. U,
— ¢ (% + i—xf)k - caly
+ géfj((cm + 3} P+ 3G — 8)) (A10)
(i) = i’i(— i i~ Czﬁ)(dsa(ﬂz) — ) 95)) (Al1)
cip e ax; ax
k ab
B = 203 Suill) 5 (A12)

In analogy with the level 2.5 model of Mellor and Yamada (1982), the algebraic system (A10)-(A12) is further
simplified by using the boundary layer approximation which is justified since the aspect ratio of the flow under
consideration is small. This means that vertical hydrostatic equilibrium is assumed and all horizontal derivatives
of U and V (horizontal components of the fluid velocity) and b are neglected. The solutions for (uw), {vw), (W)
can be written in the form given by equations (6) with v and Ay given by (7). The algebraic system for the
turbulent fAuxes then reduces to two linear equations for the stability functions §, and §, . The coefficients of those
equations are functions of the shear and buoyancy parameters o, and oy defined by

kZ 5 5 kZ 2 kl _ 2 2
ay =5 (U + V) ==5M, ay= b= N (A13)

£ & £ &
Numerical experiments for a wind-driven mixed layer using the analogous Mellor—Yamada formulation
performed by Deleersnijder and Luyten (1994) showed that the explicit dependence of the stability functions on
shear induces spurious discontinuities in the profiles of velocity and buoyancy. This is related to the observation
that the stability parameters are decreasing functions of the shear parameter G,, which is equivalent to ay, in the
present notation (Delcersnijder, 1992). Moreover, it appeared that the oscillations are absent when the modified
version of Galperin et al. (1988) is applied to the Mellor—Yamada level 2.5 model where the shear dependence is
climinated with the aid of the local isotropy approximation. A similar analysis applies to the present case. In
analogy with Galperin et al. (1988) it can then be shown that S, and S, take the form given by equations (8)
and (9).



