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Abstract

In this pilot study, we exemplify differences between a septic and a colonizing 
GBS strain during their interaction with Endothelial Cells by evaluating cytokine 
levels, surface and apoptosis-related molecules. These preliminary results 
indicate that in vitro infection using an exemplary septic GBS strain results in 
diminished activation of the innate immune response. 
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Introduction
Sepsis due to infections with Group B Streptococcus (GBS) 

is a common cause of morbidity and mortality in neonates and 
immune suppressed patients in Western countries. Two thirds 
of newborns are colonized post-partum and 0.2 % suffer from 
pneumonia, meningitis and septicemia due to GBS infection [1,2]. 
Fifty percent of surviving children are seriously affected by late 
effects, including blindness, deafness and epilepsy [3]. GBS grow 
invasively by penetrating cellular barriers utilizing characteristic 
virulence factors [4,5] basically exploiting endothelial dysfunction 
[6]. It is a pivotal question why some patients develop severe 
sepsis, whereas another collective is simply acting as carriers. 
Therefore we focused on potentially relevant key mechanisms in 
the pathophysiology of GBS infection. This includes cell apoptosis, 
cytokine response and inflammation.

Materials and Methods
By way of example, a septic reference strain of Streptococcus 

agalactiae Lancefield’s group B (ATCC®13813 strain Lehmann 
and Neumann, serotype V, non-hemolytic, clinical symptoms 
sepsis, LGC Promochem, Wesel, Germany) and a colonizing GBS 
strain (GS130903, isolated from ear swab, University Children’s 
Hospital, non-typable serotype, clinical symptoms none) were 
selected for in vitro culturing with Primary Human Coronary 
Artery Endothelial Cells (HCAEC). Culturing assays for bacteria 
and HCAEC were performed as described before. For ELISA 
experiments (MCP-1, IL-6, IL-8, R&D Systems, Minneapolis/USA), 
cell culture supernatants and lysates were collected after 4, 8 
and 24 hours, respectively and analyzed as previously described. 
For simultaneous Western Blot analysis (Cl. Casp 3: 1:1000, 
milk, rabbit; Casp 8: 1:1000, BSA, mouse; PKB/Akt: 1:1000, BSA, 
rabbit; Cell Signaling), protein extracts were prepared, electro-

transferred and blocked as described before [7]. Loading control 
was performed with ß-actin. For measuring surface molecules 
by Flow cytometry [E-Selectin (anti-CD62E), VCAM-1 (anti-
CD106)] cells were incubated with primary and secondary 
antibodies (FITC-conjugated, 1:20, mouse, Chemicon Upstate) 
and afterwards fixed with 4% Formaldehyde. In preliminary 
experiments we could not detect any change after 4 and 8 hours 
of infection. Therefore incubation time was elongated to 24, 48 
and 72 hours. 

Data represent means +/- standard errors of the means (SEM). 
Differences between groups were tested using Student’s t-test. 
Differences were considered to be significant at p<0.05. Biological 
replicates were performed at least three to five times.

Results 
In the present study, we sequentially analyzed the effects of 

septic and colonizing GBS on HCAEC and could demonstrate by 
way of example.

Differential secretion of pro-inflammatory cytokines 
and chemokines

After infection with the colonizing GBS strain, MCP-1 secretion 
to culture medium was markedly augmented (5.3-fold; p<0.01) 
after 24 hours of infection compared to un-stimulated cells 
(defined as 100%), whereas the septic strain ATCC®13813 led to 
lower MCP-1 levels (2.4-fold; p=0.03) after 24 hours.

In contrast, IL-6 levels were higher, when cells were exposed 
to the septic GBS strain (10.7-fold; p=0.01), compared to the 
colonizing strain (5.3-fold; p<0.01). Both strains caused nearly 
identical increases of IL-8 levels (3.2-fold (p<0.01) and 3.4-fold 
(p=0.01), respectively) (Figure 1). 
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Abbreviations: ATCC: American Type Culture Collection; Casp: 
Caspase; GBS: Group B Streptococcus; GS: Colonizing GBS Strain 
(clinical isolate); HCAEC: Human Coronar Artery Endothelial 

Cells; IL-6: Interleukin-6; IL-8: Granulocyte Chemotactic 
Protein-1; LB: Lysogeny Broth; MCP-1: Monocyte Chemoattractant 
Protein-1; PKB/Akt: Protein Kinase B; VCAM-1: Vascular Cell 
Adhesion Molecule.
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Figure 1A: Time course of MCP-1 secretion by HCAEC, co-incubated 
with a septic (ATCC) and colonizing (GS) GBS strain, respectively (cell 
culture supernatants).*

Figure 1B: Time course of IL-6 secretion by HCAEC, co-incubated 
with septic (ATCC) and colonizing GBS (GS) strain, respectively (cell 
culture supernatants).

Figure 1C: Time course of IL-8 secretion by HCAEC, co-incubated 
with septic (ATCC) and colonizing GBS (GS) strain, respectively (cell 
culture supernatants).

Figure1: Differential secretion of pro-inflammatory cytokines and 
chemokines.

Data shown represent mean levels in percent ± SEM of at least 4 
independent experiments. The un-stimulated control is defined as 
100 percent. *indicates statistical significant difference (p<0.05).
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Differential regulation of apoptotic and anti-apoptotic 
signaling-pathways

Cleavage of Caspase 3 was substantially increased after 

infection with the septic strain (maximum 52-fold; p=0.04) 
compared to the colonizing strain (maximum 31-fold; p=0.04) 
after 24 hours of incubation.

Both strains led to similar activation of Caspase 8 (7-fold and 
9-fold, respectively; p=0.05 and 0.04). Interestingly, we revealed 
substantially differential inhibition of the PKB/Akt signaling 
pathway (septic strain: 15-fold, p=0.04 vs. colonizing strain: 155-
fold, p=0.01) after 24h of infection (Figure 2).

Figure 2: Differential regulation of apoptotic and anti-apoptotic 
signaling-pathways

Figure 2A: Autoradiographs and quantitative analysis of Western Blot 
Assays demonstrating up-regulation of Cleaved Caspase 8 after 4, 8 
and 24 h in comparison to un-stimulated HCAEC(cell culture lysates).  
Exemplary presentation of loading controls with ß-actin.

Figure 2B: Autoradiographs and quantitative analysis of Western Blot 
Assays demonstrating up-regulation of Cleaved Caspase3 after 4, 8 
and 24 h in comparison to un-stimulated HCAEC (cell culture lysates).  

Figure 2C: Autoradiographs and quantitative analysis of Western Blot 
Assays demonstrating up-regulation of PKB/Akt after 4, 8 and 24 h in 
comparison to un-stimulated HCAEC (cell culture lysates).  
Data shown represent mean expression in percent ± the standard 
error of the mean (SEM) of 4 
independent experiments. The results after 4 hours are defined as 100 
percent. * indicates 
statistical significant difference (p<0.05).
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Differential activation of surface molecules

Only the colonizing strain GS130903 led to VCAM-1 up-
regulation only after 72 hours (1.5-fold; p=0.03). After 48 hours 
of stimulation with both strains, we found nearly comparable 
mean fluorescence values of E-Selectin surface molecules (1.5 and 
2-fold respectively; p=0.01 and <0.01). Interestingly, E-Selectin 
expression was diminished after 72 hours of co-cultivation of 
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HCAEC with the colonizing strain (1.4-fold), whereas we could not 
show any marked difference after infection with the septic strain 
ATCC®13813.

Discussion
Our results indicate that both strains specifically induce the 

secretion of defined pro-inflammatory cytokines and chemokines. 
Production of IL-6 was markedly augmented, especially after 
infection with the septic GBS strain, whereas MCP-1 levels were 
significantly higher after stimulation with the colonizing strain. 
Levels of IL-8 were nearly identical following stimulation with 
both strains. These cytokines primarily activate monocytes and 
induce their migration to sides of infection. Neutrophils and 
monocytes are part of the innate immune system, which provides 
a first line of defense against bacterial infection, thereby playing 
a crucial role concerning defense mechanisms of the neonate [8]. 
Especially in preterm infants monocytes may have an intrinsic 
deficiency to recognize and to respond to GBS [9]. One reason 
might be an impaired function of Toll-like receptors [10-12]. 

These results demonstrate that endothelial cells contribute 
in a relevant manner to the innate immune response during GBS 
infection. This is in accordance with other macro-vascular cell 

types, such as human umbilical vein-derived endothelial cells 
[5] and with other infectious agents like LPS [13]. Lower MCP-
1 levels after infection with the septic reference strain might 
lead to insufficient recognition by the innate immune system. 
Furthermore, significant higher IL6- levels after infection with 
the septic GBS strain could explain activation of pro-thrombotic 
processes via induction of tissue damage [14], stimulation of 
megakaryocytes and platelet activation [15] during an acute 
phase reaction. Similar results have been published by Berner 
et al. [16] who found significantly higher IL-6 levels in cord 
blood mononuclear cells after stimulation with neonatal sepsis 
compared to colonizing GBS strains [16]. 

To differentiate between cytokine release and modified 
cytokine production, we also performed ELISA from cell culture 
lysates (data not shown). The production of IL-6 was increased 
in a time dependent manner, which was nearly identical with IL-6 
levels in supernatants. In contrast, production of IL-8 and MCP-
1 differed in-between the sources. We found decreased levels of 
IL-8 and MCP-1 after infection with the septic reference strain and 
hypothesized that this fact might also be at least partly due to an 
insufficient innate immune response. Further analyses should be 
carried out focusing MCP-1 and IL-8 levels in cell culture lysates 
after infection with colonizing strains (Table 1).

Table 1: Differential expression of selected markers. 
Regulation after infection with a septic (ATCC®13813) in comparison with a colonizing (GS130309) GBS strain.

Colonizing Reference Strain Septic Reference Strain

VCAM-1 ↑ ↔

Maximal mean Fluorescence Increase [72 hours] 1.5-fold No change

p-value 0.03 0.2

E-Selectin ↑ ↑

Maximal Mean Fluorescence Increase [48 hours] 2-fold 1.5-fold

p-value <0.01 0.01

Cl. Caspase 3 ↑ ↑↑

Maximum of Activation [24 hours] 31-fold 52-fold

p-value 0.04 0.04

Caspase 8 ↑ ↑

Maximum of Activation [24 hours] 9-fold 7-fold

p-value 0.04 0.05

PKB/Akt ↓↓↓ ↓

Maximum of Inhibition [24 hours] 155-fold 15-fold

p-value 0.01 0.04

MCP-1 ↑↑ ↑

Maximal Mean Production in %; [24 hours] 532 241

p-value <0.01 0.03

IL-6 ↑ ↑↑

Maximal Mean Production in %; [24 hours] 531 1067

p-value <0.01 0.01

IL-8 ↑ ↑

Maximal Mean Production in %; [24 hours] 340 318

p-value <0.01 0.01

VCAM-1: Vascular Cell Adhesion Molecule 1; PKB/Akt: Protein Kinase B; MCP-1: Monocyte Chemo attractant Protein-1; IL-6: Interleukin-6; IL-8: 
Interleukin-8.
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In addition, we could demonstrate that cleavage of Caspase 3 
and Caspase 8 was increased (Figure 2). Induction of apoptosis 
by GBS could be previously demonstrated for macrophages, 
monocytes and fibroblasts, but not for other cell lines, which 
in consequences implicates a cell specific phenomenon [17]. 
It is remarkable that the septic GBS strain showed a stronger 
activation of Caspase 3, compared to the colonizing strain. We 
assume that this stronger Caspase 3 activation is, among other 
factors related to the presence of ß-hemolysin, as previously 
demonstrated for macrophage [18] and monocyte apoptosis [19]. 
GBS-induced apoptosis is inhibited by the Caspase-3 inhibitor 
DEVD-CHO [17]. In consequence, induction of Caspase-3 might be 
responsible for tissue damage, leading thereby to dysregulation 
of hemostasis. In contrast, the colonizing strain causes a stronger 
inhibition of the PKB/Akt survival pathway, which could suppress 
the dissemination of the infection. Levels of Caspase 8 cleavage 
were comparable.

Finally, we revealed differential regulation of endothelial 
surface molecules. Several groups could previously show 
unequivocal expression of adhesion molecules after cytokine 
stimulation [20], which might be also a possible mechanism 
for microbe induced regulation. The expression of VCAM-1 was 
markedly augmented after infection with the colonizing strain 
compared to the septic strain, thereby facilitating monocyte 
migration and activation of the innate immune system.

Conclusion
In summary, exposure of neonates to GBS represents a strong 

challenge to the local immunity. Neonates acquire GBS at birth 
when the neonatal lung may be infected with a substantial 
inoculum from amniotic fluid. Although, GBS contributes to 
a poor inflammatory response in the neonatal lung, fast and 
potent activation of the innate immune system by macrophages, 
monocytes, pulmonary endothelia and epithelia but also by cells 
of the human vessels is mandatory. Surprisingly, coronary artery 
endothelial cells seem to play a substantial role in the innate 
immune response against GBS as well. Future projects need to 
focus on functional analyses of key players involved in innate 
immunity and enlarge the number of GBS strains.
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