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The adult form of attention deficit/hyperactivity disorder (aADHD) has a prevalence of up to 5%
and is the most severe long-term outcome of this common neurodevelopmental disorder.
Family studies in clinical samples suggest an increased familial liability for aADHD compared
with childhood ADHD (cADHD), whereas twin studies based on self-rated symptoms in adult
population samples show moderate heritability estimates of 30-40%. However, using multiple
sources of information, the heritability of clinically diagnosed aADHD and cADHD is very
similar. Results of candidate gene as well as genome-wide molecular genetic studies in aADHD
samples implicate some of the same genes involved in ADHD in children, although in some
cases different alleles and different genes may be responsible for adult versus childhood
ADHD. Linkage studies have been successful in identifying loci for aADHD and led to the
identification of LPHN3 and CDH13 as novel genes associated with ADHD across the lifespan.
In addition, studies of rare genetic variants have identified probable causative mutations for
aADHD. Use of endophenotypes based on neuropsychology and neuroimaging, as well as
next-generation genome analysis and improved statistical and bioinformatic analysis methods
hold the promise of identifying additional genetic variants involved in disease etiology. Large,
international collaborations have paved the way for well-powered studies. Progress in
identifying aADHD risk genes may provide us with tools for the prediction of disease
progression in the clinic and better treatment, and ultimately may help to prevent persistence
of ADHD into adulthood.
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ADHD has long been considered a disorder of child-
hood that resolves with maturation. Symptoms of
inattention, impulsiveness, restlessness and emo-
tional dysregulation in adults were considered not
to reflect ADHD, but to be unspecific problems
secondary to other disorders. This idea was chal-
lenged when systematic follow-up studies of children
documented the persistence of ADHD into adult-
hood.? Longitudinal follow-up studies of ADHD
children, community surveys and epidemiological
studies of population samples estimate the average
prevalence of adult ADHD (aADHD) to be between 2.5
and 4.9%.° This shows that aADHD is one of the most
common psychiatric disorders in our society and
clinical settings. The notion that the total number of
people affected by aADHD is even larger than those
suffering from ADHD during childhood and adoles-
cence also shows that the societal consequences of
this chronic debilitating condition may have been
vastly underestimated in the past.*

Clinical research has shown that the predominant
features of aADHD differ from typical ADHD in
children (cADHD), with less obvious symptoms of
hyperactivity or impulsivity and more inattentive
symptoms; importantly, the frequency of psychiatric
comorbidity is also increased in aADHD.®> Until
recently, aADHD has been diagnosed according to
clinical descriptions originally developed for chil-
dren. The lack of age-appropriate clinical measures
has hampered progress in this field, including genetic
research. Future versions of the Diagnostic and
Statistical Manual of Mental Disorders® may provide
diagnostic measures that are better suited for all
relevant age groups.

Heritability, family studies, suitability for
genetic studies

Family and twin studies of cADHD demonstrate a
high heritability, estimated to be around 70-80%
from twin studies.®” Relatively few studies have
investigated the genetic and environmental contri-
butions to the developmental course and outcomes
in adulthood. Longitudinal twin studies show
that the continuity of symptoms from childhood
through to adolescence is predominantly due to
common genetic influences.®'° Although such stable
genetic effects are likely to continue beyond the
adolescent years, there are only a few studies
investigating this.

Genetic research on ADHD started with the finding
that hyperactivity tends to aggregate in families.'""?
Since then, family studies have shown that ADHD
shows familial clustering both within and across
generations. Increased rates of ADHD among the
parents and siblings of ADHD children have been
observed.'®'* In addition, strongly increased risks
for ADHD (57%) among the offspring of adults with
ADHD have been reported.” Also, compared with
the risk for ADHD among the siblings of children
with ADHD (15%), siblings of adults with ADHD
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were found to have a strongly increased ADHD risk
(41%)."® Furthermore, a prospective 4-year follow-up
study of male children into mid-adolescence found
the prevalence of ADHD to be significantly higher
among the parents and siblings of persistent ADHD
child probands compared with the relatives of ADHD
probands in whom ADHD remitted.'” Taken together,
these studies suggest that the risk for ADHD may be
greater among the first-degree relatives of probands
with ADHD that persists into adolescence and
adulthood than that among the relatives of probands
with ADHD that remits before adulthood."”*®

Whether such familial risks reflect genetic or
environmental factors can be clarified using adoption
and twin studies. Adoption studies found that ADHD
is transmitted only to biological relatives, which
strongly implicates genetic factors as the main causal
influences on familial risk for the disorder.’***'%=>!
These studies showed (for both current and retro-
spective symptoms in adults) that cADHD in child
relatives predicts aADHD (or associated symptoms) in
adult relatives. However, both adoption and family
studies identify discrepancies related to different
sources of ratings, with self-evaluation of ADHD
symptoms by adults providing less evidence of
familial effects than informants or cognitive perfor-
mance data.'®?*??

Recently, four adult population twin studies using
self-ratings of ADHD symptoms have been completed,
which all found heritabilities that are far lower
than those found in similar studies of parent- or
teacher-rated cADHD: 41% for retrospectively
reported childhood ADHD symptoms in a sample of
345 US veterans aged 41-58 years old,** 40% for
current inattention problems in a Dutch study of
4245 18-30-year olds,® 30% for current ADHD
symptoms in a Dutch study of over 12 000 twin pairs
with an average age of 31 years* and 35% for current
ADHD in a Swedish sample of more than 15 000 twin
pairs aged 20-46 years (Larsson et al., unpublished
data). The situation is similar in adolescence, as
adolescent twin studies using self-ratings show lower
heritability estimates than studies of parent or teacher
ratings,*®*” suggesting that self-ratings may be a
poorer measure of the underlying genetic liability to
ADHD than informant reports or clinical interviews.
Although the estimated heritability in self-rated
ADHD symptoms in adult populations is lower than
that derived from parent or teacher ratings of cADHD,
the pattern of findings is identical. Both types of
studies find that there are no gender differences
observed in the estimates of heritability, heritability
estimates are stable across the age-span (for each type
of measurement approach), there are similar estimates
of the genetic correlation (the proportion of shared
genetic effects) of 60-70% between inattention and
hyperactivity-impulsivity, familial effects are all
genetic in origin with no shared environmental
influences, and no threshold effects are found.
This suggests that for both child and adult ADHD
the disorder is best perceived as the impairing
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extreme of a quantitative trait (Larsson et al., un-
published data; ref. 28).

Despite these common features, the relatively low
heritability estimates for ADHD symptoms in adults
derived from population twin studies need some
explanation, because they appear to be at odds with
heritability estimates of ADHD symptoms in children,
as well as the family studies that show a high familial
risk for persistent forms of ADHD.">'® Several factors
are likely involved. We have already mentioned the
consistent finding that self-ratings of ADHD symp-
toms give lower estimates of heritability compared
with informant ratings in twin studies. One source of
measurement error (that is, variance of the true
diagnostic status that is not predicted by the measure-
ment instrument) is the reliability of the self-rated
measures of ADHD symptoms. In one of the herit-
ability studies by Boomsma and co-workers,*® this
was estimated to be around 0.66, which is lower than
the mean heritability of cADHD across extant
studies.?® Psychometric studies also show that,
although self-ratings may be useful as a screening
tool for aADHD, their correspondence with the full
diagnosis is only modest. For example, Kessler et al.*°
reported that the sensitivity of self-ratings as a
measure of diagnosis was high (98%), whereas the
specificity was not (56%). Similar findings were
reported by Daigre Blanco et al.*' (87.5% sensitivity
and 68.6% specificity). Related to this source of error
are potential effects of having two raters in twin
studies of self-ratings of ADHD (each twin rates him/
herself), whereas informants usually rate both mem-
bers of a twin pair. Since reliability between two
raters will always be less than an individual’s
reliability with their own ratings, and because a
ceiling on heritability is set by the reliability of
ratings, heritability estimates will always be lower
when two separate raters are involved in evaluating
each twin pair compared with only one. Single raters
may inflate identical twin pair similarities, poten-
tially leading to an overestimation of heritability in
the reported studies on cADHD, whereas the lower
reliability of ratings between two raters may lead to
lower estimates. Evidence for the later conclusion
comes from our recent analysis of same versus
different teacher ratings in a study of 5641 12-year-
old twins, with heritability estimates of 75% for same
teacher and 53% for different teacher ratings of twin
pairs (Merwood and Asherson, unpublished data).

Another relevant difference between child and
adult samples is the expected range of ADHD
symptom scores. It is well known that ADHD
symptoms decline through adolescence into adult-
hood.?* Thus, it is possible that the restricted range of
ADHD symptoms in adulthood could influence
estimates of heritability. Although some of this
symptom decline is likely due to true remission of
ADHD, some have argued that the diagnostic criteria
for ADHD, which were originally developed for
children, are developmentally insensitive and thus
become less sensitive to ADHD with age (see above
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and refs. 4,33). Added to this is the possibility that in
cross-sectional studies of adult population twin
studies (that do not apply clinical criteria for ADHD),
ADHD symptoms may emerge in some individuals
owing to adult-onset conditions, such as anxiety,
depression and drug use. These ‘phenocopies’ would
lead to increased measurement error of the genetic
liability for ADHD and lower estimates of heritability.

Differences in the way that participants are ascer-
tained in different study designs may also impact on
estimates of familial/genetic influences. The family
studies that showed high familial risk for ADHD used
case—control methods to ascertain adult patients who
were self-referred for (severe) ADHD-like problems.
There are notable differences between the clinically
referred and population-based samples. The former
have a more skewed male-to-female ratio, higher rates
of psychiatric comorbidity and lower rates of primar-
ily inattentive ADHD. Moreover, the family and twin
studies used differing assessment methodologies. The
family studies diagnosed subjects with structured
interviews that evaluated childhood onset of impair-
ing symptoms and the presence of impairment in
multiple settings as required by Diagnostic and
Statistical Manual of Mental Disorders, 4th Edition.
In contrast, with the exception of Schultz et al.,** the
twin studies used rating scale measures of ADHD
symptoms that do not query for childhood onset and
do not systematically assess impairment in multiple
settings.

Overall, these considerations suggest that the lower
heritability of aADHD compared with cADHD could
be due to increased measurement error in the aADHD
twin studies. Support for this conclusion comes from
a recent Swedish twin study, which found that the
heritability of attention problems in 19-20 year olds
was estimated at 78% when self-rating and parent-
rating data were combined; the heritability for self-
ratings alone was 48% (Larsson et al., unpublished
data). Analogous to this, cluster A personality
disorders show low heritability estimates in analyses
based on limited phenotypic information that become
much higher when adding more information from
interviews.?® On the other hand, it still remains
feasible that the heritability of aADHD does indeed
decline with increasing age. This might reflect the
importance of developmental processes that are
sensitive to person-specific environmental factors
affecting the longitudinal outcome of ADHD in adults.

Since heritability estimates do not relate directly to
the frequency or effect size of specific genetic risk
factors,®® it is not yet clear as to what the lower
heritability estimates actually mean for molecular
genetic studies of aADHD. For example, some
disorders with low heritabilities, such as prostate
and breast cancer, have identified genes with moder-
ate to large effects,?” yet this is not the case for many
highly heritable phenotypes including ADHD.?® In the
absence of sufficient studies on this issue, it is quite
clear that genetic researchers should preferably use
measures that have been shown in family studies to



have high rates of familial transmission and in
adoption studies to aggregate in biological, rather
than adoptive relatives. The evidence for strong
familial risks in the relatives of adolescent and adult
ADHD probands suggests that the clinical diagnosis of
aADHD may represent a more familial measure,
although there are no studies to date that directly
address this question. The difference could arise
because the clinical diagnosis takes a developmental
perspective in which the adult phenotype reflects
persistence of the childhood disorder, whereas the
cross-sectional data used in twin studies may include
adult-onset causes of ADHD-like symptoms that
reflect phenocopies involving different etiological
processes.

We conclude that aADHD is influenced by familial
factors that are genetic in origin. The available studies
indicate that self-ratings of Diagnostic and Statistical
Manual of Mental Disorders, 4th Edition-defined
ADHD symptoms may not be the best measure of
the underlying genetic risk for aADHD and that other
factors such as childhood onset, pervasiveness and
impairment should be taken into account.

Molecular genetic studies

Candidate gene association studies in adult ADHD

A search of NCBI's PubMed database for genetic
association studies revealed 46 publications on
aADHD (published until June 2011). Most of these
studies are based on clinically assessed patients. The
majority of studies examined single (or a few)
polymorphisms in dopaminergic and serotonergic
genes focusing predominantly on the dopamine
transporter (SLC6A3/DAT1) and the dopamine recep-
tor D4 (DRD4), both associated with cADHD in meta-
analysis®® (Table 1).#0-5%

In all, 10 studies looked at the 40-bp variable
number of tandem repeats (VNTR) in the 3'-untrans-
lated region (3'-UTR) of the SLC6A3/DAT1 gene, or a
haplotype of this and a second 30-bp VNTR in intron
8. Although most studies found no evidence of
association with aADHD,*042:43.46.4849  three stu-
dies*"***” found a consistent association with the
9-repeat allele or the 9-6 haplotype rather than the
10/10 genotype or the 10-6 haplotype associated with
cADHD.?***° This association of the 9-6 haplotype and
the 9/9 genotype with aADHD was confirmed by a
meta-analysis of 1440 cases and 1769 controls,*
which makes it the most robust finding for adult
ADHD, to date. Why the association in adults is
different from the one found in children is not
entirely clear. A number of explanation are possible,
for example, (a) that the 9-repeat allele and the 9-6
haplotype may mark a severe subgroup of ADHD
patients prone to disease persistence, (b) SLC6A3 may
modulate rather than cause ADHD, and (c) that the 9-
repeat allele and 9-6 haplotype only become aberrant
in an adult brain with its lower dopamine levels.*® For
DRD4, most studies predominantly focused on a
functional tandem repeat polymorphism in exon 3
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of DRD4, in which one variant (the 7-repeat allele) is
associated with cADHD.* Of six studies from five
independent samples, three were negative,*" ***°
whereas the three others showed nominal evidence
that the 7-repeat allele increased risk for aADHD.>'>3
A recent study of the long-term outcome of cADHD
suggested that carriers of the 7-repeat allele show a
more persistent outcome of ADHD.*® While being
reasonably powered, this latter result seems at odds
with an earlier finding showing a normalization of the
cortical thickness in ADHD-relevant brain regions
linked to a better clinical outcome during adolescence
in carriers of the DRD4 7-repeat allele.®® A large meta-
analysis in 1608 aADHD patient and 2358 control
samples was negative for the 7-repeat allele, although
showing nominal evidence for association of a
haplotype formed by the common 4-repeat allele of
the exon 3 VNTR and the long (L) allele of the 120-bp
insertion/deletion upstream of DRD4.°° Findings for
DRD4 are the most consistent ones for cADHD,?° but
more research is clearly needed to understand its role
in aADHD. Among studies on other dopamine
receptor genes (DRD2, DRD3 and DRD5), the findings
for a DRD5 VNTR have been most positive. Although
individually unconvincing, the findings of two of
three studies point in the same direction, indicating
that the same allele associated with cADHD might
also increase risk for aADHD.***®* Of the genes
involved in dopamine turnover, COMT and DBH,
the two largest studies (investigating functional
COMT variants) showed association with aADHD.
However, the direction of association in each of the
studies was opposite.®*®°

Among the serotonergic genes, the serotonin trans-
porter gene (SLC6A4/5-HTT/SERT) and its functional
polymorphism, 5-HTTLPR, were studied most of-
ten,*®°6:57,61,64-67.87 wyith essentially negative or con-
flicting results, even in a large meta-analysis of 1894
patients and 1977 controls.”” One study used a
tagging approach and investigated a total of 19
serotonergic genes® and reported association of
aADHD with single markers or haplotypes in MAOB,
DDC and HTR2A. The latter gene was also found
associated with aADHD in one of two additional
studies, although the polymorphism involved was
different.**®® A recent, large study in 1636 patients
and 1923 controls investigated the two TPH genes and
found nominal evidence of association with TPH1,
but not TPH2.7°

Three genes in the noradrenergic system, the
noradrenalin transporter (SLC6A2/NET), ADRA2A
and ADRA2C, have been tested for association with
aADHD. As shown in Table 1, however, there has
been no evidence of association for these genes with
aADHD-61,62,71,72,88

Two studies have looked at several genes encoding
neurotrophic factors: Ribasés et al.?® used a full
tagging approach and showed association with
aADHD for CNTFR, but did not replicate earlier
research, suggesting an association with NTF3.7*
There have been five studies of the BDNF functional
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Val66Met polymorphism, including a meta-
analysis of 1445 cases and 2247 controls,” that found
no evidence for association.

A number of novel candidate genes have been
associated with aADHD in isolated studies and are in
need of independent replication. Of particular inter-
est may be LPHN3, which was selected for study from
fine mapping of a significant linkage region on
chromosome 4q13.*® LPHN3 was associated with
ADHD in a large sample of children and adults,?
and subsequently replicated in an independent
aADHD sample.?” The function of this gene, which
encodes a G-protein-coupled receptor, is still not well
understood.”® BAIAP2 was found to be associated
with aADHD in a study investigating six genes with
lateralized expression in the developing brain;”® as
brain asymmetry is altered in ADHD,*” this interesting
finding might point to etiological pathways for ADHD
not involving neurotransmitter signaling. In addition,
following up the findings for the circadian rhythm
gene CLOCK may be fruitful,”® as a dysregulated
circadian rhythm is a consistent finding in both
cADHD and aADHD.?”® A fourth gene, NOS1, asso-
ciated with aADHD?®® should be considered in future
studies, as evidence for an involvement of this gene in
ADHD also comes from a genome-wide association
study (GWAS) in cADHD.?®

Linkage analysis

So far, no linkage studies have been performed
looking only at aADHD patients, but two included
adults with ADHD and one reported on ADHD
symptoms in the population. In the former two,
multigenerational pedigrees were investigated. One
of them investigated 16 pedigrees from a Colombian
Paisa genetic isolate, including a total of 375
individuals (126 cases).®* Fine mapping of regions of
suggestive linkage allowed identification of several
regions with significant evidence of linkage and a
family-specific significant logarithm of odds score on
chromosome 8q11.23. Although most of the findings
indicated novel ADHD susceptibility loci, regions on
8q11 and 17p11 overlapped with suggestive linkage
findings on cADHD.***” In a second study of eight
pedigrees (154 family members, 95 cases), several
significant linkage regions were found in a combined
analysis of all families.”® In addition, family-specific
significant findings were also present, some of which
(on chromosomes 1, 7, 9, 12, 14 and 16) overlapped
with regions earlier implicated in cADHD.%¢-97:99-105
The study on adult ADHD symptoms in the popula-
tion investigated sibling pairs (approximately 750)
and their family members. Linkage was observed on
chromosomes 18q21 and 2p25, and suggestive evi-
dence for aADHD loci was present on chromosomes
3p24 and 8p23.'°° Meta-analysis of linkage results
derived from seven of nine independent studies
(mostly on cADHD) was performed in 2008.'°” This
analysis revealed one region of significant linkage, on
the distal part of chromosome 16q, which contains
the CDH13 gene, found nominally associated by
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GWAS in both cADHD and aADHD (see below), and
nine loci with nominal or suggestive evidence of
linkage.

Genome-wide association studies

While linkage analysis is mainly suited for the identi-
fication of loci having moderate to large effects,’*®
GWAS can identify common variants increasing the
disease risk with only small effects. So far, only one
has been performed in aADHD. Although not provid-
ing genome-wide significance findings, this DNA
pooling-based 500K SNP scan'®® identified several
potential risk genes and revealed remarkable overlap
with findings from GWAS in substance-use disorders.
By comparing GWAS results with results from the
previously reported high-resolution linkage scan in
extended pedigrees,”® several loci harboring ADHD
risk genes could be confirmed, including the
16q23.1-24.3 locus containing CDH13. The findings
provide support for a common effect of genes coding
for cell adhesion/pathfinding molecules (for example,
CDH13), regulators of synaptic plasticity (for exam-
ple, catenin alpha 2 (CTNNAZ2)) and ion channels
or related proteins (for example, voltage-dependent
L-type calcium channel o 1D subunit (CACNA1D) and
dipeptidyl-peptidase 6 (DPP6)). These pathways
show strong overlap with the findings from GWASs
in cADHD (for a review see ref. 38).

New developments and initiatives

It appears that the genetic factors underlying ADHD
(as well as other psychiatric disorders) are of even
smaller effect size than anticipated,"*® or are not well
covered by current study designs. This has inspired
researchers to improve their study designs and to
come up with alternative research approaches. The
most relevant of these developments for the study of
adult ADHD are reviewed below.

Improvement in study designs

If effect sizes of individual genetic factors are small,
increasing sample size in genetic studies should
substantially improve power for gene finding. This
realization has led to an increase in the collaborations
between research groups. For aADHD specifically, the
International Multicentre persistent ADHD Collabora-
Tion (IMpACT) was formed in 2007. Including
researchers from Europe, the United States and Brazil,
this consortium coordinates genetic material of over
3500 well-characterized aADHD cases and approxi-
mately 4000 controls. IMpACT has performed meta-
analyses of several known candidate genes for
ADHD#*¢67975 (Table 1), thereby providing evidence
for differences in the genetic predisposition to
persistent ADHD compared with cADHD.

Other examples for collaborative efforts in genetics
are the ADHD Molecular Genetics Network,''* a well-
established worldwide network of researchers
working on ADHD genetics, and the Psychiatric
GWAS Consortium (PGC).""* The PGC provides a
forum for sharing genome-wide genotyping data and



phenotypic information for studies on ADHD (but
also on autism spectrum disorder, major depression,
bipolar disorder and schizophrenia, see below)
(http://www.pgc.unc.edu/index.php).""® Recently, a
meta-analysis of ADHD GWASs in the PGC database
was performed, including 2064 child—parent trios,
896 cases and 2455 controls.’* This did not yield
genome-wide significant findings, yet, potentially due
to small effect sizes of individual variants, disease
heterogeneity and gene—environment interactions (for
a more extensive review of potential reasons for the
‘missing heritability’, see ref. 114). The absence of
genome-wide significant findings in a meta-analysis
of the current size is not unexpected: a comparison
with data on the other disorders within PGC shows a
strong correlation between minimal P-values and
sample size (Figure 1), suggesting that genome-wide
significant findings can only be expected at sample
sizes of more than 12000 individuals (cases and
controls combined). These data clearly emphasize the
need for multisite collaborations between researchers
in ADHD genetics.

In such multisite studies of ADHD, one problem is
the potential disease heterogeneity among sites due to
genetic or cultural differences. However, in this
regard it is reassuring that the presentation of ADHD
and its prevalence is similar across different coun-
tries. Meta-analyses and systematic reviews of epide-
miological studies show that there are no differences
in the prevalence of ADHD between European

countries or between Europe and the United
M4 r=91,p=03
Schizophrenia
10 4
o Bipolar
T
=
2
L 8-
2 : o
2 Genomewide Significance
- 7 4
* Autism
6 - . -
ADHD * Depression
5 h T T T T T
5000 10000 15000 20000 25000

Sample Size

Figure 1 Plotted is the sample size (cases+ controls)
analyzed in the first meta-analyses of the Psychiatric
Genome-Wide Association Study (GWAS) Consortium on
schizophrenia, bipolar disorder, major depressive disorder,
autistic spectrum disorders and attention deficit/hyperac-
tivity disorder (ADHD) against the —log of the minimal
association P-value observed in the GWAS. The P-value
indicating genome-wide significance of findings is indi-
cated. The data show the strong (r=0.91) and significant
(P=0.03) correlation between the two parameters. Drawing
a line through the points suggests that at least 12000
samples (cases + controls) will be needed before genome-
wide significant findings for ADHD will be observed.
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States.''>''® Similarly, as we reviewed elsewhere,®?°
the heritability of ADHD does not vary with geo-
graphic location. Although these similarities in
prevalence and heritability between countries do not
assure disease homogeneity, they are consistent with
the idea of substantial homogeneity between coun-
tries. Furthermore, a large body of literature suggests
cross-cultural stability of the ADHD phenotype.
Cross-cultural diagnostic studies find no cross-cultur-
al differences in prevalence or expression, when
methods of diagnosis are systematized across sites.""”
Factor analysis studies have shown that the covaria-
tion of ADHD symptoms is invariant across many
cultures,''® 12! and cross-cultural studies have also
shown considerable stability in the psychiatric and
neuropsychological correlates of ADHD.''7-'?2712¢ In
addition to these findings, which were based on the
binary diagnosis of ADHD, studies that have used
quantitative measures of ADHD show cross-cultural
stability in both clinical comorbidity and develop-
mental trends."?”7**° These findings are so compelling
that a systematic review of ADHD cross-cultural
issues concluded that ‘taken together, these findings
suggest that ADHD is not a cultural construct’.*®" It is
still possible that different sites in a multisite study
identify clinically different types of ADHD due to
differences in ascertainment (for example, from the
population versus clinical samples), exclusion criter-
ia (for example, excluding comorbid disorders) or
methodology (for example, the use of different
structured diagnostic interviews). The best approach
to this problem would be to require sites to use
similar methods of ascertainment and assessment.
As mentioned above, the PGC not only brings
together data sets for disease-specific GWAS meta-
analyses, but also stimulates cross-disorder analyses.
This is inspired by the high degree of overlap that has
been noted in findings from phenotypic dimensional
and molecular genetic studies (for example, refs.
38,132,133); especially, autism and bipolar disorder
have a high degree of comorbidity with ADHD, which
seems to be caused—at least in part—by overlapping
genetic factors."** %" Findings from disease-specific
GWAS also show association across diagnoses, like
the findings that the bipolar risk gene diagylglycerol
kinase H (DGKH) is also associated with adult
ADHD,"*® whereas the ADHD risk gene DIRAS family,
GTP-binding RAS-like 2 (DIRAS2), vice versa, is also
associated with bipolar disorder.’®® Such candidate
studies exemplify how common variants might
influence disorders on the dimensional, syndromic
level—for example, emotional dysregulation—while
not being associated with a specific disorder per se.
Although this seems plausible for common genetic
variants, intuitively one would say that rare variants
should be more specific for certain diseases.
However, previous examples from studies of rare
variants in ADHD, namely copy number variants
(CNVs), show an enrichment of CNVs at sites linked
to autism and schizophrenia'® (IMAGE II Consor-
tium, under review). Classical approaches relying on
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traditional nosology fall short to explain such data.
As the edge of dawn of more biologically orientated
diagnostic systems might be near, the large-scale
cross-disorder studies might be one step to elucidate
functional genetic networks underlying psychiatric
dysfunctioning.

Studies on endophenotype and intermediate
phenotypes

Intermediate phenotypes are traits that mediate the
association between clinical phenotypes and
genes."*"'*? Following the recently suggested termi-
nology from Kendler and Neale,"*® endophenotypes
reflect measures of brain function that are genetically
correlated with a clinical disorder or trait (that is, they
share genetic risk factors), whereas the term inter-
mediate phenotype should be reserved for measures
that mediate the association between genes and
clinical phenotypes. To be considered an endophe-
notype, a trait must meet several requirements, which
include heritability, co-segregation with disease in
families, association with disease in the population
and higher trait scores in unaffected siblings of
patients compared with controls, as well as a criterion
relating to the measurement having to be highly
accurate and reliable."** The endophenotypes identi-
fied according to these criteria are variables that index
genetic risk for disorders, such as ADHD, and include
mediating pathways (intermediate phenotypes) as
well as pleiotropic phenotypes that reflect multiple
different effects of genes. To identify an intermediate
phenotype among the endophenotypes requires the
additional step of demonstrating mediation between
genes and disorder, which can only be tested once
one or more genetic markers are found that show
association to both the clinical disorder and the
endophenotype.”>*** An example relevant to the
study of ADHD is the finding that social cognition
mediates the association between the COMT gene and
antisocial behavior in cADHD, whereas measures of
executive function that were also associated with
COMT were found to reflect pleiotropic (multiple
outcomes of genes) rather than mediating effects."*®

Compared with categorical diagnoses such as
ADHD, endophenotypes are assumed to be more
proximal to genes in biological pathways (whether
they represent intermediate or pleiotropic effects) and
to be genetically less complex and giving rise to
greater effect sizes of genetic variants. This makes
endophenotypes better suited for genetic studies than
clinical phenotypes.***® Both endophenotypes and
intermediate phenotypes may be used to map genes
associated with ADHD, but only intermediate pheno-
types can be used to identify the processes that are
involved directly in the etiology of ADHD.

Several neurocognitive traits may serve as candi-
date intermediate phenotypes, because the core
features of ADHD (inattention and hyperactivity) are
conceptually related with cognitive domains such as
executive function, attention, arousal, memory and
intelligence."*"*® Most research in this area has
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focused on children.'*® A meta-analysis of 83 studies
involving executive functions (EFs) in cADHD con-
sistently identified deficits on group measures of
response inhibition, vigilance, working memory and
planning, but noted moderate effect sizes and lack of
universality."®® Indeed, (c)ADHD shows considerable
heterogeneity with regard to any single cognitive
deficit.'*” For example, nearly 80% of children with
ADHD have a deficit on at least one measure of
executive function, but this can also be said of around
half of control subjects.” Temporal processing
(response variability),"*"** visuospatial and verbal
working memory,'”*'** response inhibition as mea-
sured by the stop-signal reaction time task and
interference control™****'%® seem to fulfill the basic
criteria for endophenotypes of ADHD and may
represent mediating processes. Recently, multivariate
analysis of a large cADHD proband, sibling and
control sample identified two main familial cognitive
factors. The larger factor, which reflected 85% of the
familial variance of ADHD, captured all familial
influences on response times and response time
variability, whereas a second smaller factor reflecting
12.5% of the familial effects on ADHD captured
influences on omission errors and commission errors
on a go/no-go task.”® These findings may be particu-
larly relevant to aADHD because they reflect two
separate developmental processes indexing arousal
and attention processes that are hypothesized to
underlie persistence and remission of ADHD during
the transition into adulthood.*®*"%*

In aADHD, a range of neurocognitive deficits has
also been reported, including problems in sustained
attention,'®*7'°® verbal fluency,'®® set shifting,'0*'%16¢
word reading,’®” color naming,'®” verbal and visual
working memory,'®”**® interference control*®>'*° and
response inhibition.'®?1%%179-173 A meta-analysis of 33
studies concluded that neurocognitive deficits in
adults with ADHD are found across a range of
domains, in particular involving attention, behavioral
inhibition and working memory, with normal perfor-
mance for simple reaction times.”* Which of these
measures satisfy the formal criteria for endopheno-
types and intermediate phenotypes of aADHD has yet
to be fully investigated.

Despite these promising findings, few neuropsy-
chological phenotypes have yet been used in mole-
cular genetic studies of ADHD, let alone aADHD.
There is currently no robust evidence for association
between candidate intermediate phenotypes and
ADHD candidate genes.'”® For aADHD, only two
neuropsychological endophenotype studies have
been published. Barkley and co-workers*' found
association between the 3'-UTR VNTR of the
SLC6A3/DAT1 and making more omission errors on
a continuous performance test, and the DBH Taql A2
allele-homozygous participants took more risks in a
card playing game. The DRD4 exon 3 VNTR did not
have any effects (Table 1). A pilot study in 45 adults
with ADHD compared the performance of carriers and
non-carriers of ADHD risk alleles in DRD4 (exon 3



VNTR, 120 bp promoter insertion/deletion), SLC6A3/
DAT1 (3’-UTR VNTR) and COMT (Val158Met) on a
large battery of neurocognitive tests. The study
showed COMT to be related to differences in IQ and
reaction time, an association of DRD4 with verbal
memory skills, and linked SLC6A3/DAT1 to differ-
ences in inhibition."”® Two linkage studies reported
suggestive loci for traits derived from several neuro-
psychological tasks.””'”® With one important prere-
quisite for endophenotypes suitable for use in genetic
studies being measurement errors smaller than
those of the related clinical phenotype, single neuro-
cognitive tests may not be the most suitable targets
for genetic testing, as they can be prone to several
sources of measurement error due to fluctuations in
mental state and motivation, stress, fatigue or time
of the day."*® A potentially better situation is provi-
ded by the use of aggregated measures across neuro-
psychological tasks in the same way that aggregation
of tests is used to estimate IQ. Studies showing the
general feasibility of such an approach for gene
finding have been performed in children with ADHD
(see above; ref. 159).

Structural and functional neuroimaging measures,
including both magnetic resonance imaging and
cognitive electrophysiology, may be even better suited
as endophenotypes, as they generally show strong
test-retest reliability in adolescents and adults.'”®~"#?
Two recent meta-analyses suggest that genetic effect
sizes at the level of brain activity may be consider-
able.?®*%* There is ample evidence for dysfunction
and subtle structural brain anomalies in ADHD.
Most studies have focused on functional aspects of
dysfunction reporting deficits in the domains of
verbal working memory,'®*'®® response inhibi-
tion,'®*'*° error monitoring as well as reward
processing and delay aversion.'*'%® Again, only a few
studies in aADHD have been published, and there are
almost no findings that can be considered replicated
(see for a review ref. 196). Studies vary largely by
imaging method (functional magnetic resonance
imaging or event-related potentials) and paradigm,
and almost every research group uses slightly differ-
ent versions of a given task. In structural imaging,
brain volumetry studies in aADHD patients reported
reductions of brain volume in the prefrontal cor-
tex'®>'9” and anterior cingulate cortex,'®® caudate
nucleus’??% and amygdala,?*" as well as a marginal
increase of nucleus accumbens volume."® Only some
of these findings have been replicated, to date.?°%*%*
Interesting recent findings also show structural and
functional brain connectivity to be disturbed in
ADHD.203,ZO4

Few studies yet have reported effects of ADHD
candidate genes on imaging phenotypes in aADHD.
By means of event-related potentials elicited by a go/
no-go paradigm and subsequent topographical analy-
sis, it was shown that TPH2 risk alleles previously
linked to ADHD?*® were associated with reduced no-
go anteriorization (suggested to reflect prefrontal
brain activity) in aADHD patients as well as healthy
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controls. Likewise, the 9-repeat allele of the

SLC6A3/DAT1 3-UTR VNTR (associated with
aADHD*®) resulted in a reduction of the no-go
anteriorization,?*” whereas homozygosity for the 10-
repeat allele (which is linked to a higher expression of
the transporter in striatum, at least in healthy adults
using SPECT?%%2%%) was associated with hypoactiva-
tion in the left dorsal anterior cingulate cortex
compared with 9-repeat allele carriership in aADHD
patients,?’® and a stronger working memory task-
related suppression in left medial prefrontal cortex
was found in 9-repeat allele carriers compared with
10/10 homozygotes.*” The ADHD risk haplotype of
LPHN3 was found associated with no-go anterioriza-
tion,””* and was also shown by proton magnetic
resonance spectroscopy to decrease the N-acetylas-
partate to creatine ratio in the left lateral and medial
thalamus and the right striatum, regions altered
volumetrically and/or functionally in ADHD.?' Also,
the NOS1 exon 1f VNTR showed reduced no-go
anteriorization in the controls of a study of impulse-
disorder patients (including aADHD patients) homo-
zygous for the short allele of the VNTR, the ADHD
risk genotype.?’*> More recently, an investigation of
this variant showed both homozygous short allele
aADHD patients and healthy controls to display
higher ventral striatal activity during reward antici-
pation than subjects with the other genotypes.?'® A
study investigating electroencephalogram measures
found an effect of the DRD4 7-repeat allele on the
power in the electroencephalogram beta band.*'*
Furthermore, subjects with this allele were found to
have a significantly smaller mean volume in the
superior frontal cortex and cerebellum cortex com-
pared with subjects without this allele.?*®

Based on the above, endophenotypes may be very
promising tools for the characterization of biological
pathways from gene to disease on the one hand and
for gene finding in ADHD on the other. However, as
discussed, one should not automatically assume
a simple mediational relationship between an
endophenotype and a clinical phenotype. Reality
may be much more complex. Endophenotypes may
be risk indicators of the occurrence or the severity of
the clinical phenotype, without exerting a causal
influence, genetic influences are expected to be
only partially shared between endophenotype and
clinical phenotype, and even where mediation is
demonstrated, the influences between intermediate
phenotype and clinical phenotype could be bi-
directional.*®*** This all complicates the use of
endophenotypes in a straightforward way to identify
genes for ADHD. Moreover, as has been shown in
research of autism, similar genetic variants may
influence a very broad range of endophenotypes,
suggesting that the effective distance between varia-
tions in the sequence or structure of the DNA and
resulting brain endophenotypes may be still quite
large.*® Nonetheless, using endophenotypes con-
tinues to be a powerful way to unravel the genetic
architecture of multifactorial disorders such as
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aADHD, but its effective application may require
moving to more comprehensive approaches that
include the simultaneous modeling of multiple
endophenotypes, innovative statistical methods and
the combination of those with bioinformatics.?*”
Assessing endophenotypes in multisite collabora-
tive studies would additionally require prospective
studies using identical measures across sites, or the
definition of derived (aggregate) measures that capture
the underlying trait optimally while reducing task-
specific measurement noise (for example, ref. 159).

New methods for the statistical analysis of genetic
association

Hypothesis-driven candidate gene studies have been
the focus of many research groups, as, with current
sample sizes, they provide superior power. However,
instead of investigating single polymorphisms, entire
genes or even entire functional networks are currently
being investigated. The first examples of these studies
have focused on the association of neurotrophic
factors,’®”* the serotonergic system® and brain later-
ality-related genes” with aADHD (see Table 1). Tools
like the KEGG Pathway Database (http://www.geno-
me.jp/kegg/pathway.html), Gene Ontology (http://
www.geneontology.org) or DAVID (http://www.david.
abcc.ncifcrf.gov) are useful for identifying possible
candidate systems and selecting the constituent
genes. This approach may also be applied to the
analysis of data from genome-wide genotyping efforts,
by calculating association scores between the disorder
and functional groups. An example of a statistical
approach for this was recently published for the
analysis of IQ in a sample of children with ADHD,*'®
but similar univariate as well as multivariate
approaches have been suggested.”" %

With the improvement of statistical methods, the
investigation of gene-by-environment (G xE) and
gene-by-gene (G x G) interactions is becoming more
and more feasible. So far, only very few studies have
addressed this issue in aADHD (Table1 and above), in
largely underpowered studies. In cADHD, more
literature is available, but results for individual genes
are still conflicting.?**2*°

Bioinformatic analyses are becoming more and
more important as a tool for the integration of genetic
findings. Such analyses can indicate biological
processes and pathways enriched in the data from
GWASs.??® In ADHD, a study on copy number
variants (see below) showed enrichment for genes
important for learning, behavior, synaptic transmis-
sion and central nervous system development®*”
using bioinformatics. Another recent study integrated
the top-ranked findings of all published GWAS in
ADHD and found a strong enrichment of genes related
to neurite outgrowth.?*®

Investigation of rare genetic causes of ADHD and
alternative patterns of genetic transmission

Judging from the high prevalence of ADHD in the
general population and the strong decline of disease
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risk from first- to second-degree relatives, a multi-
factorial polygenic inheritance model has been
considered most likely for ADHD.?****°With the
involvement of environmental factors, the disorder
seems best described as being of multifactorial origin.
The multifactorial polygenic model has motivated the
search for common DNA variants, as described above,
using candidate gene, genome-wide linkage and
GWAS. However, given the limited success of GWAS
in ADHD, thus far,"'***' in conjunction with reports
on increased burden of rare copy number variants in,
for example, schizophrenia and autism (for example,
refs. 232,233), ADHD researchers have begun the
search for rare variants that might account for some of
ADHD'’s heritability.

From case reports, we have known for a long time
that unique mutations can lead to ADHD. Examples
include a translocation involving the solute carrier
family 9 member 9 gene, SLC9A9,*** and an inactivat-
ing mutation in TPH2,**® both found to co-segregate
with ADHD in two different families, but also larger
chromosomal abnormalities.?*%241 In addition, several
syndromes caused by rare genetic mutations (includ-
ing the 22q11 deletion syndrome and Klinefelter
syndrome) are known to show increased incidence
of ADHD(-like phenotypes),>***** although adult
forms of ADHD are often not part of the clinical
assessment of these patients.

Most of the earlier studies have not systematically
investigated the entire genome for rare, deleterious
mutations, nor did they indicate whether such
mutations also cause ADHD in adults. A first
systematic analysis of microdeletions and duplica-
tions (CNVs), including adults with ADHD, has
been published recently.*** This study revealed
de novo as well as inherited CNVs associated with
ADHD. A particularly interesting finding from this
study includes an extended pedigree with multiple
cases of ADHD and obesity, in which a duplication
of the gene encoding neuropeptide Y (NPY) was
observed. From this, in conjunction with a number
of studies systematically investigating CNVs in
data from GWASs of cADHD (published,?*”-?#>24¢ or
currently under review), it becomes clear that some
ADHD cases—rather than being caused by multiple
common variants—may be caused by rare genetic
variants with relatively large effect sizes. What
fraction of ADHD cases can be explained by such
oligogenic (or perhaps even monogenic) causes,
however, will have to await studies involving gen-
ome-wide sequencing,**”**®* as microdeletions and
duplications are likely to be not the only type of
genetic variant involved. The study of extended
pedigrees with multiple affected members might
provide a shortcut to finding some of the altered
genes. Intriguingly, a recent publication also suggests
that some associations found in GWAS studies—
seemingly caused by common variants—might actu-
ally be based on synthetic association with rare
variants in partial linkage disequilibrium with the
common variants.?*?
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In addition to considering rare versus common
genetic variants, alternative patterns of genetic trans-
mission should be considered. Based on studies of
rare coding variants affecting the function of TPH1, a
strong maternal transmission of the risk allele was
suggested.?®® Parent of origin effects have also been
suggested for common variants in cADHD.?>®"*%?
Similar specific patterns of genetic transmission
could occur for many candidate genes, but the effects
would easily be obscured in case—control studies.

Clinical impact of understanding the genetics of adult
ADHD

Compared with other clinical neurosciences, little
progress has been made in the application of
molecular diagnostics to the common psychiatric
disorders. Notably, genetic tests are now commonly
being used in the diagnosis of early-onset neuro-
degenerative disorders. Although Parkinson’s disease
has traditionally been considered a non-genetic
disease, during the past 15 years many rare Mende-
lian and common low-risk loci for this disease have
been successfully identified. Taken together, these
loci account for about half of the accumulated risk of
developing early-onset Parkinson’s disease and genet-
ic testing of these markers has rapidly become useful
for diagnosis and for defining new therapeutic
strategies.”®® In analogy with such examples, it may
be possible to identify susceptibility genes in sub-
groups of patients with monogenic or oligogenic
forms of aADHD by sequencing and genotyping
pedigrees with a high load of this disorder. Genotyp-
ing of such rare, highly penetrant genetic variants
may have clinical utility where aADHD needs to be
differentiated from progressive neurological condi-
tions or other somatic or psychiatric disorders.
Although our current understanding of the genetic
models of transmission and the variants involved is
still limited, with increasing knowledge of these
variants, and in the hands of experts in psychiatric
genetics, this might become feasible in the future.
However, as the susceptibility genes that have been
robustly identified in GWASs of psychiatric disorders
so far seem to confer vulnerability across a range of
psychiatric phenotypes and the genetic markers have
very low predictive value,?®3%25%2% it ig expected
that such a clinical application of aADHD genetics
will only appear gradually.

Another way of incorporating the results of genetic
research into clinical practice is pharmacogenetics,
the individualization of treatment strategies based on
the association of DNA variants with drug efficacy or
adverse events. Pharmacogenetic testing may be able
to help clinicians in individualizing the treatment
option for any ADHD patient, in terms of efficacy and
tolerability.?*®**” In all, 30% of aADHD patients do
not respond favorably to stimulant treatment (methyl-
phenidate or amphetamines) and 40% exhibit non-
response to atomoxetine. In addition, many patients
present side effects with these drugs, like an increase
in arterial tension or insomnia, that can cause them to
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drop out of treatment.?*® However, efforts at under-
standing the putative role of candidate genes in the
response to pharmacotherapy for ADHD have been
inconclusive,*® a pharmacogenetic GWAS found no
genome-wide significant associations,**° and—with
the exception of a few studies**'?°*—the pertinent
literature is exclusively focused on pediatric samples
and on a few genes.

Prediction of outcome and prevention of persis-
tence through intervention is a particularly relevant
clinical issue. Knowing that ADHD remits in a
percentage of cases,” and that both genetic and
environmental factors are involved in its etiology
provides a basis for hypothesizing that ADHD
persistence into adulthood might be preventable in
some patients by intervention early in childhood.
Indeed, the finding from longitudinal twin studies of
ADHD throughout child and adolescent development
suggest a role for newly developing genetic influences
at different developmental states,”*** but further twin
studies are needed that span from adolescence
through into adulthood. The literature on the prog-
nostic value of individual genetic factors is still
contradictory. In this regard, ADHD children carrying
the DRD4 7-repeat allele show normalization of the
cortical thinning in the right parietal cortical region, a
pattern that linked with better clinical outcome.?® In
contrast, others showed that in ADHD patients
reassessed after 5 years, carriers of the DRD4 7-repeat
allele showed less decline in severity than those
without the risk allele.?®® Other findings indicate that
DRD4 7-repeat allele carriers are more persistently
affected than those not carrying this risk allele,*® and
no effect of DRD4 was observed in another study.*! A
meta-analysis of SLC6A3/DAT1 by IMpACT suggests
that a different haplotype from that reported asso-
ciated with cADHD is associated with aADHD,**4° see
above. In line with this, carriers of the 9/10 genotype
of the 3-UTR VNTR were earlier shown to have a
worse prognosis than those with the 10/10 geno-
type.** Additional genetic analyses in large long-
itudinal studies will be needed to investigate
(patterns of) genetic variants of potential value.

Looking forward

In this paper, we critically reviewed current literature
on the genetics of aADHD, the most severe form of the
disorder. So far, this is still limited, as most work has
been concentrated on the disorder in children.

The extent of heritability of ADHD in adults has not
been firmly established, and stringently characterized
samples should be used to provide more exact
estimates.

Adult ADHD etiology is likely to involve both
common and rare genetic variants. Although the
search for common DNA variants predisposing for
ADHD has not yet successfully achieved the level of
genome-wide significance, recently reported genome-
wide significant effects for other psychiatric disorders
(for example, ref. 266) suggest that similar findings for
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ADHD will be forthcoming. Given that the effects of
common genetic variants are expected to be very
small, their relevance to ADHD cannot be ruled out in
currently available samples. Therefore, more genome-
wide studies of common as well as rare variants are
absolutely necessary. In addition, we should strive for
improvements in the statistical tools used to perform
such studies as well as those enabling integration of
the findings.

Circumventing clinical heterogeneity, endopheno-
types based on neuroimaging and multivariate mea-
sures of neuropsychology can help to identify new
genes for aADHD. In addition, such brain phenotypes
can provide more insight into the mechanisms under-
lying disease etiology by enabling the mapping of
biological pathways from gene to disease.

First indications suggest that the genetic compo-
nent of aADHD is partly different from the one
observed in children, which may leave room for
differentiating persisters from desisters in the future.
Given this prospect, in conjunction with the pro-
spects of using genetics in the clinic to improve
treatment for ADHD in adults, halt the progression of
the disorder and/or improve coping when the dis-
order does persist, large-scale studies of aADHD
(genetics), especially those with longitudinal designs,
seem warranted.
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