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Abstract 

This study concerns the risks of privacy disclosure when sharing and releasing a dataset in which 

each individual may be associated with multiple records. Existing data privacy approaches and 

policies typically assume that each individual in a shared dataset corresponds to a single record, 

leading to an underestimation of the disclosure risks in multiple records per person scenarios. We 

propose two novel measures of privacy disclosure to arrive at a more appropriate assessment of 

disclosure risks. The first measure assesses individual-record disclosure risk based upon the 

frequency distribution of individuals’ occurrences. The second measure assesses sensitive-attribute 

disclosure risk based upon the number of individuals affiliated with a sensitive value. We show that 

the two proposed disclosure measures generalize the well-known k-anonymity and l-diversity 

measures, respectively, and work for scenarios with either a single record or multiple records per 

person. We have developed an efficient computational procedure that integrates the two proposed 

measures and a data quality measure to anonymize the data with multiple records per person when 

sharing and releasing the data for research and analytics. The results of the experimental evaluation 

using real-world data demonstrate the advantage of the proposed approach over existing techniques 

for protecting privacy while preserving data quality. 
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1 Introduction 

Recent developments in business analytics and big 

data technologies enable organizations to share and 

analyze large amounts of various types of personal data 

(Abbasi, Sarker, & Chiang, 2016; Chen, Chiang, & 

Storey, 2012; Maass et al.; 2018). This has caused 

growing concerns about individual privacy, leading to 

tightened privacy laws and regulations, such as the 

General Data Protection Regulation (GDPR) recently 

introduced by the European Union (EU 2016). Privacy 

disclosure risk arises in many business analytics and 

big data applications, including the sharing of patient 

records among different healthcare providers, the 

distribution of online review data for product 

recommendations and personalized services, and the 

sharing of online purchase behavior data by e-

commerce companies (Cavusoglu et al. 2016; 

Kordzadeh & Warren, 2017; Menon & Sarkar 2016). 

These applications typically involve combining data 

records from different sources or integrating records of 

individuals from different temporal and/or geographic 

points within the same data source. An essential aspect 

in these applications is that each individual typically 

corresponds to multiple records, a situation referred to 

as multiple records per person (MRPP) in this paper. 

MRPP scenarios are very common in big data 

applications where data are often stored in different 
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types of databases. While the use of MRPP enhances 

the value of the data, it also increases the level of 

disclosure risk. This work examines privacy disclosure 

risk in MRPP scenarios, a problem that has not been 

adequately addressed in the literature and in practice. 

Multiple records per person is very common in health 

information systems. A representative example is the 

Rochester Epidemiology Project (REP), led by the 

Mayo Clinic (Rocca et al., 2012; Sauver et al., 2012). 

The REP is a collaboration of clinics, hospitals, and 

other medical facilities in Minnesota and Wisconsin in 

the US for sharing medical records for research and 

public health service. The REP system connects patient 

medical records across all participating medical 

providers. Specifically, multiple records of a patient 

collected by different medical providers are linked 

with a patient ID in the system. With linked records, 

the system can be used to improve continuity of care 

and to study hospital readmission problems. When the 

system is applied to a large group of patients over an 

extended time period, it also supports more general 

research into disease trends in the community. The 

REP data are available to both participating health 

organizations and external medical researchers and 

have been used to support more than 2,000 

publications across a wide range of diseases. There are 

also several other systems similar to REP in other 

regions of the US (Rocca et al., 2012). 

Figure 1 shows a screenshot of the REP display 

(provided by Sauver et al., 2012). It is clear that a 

patient often has multiple records in the system. To 

protect patient privacy when releasing the data to a 

third party, REP follows the policies specified in the 

Health Insurance Portability and Accountability Act 

(HIPAA) by de-identifying the records before 

releasing them (DHHS, 2000). To comply with 

HIPAA policy, all personally identifiable fields in 

Figure 1 are removed for public access. The fields that 

remain available include patient demographics (e.g., 

gender, birth year, etc.) and medical information (e.g., 

disease, treatment, etc.). HIPAA de-identification 

policies, however, may be insufficient in protecting 

patient privacy (Sweeney, 2002), particularly when 

each patient has multiple records in the released data 

(to be discussed later). 

The MRPP setting also appears in many other data 

releasing and sharing applications. In a widely 

publicized incident, Netflix awarded one million 

dollars to a team led by two AT&T employees for 

winning a contest to improve the predictive accuracy 

of the company’s movie recommendation system by 

over 10%. The contest, which attracted thousands of 

participants and lasted for three years, was considered 

a big success in data mining and business analytics. 

Once the winners were declared, Netflix immediately 

announced plans for another contest. A few months 

later, however, the company canceled the plans when 

it was found that the de-identified data released for the 

contest, which included movie names and ratings 

associated with customers, could, in fact, be used to 

reidentify the customers. The cancellation was 

necessary in order to settle a class-action lawsuit on 

privacy violations (Lohr, 2010). In the data provided 

by Netflix, each movie viewer typically has many 

movie-viewing records that are linked by a viewer ID. 

This record linkage is necessary because the 

recommendation system needs to analyze the 

associations of movies viewed and rated by a viewer in 

a certain time period. With multiple linked records, 

however, disclosure risk increases significantly. 

 

 

Figure 1. A Screenshot of the REP Display (Source: Sauver et al., 2012, p. 1621) 
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In the above examples, there are three parties involved 

from a privacy perspective: (1) the data-owner 

organization(s) (e.g., REP and Netflix) who wants to 

make the data available to third-party users while 

protecting the privacy of the individuals involved; (2) 

individuals (e.g., REP patients and Netflix customers) 

whose personal data were collected by the data-owner 

organization and who want their private information 

protected; and (3) third-party data users (e.g., medical 

researchers outside REP and the Netflix data 

recipients) who want to use the data acquired from the 

data owner to perform data analysis and research. 

When a data user attempts to use the acquired data to 

reveal individuals’ private information, the user is 

called an adversary. This study focuses on how the 

data-owner organization can release useful data to 

third-party users while preserving the privacy of the 

individuals involved. 

When released data include personal information, a 

common practice to address privacy concerns is to de-

identify the data before their release. De-identification 

removes direct identifiers such as individuals’ names, 

phone numbers, and addresses. It is a primary approach 

in HIPAA’s privacy rule (DHHS, 2000). However, it 

has been shown that de-identification alone does not 

sufficiently protect against identity disclosure 

(Samarati & Sweeney, 1998; Sweeney, 2002). Some 

combinations of demographic attributes, such as age, 

gender, and zip code, can be used to reidentify 

individuals from a de-identified dataset (Xu, 2007). In 

fact, Sweeney (2002) found out that 87% of the 

population in the United States can be uniquely 

identified with three demographic attributes—gender, 

date of birth, and five-digit zip code—which are 

accessible from some publicly available data sources, 

such as voter registration records. These publicly 

available or easily accessible attributes are called 

quasi-identifiers (QIs). Often, QI attributes are useful 

for data analysis and need to be included in the released 

data. To prevent privacy disclosure, a well-known 

technique called k-anonymity (Samarati & Sweeney, 

1998; Sweeney, 2002) generalizes the QI attribute 

values so that each record in a released dataset cannot 

be distinguished among at least k records based on the 

QI attribute values. A group of records sharing the 

same QI values is referred to as a QI-group. 

This study seeks to assess and mitigate disclosure risks 

when releasing data with multiple records per person. 

Following the convention in literature, the released 

dataset is typically de-identified and includes two 

types of attributes: (1) quasi-identifier (QI) attributes, 

which are normally not considered as confidential by 

individuals, such as age, gender, and zip code. 

However, the values of the QI attributes can often be 

obtained from public sources that also contain 

identifying attributes. So, these QI attributes can be 

used by an adversary to reidentify the individuals in the 

de-identified data released, resulting in identity 

disclosure. (2) Sensitive attributes, which contain 

private information that an individual typically does 

not want revealed, such as income, disease, and sexual 

orientation. The QI attributes, such as age, gender, and 

zip code, can be obtained (along with identifying 

attributes) from many data sources, including public 

sources (e.g., voter registration records) and 

commercial sources (e.g., data vendors that sell 

consumer data). In some cases, the adversary knows 

the QI attributes of the target because they are 

colleagues, friends, or neighbors. Because of these 

realistic scenarios, in the data privacy literature 

(Samarati & Sweeney, 1998; Machanavajjhala et al., 

2006; Fung et al., 2010; Li & Sarkar, 2011; Li & 

Sarkar, 2013; El Emam et al., 2013), it is normally 

assumed that the adversary knows the QI attribute 

values of the target individuals but not the sensitive 

attribute values. The adversary then attempts to 

disclose the sensitive values based on the information 

in the QI attributes. We adopt the same assumption in 

this study. 

For the purposes of analyzing privacy-disclosure risk, 

the literature describes two types of disclosure 

(Duncan & Lambert, 1989; Li & Sarkar, 2014): (1) 

identity disclosure, or reidentification, in which an 

adversary is able to match a record in a dataset to an 

individual, and (2) sensitive-attribute disclosure, in 

which an adversary is able to deduce the sensitive- 

attribute value(s) of an individual record, even without 

knowing the identity of the individual. The k-

anonymity model considers the reidentification risk 

but not the attribute disclosure risk. Therefore, even 

when the reidentification risk of an individual is 

sufficiently limited in a QI-group, attribute disclosure 

may still occur when there is little diversity in the 

values for a sensitive attribute. To address this 

problem, the l-diversity principle was proposed 

(Machanavajjhala et al. 2006), which requires that 

each QI-group contains at least one well-represented 

(relatively balanced) sensitive value so that sensitive 

values are sufficiently diversified. 

k-anonymity, l-diversity, and other existing methods 

for privacy-preserving data release, including official 

privacy policy like HIPAA, all assume that each 

individual corresponds to a single record (Fung et al., 

2010). When multiple records in a dataset are 

associated with the same individual, a QI-group of k 

records may contain fewer than k individuals. Also, 

sensitive values in a QI-group in an MRPP setting may 

not be distributed as diversified, as in a single record 

per person setting, even if the group satisfies l-

diversity. As a result, k-anonymity and l-diversity do 

not provide intended privacy protections in MRPP 

cases, as they do in single-record cases. 

This study is designed to address the limitations of the 

existing well-known privacy techniques, namely k-
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anonymity and l-diversity, when an individual has 

multiple records in a dataset. We propose two novel 

disclosure-risk measures for the MRPP setting. The 

first measure, called g-balance, assesses the identity 

disclosure risk of an individual record, while the 

second measure, called h-affiliation, assesses 

sensitive-attribute disclosure risk. Based on these two 

measures, we develop an efficient algorithm for 

protecting against both identity and attribute 

disclosures in MRPP cases. Our work follows the same 

assumption in the literature; that is, the adversary 

knows the QI attribute values of the target individual 

who is in the released dataset, and attempts to disclose 

the sensitive values of the target based on the known 

QI information. In terms of data anonymization, it is a 

common practice to protect against identity disclosure 

by applying anonymization techniques to QI attributes 

while keeping sensitive attributes unchanged (DHHS, 

2000; Fung et al., 2010). We follow the same practice 

in this study. 

This work makes a contribution to data privacy 

research and practice in several ways. First, we 

investigate an important problem that has largely been 

overlooked in the literature. While it is common to see 

multiple records per person in many data-sharing 

applications, little attention has been devoted to the 

study of related privacy-disclosure problems. Our 

study fills this gap in the literature. Second, we propose 

two novel metrics for measuring individual-record 

disclosure and attribute-disclosure risks, respectively, 

in MRPP cases. We show that the two proposed 

measures generalize the well-known k-anonymity and 

l-diversity measures, and work for cases involving 

either a single record or multiple records per person. 

We develop an efficient algorithm that integrates the 

two proposed metrics and a data-utility metric for 

anonymizing data in MRPP scenarios. Third, we 

validate the effectiveness of the proposed approach 

using real-world data and demonstrate that the 

proposed approach is superior to existing techniques 

for protecting privacy while preserving data quality for 

releasing data with multiple records per person. 

2 An Illustrative Example 

Consider the hypothetical examples shown in Tables 1 

and 2. Table 1 shows the data stored in the electronic 

medical records (EMR) system of a medical provider, 

Franklin Center for Lung Diseases, and Table 2 shows 

the data stored in the EMR system of another provider, 

Lexington Gastroenterology Clinic. We can see that 

many patients have multiple records, either within a 

system or across different systems. Notice that because 

the records were collected at different times, a patient 

may have different age or ZIP values in different 

records. Some of these attributes, such as age, gender, 

ZIP, and disease, are to be included in a data repository 

for data sharing or public access. Because of various 

technical, organizational, and policy issues, there are 

also many attributes or items that might not be shared, 

including patient and physician names, detailed dates, 

and addresses. Some medical information, such as 

clinical narrative, lab test report, radiology images, and 

treatment details associated with each patient visit, 

may or may not be shared depending on the sharing 

agreement. The aggregated data are shown in Table 3a, 

where patient names are listed for easy illustration 

only. 

Using k-anonymity, the dataset will be divided into 

some QI-groups, each containing at least k records. For 

practical reasons, it is also required that the same 

person’s records should be grouped into the same QI-

group. There are many approaches to grouping data, 

but the common idea is to group the data such that the 

records within a QI-group are as close to each other as 

possible by some distance measure calculated based on 

the QI-attribute values. After the grouping, the QI 

values of all records within a group are generalized into 

the same value, using the group’s value domain or 

range to make the records within a group 

indistinguishable.  

 

Table 1. Data from Franklin Center for Lung Diseases 

Admission 

no. 
Name Age Gender ZIP Disease Physician 

Other data in Franklin Center EMR 

System 

1001 Ashley 86 Female 20375 Asthma Dr. Cox 

Example data include 

clinical narratives, 

lab test reports, 

radiology images, 

and/or treatment details 

associated with each patient visit 

1002 Charlie 69 Male 20048 Pneumonia Dr. Khan 

1003 Harry 74 Male 20400 Asthma Dr. Cox 

1004 Harry 75 Male 20400 Bronchitis Dr. Cox 

1005 Charlie 70 Male 20048 Pneumonia Dr. Khan 

1006 Charlie 71 Male 20048 Pneumonia Dr. Khan 

1007 Edward 84 Male 20090 Pneumonia Dr. Smith 

1008 Fred 78 Male 20400 Pneumonia Dr. Smith 

1009 Harry 76 Male 20400 Asthma Dr. Patel 



Journal of the Association for Information Systems 

 

1465 

 

Table 2. Data from Lexington Gastroenterology Clinic 

Admission 

no. 
Name Age Gender ZIP Disease Physician 

Other data in Lexington Clinic EMR 

System 

2001 Ashley 86 Female 20375 Reflux Dr. Jones 

Example data include 

clinical narratives, 

lab test reports, 

radiology images, 

and/or treatment details 

associated with each patient visit 

2002 Bob 85 Male 20375 Reflux Dr. Jones 

2003 Charlie 71 Male 20048 Gastritis Dr. Moore 

2004 Diana 84 Female 20090 Ulcer Dr. Taylor 

2005 Charlie 71 Male 20048 Gastritis Dr. Moore 

2006 Diana 84 Female 20090 Gastritis Dr. Moore 

2007 Edward 84 Male 20090 Gastritis Dr. Moore 

2008 Greg 78 Male 20420 Ulcer Dr. Taylor 

2009 Harry 74 Male 20400 Ulcer Dr. Brown 

2010 Harry 76 Male 20400 Ulcer Dr. Brown 

Table 3. Aggregated Data 

a. Original data  b. Anonymized data 

Admission 

no. 
Name Age Gender ZIP Disease  

QI-

Group 
Age Gender ZIP Disease 

1001 Ashley 86 Female 20375 Asthma  1 85-86 * 20375 Asthma 

2001 Ashley 86 Female 20375 Reflux  1 85-86 * 20375 Reflux 

2002 Bob 85 Male 20375 Reflux  1 85-86 * 20375 Reflux 

1002 Charlie 69  Male 20048 Pneumonia  2 69-71 Male 20048 Pneumonia 

1005 Charlie 70 Male 20048 Pneumonia  2 69-71 Male 20048 Pneumonia 

1006 Charlie 71 Male 20048 Pneumonia  2 69-71 Male 20048 Pneumonia 

2003 Charlie 71 Male 20048 Gastritis  2 69-71 Male 20048 Gastritis 

2005 Charlie 71 Male 20048 Gastritis  2 69-71 Male 20048 Gastritis 

2004 Diana 84 Female 20090 Ulcer  3 84 * 20090 Ulcer 

2006 Diana 84 Female 20090 Gastritis  3 84 * 20090 Gastritis 

1007 Edward 84 Male 20090 Pneumonia  3 84 * 20090 Pneumonia 

2007 Edward 84 Male 20090 Gastritis  3 84 * 20090 Gastritis 

1008 Fred 78 Male 20400 Pneumonia  4 74-78 Male 20400-20420 Pneumonia 

2008 Greg 78 Male 20420 Ulcer  4 74-78 Male 20400-20420 Ulcer 

1003 Harry 74 Male 20400 Asthma  4 74-78 Male 20400-20420 Asthma 

1004 Harry 75 Male 20400 Bronchitis  4 74-78 Male 20400-20420 Bronchitis 

1009 Harry 76 Male 20400 Asthma  4 74-78 Male 20400-20420 Asthma 

2009 Harry 74 Male 20400 Ulcer  4 74-78 Male 20400-20420 Ulcer 

2010 Harry 76 Male 20400 Ulcer  4 74-78 Male 20400-20420 Ulcer 
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If generalization is impossible or inappropriate, the QI 

values will be suppressed. Table 3b is a k-anonymized 

version of Table 3a with k = 3. The records within a 

group are very close to each other in terms of the values 

of the QI attributes of age, gender, and ZIP. For 

example, Diana and Edward’s four records are grouped 

together (in Group 3) because they share the same age 

and ZIP values. However, their genders are different 

and must be suppressed because there is no meaningful 

way to generalize them. Ashley and Bob are grouped 

together in a similar manner. Note that Fred and Greg 

are extremely close, but they cannot form a group 

because of the 3-anonymity requirement, so they are 

grouped together with Harry. 

Although Table 3b satisfies the 3-anonymity 

requirement, some records in the anonymized data can 

be easily reidentified. Consider an adversary who 

knows Charlie’s QI attribute values (i.e., age, gender 

and ZIP code values in Group 2 of Table 3b). This 

adversary also knows that Charlie is in the dataset 

(which is easy to know for a system like REP because 

the system covers all the residents in the region). If the 

adversary randomly selects one of the five records in 

Group 2, he would successfully identify one of 

Charlie’s records. In this study, we do not assume that 

the adversary knows the number of records a target 

individual has. However, disclosure is deemed to occur 

when any one of an individual’s records is identified. 

We can also apply this principle to assess the 

disclosure risks of each of the other individuals in the 

dataset. For example, in the last group, Harry is 

associated with five out of seven records while Fred 

and Greg have only one record each. Assume that the 

adversary knew Harry’s QI attribute values, and also 

Fred’s and Greg’s values. Then, by random guessing, 

the adversary would have a much higher probability of 

successfully matching one of Harry’s records versus 

Fred’s or Greg’s record. Thus, through random 

guessing, Harry has a higher disclosure risk than Fred 

or Greg, even if the adversary does not know that Harry 

has more records than Fred or Greg. 

When each individual corresponds to a single record, 

the probability of linking a target to a specific 

individual using QI values is, at most, 1/𝑘  in a k-

anonymized table. When an individual may have 

multiple records, the individual-record disclosure risk 

can be assessed based on the individual’s record 

frequency. In a QI-group containing k individuals, let 

 𝑓𝑖  be the number of records associated with the 𝑖 th 

individual, the individual-record disclosure risk can be 

assessed by 𝑓𝑖 ∑ 𝑓𝑖
𝑘
𝑖=1⁄ . The dataset in Table 3b 

satisfies 3-anonymity, but the probability of 

successfully matching a record in the dataset to an 

individual may be higher than 1/3. For example, the 

probability of matching a record in the second group to 

Charlie is 100%; for Harry’s records, the probability of 

matching is 5/7. 

Next, we consider attribute-disclosure risk in MRPP 

cases. As indicated, the l-diversity assumes a single 

record per person; it is thus not effective for reducing 

attribute-disclosure risk in MRPP scenarios. For Group 

2 in Table 3b, for example, even though the group is 2-

diverse, the sensitive values, pneumonia, and gastritis, 

can be disclosed individually or together. This is 

because both values are affiliated with the same 

patient, Charlie, whose records can thus be easily 

reidentified. 

As explained above, in applications with multiple 

records per person, data users often want to observe 

how conditions or preferences of a person change over 

time, or they may want to analyze how different 

behaviors or outcomes co-occur for the same 

individual. In such cases, it is necessary to link the 

multiple records of the same person with a person 

identifier (PID). A PID is a system-generated number 

or label that uniquely (but anonymously) determines a 

person. 

To illustrate the sensitive-attribute disclosure problem 

across different individuals in an MRPP scenario, 

consider Table 4, taken from Group 3 in Table 3b. For 

illustration purposes, we use the first letter of the 

patient’s name as the PID value (which is unlikely to 

be the case in real applications). Because the group 

contains at least three distinct sensitive values, it 

satisfies the basic requirement of l-diversity where l=3. 

However, an adversary who finds that his or her target 

(Diana or Edward) is in this group will know that the 

target has gastritis even though the adversary does not 

know which PID corresponds to the target. This is 

because both patients in the group have gastritis.  

Table 4. An l-Diverse QI-Group Vulnerable to Sensitive-Attribute Disclosure 

PID Age Gender ZIP Disease 

D 84 * 20090 Ulcer 

D 84 * 20090 Gastritis 

E 84 * 20090 Pneumonia 

E 84 * 20090 Gastritis 
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A similar problem can be seen in Group 4 of Table 3b. 

Although four different diseases exist in the sensitive 

attribute, two patients (i.e., Greg and Harry) have 

ulcers. As two out of three patients are affiliated with 

the same disease, the likelihood of a patient in the 

group having the disease is 66.7%, which is higher than 

any commonly acceptable risk level. Therefore, when 

individuals have multiple records with multiple 

sensitive values, even if the values in a QI-group 

appear to be diverse, an adversary may still infer the 

individuals’ sensitive values with a high probability 

because of the broad affiliation of a sensitive value 

with different individuals in the group. In short, l-

diversity is not an appropriate criterion for assessing 

attribute-disclosure risk in an MRPP scenario. 

It appears that some of the MRPP problems illustrated 

above may be addressed by way of database 

decomposition. For example, Table 3 could be 

decomposed into two relational tables. The first table 

would contain the PID and QI attributes (age, gender, 

and ZIP code) and the second table would contain the 

attributes of PID and disease. The two tables could be 

joined by the PID to create Table 3. Applying k-

anonymity to the first table would ensure that each QI-

group has at least k individuals. This way, Charlie 

would not appear alone in a QI-group. However, this 

post-decomposition k-anonymity method would not 

reduce the individual-record disclosure risk for the 

other groups in Table 3, because the final released 

dataset would be in a multiple record per person 

format. Similarly, applying l-diversity to the second 

table would not address the sensitive-attribute 

disclosure problem illustrated in Table 4. Furthermore, 

as mentioned at the beginning of the paper, this study 

considers applications where data are not necessarily 

stored in relational databases. In this situation, 

decomposition may not be practical because of the lack 

of well-defined database schema. 

3 Related Work 

k-anonymity is a privacy model designed to prevent or 

mitigate the reidentification problem based on QI 

attributes (Sweeney, 2002). With k-anonymity, when 

an adversary attempts to identify an individual in a 

dataset using QI values, the individual cannot be linked 

to a particular record with a probability higher than 1/k. 

However, individuals in a k-anonymized group can 

still be subject to high attribute disclosure risk if their 

sensitive attribute values are the same or similar. In this 

case, the adversary can disclose the sensitive 

information of the target individual with certainty or 

high probability, even though the adversary cannot tell 

which record in the dataset corresponds to the target 

individual. To address this issue, the l-diversity model 

has been proposed (Machanavajjhala et al., 2006), 

which requires that a sensitive attribute includes at 

least l well-represented values in each group of 

anonymized data. Further details and developments 

with respect to anonymization techniques can be found 

in Fung et al. (2010). Essentially all of the existing 

approaches to anonymization assume that each 

individual corresponds to a single record. 

Many real-world datasets, such as patient visitation 

records, account transactions, and online reviews and 

ratings, often consist of multiple records for the same 

individual (El Emam et al., 2009, El Emam et al., 

2013). In these cases, k-anonymity and l-diversity 

approaches are not appropriate for assessing or 

mitigating the disclosure risk. El Emam et al. (2009) 

conducted a case study to evaluate the reidentification 

risks of patients using a real pharmacy prescription 

dataset containing individuals with multiple records. 

They reported that reidentification risks for the 

individuals in the dataset were quite high. The study, 

however, does not propose a privacy model for 

handling MRPP problems. 

There have been a few studies concerning problems 

related to privacy disclosure in MRPP applications. 

Wang and Fung (2006) address the privacy disclosure 

problem in sequentially released multiple datasets. 

They assume that each dataset is a different projection 

of the same underlying database. The privacy problem 

considered depends on the presence of a sensitive 

attribute and the study only concerns attribute 

disclosure. Our study addresses problems related to 

both identity and attribute disclosure, as discussed 

above. We investigate the record-identification 

problem based on the chance of finding an individual’s 

record in a dataset, which is unrelated to the presence 

of a sensitive attribute. In addition, we do not assume 

that multiple data releases include different projections 

of the same database. 

Nergiz, Clifton, and Nergiz (2007) discuss 

anonymization issues with multiple relational tables. 

Their approach assumes a restrictive relational 

database schema. The privacy problem is also 

contingent upon the presence of sensitive attributes. In 

addition, the approach assumes that a domain 

generalization hierarchy can be defined for the values 

of the QI attributes. Our work does not assume a 

relational database schema, and, as explained above, 

the problem we study cannot be addressed by 

decomposing relational tables and then applying k-

anonymity and l-diversity principles to the 

decomposed tables. Also, our approach does not rely 

on a known domain generalization hierarchy. 

To address the MRPP disclosure problem, Tao et al. 

(2008) propose an approach that ensures that every QI-

group contains at least K individuals or PIDs, each 

having one or more records. We call this approach 

“PID-based K-anonymity” (with a capital letter K). 

Although this is a reasonable improvement over 

traditional k-anonymity models, further investigation 

reveals that PID-based K-anonymity also does not 
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provide an adequate level of protection against MRPP 

disclosures. For example, the last QI-group in Table 3b 

is considered the most secure group in the dataset using 

PID-based K-anonymity because it contains three 

people, implying a maximum disclosure risk of 1/3; 

but it fails to protect Harry at this security level 

(probability of matching a record in that group to Harry 

is 5/7 = 71%). Such high disclosure risks are caused by 

the unbalanced frequency distribution of the 

individuals in their QI-groups. In the third QI-group, 

both Diana and Edward are protected from privacy 

disclosure with a probability of 2/4 = 0.50. In other 

words, a smaller K may provide better protection than 

a larger K, indicating that the PID-based K parameter 

does not adequately represent the level of protection or 

risk in the unbalanced frequency distribution case in 

the MRPP scenario. 

In short, existing approaches make different 

assumptions and have several limitations when it 

comes to assessing privacy risks in MRPP scenarios. 

Our proposed approach overcomes these limitations 

and effectively extends the single-record-based k-

anonymity and l-diversity approaches to MRPP 

problems. 

4 Disclosure Risk and Data Quality 

Measures 

It is clear that in MRPP scenarios, disclosure risk for 

an individual is closely related to the individual’s 

occurrence frequency. In general, the more unbalanced 

the occurrence distribution of individuals in a QI-

group, the greater the disclosure risk. To limit this risk, 

individuals’ occurrence distribution in QI-groups in 

the released dataset should be well balanced. 

Therefore, the basic idea of our approach for reducing 

individual-record disclosure risk is to create QI-groups 

that contain a sufficient number of individuals with 

relatively balanced occurrence distributions. 

Given the initial dataset D, we can divide D into 

individual-based subsets such that for each individual 

in D, all the records of this individual must be in one 

and only one subset; i.e., two subsets of D cannot 

contain different records of the same individual. All 

subsets mentioned in this paper refer to such 

individual-based subsets; thus, we will omit the term 

“individual-based.” We now define our first proposed 

measure, called g-balance, based on the classical Gini 

index in economics and machine learning (Breiman et 

al., 1984), which we adopt to measure disclosure risk. 

Definition 1 (g-balance): Let t be the dataset D or 

a subset of D and 𝑛𝑡 be the number of individuals 

in t, and 𝑐𝑖 be the number of occurrences of the ith 

individual in t. The g-balance of t is defined as 

 𝑔(𝑡) = 1 − ∑ (
𝑐𝑖

∑ 𝑐𝑗
𝑛𝑡
𝑗=1

)

2𝑛𝑡

𝑖=1

 (1) 

The g-balance measure achieves the maximum when 

individuals in t are evenly distributed, i.e., all 𝑐𝑖’s are 

equal (Breiman et al., 1984). It achieves the minimum 

of zero when t consists of records of a single 

individual, i.e., 𝑛𝑡 = 1  (with any number of 

occurrences of the individual). A larger g value 

indicates a more balanced occurrence distribution in t, 

which suggests better protection against disclosure 

after the QI values are generalized. With this 

observation, we say that a QI-group t satisfies g-

balance requirement for a specified 𝑔∗ value if 𝑔(𝑡) ≥
𝑔∗. The g value is related to the number of individuals 

in a QI-group, as stated in Theorem 1 below. 

Theorem 1: If a QI-group t satisfies the g-balance 

requirement for a specified g value, then the QI-

group has at least 1/(1 − 𝑔) individuals; i.e., 

 𝑛𝑡 ≥
1

1 − 𝑔
 (2) 

The proofs of Theorem 1 and all other mathematical 

results are provided in the Appendix. Based on 

Theorem 1, in forming QI-groups for MRPP problems, 

we can control the number of individuals in a group by 

specifying an appropriate g threshold value. When 

each individual in the group corresponds to a single 

record, there is a direct relationship between the g 

value and the k value in k-anonymity, as stated in 

Corollary 1 below. 

Corollary 1: If a QI-group with k individuals 

satisfies the g-balance requirement and each 

individual in the group corresponds to a single 

record, then 

 𝑘 =
1

1 − 𝑔
 (3) 

It is clear from Theorem 1 and Corollary 1 that the g-

balance measure generalizes the k-anonymity measure. 

Furthermore, it is straightforward to see that Equation 

(3) also holds for PID-based K-anonymity (i.e., when 

k is replaced by K). We note that the balance/skewness 

of the occurrence distribution can be quantified by 

some other statistical dispersion measures such as 

entropy. We chose to use the Gini index because it 

allows us to efficiently derive Theorem 1 and 

Corollary 1. 

Our proposed method uses binary partitioning to split 

the dataset into two smaller subsets recursively to form 
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QI-groups. After the partitioning is completed, the QI 

values in the final subsets are generalized similarly to 

k-anonymity. We denote the parent set for a split by 𝑡𝑝 

and the two child subsets of 𝑡𝑝 by 𝑡1 and 𝑡2. It can be 

shown that the g value before a split is always greater 

than or equal to the weighted average g value after the 

split (Breiman et al., 1984). Such a decrease in g-

balance value implies an increase in disclosure risk. To 

measure this difference, we define g-balance change 

below. 

Definition 2 (g-balance change): Let 𝑔𝑝, 𝑔1 and 

𝑔2  be the g-balance values for 𝑡𝑝 , 𝑡1  and  𝑡2 , 

respectively. Let 𝑐𝑖𝑝
, 𝑐𝑖1

 and 𝑐𝑖2
 be the number of 

occurrences of the 𝑖𝑝 th individual in 𝑡𝑝 , the 𝑖1 th 

individual in 𝑡1  and the 𝑖2 th individual in 𝑡2 , 

respectively, where ∑ 𝑐𝑖𝑝
= ∑ 𝑐𝑖1

+ ∑ 𝑐𝑖2
. The g-

balance change from splitting 𝑡𝑝 into 𝑡1 and 𝑡2 is: 

 ∆𝑔(𝑡𝑝) =  𝑔𝑝 −
∑ 𝑐𝑖1

∑ 𝑐𝑖𝑝

−
∑ 𝑐𝑖2

∑ 𝑐𝑖𝑝

𝑔2  (4) 

Next, we consider the sensitive-attribute disclosure 

risk. As discussed in the introduction, the traditional l-

diversity principle is not appropriate for MRPP 

scenarios. Different individuals in a QI-group may 

have very diverse sensitive values. However, because 

each individual may have multiple sensitive values, it 

is possible that a certain sensitive value is shared by 

many or even all the individuals in the group (while the 

other sensitive values may be diversified). If a 

sensitive value is affiliated with all individuals, then 

this value is disclosed with certainty (e.g., Gastritis 

associated with both Diana and Edward in Table 4). In 

general, the larger the proportion of individuals with 

which a sensitive value is affiliated, the higher the 

disclosure risk. Following the convention in data 

privacy literature (Fung et al., 2010; Machanavajjhala 

et al., 2006), we assume all sensitive values are equally 

important. So, the attribute disclosure risk of a QI-

group can be determined by the sensitive value that is 

affiliated with the largest proportion of the individuals 

in the group. 

Definition 3 (h-affiliation): Let t be the dataset D 

or a subset of D, 𝑛𝑡 be the number of individuals in 

t, and 𝑛𝑗 be the number of individuals in t affiliated 

with the jth sensitive value. The h-affiliation of t is 

defined as 

 ℎ(𝑡) = max
𝑗

  
𝑛𝑗

𝑛𝑡  
 (5) 

The h-affiliation measure achieves the maximum of 

one when all individuals in t are affiliated with a 

common sensitive value. It achieves the minimum of 

1/𝑛𝑡  when no individuals in t share any common 

sensitive value. Clearly, a larger h value suggests a 

higher sensitive-attribute disclosure risk. With this 

observation, we say that a QI-group t satisfies h-

affiliation requirement for a specified ℎ∗  value if 

ℎ(𝑡) ≤ ℎ∗. 

A common yet conservative interpretation of the “l 

well-represented values” in l-diversity is that the 

relative frequency of the most frequent sensitive value 

in a QI-group cannot be greater than 1/𝑙 
(Machanavajjhala et al., 2006; Xiao & Tao, 2006). 

This l-diversity requirement can be specified as 

max (𝑘𝑗)/𝑘 ≤ 1/𝑙, where 𝑘𝑗 is the number of records 

in the QI-group having the jth sensitive value, and k is 

the total number of records in the QI-group. When each 

individual corresponds to a single record only, it is 

easy to see that 𝑛𝑗 = 𝑘𝑗, ∀𝑗 , and so max(𝑛𝑗) =

max(𝑘𝑗).  Then, the h-affiliation requirement is 

equivalent to the l-diversity requirement and the ℎ∗ 

value is simply the reciprocal of the l value: 

 ℎ∗ =
1

𝑙
 (6) 

So, the h-affiliation measure generalizes the l-diversity 

measure. The h-affiliation has the following property 

related to data partitioning. 

Lemma 1. When a dataset is partitioned into 

subsets, the h-affiliation for at least one subset will 

be greater than or equal to the h-affiliation of the 

dataset before the partitioning. 

Lemma 1 suggests that splitting data into subsets 

generally increases the attribute disclosure risk. We 

mentioned earlier that splitting data also increases the 

individual-record disclosure risk because of a change 

in g-balance value. These properties provide a 

theoretical basis for our proposed recursive 

partitioning algorithm in assessing both disclosure 

risks. 

Our method keeps track of the number of individuals 

affiliated with each sensitive value in the group. Figure 

2 shows the partitioning process for the dataset in 

Table 3. Figure 2a (𝑡𝑝 = 𝐷) shows the dataset D in 

Table 3a. The final QI-groups include Figure 2b (𝑡1), 

Figure 2d (𝑡21) and Figure 2e (𝑡22), all having a well-

balanced frequency distribution of the individuals. 

Within each group (subset), no disease is affiliated 

with more than 50% of the patients. We describe how 

to compute 𝑔 and h values here and will explain how 

the splits are determined in the next section. 

First, the g-balance of D given in Figure 2a (i.e., 𝑡𝑝) is 

computed by substituting the 𝑐𝑖 values from the table 

into Equation (1) as follows: 
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𝑔(𝑡𝑝) = 1 − (
2

19
)

2

− (
1

19
)

2

− (
5

19
)

2

− (
2

19
)

2

− (
2

19
)

2

− (
1

19
)

2

− (
1

19
)

2

− (
5

19
)

2

= 0.82 . 

For example, the first 2/19 applies to the first 

individual Ashley, whose number of occurrences (𝑐1) 

is 2, and the total number of occurrences of all 

individuals is ∑ 𝑐𝑗𝑗 = 19 . The h-affiliation of 𝑡𝑝  is 

computed by substituting 𝑛𝑗 values into Equation (5) 

as below: 

ℎ = max (
2

8
,
1

8
,
3

8
,
3

8
,
2

8
,
3

8
 ) = 0.375, 

where each number inside the parentheses is the 

fraction of individuals affiliated with each of the six 

diseases in the table. For example, 
2

8
 represents that 2 

out of 8 patients have Asthma. When 𝑡𝑝 is split into 𝑡1 

(Figure 2b) and 𝑡2  (Figure 2c) based on gender, g 

values for 𝑡1 and 𝑡2 are respectively 0.5 and 0.747; h 

values are both 0.5. Then, the g-balance change by 

splitting 𝑡𝑝 into 𝑡1 and 𝑡2 is computed using Equation 

(4): 

∆𝑔(𝑡𝑝) =  0.82 − (
4

19
)0.5 − (

15

19
)0.747 = 0.1252. 

Similarly, if the dataset is split based on the median of 

Age or ZIP, the corresponding ∆𝑔 value will be 0.1707 

or 0.1802, respectively. 

Our recursive partitioning method adopts the idea of 

the well-known kd-tree technique (Friedman, Bentley, 

& Finkel, 1977), where each split is determined based 

on the variance of the QI attributes. Typically, the QI 

attribute with the largest variance at each iteration is 

used to split the data, as this will result in the most 

significant reduction in variance in the partitioned data. 

A lower variance in a QI-group leads to a better data 

utility because it causes a smaller information loss (i.e., 

loss in variation) after QI values within the partitioned 

group are generalized. In other words, with a smaller 

within-group variance, the generalized values will be 

closer to the original values. Thus, we use variance to 

measure the quality of anonymized data. Variance is 

calculated by considering multiple records per person 

since the released dataset will be in multiple record per 

person format. 

 

 

Figure 2. Data Partitioning Process for Dataset in Table 3a 
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In calculating variance, we transform categorical QI 

values into numeric or ordered values based on coding 

methods suggested in LeFevre, DeWitt, and 

Ramakrishnan (2006), and normalize all numeric 

values (original or transformed) to the unit scale of 

range [0, 1]. For example, for gender, we assign zero 

for female and one for male. If the QI attribute has 

more than two unordered categories, additional binary 

attributes are created to handle multiple categories one 

by one. 

5 The Proposed Algorithm 

There are two objectives in our partitioning process for 

anonymizing data: (1) to minimize disclosure risks, 

which means keeping change in g-balance and increase 

in h-affiliation as small as possible, and (2) to 

minimize information loss after generalization by 

reducing the variance of the partitioned data as much 

as possible before generalization. We note again that 

g-balance is used to achieve a more balanced 

frequency distribution in QI-groups, while h-affiliation 

is used to ensure that no sensitive values occur too 

frequently in any given QI-group. 

We indicated that the g value will decrease during the 

data partitioning process and proposed using the ∆𝑔 

measure to quantify this change in g value. While 

Lemma 1 suggests that h-affiliation generally increases 

with data partitioning, it is difficult to construct a 

composite measure to quantify the changes in both g-

balance and h-affiliation simultaneously. Therefore, 

our strategy is to first use g-balance to determine how 

to split the data and then use h-affiliation as a 

constraint to check whether the partitioned QI-groups 

satisfy the sensitive attribute protection requirement. 

This idea of handling two different disclosure risk 

criteria in computation is similar to that of 

Machanavajjhala et al. (2006), where the l-diversity 

requirement is checked after a group is formed based 

on a k-anonymity algorithm. The QI values of all 

individuals are generalized after the entire partitioning 

process is completed. 

On the other hand, there is a nice way to integrate g-

balance (as a disclosure risk measure) and variance (as 

an information loss measure) into a single combined 

measure. It is clear that a split with a small g-balance 

change ∆𝑔(𝑡)  is preferred since it implies a small 

increase in disclosure risk after splitting the data. In 

terms of information loss, it is preferred that the 

generalized value for each QI-group is as close to the 

original individual values as possible. In other words, 

the variance in a group after data partitioning should 

be as small as possible. Therefore, the attribute with 

the largest variance should be used to split the data so 

that the partitioned groups will have their within-group 

variance reduced most significantly. We define a g-

balance/variance ratio measure below to represent this 

trade-off between disclosure protection and data 

quality. It is used as the splitting criterion in the data 

partitioning process. 

Definition 4 (balance-variance ratio): Let t be the 

dataset D or a subset of D and 𝑣𝑗(𝑡) be the variance 

of the jth QI attribute in t. The balance-variance ratio 

for splitting t on the 𝑗th QI attribute is defined as 

 𝑟𝑗(𝑡) =
∆𝑔(𝑡)

𝑣𝑗(𝑡)
 (7) 

The balance-variance ratio represents the marginal 

decrease in g-balance per unit variance of a QI 

attribute. Because a small g-balance change and a large 

variance are preferred for a candidate split, the QI 

attribute that has the minimum balance-variance ratio 

should be selected for partitioning the data at each 

iteration. The proposed algorithm recursively splits 

data into two subsets at the median of the QI attribute 

having the minimum balance-variance ratio. If the QI 

attribute is of the ordered categorical type, the split is 

made at the between-category point closest to the 

median among all between-category points. 

Table 5 describes the steps of the proposed algorithm, 

where two user-specified privacy requirement 

parameters are used: minimum g-balance value, g*, 

and maximum h-affiliation value, h*. The 

computational time complexity of the algorithm is 

equivalent to that of a kd-tree, which is of 𝑂(𝑁 log 𝑁) 

for a dataset of N records (Friedman et al., 1977). This 

is very efficient for handling large datasets. 

 

Table 5. The Proposed Algorithm 

 Input: Dataset D, threshold values g* and h*. 

Step 1 For the current dataset t, compute 𝑟𝑗(𝑡) for each QI attribute j. Let j* be the QI with minimum 𝑟𝑗(𝑡). 

Step 2 

(i)  Split t into two subsets at the median of attribute j*. 

(ii) If the g-balance value of any subset of t is smaller than g* or h-affiliation value of any subset of t is greater than 

h*, undo split and set j* to the QI attribute with the next smallest  𝑟𝑗(𝑡) and go to (i). Stop splitting if no QI attribute 

can be assigned to j*. 

Step 3 Repeat Steps 1 and 2 for each subset until no further split can be made. 

Step 4 Generalize the QI values in each subset. 
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Continuing with the illustrative example in Figure 2a, 

suppose 𝑔∗ = 0.5 and ℎ∗ = 0.5. For gender, we thus 

have 𝑣2 = 0.1662  and 𝑟2 = ∆𝑔/𝑣2 = 0.1252/
0.1662 = 0.753.  Similarly, for age, 𝑣1 = 0.1202 

(with normalized values) and 𝑟1 = 0.1707/0.1202 =
1.420 ; and for ZIP, 𝑣3 = 0.1959  and 𝑟3 = 0.1802/
0.1959 = 0.920. So, the second QI attribute, gender, 

is selected for the first split since 𝑟2 is the smallest. The 

two subsets are shown in Figure 2b (𝑡1) and Figure 2c 

(𝑡2). Subsequently, Figure 2c (𝑡2) can be further split 

into Figure 2d (𝑡21) and Figure 2e (𝑡22) based on the 

first QI attribute age. Figure 2b (𝑡1), Figure 2d (𝑡21), 

and Figure 2e ( 𝑡22 ), cannot be split further since 

splitting any of these tables causes a 𝑔  value to be 

smaller than 0.5 and/or an ℎ value to be greater than 

0.5 for at least one of the child subsets. 

The QI-groups of the anonymized dataset using the 

proposed algorithm is shown in Table 6b. For 

illustration, we also provide Table 6a, which is the 

same as Table 3a except that records are reordered to 

match the records in the anonymized dataset. It can be 

seen that the anonymized dataset has multiple 

individuals in each QI-group with well-balanced 

frequency distributions and no disease occurs too 

frequently relative to the number of individuals in each 

QI-group. The g and h values in each QI-group all 

satisfy the threshold requirements; i.e., 𝑔 ≥ 𝑔∗ = 0.5 

and ℎ ≤ ℎ∗ = 0.5  (in the first group, 𝑔 = 0.5, ℎ =
0.5; in the second group, 𝑔 = 0.5, ℎ = 0.5; and in the 

third group, 𝑔 = 0.72, ℎ = 0.5). 

 

Table 6. The Original and Anonymized Datasets (g* = 0.50; h* = 0.50) 

a. Original dataset  b. Anonymized dataset 

Name Age Gender ZIP Disease  PID Age Gender ZIP Disease 

Ashley 86 Female 20375 Asthma  A 84-86 Female 20090-20375 Asthma 

Ashley 86 Female 20375 Reflux  A 84-86 Female 20090-20375 Reflux 

Diana 84 Female 20090 Ulcer  D 84-86 Female 20090-20375 Ulcer 

Diana 84 Female 20090 Gastritis  D 84-86 Female 20090-20375 Gastritis 

Bob 85 Male 20375 Reflux  B 78-85 Male 20090-20420 Reflux 

Edward 84 Male 20090 Pneumonia  E 78-85 Male 20090-20420 Pneumonia 

Edward 84 Male 20090 Gastritis  E 78-85 Male 20090-20420 Gastritis 

Fred 78 Male 20400 Pneumonia  F 78-85 Male 20090-20420 Pneumonia 

Greg 78 Male 20420 Ulcer  G 78-85 Male 

 

 

20090-20420 Ulcer 

Charlie 69 Male 20048 Pneumonia  C 69-76 Male 20048-20400 Pneumonia 

Charlie 70 Male 20048 Pneumonia  C 69-76 Male 20048-20400 Pneumonia 

Charlie 71 Male 20048 Pneumonia  C 69-76 Male 20048-20400 Pneumonia 

Charlie 71 Male 20048 Gastritis  C 69-76 Male 20048-20400 Gastritis 

Charlie 71 Male 20048 Gastritis  C 69-76 Male 20048-20400 Gastritis 

Harry 74 Male 20400 Asthma  H 69-76 Male 20048-20400 Asthma 

Harry 75 Male 20400 Bronchitis  H 69-76 Male 20048-20400 Bronchitis 

Harry 76 Male 20400 Asthma  H 69-76 Male 20048-20400 Asthma 

Harry 74 Male 20400 Ulcer  H 69-76 Male 20048-20400 Ulcer 

Harry 76 Male 20400 Ulcer  H 69-76 Male 20048-20400 Ulcer 
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6 Experimental Evaluation 

To evaluate the performance of the proposed method, 

we conducted an experimental evaluation study using 

three real-world databases. The first is a healthcare 

database provided by the INFORMS Data Mining 

Section (2008) for its first data mining contest. The 

database consists of four related datasets, two of which 

are closely related to MRPP problems: patient 

demographics and patient conditions. The patient 

demographics dataset includes attributes such as 

patient ID, year of birth, gender, race, years of 

education, marital status, income, and poverty level. 

The patient conditions dataset includes attributes such 

as patient ID, ICD-9 diagnosis code, and year. The two 

datasets were joined into one set according to patient 

ID. From the patient demographics dataset, we chose 

year of birth, years of education, income, and poverty 

level for the QI attributes; from the patient conditions 

set, we chose ICD-9 diagnosis code as the sensitive 

attribute. We obtained count values based on patient 

ID in the patient conditions dataset. After removing 

records with missing information, 117,307 medical 

condition records for 29,531 patients remained. 

Approximately 25,000 patients out of 29,531 had 

multiple visits. 

The second database contains movie rating data 

collected by Harper and Konstan (2016). This dataset 

is somewhat similar to the Netflix dataset discussed in 

the introduction, but the Netflix dataset is no longer 

available. The database consists of three related 

datasets, two of which are closely related to MRPP 

problems: user and rating datasets. The user dataset 

provides demographic information for 943 users, 

including user ID, age, gender, occupation, and ZIP 

code. We selected age, gender, and ZIP code for the QI 

attributes. The rating dataset contains 100,000 user 

ratings (1-5 scale) for 1,682 movies, with attributes of 

user ID, movie ID, rating, and a time stamp. Initially, 

we considered using movie ID as the sensitive 

attribute. However, it turned out that some popular 

movies were very common to a large number of users, 

making it difficult to consider it sensitive. In order to 

make sensitive attribute values more meaningful, we 

considered the attributes movie ID, rating, and 

month/year together as the sensitive attribute; that is, 

we combined the values of the attributes of movie ID, 

rating, and month/year to create the sensitive attribute 

value. Again, the user and rating datasets were joined 

into one set according to user ID. 

The third database contains financial data from a bank 

about their clients, accounts, and transactions (PKDD, 

1999). The database consists of eight related datasets, 

four of which are closely related to MRPP problems: 

client, account, demographics, and transactions. The 

four datasets were joined into one set using client ID 

and account ID. We chose date of birth, salary level, 

and account open date as the QI attributes. We defined 

the sensitive attribute as the transaction amount per 

period, which was rounded to the nearest hundred 

dollars. After removing records with missing values, 

the aggregated dataset contained 273,508 transaction 

records from 3,674 clients. 

7 Evaluation of Individual-

Recorded Disclosure Risk 

We first compared our g-balance based method with k-

anonymity and PID-based K-anonymity in terms of 

individual-record disclosure risk and data quality for the 

MRPP scenario. As discussed above, the individual-

record disclosure risk (IDR) of the 𝑖th person in a QI-

group of size k can be defined by 𝐼𝐷𝑅𝑖 = 𝑓𝑖/ ∑ 𝑓𝑖
𝑘
𝑖=1 , 

where 𝑓𝑖 is the number of records associated with the 𝑖th 

person in the QI-group. In general, individuals in a QI-

group may have different IDR values. In data privacy 

research and practice, it is a common practice to 

measure disclosure risk based on the maximum risk 

instead of average risk (Sweeney, 2002; Fung et al., 

2010; Xiao & Tao, 2006). So, we defined the individual-

record disclosure risk of a QI-group q as the maximum 

IDR value in the group, written as 𝐺𝐼𝐷𝑅𝑞 =

max(𝐼𝐷𝑅𝑖) . To evaluate individual-record disclosure 

risk for an anonymized dataset with m QI-groups, we 

use the maximum and average GIDR measures, defined 

below: 

 

𝑀𝑎𝑥𝐺𝐼𝐷𝑅 = max
𝑞=1,…,𝑚

𝐺𝐼𝐷𝑅𝑞 

 

𝐴𝑣𝑔𝐺𝐼𝐷𝑅 =
1

𝑚
∑ 𝐺𝐼𝐷𝑅𝑞

𝑚

𝑞=1
 

 

We ran a k-anonymity algorithm (LeFevre et al., 2006) 

using seven different k values: 𝑘 =
2, 3, 5, 7, 10, 20, 50 , and also used the same seven 

values for PID-based K-anonymity, 𝐾 =
2, 3, 5, 7, 10, 20, 50 . Based on Equation (3), which 

provides a direct relationship between the k (or K) and 

g values in the one record per person case scenario, we 

then selected seven corresponding g values: 𝑔 = 0.50,
0.67, 0.80, 0.86, 0.90, 0.95, 0.98. Some individuals in 

the dataset had only one record per person and it is 

possible that these individuals were assigned to the 

same QI-group. So, the selection of corresponding g 

values ensures that the dataset anonymized with the g-

balance based method satisfies respective k-anonymity 

and PID-based K-anonymity requirements in this 

situation. Tables 7, 8, and 9 show the maximum and 

average individual-record disclosure risks for the three 

datasets anonymized based on the chosen k, K, and g 

values, respectively. 
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Table 7. Comparison of Individual-Record Disclosure Risks in Patient Data 

a. Risk with k-anonymity  b.  Risk with PID-based K-anonymity  c. Risk with g-balance 

k 
MaxGIDR 

(%) 

AvgGIDR 

(%) 
 K 

MaxGIDR 

(%) 

AvgGIDR 

(%) 
 G 

MaxGIDR 

(%) 

AvgGIDR 

(%) 

2 100.00 88.55  2 96.67 59.26  0.50 68.18 44.11 

3 100.00 82.07  3 94.29 46.48  0.67 54.17 33.52 

5 100.00 70.63  5 77.14 34.09  0.80 40.00 23.54 

7 100.00 62.57  7 76.74 27.40  0.86 33.33 18.33 

10 100.00 53.28  10 59.02 21.56  0.90 25.58 14.16 

20 100.00 36.63  20 45.59 13.62  0.95 16.45 8.55 

50 76.67 20.75  50 17.46 7.03  0.98 7.33 4.25 

Table 8. Comparison of Individual-Record Disclosure Risks in Movie Data 

a. Risk with k-anonymity  b. Risk with PID-based K-anonymity  c. Risk with g-balance 

k 
MaxGIDR 

 (%) 

AvgGIDR 

(%) 
 K 

MaxGIDR 

(%) 

AvgGIDR 

(%) 

 
G 

MaxGIDR 

(%) 

AvgGIDR 

(%) 

2 100.00 99.27  2 96.07 63.00  0.50 67.37 45.39 

3 100.00 99.27  3 90.21 50.07  0.67 53.89 34.67 

5 100.00 99.27  5 81.35 35.37  0.80 35.46 24.01 

7 100.00 99.27  7 81.02 28.65  0.86 30.16 18.83 

10 100.00 99.27  10 50.74 21.87  0.90 23.54 13.18 

20 100.00 99.27  20 35.90 13.33  0.95 11.98 7.65 

50 100.00 85.94  50 9.87 6.96  0.98 5.88 4.41 

 

Table 9. Comparison of Individual-Record Disclosure Risks in Bank Data  

a. Risk with k-anonymity  b. Risk with PID-based K-anonymity  c. Risk with g-balance 

k 
MaxGIDR 

 (%) 

AvgGIDR 

(%) 
 K 

MaxGIDR 

(%) 

AvgGIDR 

(%) 

 
g 

MaxGIDR 

(%) 

AvgGIDR 

(%) 

2 100.00 99.84  2 98.14 57.11  0.50 66.49 40.04 

3 100.00 99.84  3 82.58 41.36  0.67 51.06 30.65 

5 100.00 99.82  5 56.61 28.07  0.80 34.24 21.03 

7 100.00 99.77  7 41.64 20.52  0.86 25.69 15.19 

10 100.00 99.47  10 33.43 16.01  0.90 19.10 11.92 

20 100.00 97.59  20 17.19 8.58  0.95 10.30 6.39 

50 100.00 87.99  50 6.08 3.98  0.98 5.12 3.09 
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It can be observed that k-anonymity is very ineffective 

against MRPP disclosure. In Tables 7a, 8a, and 9a, the 

maximum disclosure risks are 100% for k = 2 through 

20, meaning that some QI-groups consist of multiple 

records of only one individual, which can be uniquely 

reidentified. Even with k = 50, the maximum risks are 

still very high (76.67%, 100%, and 100% for the 

patient, movie, and bank data, respectively). While 

PID-based K-anonymity does a better job than k-

anonymity, the g-balance based method clearly 

outperforms both k-anonymity and PID-based K-

anonymity in every comparison category. The 

individual-record disclosure risks using g-balance are 

significantly lower than those using the other two 

methods in every risk assessment scenario. This is 

because of the balanced frequency distribution of 

individuals within a QI-group in the proposed method, 

which is designed to limit the disclosure risk of 

individuals’ records with multiple occurrences. In 

addition, because of the direct relationship between the 

k (or K) and g values when each individual in a QI-

group has only one record, the dataset anonymized 

with the g-balance based method satisfies 

corresponding k-anonymity and PID-based K-

anonymity requirements in the one record per person 

case scenario. 

Next, we evaluate data quality by measuring 

information loss because of generalization. Let D be 

the original dataset with N individuals and d QI 

attributes, and D* be the anonymized version of D, 

where its QI values are generalized using the means of 

the QI attributes in each QI-group. Let 𝑥𝑖𝑗  and 𝑥𝑖𝑗
∗  be 

the normalized values of the 𝑗th QI attribute of the 𝑖th 

individual in D and D*, respectively. Information loss 

because of generalization can be measured using the 

average normalized error (ANE), computed by 

 

𝐴𝑁𝐸 =
1

𝑑 ∗ 𝑁
∑ ∑|𝑥𝑖𝑗 − 𝑥𝑖𝑗

∗ |

𝑁

𝑖=1

𝑑

𝑗=1

 

 

ANE measures the average normalized distances 

between the original and generalized QI values. A 

small ANE suggests a small information loss and thus 

is desirable for higher data quality. In order to compare 

the ANEs between the two methods, it is necessary to 

“control” the disclosure risk at the same level for all 

methods. Thus, we gradually adjusted the k and K 

values in k- and K-anonymity and g values in g-balance 

such that the resulting MaxGIDR values are 

comparable at six target levels: 1%, 2%, 5%, 10%, 

15%, and 20% for the patient data (in data privacy 

research and practice, disclosure risk is more often 

measured using the maximum risk instead of average 

risk). For the movie and bank datasets, because some 

individuals had a very high number of occurrences, it 

was not possible to get the target levels of 1% and 2% 

for MaxGIDR. So, we set five target levels: 5%, 10%, 

15%, 20% and 25%. To be conservative, we made the 

MaxGIDR value from g-balance slightly smaller than 

that from k-anonymity at each level. We can then 

compare the related ANE values. 

The results of this experiment are given in Tables 10, 

11, and 12. The ANE values with g-balance are 

considerably smaller than those with k- and K-

anonymity at all levels while the MaxGIDR values 

with g-balance are about the same as (or slightly 

smaller than) those with k- and K-anonymity at all 

levels. This suggests that the g-balance based method 

results in smaller information loss than k- and K-

anonymity, given about the same individual-record 

disclosure risk. One explanation is that k- and K-

anonymity reduce the risk only by increasing the group 

size, which directly causes information loss when the 

QI values within a group are generalized. The g-

balance method focuses on the occurrences of each 

individual and assigns individuals with similar 

occurrence frequencies into the same group, which 

does not necessarily require increasing the group size. 

A second explanation is that our proposed algorithm 

partitions data into QI-group using the balance-

variance ratio, which can achieve a superior tradeoff 

between disclosure risk and information loss. In 

summary, the results from Tables 7 through 12 indicate 

that the proposed g-balance method outperforms k- and 

K-anonymity in terms of both privacy protection and 

data quality.

 

Table 10. Comparison of Information Loss Given Individual-Record Disclosure Risks in Patient Data 

Target MaxGIDR (%) 
k-Anonymity PID-based K-anonymity g-Balance 

MaxGIDR (%) ANE MaxGIDR (%) ANE MaxGIDR (%) ANE 

20 19.41 1.479 19.19 1.118 18.79 0.469 

15 16.64 2.951 16.27 1.814 14.45 0.923 

10 9.60 4.031 9.14 3.160 9.03 2.477 

5 5.36 10.505 4.64 9.229 4.49 8.962 

2 2.44 34.815 2.48 34.571 2.43 22.789 

1 1.43 81.068 1.93 78.809 1.35 55.298 
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Table 11. Comparison of Information Loss Given Individual-Record Disclosure Risks in Movie Data 

Target MaxGIDR (%) 
k-Anonymity PID-based K-anonymity g-Balance 

MaxGIDR (%) ANE MaxGIDR (%) ANE MaxGIDR (%) ANE 

25 25.58 0.908 26.97 0.902 25.00 0.506 

20 20.87 1.022 21.38 0.984 20.40 0.867 

15 15.23 2.133 15.78 2.107 14.57 1.723 

10 12.07 2.785 12.01 2.918 11.98 2.205 

5 5.92 8.551 6.02 8.976 5.88 7.825 

 

Table 12. Comparison of Information Loss Given Individual-Record Disclosure Risks in Bank Data 

Target MaxGIDR (%) 
k-Anonymity PID-based K-Anonymity g-Balance 

MaxGIDR (%) ANE MaxGIDR (%) ANE MaxGIDR (%) ANE 

25 24.85 1.263 23.55 0.610 23.53 0.498 

20 22.05 1.341 21.64 0.806 21.39 0.557 

15 15.93 1.811 14.42 1.431 14.38 0.947 

10 10.64 3.298 10.85 2.804 10.30 1.786 

5 5.55 8.230 5.68 7.781 5.48 4.608 

8 Evaluation of Sensitive-Attribute 

Disclosure Risk 

We now compare h-affiliation with l-diversity in the 

effectiveness of measuring sensitive-attribute 

disclosure risk. While QI values are generalized to 

satisfy k-anonymity or g-balance requirements, we 

note that sensitive attributes are usually not subject to 

change in most data privacy approaches (DHHS, 2000; 

Fung et al., 2010). Indeed, l-diversity and h-affiliation 

mitigate sensitive-attribute disclosure risk by forming 

the QI-groups and adjusting the group sizes to include 

diverse sensitive values rather than changing the 

sensitive values. 

As discussed earlier, sensitive-attribute disclosure risk 

(SAR) in a QI-group depends on how many individuals 

in the group are associated with a sensitive value. For 

a QI-group of size k, SAR for the jth sensitive value can 

be defined by 𝑆𝐴𝑅𝑗 = 𝑛𝑗/𝑘, where 𝑛𝑗 is the number of 

people having the jth sensitive value in the QI-group. 

Furthermore, we define the sensitive-attribute 

disclosure risk of a QI-group q to be the maximum SAR 

among all sensitive values, written as 𝐺𝑆𝐴𝑅𝑞 = 

max(𝑆𝐴𝑅𝑗). To evaluate sensitive-attribute disclosure 

risk for an anonymized dataset with m QI-groups, we 

use the maximum and average GSAR measures, 

defined below: 

𝑀𝑎𝑥𝐺𝑆𝐴𝑅 = max
𝑞=1,…,𝑚

𝐺𝑆𝐴𝑅𝑞 

 

𝐴𝑣𝑔𝐺𝑆𝐴𝑅 =
1

𝑚
∑ 𝐺𝑆𝐴𝑅𝑞

𝑚

𝑞=1
 

 

The results of the previous section show  that g-balance 

is more effective than both traditional k-anonymity and 

PID-based K-anonymity in reducing disclosure risk 

and information loss. Therefore, we compared h-

affiliation with l-diversity based on the QI-groups 

formed using g-balance. We set three g-balance 

threshold levels, 𝑔∗ = 0.50, 0.67 and 0.80  for the 

experiment. For each g level, we applied several 

threshold values for l-diversity and h-affiliation to 

examine the maximum and average sensitive-attribute 

disclosure risks.  

We ran our algorithm with l-diversity measure using 

five different l values: 𝑙 = 2, 3, 5, 10, 20 . Based on 

Equation (6), we have ℎ = 1/𝑙 in the one-record-per-

person case. So, we selected five corresponding h 

values: ℎ = 0.50, 0.33, 0.20, 0.10, 0.05. Tables 13, 

14, and 15 show the maximum and average sensitive- 

attribute disclosure risks for the two datasets 

anonymized based on those l and h values. 

It can be observed that l-diversity is very ineffective in 

controlling sensitive-attribute disclosure risk in the 

MRPP problem. For example, with the patient data 

when 𝑔∗ = 0.5, the MaxGSAR values are 100% for l = 
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2 through 10, which means that in some QI-groups all 

individuals have a common sensitive value, causing 

the sensitive value to be disclosed with certainty. As l-

diversity increases, disclosure risk generally decreases. 

However, there is not an intuitive connection between 

l values and actual risk levels. We note that for the 

movie dataset, MaxGSAR and AvgGSAR values with l-

diversity do not change when l values are increased 

from 2 through 20. This is because in the original 

dataset each individual has at least 20 occurrences 

(lower frequency individuals were removed from the 

original data to balance the frequency distributions). It 

is practically impossible to tell, based on the results of 

either dataset, what risk a QI-group has for a given l-

diversity value. On the other hand, it is clear that h-

affiliation is more effective in controlling sensitive- 

attribute disclosure risk in MRPP problems. For 

example, when 𝑔∗ = 0.5, the MaxGSAR values in the 

patient data decreases from 50% to around 4.4% for h 

= 0.50 through 0.05. Similarly, in the movie and bank 

cases for the same 𝑔∗  and h values, MaxGSAR 

decreases from 50% to 4.8% and 6.21%, respectively. 

Clearly, h value closely represents the actual maximum 

sensitive-attribute disclosure risk in the MRPP 

problem and is more effective in controlling the risk 

than l-diversity. Also, it can be seen that as the h-

affiliation value gets smaller, it performs much better 

than the corresponding l-diversity measure. In 

summary, for each corresponding l and h value at each 

of the three 𝑔∗  levels, h-affiliation results in 

substantially lower maximum and average sensitive-

attribute disclosure risks than l-diversity. 

For h-affiliation in the patient and bank data (Tables 13 

and 15), the MaxGSAR values with the same h value 

are the same for all three different g threshold values. 

This is because the groups formed by the proposed 

algorithm are constrained by the h threshold values, 

instead of the g threshold values. For the movie data 

(Table 14), some of the MaxGSAR values with h-

affiliation for 𝑔∗ = 0.8  are different from the 

corresponding MaxGSAR values for 𝑔∗ = 0.5  (and 

𝑔∗ = 0.67 ). For example, when 𝑔∗ = 0.8  and ℎ =
0.5, 𝑀𝑎𝑥𝐺𝑆𝐴𝑅 = 30%, whereas when 𝑔∗ = 0.5 and 

ℎ = 0.5 , 𝑀𝑎𝑥𝐺𝑆𝐴𝑅 = 50% . This is because the 

groups formed by the proposed algorithm are 

constrained by 𝑔∗ = 0.8 and 𝑔∗ = 0.5 (instead of ℎ =
0.5), respectively. 

 

Table 13. Comparison of Sensitive-Attribute Disclosure Risk in Patient Data 

Threshold 

g* 

l-Diversity h-Affiliation 

l MaxGSAR (%) AvgGSAR (%) h MaxGSAR (%) AvgGSAR (%) 

0.50 

2 100.00 35.39 0.50 50.00 32.26 

3 100.00 33.70 0.33 31.58 20.91 

5 100.00 31.24 0.20 20.00 15.35 

10 100.00 22.85 0.10 10.00 8.26 

20 27.78 12.78 0.05 4.39 3.88 

0.67 

2 80.00 27.01 0.50 50.00 25.38 

3 80.00 26.83 0.33 31.58 20.58 

5 80.00 26.23 0.20 20.00 15.31 

10 80.00 21.49 0.10 10.00 8.25 

20 27.78 12.83 0.05 4.39 3.88 

0.80 

  2 62.50 20.88 0.50 50.00 20.84 

  3 62.50 20.86 0.33 31.58 19.13 

  5 55.56 20.75 0.20 20.00 14.91 

10 55.56 19.08 0.10 10.00 8.29 

20 27.78 12.83 0.05 4.39 3.88 
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Table 14. Comparison of Sensitive-Attribute Disclosure Risk in Movie Data 

Threshold 

g* 

l-Diversity h-Affiliation 

l MaxGSAR (%) AvgGSAR (%) h MaxGSAR (%) AvgGSAR (%) 

0.50 

2 66.67 27.40 0.50 50.00 26.96 

3 66.67 27.40 0.33 28.57 18.68 

5 66.67 27.40 0.20 20.00 15.01 

10 66.67 27.40 0.10 10.00 7.28 

20 66.67 27.40 0.05 4.84 3.82 

0.67 

2 50.00 19.70 0.50 50.00 19.70 

3 50.00 19.70 0.33 28.57 18.15 

5 50.00 19.70 0.20 20.00 14.91 

10 50.00 19.70 0.10 10.00 7.28 

20 50.00 19.70 0.05 4.84 3.82 

0.80 

2 30.00 13.95 0.50 30.00 13.95 

3 30.00 13.95 0.33 30.00 13.95 

5 30.00 13.95 0.20 20.00 12.96 

10 30.00 13.95 0.10 10.00 7.28 

20 30.00 13.95 0.05 4.84 3.82 

Next, we evaluate the performance of h-affiliation in 

terms of data quality. We again first used g-balance to 

form the QI-groups with three thresholds, 𝑔∗ =
0.50, 0.67 and 0.80. We then applied l-diversity and 

h-affiliation for anonymizing data and compare their 

data quality by measuring information loss because of 

generalization. While identity disclosure reveals both 

the identity and sensitive values of an individual, 

attribute disclosure does not necessarily lead to the 

unique identification of an individual. So, the 

minimum threshold values used for attribute disclosure 

risk are usually larger than those for identity disclosure 

(Duncan & Lambert, 1989; Machanavajjhala et al., 

2006; Fung et al., 2010). For each g level, we 

compared the ANE values of both methods by 

controlling the maximum sensitive-attribute disclosure 

risk (MaxGSAR) at three target levels: 10%, 15%, and 

20%. To be conservative, we kept the MaxGSAR 

values from h-affiliation slightly smaller than those 

from l-diversity and then compared the corresponding 

ANE values. 

The results of this experiment are given in Tables 16, 

17, and 18. The ANE values with h-affiliation are 

substantially smaller than those with l-diversity at all 

levels while the MaxGSAR values with h-affiliation are 

about the same as (or slightly smaller than) those with 

l-diversity at all levels. This suggests that the h-

affiliation results in smaller information loss than l-

diversity, given the same sensitive-attribute disclosure 

risk. In the patient data, some diseases are very 

common across all individuals, as well as for those 

within a QI-group. l-Diversity does not have a built-in 

mechanism to deal with this problem when a patient 

has multiple records with multiple diseases. It relies 

solely on increasing the group size to satisfy a target 

MaxGSAR level, which results in much larger group 

sizes than those with h-affiliation. This issue is not so 

significant for the movie and bank data because no 

sensitive values are common across a large number of 

individuals. Because of this different characteristic in 

the data, the differences in ANE values between l-

diversity and h-affiliation in the patient data are 

substantially larger than those in the movie and bank 

data. 

In summary, the findings from Tables 13 through 18 

indicate that the proposed h-affiliation method 

provides a more intuitive representation of sensitive- 

attribute disclosure risk, and it outperforms l-diversity 

in terms of both privacy protection and data quality in 

data with multiple records per person.
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Table 15. Comparison of Sensitive-Attribute Disclosure Risk in Bank Data 

Threshold 

g* 

l-Diversity h-Affiliation 

l MaxGSAR (%) AvgGSAR (%) h MaxGSAR (%) AvgGSAR (%) 

0.50 

2 100.00 34.19 0.50 50.00 31.59 

3 75.00 33.05 0.33 30.77 21.20 

5 66.67 26.21 0.20 20.00 15.37 

10 27.38 14.49 0.10 10.00 7.92 

20 20.00 10.08 0.05 6.21 6.21 

0.67 

2 75.00 27.94 0.50 50.00 27.62 

3 75.00 27.78 0.33 30.77 21.20 

5 50.00 25.72 0.20 20.00 15.42 

10 40.00 17.19 0.10 10.00 8.63 

20 20.00 10.08 0.05 6.21 6.21 

0.80 

2 57.14 22.21 0.50 50.00 22.13 

3 57.14 22.21 0.33 30.77 19.99 

5 50.00 21.75 0.20 20.00 15.42 

10 33.33 16.86 0.10 10.00 8.63 

20 20.00 10.08 0.05 6.21 6.21 

 

Table 16. Comparison of Information Loss Given Attribute Disclosure Risks in Patient Data 

Threshold 

g* 

Target  

MaxGSAR (%) 

l-Diversity h-Affiliation 

MaxGSAR (%) ANE  MaxGSAR (%) ANE 

0.50 

20 20.12 14.989 18.37 0.404 

15 15.96 27.249 14.29 1.536 

10 10.80 259.512 9.47 28.317 

0.67 

20 20.10 15.012 18.08 0.435 

15 14.67 31.880 13.99 1.752 

10 10.43 309.400 9.21 82.312 

0.80 

20 20.10 16.295 17.97 0.575 

15 14.81 28.871 14.29 1.550 

10 8.92 467.803 8.89 139.537 

 

Table 17. Comparison of Information Loss Given Attribute Disclosure Risks in Movie Data 

Threshold 

g* 

Target  

MaxGSAR (%) 

l-Diversity h-Affiliation 

MaxGSAR (%) ANE  MaxGSAR (%) ANE 

0.50 

20 20.00 0.383 19.29 0.198 

15 15.34 0.899 14.29 0.404 

10 10.59 1.959 10.00 0.789 

0.67 

20 21.11 0.354 20.00 0.176 

15 14.63 0.900 14.56 0.412 

10 9.95 2.005 9.77 0.831 

0.80 

20 19.09 0.711 18.90 0.277 

15 15.34 0.975 13.90 0.446 

10 9.95 2.139 8.70 1.082 
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Table 18. Comparison of Information Loss Given Attribute Disclosure Risks in Bank Data 

Threshold 

g* 

Target  

MaxGSAR (%) 

l-Diversity h-Affiliation 

MaxGSAR (%) ANE  MaxGSAR (%) ANE 

0.50 

20 20.00 1.795 19.81 0.614 

15 15.79 2.222 15.69 1.208 

10 10.20 8.646 10.17 5.509 

0.67 

20 21.05 2.132 20.00 0.656 

15 20.25 7.581 15.00 1.759 

10 10.29 21.036 10.00 12.240 

0.80 

20 21.05 2.955 19.52 0.732 

15 15.13 8.402 14.64 1.922 

10 10.20 40.637 9.70 13.715 

 

9 Discussion 

MRPP is an essential aspect of many business analytics 

and big data applications. Existing data privacy 

approaches typically assume that each individual 

corresponds to a single record, which may be 

inadequate for protecting privacy in MRPP scenarios. 

The proposed approach overcomes the limitations of 

existing well-known approaches, effectively reducing 

the risk of individual-record disclosure and attribute 

disclosure in MRPP scenarios. Therefore, this research 

has significant managerial, organizational, and societal 

implications. The proposed approach should alleviate 

individuals’ concerns about loss of privacy and 

confidentiality and increase their willingness to allow 

their data to be shared for secondary uses, such as 

medical research that benefits society or personalized 

services that benefit the users themselves. It should 

also reduce organizations’ concerns about possible 

privacy violations, enabling organizations to share 

high-quality data safely for legitimate research and 

analytics purposes in a big data environment. 

The proposed approach reduces the disclosure risks in 

MRPP problems by considering individuals’ 

frequency distribution in a dataset. It balances out the 

risks of an unbalanced frequency distribution by 

assigning individuals with the same or similar 

occurrence frequencies to a QI-group. Thus, the 

advantage of this approach over traditional methods 

should be more visible when individuals’ frequency 

distribution is more unbalanced, as was observed in the 

evaluation study. The frequency distribution in the 

patient dataset was more unbalanced than that of the 

movie dataset because individuals with fewer than 20 

occurrences had been removed from the original movie 

dataset before it was released. As a result, the proposed 

approach performed better with the patient dataset than 

with the movie dataset. While removing low-

frequency individuals reduces risk caused by 

unbalanced distributions, it also results in information 

loss. Using our proposed approach, the removal of 

these low-frequency individuals from the movie 

dataset would have been unnecessary. Instead, they 

would be assigned to low-frequency QI-groups, and 

their disclosure risk could be controlled by the use of 

g-balance and h-affiliation measures. 

The proposed g-balance and h-affiliation measures are 

easy to use because of their relationships with widely 

used k-anonymity and l-diversity, respectively. In 

practice, k and l values are typically chosen between 5 

and 20 (El Emam et al. 2009, 2013; LeFevre et al., 

2006; Machanavajjhala et al., 2006; Sweeney, 2002). 

To set the threshold values g* and h* in MRPP cases, 

the user can first consider these commonly used k and 

l values and then calculates the corresponding g and h 

values based on Equations (3) and (6) for the 

thresholds. This ensures that the dataset anonymized 

with the g* and h* thresholds satisfies respective k-

anonymity and l-diversity requirements in case there is 

only a single record for an individual. 

We have considered only one sensitive attribute in this 

study, but our idea can be easily extended to cases with 

multiple sensitive attributes. When there are multiple 

sensitive attributes, h-affiliation criteria can be applied 

to each sensitive attribute in a QI-group separately. In 

the proposed algorithm, the h-affiliation is used as a 

constraint to check whether the partitioned QI-groups 

satisfy the sensitive-attribute protection requirement 

for one sensitive attribute. When there are multiple 

sensitive attributes, the h-affiliation constraint must be 

satisfied for each of those sensitive attributes. 

Computationally, this involves checking h-affiliation 

conditions multiple times in Step 2(ii) of the proposed 

algorithm (Table 5), which is easy to implement. 
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10  Conclusion  

In this study, we investigate the MRPP disclosure 

problem that is largely overlooked in the data privacy 

literature. We propose a novel approach to protect data 

against MRPP-based individual-record disclosure and 

sensitive-attribute disclosure. We demonstrate that the 

proposed approach provides significantly better 

privacy protection against MRPP disclosures than 

traditional approaches while maintaining greater data 

quality. Using the proposed approach, organizations 

can effectively evaluate and mitigate privacy risks with 

their data when an individual in the dataset has 

multiple records. 
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Appendix 

Proofs of Theorem 1 and Corollary 1 

The g-balance function, 𝑔(𝑡), achieves the maximum when individuals in t are evenly distributed; i.e., when all the 

𝑐𝑖’s in equation (1) are equal to the same value c. In this case, we can write equation (1) as follows: 

 𝑔max = 1 − ∑ (
𝑐

𝑛𝑡𝑐
)

2
𝑛𝑡

𝑖=1

= 1 − ∑ (
1

𝑛𝑡

)
2

𝑛𝑡

𝑖=1

= 1 −
1

𝑛𝑡

 (A1) 

When each individual in t corresponds to a single record, 𝑐𝑖 = 𝑐 = 1, ∀𝑖, and 𝑔 = 𝑔max. Substituting 𝑛𝑡 in (A1) by k, 

we obtain Equation (3) in Corollary 1. 

Theorem 1 can be proven by using proof by contradiction. Suppose Equation (2) in Theorem 1 is incorrect; that is, it 

is possible that 

𝑛𝑡  <
1

1 − 𝑔
 

 

Then, rearranging the inequality, we have 

 

𝑔 > 1 −
1

𝑛𝑡

 

 

It follows from Equation (A1) that the right-hand side is 𝑔max. So, we have 𝑔 > 𝑔max, which is a contradiction. This 

completes the proof. 

Proof of Lemma 1  

Let  𝑡𝑝, 𝑡1 and 𝑡2 be the parent dataset and its two subsets with 𝑛𝑡𝑝
, 𝑛𝑡1

and 𝑛𝑡2
 the number of individuals in each set, 

respectively. Let ℎ𝑝 , ℎ1  and  ℎ2  be the corresponding h-affiliation value, and  𝑗𝑝 , 𝑗1  and  𝑗2  be the index of the 

corresponding sensitive value defined by equation (5), respectively. Let 𝑛𝑗𝑝
, 𝑛𝑗1

 and 𝑛𝑗2
 be the number of individuals 

affiliated with  𝑗𝑝, 𝑗1 and 𝑗2, respectively. Then, 

 

  ℎ𝑝 = 𝑛𝑗𝑝
/𝑛𝑡𝑝

,  ℎ1 = 𝑛𝑗1
/𝑛𝑡1

,  ℎ2 = 𝑛𝑗2
/𝑛𝑡2

,  and  𝑛𝑡1
+ 𝑛𝑡2

= 𝑛𝑡𝑝
. 

 

We show that 

 

  ℎ𝑝 ≤ max  {ℎ1, ℎ2}.        (A2) 

  

It follows from Equation (5) that 𝑛𝑗1
+ 𝑛𝑗2

≥ 𝑛𝑗𝑝
. Without loss of generality, assume ℎ1 ≤ ℎ2. Then, if ℎ𝑝 < ℎ1, (A2) 

is obtained immediately. Now, consider ℎ𝑝 ≥ ℎ1. If this is true, then 

 

 
𝑛𝑗1+𝑛𝑗2

𝑛𝑡1+𝑛𝑡2

≥
𝑛𝑗𝑝

𝑛𝑡𝑝

≥
𝑛𝑗1

𝑛𝑡1

,      𝑛𝑡1
𝑛𝑗1

+ 𝑛𝑡1
𝑛𝑗2

≥ 𝑛𝑡1
𝑛𝑗1

+ 𝑛𝑡2
𝑛𝑗1

,      𝑛𝑡1
𝑛𝑗2

≥ 𝑛𝑡2
𝑛𝑗1

, 

  𝑛𝑡1
𝑛𝑗2

+ 𝑛𝑡2
𝑛𝑗2

≥ 𝑛𝑡2
𝑛𝑗1

+ 𝑛𝑡2
𝑛𝑗2

      (𝑛𝑡1
+ 𝑛𝑡2

)𝑛𝑗2
≥ (𝑛𝑗1

+ 𝑛𝑗2
)𝑛𝑡2

, 

  
𝑛𝑗2

𝑛𝑡2

≥
𝑛𝑗1+𝑛𝑗2

𝑛𝑡1+𝑛𝑡2

≥
𝑛𝑗𝑝

𝑛𝑡𝑝

. 

 

That is, ℎ𝑝 ≤ ℎ2, and (A2) is obtained. This completes the proof. 
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