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Abstract The presented method reconstructs a network (a

graph) from AIS data, which reflects vessel traffic and can

be used for route planning. The approach consists of three

main steps: maneuvering points detection, waypoints dis-

covery, and edge construction. The maneuvering points

detection uses the CUSUM method and reduces the amount

of data for further processing. The genetic algorithm with

spatial partitioning is used for waypoints discovery.

Finally, edges connecting these waypoints form the final

maritime traffic network. The approach aims at advancing

the practice of maritime voyage planning, which is typi-

cally done manually by a ship’s navigation officer. The

authors demonstrate the results of the implementation

using Apache Spark, a popular distributed and parallel

computing framework. The method is evaluated by com-

paring the results with an on-line voyage planning appli-

cation. The evaluation shows that the approach has the

capacity to generate a graph which resembles the real-

world maritime traffic network.

Keywords Maritime traffic network � Vessel routing �
Route planning � AIS � Maritime traffic graph � Waypoint

discovery � Graph discovery � Artificial intelligence �
Genetic algorithm

1 Introduction

In the maritime domain, a safe and efficient vessel opera-

tion requires a prescient berth to berth voyage planning,

resulting in a route that consists of waypoints and legs. A

waypoint is a single coordinate within a route, at which a

vessel stops or changes its course. Despite the existence of

a number of supporting bridge systems, such a voyage is

normally planned manually by the ship’s crew. This task

might be supported by additional checking facilities, e.g.,

warning about unsafe water depths. Such support is espe-

cially important in areas with a high traffic density. In

addition, navigators who are unfamiliar with a sea area do

not necessarily have information about past experience and

best practices in the considered area.

This problem can be addressed by an assistance system

that supports the navigator in planning a safe and efficient

route before the voyage starts, by providing a network of

typical traffic routes based on past behavior of other,

similar ships that were traveling in a given area. In this

paper we show that such a network can be extracted

automatically based on past trajectories of ships using

various data science methods. Past ships trajectories can be

extracted from the Automatic Identification System (AIS) –

an automatic tracking system for ships equipped with a

transponder that in specified time intervals sends infor-

mation (messages) about ships’ identification, location,

course, speed, etc. AIS messages are then collected by
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terrestrial stations or satellites and are often used for ana-

lyzing the maritime traffic.

Our research was directed by the following research

questions: How is it possible to automatically and effi-

ciently discover patterns in the maritime routing based on

historical AIS data? What kind of data science method

might be applied for such a pattern discovery and for

creating a network representing the maritime traffic? How

can we design and implement a method capable of pro-

cessing huge amounts of maritime data efficiently? To

answer these questions, we propose an analytical process

for the discovery of a shipping network that consists of

three consecutive steps. The approach is developed based

on the Design Science methodology, using evolutionary

and graph algorithms as a theoretical foundation. Given

historical AIS data, the presented method aims at con-

structing a network reflecting vessel traffic. This approach

is also a response to the lack of methods that discover the

critical maritime waypoints in an efficient manner, based

on the analysis of big amounts of historical data, thus

aiming to advance practice of maritime voyage planning

that is typically done manually by a ship’s navigation

officers (Zhang et al. 2018).

We demonstrate the results of the process implementa-

tion using Apache Spark, a popular distributed and parallel

computing framework. As a proof-of-concept, the results

for data from the Baltic Sea area are presented. These

results show that our approach has the capacity to generate

the maritime traffic network based on real-world maritime

traffic.

2 Methodology

The approach presented in this paper follows the Design

Science (DS) methodology by Hevner et al. (2008) because

it supports the development of new, innovative artifacts.

Such artifacts should provide a contribution to the existing

body of knowledge and take the form of constructs,

instantiations, models, or methods. In case of our research,

we developed a method artifact (consisting of three algo-

rithms), which aims at helping navigators in planning a

maritime route by automatic discovery of waypoints and

defining optimal routes. We use evolutionary computing

and graph theory methods as a theoretical background. We

have followed DS guidelines and the iterative research

methodology (Hevner and Chatterjee 2010) consisting of

six activities: problem identification and motivation, ob-

jectives of a solution, design and development, demon-

stration, evaluation, and communication.

The identification of the research problem and out

motivation has been presented in Sect. 1. The definition of

the solution objectives and its requirements from theory

and practice has been conducted based on a literature

review (Sect. 3). The third step (design and development)

focuses on how to combine the identified practical and

theoretical requirements with a systematic design of the

artifact. Therefore, we explain the concept and assumptions

of the proposed method as well as its main components in

Sect. 4. The method consists of three components: the

CUSUM algorithm used as a pre-processing step, a parallel

genetic algorithm for waypoints discovery, and a graph

algorithm for detecting edges between waypoints. Thus,

the final results generated by the method can be used for an

effective planning of a maritime route.

As soon as the method was developed, we applied it

within laboratory experiments, which were conducted

based on the real AIS data, to demonstrate its applicability

(Sect. 5). Based on the results of the experiments, the

method is evaluated. The evaluation focuses on two

important aspects, namely, the quality of waypoints and

routes discovered and the overall efficiency of the method

to process large amount of AIS data. The quality of the

results is measured based on a comparison with maritime

routes defined using a mixture of quantitative and quali-

tative analysis of low-level elements of the solution. The

efficiency is shown by the processing time of a sample AIS

data and the scalability of the solution. Both criteria of

evaluation ensure necessary rigor of analysis to prove that

the artifact addresses the practical applicability. The steps

3–5 were repeated iteratively, meaning that the results of

the evaluation were transferred back to the design and

development step. Using this multi-step evaluation, we

intend to ensure the validity of the results and iteratively

improve the developed solution. Finally, we outline our

contribution, discuss limitations and indicate future work

(Sect. 6).

3 Related Work

Our work focuses on a generation of a maritime traffic

network (which essentially is a graph) that can be used later

in different scenarios. A number of scholars have carried

out empirical studies on naval routing and voyage plan-

ning. An optimal route can be defined as the blend of

shortest time, minimal fuel consumption, and general

safety of navigation (Wang et al. 2018). Routing and path

planning seem to be used interchangeably in the literature.

Following Tu et al. (2018), there are some formal differ-

ences between them. Path planning in its simplest form can

be defined as finding the shortest path between two points,

using the great-circle distance or rhumb line and consid-

ering the obstacles. Routing can be defined as a prediction

of a vessel’s next position based on its current position and

a number of features, such as speed Tu et al. (2018). Other
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scholars refer to it as route design (Cai et al. 2014) or

navigation planning (Tan et al. 2018). The term can be

narrowed down to some specific meaning, for instance

weather routing adds an additional layer of complexity by

considering conditions such as wind or sea currents. Other

researchers focus on the planning of fuel efficiency

(Schøyen and Bråthen 2015).

Tu et al. (2018) distinguished three main classes of

approaches to the ship routing problem: methods based on

physical models, methods based on learning models, and

hybrid methods. Physical models are useful for simulation

purposes and one can indicate curvlinear, lateral, and ship

models. Learning-based models consist of neural networks,

the Gaussian process, the Kalman filtering method, and the

Minor Principal Component among others. Hybrid meth-

ods are a blend of any two of these.

Among hybrid methods a number of approaches can be

enumerated. The isochrone method was proposed by James

(1957). Originally, it was not suitable for computers, but

the method was extended by Hagiwara and Spaans (1987),

as well as by Fang and Lin (2015). The calculus of varia-

tions, approaching the issue as a continuous minimum

optimization problem, was used by Haltiner et al. (1962). It

was later extended by Bijlsma (2001). Wang et al. (2018)

point out that this method is not very useful for practical

applications. One can also use dynamic programming,

which treats the issue as a discrete multi-stage decision

problem (Bellman 1952). It was later used by a number of

scholars for this problem (De Wit 1990; Calvert et al.

1991; Shao et al. 2012). Wang et al. (2018) argue that this

method has a high complexity combined with high accu-

racy. The Dijkstra algorithm finds the shortest path in a

directed graph and it was applied in a number of weather

routing research papers (Mannarini et al. 2016; Montes

2005; Panigrahi et al. 2012; Sen and Padhy 2010). How-

ever, Sen and Padhy (2010) claim that this approach does

not yield a smooth path.

Introduced by Ester et al. (1996), DBSCAN (Density-

Based Spatial Clustering of Applications with Noise) is a

popular method for spatial clustering. In DBSCAN, con-

trary to many unsupervised learning algorithms, the num-

ber of desired clusters is not its hyper-parameter (i.e., the

number of clusters does not have to be known upfront).

DBSCAN also detects and deals with outliers in an auto-

matic way, which is desirable for (usually) noisy data such

as AIS. Ester and Wittmann (1998) later extended this

approach and prepared an incremental learning version of

the DBSCAN algorithm. DBSCAN has been used in many

contexts and variations with AIS data, such as for detecting

fishing spots Mazzarella et al. (2014), or finding abnormal

trajectories in a parallel manner Chen et al. (2017). In

another example, Pallotta et al. (2013) presented Traffic

Route Extraction and Anomaly Detection (TREAD), which

is a methodology for an incremental and unsupervised

machine learning approach for building the maritime traffic

network through waypoints discovery, low-likelihood

anomaly detection, and route prediction. The waypoints

discovery component relies on the incremental version of

DBSCAN. TREAD was later used and extended by

Arguedas et al. (2017) as Maritime Traffic Knowledge

Discovery and Representation System, which aims at traffic

network creation. The construction of the network – pre-

ceded by waypoints detection, route detection, and route

decomposition – relies on the Douglas–Pecker algorithm

for breakpoints detection (these will serve as nodes) along

with a custom algorithm for creating traffic lanes (edges).

Wang et al. (2018) proposed to use a genetic algorithm

in the weather routing research. Indeed, swarm and evo-

lutionary algorithms can solve maritime routing and plan-

ning related problems. Different swarm intelligence

methods have been used in various scenarios. For example,

Kosmas and Vlachos (2012) used simulated annealing,

whereas Tsou and Cheng (2013) proposed ant colony

optimization for this task. A number of studies have

demonstrated the usage of evolutionary algorithms in dif-

ferent configurations, such as multi-objective evolutionary

algorithm (Marie and Courteille 2009; Szłapczynska and

Smierzchalski 2009; Vettor and Soares 2016), or real-

coded genetic algorithm (Maki et al. 2011; Wang et al.

2018). Dobrkovic et al. (2015, (2018) used genetic algo-

rithm paired with spatial partitioning to enhance the pro-

cess of clustering vessel positions and allow fast

computation of increasing amounts of data. Their research

is one of the first that focuses not only on proposing a

robust and accurate algorithm but also on the speed of the

algorithm, enabling it to be used in real-life applications

where large data volumes have to be processed quickly. In

our research we are guided by similar assumptions, there-

fore the paper of Dobrkovic et al. (2018) constituted a

starting point for our study.

4 Method

In this section we present our approach to the maritime

voyage planning problem. The research objective is to

obtain a network representing the maritime traffic. More

formally, the process can be perceived as a directed graph

building, in which its vertices represent waypoints (‘‘mar-

itime crossroads’’) connected by edges (‘‘maritime roads’’).

The resulting graph should reflect the real maritime routes,

such as local traffic separation schemes. This goal is con-

trary to some approaches that focus solely on visualization

– albeit they can reflect and represent the real traffic

accurately, they cannot be used in route planning. A graph-

based representation does not have this limitation and can
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be queried with standard search algorithms – such as

Dijsktra’s or A* – for maritime route planning purposes.

Our approach consists of three main steps. The first one can

be considered as a pre-processing step – the CUSUM

method substantially reduces the volume of AIS data to

process (Sect. 4.1). Then, the genetic algorithm with spa-

tial partitioning is responsible for the identification of

nodes in the graph, which represent sea waypoints

(Sect. 4.2). The final step is edge detection for the graph

(Sect. 4.3). All designed algorithms were implemented in a

distributed and parallel processing manner (see notes on

the implementation in Sect. 5).

4.1 CUSUM

The CUSUM (cumulative sum) algorithm is a well-known

technique, typically used for quality control in production

processes Page (1954). The method enables to detect

abrupt changes in given observations Faithfull (2017). In

our work, CUSUM is used for change detection. It aims at

processing the collected AIS data in order to find prelim-

inary waypoints for further analysis. CUSUM analyzes

trajectories of ships (sequence of AIS messages sent by a

ship in a given voyage) and detects messages that describe

a significant change in speed or course. These messages are

the preliminary waypoints, from which the final waypoints

will be selected (see Sect. 4.2).

Following Basseville and Nikiforov (1993), by the

abrupt change we understand a point on the timeline at

which properties of a current observation change. Before

and after this moment, the properties are constant in some

sense. Based on this definition, it is possible to map AIS

messages to a data stream. The main objective is to detect

significant maneuvers (e.g., sudden change of a course) by

sequential analysis of its trajectory. CUSUM has a few

implementations, such as one-sided algorithm for obser-

vations with the expected direction of the changes Lamm

and Hahn (2017), as well as two-sided, which handles

increases and decreases of the observed variable. As the

maneuvers in the AIS data can be identified primarily by

the increase or decrease of the course (or speed), the two-

sided algorithm has been taken into consideration. We can

assume that AIS messages represent a certain stream of

data (Faithfull 2017):

y ¼ y1 y2 . . . yn½ �: ð1Þ

We first define decision function gk Basseville and Niki-

forov (1993) in the positive form and negative form:

gþk ¼ gþk�1 þ yk � l0 �
t
2

� �þ
;

g�k ¼ g�k�1 � yk þ l0 �
t
2

� �þ
:

ð2Þ

Basseville and Nikiforov (1993) proposed the following

equation for determining of an alarm time:

ta ¼ min k : gþk � h
� �

[ g�k � h
� �� �

; ð3Þ

where ta is a point where the decision function gþk or g�k
reached the previously defined threshold h.

Three parameters should be provided as an input: l0, t
and threshold h. The first one (l0) is calculated dynami-

cally and stabilizes the decision function with a moving

average value from the last z observations. Lamm and

Hahn (2017) provided the result with a range of AIS

messages between 3 and 6 observations (value of z). The

second parameter, t, requires the knowledge of the whole

trajectory. Lamm and Hahn (2017) suggested using an

upper quantile of all jDyj, because this measure indicates

the structure of a given voyage. The threshold h controls

the sensitivity of the algorithm. Depending on the context,

we set this parameter between 1 (higher sensitivity) and 4

(lower sensitivity, with the risk of skipping significant

maneuvers). The more sensitive the algorithm is, the more

change points will be detected.

The above steps and conditions are formalized in

Algorithm 1. If the decision function reaches the threshold,

the current observation is saved as a waypoint candidate. In

order to achieve an optimal efficiency and parallel AIS data

processing, we used Apache Spark for the implementation.

Our experiments indicated that CUSUM ‘‘filters out’’

around 80–95% AIS messages, depending on algorithms’

hyper-parameters and a given set of trajectories. Examples

of manoeuvring points detected by CUSUM based on

course changes are presented in Fig. 1.
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4.2 Parallel Genetic Algorithm

The method presented in this section takes as an input

results provided by the CUSUM algorithm and consists of

two main steps. First, AIS points are partitioned using the

spatial partitioning algorithm. Second, the genetic algo-

rithm processes the waypoint candidates, separately for

each partition, and detects the final waypoints in a dis-

tributed manner. We use geospatial partitioning – each

partition is treated separately by the algorithm. Partitions

are processed in parallel and the merged sub-results are the

final ones. The presented variation of the genetic algorithm

is strongly influenced by the one used by Dobrkovic et al.

(2015, 2018), though some major differences exist, such as

different partitioning, parallelization, and the method of

drawing random genes.

4.2.1 Spatial Partitioning

One of the main challenges in AIS data processing is their

uneven spatial distribution, caused both by traffic density

and data collection (terrestrial vs. satellite). To mitigate

this problem, Dobrkovic et al. (2018) proposed to use

QuadTrees. This issue is especially important when one is

attempting to use a genetic algorithm for building network,

since the densely populated areas would represent the

fittest genes and less dense areas would not be inspected at

all. Following their suggestion, we have tested two tree-

based data structures for spatial partitioning of AIS data: k-

d B-trees and QuadTrees. The k-d B-trees method is a

specific juxtaposition of k-d trees and B-trees Robinson

(1981). Similarly to k-d trees, a binary tree with nodes

storing k-dimensional points is built – the longest axis is

recursively divided using a hyperplane on a median point.

However, the partitions are stored in leaf nodes, which is a

feature borrowed from B-trees. In QuadTrees each node

has exactly four children Samet (1984). This method

recursively subdivides the most dense areas to four smaller

ones. To test the two approaches for spatial partitioning, we

used an implementation available in GeoSpark Yu et al.

(2019). Sample results in the area of the German Bight are

presented in Fig. 2a and b. Spatial partitioning is used by

the genetic algorithm, in which each partition is treated

separately. Since the population and other parameters of

the genetic algorithm are set per single partition, a denser

partitioning results in more waypoints in the end.

4.2.2 Genetic Algorithm

Genetic algorithms are the biologically-inspired family of

algorithms, in which the process of evolution is simulated

Sivanandam and Deepa (2008). These algorithms consti-

tute an important branch of the field of artificial intelli-

gence, namely the evolutionary computing. The solution to

the problem is represented as a population. The overall

population consists of entities called chromosomes. Each

chromosome is built from genes. As in a real population,

having ‘‘good’’ genes results in a higher chance of having

offspring. The extent of being ‘‘good’’ is measured by a

fitness function. Two chromosomes with good genes pro-

duce a new one by combining their genes in a crossover

process. This results in a better population, where chro-

mosomes with low fitness scores are replaced by new ones.

Moreover, random changes are introduced to some of the

genes – this process is called mutation and is used to

maintain population diversity. The full cycle in which a

new generation is created is called an epoch. There is an

assumption that after a sufficient number of epochs, the

resulting population will be much improved (in terms of

fitness) compared to the initial one The process is stopped

after a predefined number of epochs or when a convergence

criterion is met.

We use the genetic algorithm to discover waypoints

from AIS data. In our case, each gene will represent a

waypoint candidate. The genetic algorithm is run on each

partition separately, and the results are concatenated at the

end, thus the process is parallelized. Making the use of

Apache Spark, it is also distributed. The overall idea is

summarized in Algorithm 2. After the partitioning step, the

Fig. 1 Visualization of maneuvers detected by CUSUM
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algorithm is run for each partition by passing the function

DiscoverWaypointsðÞ. When the initial population is gen-

erated, the process of generating new offspring is repeated

n� 1 times, where n is the number of epochs.

Following Dobrkovic et al. (2018), a good waypoint

candidate is a point that has many AIS points in its prox-

imity. We formalize it with a simple circle-like equation.

Firstly, we need to define a gene – in our case, it’s a triple

(x, y, r), where x represents longitude, y latitude, and r ra-

dius (constant for all genes). A single chromosome con-

tains a fixed number of genes (referred to as a chromosome

length). A set of chromosomes constitutes a population.

Contrary to the method of Dobrkovic et al. (2018), we

initialize our population drawing random AIS points from

the actual population.

4.2.3 Fitness Function

We calculate the fitness value of a chromosome f using the

following formula:

f ¼ 1

N

XN
i¼1

#fðx; yÞ 2 P : havðx; y; xci ; yciÞ� rg; ð4Þ

where N is the number of points (x, y) in a given partition

P. Every single gene in the chromosome carries a waypoint

candidate ðxci ; yciÞ, which actually denotes the center of the

circle with a radius r (in degrees). The # operator marks

cardinality of a set. For calculating the great circle distance

between (x, y) and ðxci ; yciÞ, we use the standard haversine

formula:

Fig. 2 Spatial partitioning methods in the area of the German Bight. Blue dots mark AIS points after filtering with the CUSUM algorithm and

red rectangles denotes separate partitions (color figure online)
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havðk1;/1; k2;/2Þ

¼ 2R arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2 u2 � u1

2

� �
þ cosðu1Þ cosðu2Þ sin2 k2 � k1

2

	 
s !
;

ð5Þ

where ki and /i represent longitude and latitude (both in

radians) of two points between which the distance is to be

measured. For the radius of Earth R we use the standard

value of 6372.8 km. If a chromosome is eligible for penalty

(see the following paragraphs), its fitness is set to zero.

4.2.4 One-Point Crossover with a Roulette Wheel

Selection and Mutation

The crossover is an operation in which a new chromosome

is generated from two existing ones. Our implementation

generates the new population by means of roulette wheel

selection and one point crossover. Conceptually, two par-

ents for a new chromosome are selected using the roulette

wheel. The new parents are not drawn from the whole

population in a uniform way – the chance of being drawn is

proportional to their fitness. Therefore, the process

resembles a roulette with uneven sections. Having selected

two parents, we use the one-point crossover to generate a

new chromosome. This procedure draws a random point at

which the parents are combined. The same random number

for the one-point crossover is also used for the mutation.

The mutation also occurs if the resulting chromosome has

its fit equal to zero.

4.2.5 Penalties for Chromosomes

To prevent the situation in which all waypoints are picked

in a very dense area (leaving aside the less populated ones),

we introduced a mechanism for penalizing such configu-

rations. A chromosome can be perceived in terms of two

values: fitness and diversity. The first term was already

introduced. The second reflects how many different genes a

given chromosome consists of. The diversity is the pro-

portion of a number of unique genes to the number of all

genes. This, however, would only enable to detect exactly

the same waypoint candidates. Since overlapping way-

points (i.e., genes close to each other) have to be penalized

as well, we check if waypoints are unique by checking if

two circles are disjoint:

havðx1; x2; y1; y2Þ� 2r: ð6Þ

If the condition is not met, the chromosome receives 0

for its fitness score. Finally, a check whether a chromo-

some is eligible for a penalty is carried out. The chromo-

some is eligible for penalty either if the minimal diversity

score is not reached, or if there exists at least one pair of

overlapping genes.

4.3 Edges

The genetic algorithm described in the previous section

generates a set of waypoints. Waypoints are equivalent to

nodes of a graph. We need a method to discover the edges,

i.e., which waypoints should in fact be connected. Based on

historical AIS data, we look at every single trajectory of all

vessels that passed an area of interest and track which

waypoints they ‘‘visited’’. It is therefore necessary to assign

the nearest waypoint for each AIS point. Having all AIS

points annotated with the nearest waypoints, it may seem

straightforward to reconstruct the connections between

waypoints.

We refer to the process of adding information about the

nearest waypoint to each AIS row as AIS enrichment. We

add both the identifier of a waypoint and the distance to it.

Algorithm 3 formalizes the approach. The core function is

NEIGHBOURKNN. Taking into account the number of rows in

AIS data, the process of assigning waypoints to AIS data

proved to be very time consuming. We introduced several

optimization techniques to make the task feasible, includ-

ing vectorized versions of distance calculation functions.

Comparing the refined version to the initial approach based

on row-by-row iteration, we achieved a 200.0009 increase

in rows/second throughput.
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Having assigned the waypoints, the next step is the

reconstruction of edges between these waypoints. The

generation of edges proved to be a less challenging task

from the performance point of view. The only optimization

step that had to be applied was a materialization of the

enriched AIS dataset. For some reason even caching in

Apache Spark was not helpful – grouping of edges

spawned re-calculation of the closest waypoints. Never-

theless, there were other challenges concerning the output

graph. A visual introspection of maps with generated

graphs proved that the method discovered ‘‘impossible’’

connections between some waypoints which further on had

to be eliminated. It was caused partly by the low AIS data

quality. A general approach to the reconstruction of edges

is presented in Algorithm 4. It lists the filtering functions

that are applied either to obtain graphs for different con-

ditions or just to improve the quality:

• FILTERAIS – the function selects a subset of data for a

given vessel type (e.g., tankers) or weather conditions

(e.g., heavy wind). It is also used to build a graph on a

subset of points, i.e., only important maneuvering

points as identified by CUSUM (see Sect. 4.1).

• FILTERTRAJECTORY – the function is applied to trajecto-

ries of a ship. It is responsible for the selection of points

out of which edges will be constructed. For example, it

can only leave out AIS points that are transition points

from one waypoint segment to the other (border-

points). In another variant, it is used to consider as input

only those edges that connect points visited within a

specific time period (time-bound).

• FILTEREDGES – the function is applied to edges. For

example, we can filter out edges that are too long (e.g.,

distance[ 250 km) or are very rare (e.g., followed by

only a single vessel). The method is mostly applied to

visualizations.

When a vessel is moving along its trajectory, it passes

many waypoints. We know which points are passed by, as

our AIS data is already annotated with the closest way-

points (AIS enrichment). Sometimes there are several

consecutive AIS messages belonging to the same waypoint,

especially if the distances between waypoints are long. We

need to identify only these places where the ‘‘borders’’

between areas belonging to different waypoints are cros-

sed, i.e., a given AIS message has a different waypoint

from the previous message. In the implementation, we

achieve this by applying the so-called window functions

for obtaining previous values of the analyzed column. We

then mark respective rows as ‘changed’ and classify them

as edge seeds. They contain only the points where a current

waypoint (to_waypoint) is different from the previous

waypoint (from_waypoint). This procedure signifi-

cantly reduced the number of rows, thus improving effi-

ciency of edge generation. We can then construct a dataset

with edges using a grouping by from and to, as illustrated

in Algorithm 4. In this manner we preserve information

about the directions of edges. We also calculate group

statistics, like a number of vessels traversing specific edges

or time-related statistics for further filtering.

5 A Use Case with Evaluation

The quality of results provided by methods described in the

previous section depends highly on numerous hyper-pa-

rameters. It is not feasible to optimize all of them at once

and there is also not a single optimization criterion.

Therefore, we initially followed the greedy optimization

approach – we split the evaluation into components and

optimized them separately. The optimal solution for the

whole system is derived from optimal solutions for the

components. For evaluation purposes we used two real AIS

datasets of different quality: one covering the area of the

German Bight (53� �/� 57�, 2:5� � k� 9:5�) and the

second one for the Baltic Sea (53:1� �/� 60:94�,
13� � k� 30:73�). We considered only messages from

passenger, tanker, and cargo vessels with a navigational

status 0 or 8. The German Bight data are not perfect and

reflect typical problems with AIS data, such as incorrect

positions reported and missing coverage in some areas. It
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was used for the qualitative testing of the genetic algo-

rithm. The Baltic Sea dataset does not have such problems

– it was used to test the solution as a whole. We used a

48-core AMD EPYC server with 768 GB RAM and 36 TB

HDD, though the presented algorithms can be run on much

smaller machines. All of the cores remained busy during

the most of time, which suggests a good parallelization of

the algorithm. Maximum usage of hardware capabilities

was one of our priorities. Since we used Apache Spark for

all the calculations, the solution might be also considered

as distributed and scalable.

5.1 CUSUM

There is no standard methodology for evaluating this type

of algorithms. Theoretical advice can be found in some

publications Gustafsson (2000). The performance of the

change detection algorithm was evaluated in several steps.

The main purpose was to find optimal parameters, such as

the threshold h and the number of historical data nsma that

should be taken into account in the moving average. Dur-

ing this process, only individual voyages, limited by fixed

coordinates were considered. The key was to find different

tracks in terms of change of course and speed. Having

found a set of vessels and their tracks, we manually

assigned ‘‘expert’’ points on the map that should be alerted

by the algorithm. A single expert point was a circle with

a radius of 500 m. The main idea was to perform a clas-

sification of waypoints returned by the CUSUM and to

calculate some measures based on it.

In the next step, we provided a range of evaluated hyper-

parameters. For the threshold h, we chose between 1 and 6,

whereas for the number of historical AIS messages nsma we

tested values between 2 and 10. The algorithm was exe-

cuted for each combination of hyper-parameters’ set. In a

single iteration, the k-means algorithm for the list of

waypoints returned by CUSUM was calculated, with a

number of clusters equal to a number of expert points. The

following measures were calculated in subsequent

iterations:

1. Distance from the clusters centroids to the nearest

expert point. For each expert point, the mean distance

was calculated.

2. Confusion matrix that matches waypoints to the

nearest expert point. If a waypoint is within the radius

of an expert point, it is assigned to it.

3. A number of unassigned expert points. This means that

there were no waypoints detected within the radius of

500 m of this expert point.

The percentage of unassigned expert points and the unas-

signed waypoints (outliers) turned out to be the most

important measures, because they indicated whether

CUSUM met the requirements set by the expert. The mean

distance from centroids provided information about a dis-

tribution of the waypoints and punished outliers as well.

Each point has been classified to one of the four groups:

true negative, false positive, true positive, and false nega-

tive. Based on the matrix, the respective measures were

calculated, including accuracy, recall, specificity, and

precision. We aggregated all single, manually collected

tracks with the respective results and chose the highest-

rated parameters among all samples. It turned out that the

optimal combination is the threshold of 1.25 and the

number of historical observations of 8. For three runs on

the 8-week data from the Baltic Sea area (separately for

each vessel type – tanker, cargo, and passenger), the total

wall time was 15 min and 42 s, which gives roughly 5 min

on average for a single type.

5.2 Genetic Algorithm

This section contains the results of evaluation of the

genetic algorithm – the first part concerns the partitioning,

and the second one the hyper-parameters of the genetic

algorithm. The goal of the first was to select the method

capable of finding a balanced distribution of the CUSUM-

generated AIS points among partitions. Hyper-parameters

that control behavior of the genetic algorithm can be tuned

more easily when AIS points in partitions are evenly dis-

tributed. We performed a series of experiments, in which

the two partitioning methods were compared (each for 64,

128, and 256 partitions). The results for the 4-week dataset

of the German Bight are presented in Table 1. Based on the

obtained results, we have chosen k-d B-trees, since the

standard deviation of the amount of points in each partition

tends to be smaller with numerous settings than in the other

method. It is worth to mention that QuadTree has a visible

tendency to produce scarcely populated partitions. Another

test on the Baltic Sea data led to the same conclusion (not

presented in this paper).

The evaluation of the genetic algorithm itself is less

obvious, as there is no ground-truth data to compare the

results with. Therefore, we rely on a qualitative evaluation

of the results. There is a number of hyper-parameters to

control: chromosome length, radius, minimal diversity,

population size, epochs, mutation factor, number of parti-

tions, and weeks. All the tests were conducted using the

CUSUM-filtered data from the German Bight. At first, we

tested the algorithm for different numbers of partitions and

for 100 chromosomes in the population (1-week data). The

initial observation was that the most noticeable changes

can be observed in the densest sea corridors, letting it

appear more continuous (resulting rather in a smooth route,

as opposed to long gaps between waypoints), whereas areas

scarce in waypoints did not change much. Somewhat
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similar results are produced for smaller population size (40

chromosomes). In comparison, increasing the number of

partitions to 512 generated too many waypoints.

Next, we tested different values of epochs and radius.

The empirical tests showed that the algorithm quickly

converges to the solution – perhaps due to the fact that the

population is drawn from the existing AIS points, contrary

to the findings presented by Dobrkovic et al. (2018). The

conducted experiments show that 200–300 epochs is suf-

ficient, since further increasing of the number of epochs

does not lead to a significant improvement of results.

Setting the correct radius is tricky, since excesively high

values are handled poorly in the dense areas (the diversity

condition cannot be met). We also experimented with a

mutation factor. That value must be relatively high due to

the fact that the algorithm can ‘‘get stuck’’ in small and

dense partitions, so random noise is needed. To partially

mitigate the problem with the lack of AIS data coverage in

some areas, we extended the analyzed dataset from 1-week

AIS data to 4 weeks. The obtained results improved, as the

new and desired waypoints emerged in previously empty

spaces, merging dense corridors. However, along with a

further extension of the dataset to 8 weeks, the results

seemed to be similar. Figure 3a and b present some of the

test scenarios.

The efficiency tests were conducted on 8-week data

from the Baltic Sea for three filtered AIS datasets (pas-

senger, cargo, and tankers). We ran the algorithm several

times with different numbers of k-d B tree partitions (64,

128, 256), chromosome length and population (5, 10, 20 –

the same number was used for both parameters) – each run

took 300 epochs, with the radius set to 3.0 km, the

Table 1 Evaluation of the

partitioning algorithms for the

German Bight

p ¼ 64 p ¼ 128 p ¼ 256

k-d B-Tree QuadTree k-d B-Tree QuadTree k-d B-Tree QuadTree

Count 99 232 188 583 370 1426

Mean 2164.35 923.58 1139.74 367.53 579.11 150.26

SD 674.99 1023.61 441.94 499.20 256.38 219.36

Min 1054 0 309 0 67 0

25% 1537 26 818 1 378 0

50% 2084 501 1062 112 550 31

75% 2620 1604 1436 569 731 249

Max 4338 4794 2969 2590 1484 1291

Fig. 3 Different test settings for 8-week data for the German Bight
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minimum diversity to 25% and the mutation factor to 10%.

This results in 27 combinations. The wall time for all of

them was 2 min 51 s.

To sum up the results of different test settings for the

genetic algorithm, it was observed that more partitions with

smaller chromosomes seem to be better than fewer parti-

tions and longer chromosomes if one wants to avoid

stacking numerous waypoints in small areas. In general, the

choice of hyper-parameters is area-specific and general

values working in all areas cannot be determined. When

CUSUM is used as input to the genetic algorithm, our

recommendation is to use at least 4-week datasets. More-

over, the algorithm is very prone to missing data (in terms

of the AIS data coverage) – it just does not generate

waypoints in such areas. Therefore, pre-processing with

trajectory reconstruction algorithms can be considered.

Nevertheless, the algorithm deals quite well with single

wrong AIS points (spoofed or misread).

5.3 Edges

There is no strict methodology to evaluate CUSUM and

genetic algorithms directly. They were used for the purpose

– generation of edges, therefore we evaluated the final

output through the edges. Of course, the resulting network

depends on the waypoints provided, i.e. the quality of the

results of the previous steps: CUSUM and the genetic

algorithm. Their impact can be partly alleviated by our

approach in cases where not the whole network is evalu-

ated but the routes that can be planned (the shortest or the

fastest).

The efficiency tests were conducted on the same 8-week

data from the Baltic Sea. The algorithm run was repeated

for each of the 27 combinations of parameters resulting in

separate sets of waypoints. According to the description in

Sect. 4.3 we measured the time of the separate processing

steps. First, 27 enriched AIS datasets were provided, which

took 7 min 32 s. of wall time total, 16.7 s for a single

dataset. Second, for each AIS dataset 16 variants of net-

works were provided (considering the various draught,

length and width of vessels), yielding 432 networks in

total. The calculation time was 23 h 26 min wall time total,

3 min 15 s on average for a single network. Third, for

better understanding we also prepared visualizations and a

graph analysis (also centrality), which took further 3 h

15 min in total, 28 s on average for a single network (all on

48 cores).

For clarity we show some of the generated meshes.

Figure 4 depicts edges colored according to the maximum

width of the ship. The darker the edge, the bigger is the

maximum width of vessels sailing this route. We can easily

see that very large ships go to Gdańsk, and large ships to

other ports like Riga and Sankt Petersburg. Figure 5 uses

colors to visualise directions both of edges and nodes. Red

edges are directed towards north, blue – south, violet – both

directions. Waypoint colors indicate the average direction

of vessels sailing through them, calculated from course

over ground (similar results are for the ships’ heading). The

more saturated the color is, the more consistent the direc-

tion. Traffic separation schemes can easily be identified.

5.4 Evaluation

Our methodology for evaluation is based on a golden

standard – the output of our method is used to construct a

recommended route which is then compared with real

recommendations. We compared our vessel routes with

routes generated using a contemporary software for navi-

gation – searoutes.com. For the test purposes, we

obtained four routes within the area of the Baltic Sea:

PLGDN-RULED, RUKGD-LVRIX, SEKAA-FITKU, and

SESTO-LVRIX. For all below presented results, an 8-week

AIS dataset was used (2019, weeks 40–48). The AIS data

was filtered, so that only AIS from the aforementioned part

of the Baltic Sea for tankers, cargo, and passenger ships

were included separately.

The trajectories provided by our graph and the ground-

truth trajectories had different numbers of waypoints,

therefore comparing them was not trivial. Out of few

existing solutions we used Symmetrized Segment-Path

Distance - SSPD Besse et al. (2015). Let Ti be i-th tra-

jectory (i.e. route) of length ni, in which pik is the k-th

location of Ti, and sik is a line segment between pik and

pikþ1. The Segment-Path Distance DSPD from T1 to T2 is the

average of all distances Dpt calculated from points of T1 to

the trajectory T2. Segment-Path distance is the smallest

Point-to-Segment distance Dps from a given point of T1 to

a segment in T2. More formally:

DSSPDðT1; T2Þ ¼ DSPDðT1; T2Þ þ DSPDðT2; T1Þ
2

; ð7Þ

DSPDðT1; T2Þ ¼ 1

n1

Xn1

i1¼1

Dptðp1
i1
; T2Þ; ð8Þ

Dptðp1
i1
;T2Þ ¼ min

i22½0;...;n2�1�
Dpsðp1

i1
; s2

i2
Þ; ð9Þ

Dps ¼
hav p1

i1
; p1proj

i1

� �
if p1proj

i1
2 s2

i2
;

min hav p1
i1
; p2

i2

� �
; hav p1

i1
; p2

i2þ1

� �n o
otherwise;

8><
>:

ð10Þ

where p1proj
i1

is the orthogonal projection of p1
i1

in s2
i2

.

From Table 2 we can conclude that more complex

graphs (i.e. built with more partitions, genes, and chro-

mosomes) result in smaller SSPD. This may be explained
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by the fact that the genetic algorithm needs a sufficient

number of genes to maintain population diversity and

succeed. Therefore, the problem of parameter optimization

seems to be rather about finding a good trade-off between

graph simplicity and accuracy, instead of minimizing a

single criterion. In our test setting, graphs generated for

Fig. 4 Graph for the Baltic Sea generated on AIS data for an 8-week period (cargo vessels, 128 partitions, 100 genes per partition)

Fig. 5 Directed graph for the Baltic Sea generated on AIS data for an 8-week period (tankers, 256 partitions, 400 genes per partition)
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cargo and tanker vessels resembled the Searoutes network

more closely than those for passenger vessels. Perhaps the

data from passenger vessels might be biased with regard to

the algorithm due to the fact that some vessels of this kind

often operate on short routes with a certain repetitive pat-

tern, which results in a vast number of AIS messages in a

relatively small area. There are also some inconsistencies

in the results (e.g., the best result of RUKGD-LVRIX),

which might be attributed to the stochastic nature of the

genetic algorithms (see Fig. 6 for summary).

6 Summary

In this paper we introduced a method for the automatic

reconstruction of a network reflecting the maritime traffic

using AIS data. Such a network can be later used in vessel

routing and voyage planning. In the presented method,

several approaches were refined, such as the CUSUM

method and the genetic algorithm, inspired by the work of

Lamm and Hahn (2017) and Dobrkovic et al. (2018). Not

only novel concepts were introduced, but they were also

implemented and tested with a parallel and distributed

computational environment on Apache Spark. Our imple-

mentation is scalable and can work with real-world AIS

data streams. We also provided a real-world use-case for

the Baltic Sea and compared our routes with the ones from

searoutes.com.

Several findings of this study initiate further discussion.

Since the method is prone to incorrect or missing AIS

messages, there is a room for improvement in these

aspects. For the areas that are relatively scarcely filled with

AIS data, currently the method does not yield a good

quality graph. A potential alleviation for this issue is to use

AIS trajectory reconstruction methods for filling the

‘‘gaps’’. This problem can be tackled by a number of

methods. Linear interpolation is one example – it was used,

e.g., by Mao et al. (2018). Lz et al. (2015) presented a

more sophisticated data interpolation method, which uses

line, arc, and curve trajectories and is dedicated to inland

AIS data. In other example, Nguyen et al. (2015) used

piecewise cubic Hermite interpolation.

Table 2 Comparison of the

routes obtained with the

proposed traffic network

generation method with the

routes from searoutes.com

The values are presented by the

SSPD metric (smaller is better).

Abbreviations and parameters:

C – cargo, P – passenger, T –

tanker, part. – number of

partitions for k-d B-trees, pop. –

population and chromosome

size in the genetic algorithm (S

– 5 chromosomes � 5 genes, M

– 10 � 10, L – 20 � 20). Each

graph was built within 300

epochs, using r=3.0 km and

10% mutation factor

Type Part. Pop. PLGDN-RULED RUKGD-LVRIX SEKAA-FITKU SESTO-LVRIX

DSSPD Rank DSSPD Rank DSSPD Rank DSSPD Rank

C 64 S 18895.00 15 6387.26 3 32872.80 18 18964.98 25

M 13568.92 11 8271.93 7 8107.48 5 19212.01 26

L 12808.89 9 6929.86 4 6141.34 3 11443.68 16

128 S 12245.38 7 11190.66 13 28842.61 15 12639.47 18

M 8850.81 4 12109.40 17 7760.20 4 13343.73 20

L 7712.39 3 12990.64 19 36441.50 22 6198.29 5

256 S 18490.32 13 6352.03 2 32850.07 17 18103.47 23

M 4528.00 1 8656.73 8 8353.06 6 7912.32 9

L 5294.03 2 7384.74 5 5338.34 2 8267.09 11

P 64 S 38306.43 25 26365.01 27 54014.27 25 21148.30 27

M 39041.14 26 20308.47 26 12592.17 9 11601.09 17

L 21366.97 16 12905.82 18 33539.62 19 7771.14 8

128 S 63183.83 27 14594.44 22 21880.23 10 6102.02 4

M 28687.85 22 8235.09 6 45266.73 24 8276.40 12

L 33451.82 24 11369.14 14 26842.43 13 5490.14 3

256 S 31405.24 23 14011.30 21 12041.09 8 8158.11 10

M 28609.40 21 13404.37 20 26458.20 12 8864.62 13

L 26538.14 20 11102.31 12 35260.95 21 13221.02 19

T 64 S 18614.22 14 16693.67 23 40085.20 23 15529.71 21

M 11741.68 6 17286.38 24 34459.10 20 7312.04 7

L 12515.64 8 12020.13 16 28589.48 14 6547.74 6

128 S 26435.09 19 5707.78 1 77791.12 26 18962.90 24

M 9864.21 5 10091.33 9 31022.88 16 9988.21 14

L 23980.78 17 11723.70 15 84676.07 27 16783.00 22

256 S 13861.74 12 18598.61 25 9612.71 7 11001.06 15

M 24284.61 18 10717.86 10 24669.91 11 5419.50 2

L 13028.73 10 11022.79 11 4810.51 1 3346.45 1
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In this article, we focused solely on the graph creation

that is used later for finding an optimal route. This means

that it does not consider fuel efficiency or weather condi-

tions. We have already conducted further research that

takes into account weather conditions. However, due to the

limited volume of this paper, its result will be published as

a separate work. Lastly, since the topological representa-

tion of a graph tends to result in a zig-zag route, a method

for generating more smooth paths could be considered.
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