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Abstract: Customers’ reviews in e-commerce sites play a significant role in influencing potential customers’ purchasing 

decisions which ultimately affects products sales. Chinese e-commerce sites like Tmall, Taobao and JD.com contain a collection 

of aspect tags that group reviews with similar comments tags to help customers browse reviews and evaluate products more 

conveniently. To validate whether these tags are useful and actually playing a role in promoting future sales, we collected data 

including product information and review tags on a regular basis for consecutive 8 weeks from Bestore, a snack seller on Tmall. 

We classified the collected review tags into 9 types based on their semantic meanings. Finally, we analyzed and performed 

generalized estimating equations (GEE) modeling on the data set consisting of 234 products with a total of 734 tags. The results 

show that most of the aspect tags are related to immediate period sales volume and certain tags are more capable of nowcasting 

next immediate sales.  

 

Keywords: E-commerce, online review, tag, sales 

1. INTRODUCTION  

It is increasingly common for people to share their views of various content over the Internet, and equally 

easy to find others’ views (Bertola & Patti, 2016). When it comes to online shopping, this trend has exerted 

influence on how people actually decide whether to make a purchase. Most consumers tend to read reviews of a 

target product to help them make an informed decision (Zhang et al., 2016). A study by Mudambi and Schuff 

(2010) showed that consumers who search for information online about products and compare them with 

alternatives would normally have to weigh it against numerous reviews posted by other consumers. W. J. Duan, 

B. Gu, and A. B. Whinston (2008) summarized this trend as consumers helping each other in searching the 

space of possible solutions to their need. 

Online reviews affect sales of products to a certain degree, which has been suggested in many studies (W. 

Duan, B. Gu, & A. B. Whinston, 2008; W. J. Duan et al., 2008; Forman, Ghose, & Wiesenfeld, 2008). Based on 

the mechanism found in which online reviews have an impact on sales, it is possible for companies to design 

and implement ways to influence sorting and effective visualization in e-commerce sites. Effective designs can 

motivate potential customers to a large degree as they can manipulate online reviews to match their 

requirements. For example, websites like Amazon, YouTube and Yelp sort their reviews according to various 

review factors to help enhance objects’ exposure to users (Ren & Nickerson, 2014). Previous research has 

identified relevant factors such as sentiment, helpfulness, newness, the number of likes and source credibility to 

be useful design considerations. 

 Floyd, Freling, Alhoqail, Cho, and Freling (2014) demonstrated in their study the relationship between 

sales volume and different properties of reviews. They found that the effects of negative reviews on products are 

more salient than positive ones and usually cause unfavorable impacts on product attitudes. Therefore, it is 

necessary for retailers to detect and address service and product failure promptly, otherwise dissatisfied 
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customers may post negative online reviews that may deter many potential customers. 

 Zhu and Zhang (2010) studied review data from the video game industry and found that online reviews 

were more influential for less popular games. In other words, for a commodity that has few customer reviews 

(i.e. not popular), the reviews play a more important role. Negative reviews may become extremely salient in 

this situation. Hence sellers should also take corresponding measures to solve this kind of problem. 

According to Zha, Yu, Tang, Wang, and Chua (2014), there is a common problem with the display of most 

reviews. Current reviews are mostly not well organized, causing difficulties in information navigation and 

knowledge acquisition. Therefore, there is a need to design a mechanism that can help to present reviews and 

display them in a friendly way for customers to browse. The tag mechanism in Tmall is a representative design 

to allow more user friendly information acquisition in practice. As is shown in Figure 1, tag names are displayed 

in the form of buttons above the list of reviews. These tags organize a collection of phrases from all the reviews 

that contain identical or similar meaning by grouping them with a tag name and the number of appearances, 

which can help potential customers browse relevant reviews more conveniently and efficiently. The number that 

follows the name of the tag is the quantity of reviews that are aggregated by the tag, i.e. the number of reviews 

that share similar content. Tags with positive reviews of products distinguish themselves in red font, while those 

with negative reviews appear in green font. This mechanism provides more convenience for potential consumers 

to view both relevant positive reviews and negative reviews respectively. 

 

Figure 1. Tmall's display of tags 

When a tag is clicked, reviews that belong to this tag (“tag review”) would be listed below, with the main 

content relevant to the name of the tag marked in red. As is shown in Figure 2, customers can easily choose which 

reviews to browse 

 

Figure 2. Listing of reviews that belong to a certain tag 
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.The tag mechanism described in this study is a common feature in most Chinese e-commerce platforms 

such as Taobao and JD.com, but is not a prominent feature in other international e-commerce websites such as 

Amazon and eBay (Amazon uses keyword tags). Coincidentally, knowledge about the usefulness of the review 

tag is currently lacking. Furthermore, there has been much research on products such as electronic products, 

hotels, and movies with little attention to food (Floyd et al., 2014). Snacks are a type of food commodity that has 

some unique product properties such as taste, smell, volume and variety. The impact of these tags on an industry 

with an estimated output value of 3 trillion yuan in 2020 is worthy of serious attention (Zhuoqiong, 2019). We 

chose Bestore (良品铺子), which is a prominent corporation mainly engaged in producing and selling snacks, as 

our research case as all relevant data sources can be collected from its official web page on Tmall. 

In this study, we wanted to know whether review tags would have an effect on sales, and if so, to what 

degree, and since Tmall also offers the valence of each tag (positive or not), we decided to explore the effects of 

those positive tags. In addition, we wanted to explore the aspect tags’ effects. Tags that are classified into different 

aspect types according to their names’ semantic meanings would reveal the properties of products that customers 

most care about. Further, if tags are to be related with product sales, it is natural that tags could be considered as 

potential predictors for future sales, which would contribute to more precise prediction results of existing sales 

nowcasting models. Taken together, we posit the following research questions: 

(1) To what extent are positive review tags inter-related? 

(2) How are the positive review tags associated with product sales, price and discount rate? 

(3) To what extent are different positive tags associated with product sales in the current period? 

(4) To what extent are positive review tags capable of nowcasting product sales in the immediate period? 

This study contributes to knowledge on several aspects of the tag mechanism in e-commerce. First, the 

original research adds to the limited knowledge on the tag mechanism and its impact on product sales. Second, 

the research enhances our knowledge on food products, and specifically snacks, which are a popular product in 

China but under-researched. Third, the research unveils the importance of e-commerce and product properties 

that customers care about most when purchasing snacks. Lastly, the research provides a model for nowcasting of 

product sales. 

The remainder of the paper is structured as follows. Section 2 presents relevant work on the following three 

aspects: (1) the relationship between reviews volume and sales, (2) the research on exploring what product 

properties people care about when making purchasing decisions, and (3) the introduction of a generalized 

estimating equation model that we use on our data set. Section 3 describes our data set and some preprocessing 

work in detail. Section 4 explains specific variables for the experiments and shows our experiment results. 

Section 5 discusses the experiment results. Section 6 concludes our work and discusses limitations of the study, 

along with directions for further research on this topic. 

 

2. LITERATURE REVIEW 

2.1 Research on online reviews 

In recent years, online reviews have played an increasing role in influencing consumer decision making. 

Online reviews help customers understand the pros and cons of different products to find the most suitable one 

for their needs and consumer advocacy has been shown to significantly affect product sales (Moe & Trusov, 

2011; Salehan & Dan, 2016). In the industry research report by Deloitte (2012) a big proportion of consumers 

claims that their purchasing decisions are largely influenced by online reviews. 
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According to Bickart and Schindler (2001) customers are more willing to accept product information from 

online reviews rather than the information provided by vendors. As messages coming from similar others are 

more persuasive (Berger, 2014), the information from others who have experience with products is always 

thought to be more useful and closer to what they want to know. Similarly, information coming from consumers 

who share their reviews with their families, friends or colleagues are more influential as the reviews not only 

make sense of the shopping experiences but also enhance the social relationships (Peters & Kashima, 2007).  

Studies have identified various ways that reviews influence consumer decision making. For instance, users 

are more likely to attach importance to negative messages than positive ones, and pay more attention to negative 

messages. Negative online reviews play a more significant role than positive online reviews (Park & Lee, 2009). 

Chen, Wang, and Xie (2011) also mentioned that both positive and negative online review information play a 

crucial role in increasing sales, and specifically, negative online reviews have a greater impact than positive 

online review information.  

Online reviews have been measured in multiple ways to capture their effects from various aspects. Studies 

typically focus on the following metrics of online reviews: volume, valence, composite valence–volume, and 

variance (Rosario, Sotgiu, Valck, & Bijmolt, 2016). Volume refers to “the total amount of electronic 

word-of-mouth interaction”, that to say, the total number of online reviews for a product (Y. Liu, 2006). Yang, 

Kim, Amblee, and Jeong (2011) research confirmed there is a direct relationship between the volume of a 

product’s online reviews and the product sales. Online review volume indicates information about the number of 

people who have purchased the product. In addition, it can increase customers’ awareness of and reduce their 

uncertainty about the product, thus leading to the increasing of sales (Chen et al., 2011). Amblee and Bui (2011) 

investigated the impact of online reviews by analyzing the sales of digital micro-products. They showed that 

online reviews can be a form of social signal representing various types of reputation that affect sales which 

eventually contributes to the success of e-commerce businesses. 

Valence indicates the nature of the review which can be negative, positive, mixed or neutral. It is also 

referred to as “sentiment” or “favorability” of online reviews which contains two layers of meaning: the 

objective information and the affect expressed therein (Babić Rosario, Sotgiu, De Valck, & Bijmolt, 2016). 

Sometimes the sentiment in online reviews is not straightforward and thus requires intelligent language 

processing techniques to unveil its meaning. For instance, to help customers gain more information from online 

reviews and make a decision Ullah, Amblee, Kim, and Lee (2016) applied Natural Language Processing 

technology to study and analyze the emotional content contained in online reviews of a large number of 

products.  

Variance is a less popular metric in the investigation of online reviews. A low variance of online reviews 

means customers agree that the product is either good or bad, which explains why the influence of online 

reviews on sales can be either positive or negative (Babić Rosario et al., 2016). A high variance of online 

reviews indicates a high mismatch cost and affects sales, even though information on customers’ preferences 

towards the product is still available (Sun, 2012). 

In sum, online reviews have been studied in various aspects. Regardless of the attributes that are of interest 

such as volume, valence or variance, understanding the mechanisms that govern product sales and online 

reviews is very important. Table 1 presents a summary of recent research related to online reviews. 
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Table 1. Summary of research on online reviews 

Article 
Data 

source 

Data 

collection 

method 

Data size 

Data 

analysis 

method 

Key findings 

X. Liu, 

Lee, and 

Srinivasan 
(2019) 

Major online 

retailer in the 

United 
Kingdom 

Site data 

provider 

500,000 

reviews of 
600 product 

Home and 

Garden 

Supervised 

deep learning 

Review content has a higher impact on sales when 

the average rating is higher, ratings variance is 

lower, the market is more competitive or immature, 
or brand information is not accessible. 

Chen et al. 

(2011) 
Amazon.com 

Online 

search 

120 digital 

cameras 

First-difference 

econometric 
models 

Customers' shopping statistics can help consumers 
to buy products that are really useful to themselves, 

and reveal the influence of word of mouth on 

product sales. 

Moe and 

Trusov 

(2011) 

A national 

retailer of 

bath, 

fragrance and 

beauty 

products 

Record 

weekly 
500 products 

Developed 

models 

The existing rating on the product has an impact on 

the customer's rating behavior. 

Amblee 
and Bui 

(2011) 

Amazon.com 
Online 

search 

133 Amazon 
Shorts 

e-books 

Regression 

analysis 

The reputation of a product can be presented 

through electronic word-of-mouth. 

Park and 
Lee (2009) 

Undergraduate 
students 

Online 
survey 

440 
responses 

Regression 
analysis 

The relationship among e-WOM effect, the 

e-WOM website reputation and information 
direction can be different beyond different product 

type. 

Yang, Kim, 

Amblee, & 
Jeong, 

(2011) 

Korean film 

council 
(KOFIC) 

(2006) 

A search 
engine 

provided 

by KOFIC 
web site 

117 movies 
OLS and panel 
data analysis 

Consumers prefer products with larger sales or 
large e-WOM volume. 

Sun (2012) 
Amazon.com 

and BN.com 

Online 

search 
892 books 

DID estimation 

approach 

Previous ratings of product have a significant 

impact on customers to make purchase-decision. 

Salehan & 

Dan (2016) 

Amazon.com 

website 

Crawler 

software 
20 products 

Regression 

analysis 

Words containing positive emotions are more 

likely to be read. 

Rosario et 

al. (2016) 

Platforms of 

products 

Wayback 

machine 

1,532 effect 

sizes 
Meta-analysis 

There is a significant positive relationship between 

product sales and e-WOM, but products, platforms 
or metric factors may lead to another result. 

Ullah et al. 

(2016) 

Amazon.com 

website 

A custom 
software 

tool 

15,849 
online 

reviews 

NLP 

techniques 

The emotional content of reviews are different in 
experience and search goods, but a large number of 

reviews help customers understand product well. 

Y. Liu 

(2006) 

Yahoo Movies 

Web site 

Online 

search 

40 movies 

12,136 

WOM 
message 

Regression 

analysis" 

WOM information during both a movie's 

prerelease and opening week, especially the 

volume, can have a significant impact on box 
office revenue. 

Ha, Bae, 

and Son 
(2015) 

Online 

booksellers in 
Korea 

Online 

search 

4,892 online 

reviews 

Regression 

analysis 

Online reviews from personal bloggers have the 
most significant effect on product sales than other 

ones by researching the source of online reviews 
including personal-blogger reviews, seller-blogger 

and seller-site. 

Chong, Li, 

Ngai, 

Ch'ng, and 
Lee (2016) 

Amazon.com 

Web 

crawling 

and 
scraping 

40,000 

products 

Sentimental 

and neural 

network 
analysis 

The interplay effects of online volume, online 
valence, sentiments and discounts play a more 

important role on the prediction of sales volume 
than single variables. 

Liang, Li, 
Yang, and 

Wang 

(2015) 

IOS app store 
Online 

research 
149 apps 

Multifacet 

sentiment 
analysis 

Although consumers’ opinions on product quality 
occupy a larger portion of consumer reviews, their 

comments on service quality have a stronger unit 

effect on sales rankings. 



202    The Nineteenth Wuhan International Conference on E-Business－E-business Strategy & Online Marketing 

2.2 Tags in online reviews   

With the increasing volume of reviews, the issue of information overload is inevitable. For example, 

best-selling products in Amazon commonly contain thousands of reviews (Amazon, 2019). A huge volume of 

reviews makes it difficult for consumers to obtain relevant and useful decision making information. Therefore, it 

is rational to extract and organize only core information. The implementation of review tags thus performs a 

vital function in reducing, summarizing and guiding potential buyers to retrieve and process useful information. 

Because the number of reviews generated on the e-commerce sites far exceed the capacity of personal 

information processing, consumers have to resort to some heuristic rules to simplify the task of reading reviews. 

For example, potential buyers can judge the reviewer’s reputation directly through the volume of online reviews 

posted and the average rating, without further reading the review text. Buyers can focus on low ratings, high 

ratings, or recently published reviews, because these reviews are relatively small and have high diagnostic 

accuracy (Q. Liu, Karahanna, & Watson, 2011).  

Generally, information labels have three content requirements: user generated (opinion credibility), 

majority views (avoid overly biased views), and sufficient semantics to be retained (easy to understand) (Ames 

& Naaman, 2007). Tag based review summarization is a new feature on e-commerce websites to alleviate the 

problem of information overload faced by consumers. This features divides the reviews into categories based on 

product attributes (such as screen, battery, call quality), or user experience (such as novel style, good quality, 

beautiful appearance), and gives each class a label. In addition to tag names, labels usually mark instances 

(review bars) and tag polarity (corresponding merits or demerits), and display relevant reviews when the user 

clicks on the tag (Liu Jingfang, 2016). 

There are previous studies that name these classified tags as ‘aspect tags’, namely tags that illustrate what 

the reviews are commenting on (Kayaalp, 2014; Levi, Mokryn, Diot, & Taft, 2012). Moreover, many 

researchers have been trying to explore effective methods that can identify aspects that certain reviews focus on. 

B. Liu (2012) summarizes four approaches to extract aspect tags, namely: (1) extraction based on frequent 

nouns and noun phrases, (2) extraction by exploiting opinion and target relations, (3) extraction using supervised 

learning, and (4) extraction using topic modeling.  

 Yu, Zha, Wang, and Chua (2011) tried to identity important product aspects from online consumer reviews. 

Important aspects feature two phenomena: (a) a large number of reviews would contain relevant information 

about the aspects, and (b) other consumers’ reviews on important aspects would greatly affect potential 

customers’ purchasing desire. These phenomena support the current study to classify review tags and to find the 

most influential review tags that can affect customer purchasing behavior, because product aspects that many 

customers care about most would also be reviewed most. Hence, by finding significant relevance between sales 

and reviews focusing on different aspects, i.e. assembled by different types of tags, we can also identify which 

aspects of products are important.  

Tags on Tmall’s product webpage are the more general form of aspect tags because they are not restricted 

to specific properties of products. For example, a tag like “the peanut tastes good” focuses on the property of 

food taste in essence, and the corresponding aspect tag should be “taste”. Meanwhile a tag like “Seller is 

patient” shows the quality of service offered by the seller, so the corresponding aspect tag would be “service”. 

Therefore, we chose to aggregate tags from Tmall into aspect tags according to the product properties that tags 

are focusing on. Our work is simplified by Tmall’s existing tag mechanism, since we do not need to extract 

aspect tags directly from review text. 

 

2.3 Analyzing review effects 

Research has adopted various methods and models to explore the relationship between review volumes and 
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sales. W. Duan et al. (2008) used a simultaneous equation system to explore the relationship between movies’ box 

office revenue and online reviews. The findings showed that while higher average ratings do not lead to higher 

movie sales, the greater number and generating speed of review posts do. Moreover Clemons, Gao, and Hitt (2006) 

used multivariate linear regression and reached a similar conclusion when focusing on online reviews’ effects on 

beer sales. 

Dewan and Ramprasad (2009) performed both Granger causality estimates and two-stage least squares on album 

sales and reviews data to solve the potential problem of endogeneity. The regression results also indicate the 

important role of review volume’s contribution to higher sales. All researchers above have adopted difference of 

review quantity to show significant influence on sales. Therefore, we also adopt difference of review quantity 

for our explanatory variables, while the distinction is that we assemble these reviews using classified tags.  

When data consists of weekly repetitive observations, i.e. longitudinal data which are collected on a regular 

basis from the same group of research objects, where observations are correlated with each other for the same 

object but independent between different objects, the generalized estimating equation (GEE) would be a good 

method. The GEE approach is an extension of generalized linear models designed to handle categorical repeated 

measurements arising from within-subject designs. GEE also relaxes the restriction on distribution of dependent 

variables and offers robust parameter estimates compared with other similar models (Ziegler, 2003). Furthermore, 

the interpretation of GEE results is identical to that for commonly used models for uncorrelated data (e.g., logit and 

probit) (Zorn, 2001).  

The adoption of the GEE method to analyze online review data has been limited. This is probably due to the 

fact that most studies used only cross-sectional data. Nevertheless, a few successful examples provide guidelines 

for using GEE in e-commerce. For example, Senecal and Nantel (2004) adopted the GEE method to investigate 

consumers’ usage of online recommendation sources and their influence on online product choices. Their results 

successfully indicate that subjects who consulted product recommendations selected recommended products twice 

as often as subjects who did not consult recommendations. Sodero, Rabinovich, Aydinliyim, and Pangburn (2017) 

used the GEE method which addresses the inherent endogeneity among the variables to establish links between 

inventory, prices, and sales empirically, using a large data set comprising a wide array of products sold on 

Amazon.com. 

 

3. METHODOLOGY 

3.1 Data collection 

Tmall is a well-known B2C e-commerce platform in China established by Alibaba Corporation in 2012. It 

has become one of the most popular online shopping websites in China. On 11 November 2019, Tmall made a 

sales record of 268.4 billion RMB in a single day (Tmall, 2019). In Tmall, commodities with enough reviews 

would have tags displayed on the corresponding web page which would appear automatically as a key feature 

offered by Tmall.  

A Java crawler program was developed to collect all the needed information on snacks available for sale on 

Bestore’s official website on Tmall. Our data includes all available properties of snacks and tags. In addition, 

Tmall displays only monthly moving sales data of products, i.e. cumulative sales from 30 days ago to now, and 

we collected sales data weekly in order to compute sales differences between weeks. Our collection started on 

18 June 2018, and we collected the same data on Sundays. In total we collected 8 weeks’ ( - ) data containing 

234 different products’ sales data and 734 unique tags. The 234 food products collected for the analysis were 

classified into 9 snack types according to Bestore’s official classification of their products. Table 2 depicts the 

product classification statistics. 
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Table 2. Product classifications 

Ordinal Type Explanation Examples Quantity 

1 坚果炒货 Roasted seeds and nuts 熟花生米, 夏威夷果, 巴旦木 44 

2 肉类熟食 Meat and cooked food 牛肉丝, 小香肠, 鸭脖子 48 

3 果脯蜜饯 Preserved fruit 山楂球, 红枣片, 黄桃干 53 

4 甜心糕点 Cake and pastry 沙琪玛, 麻花, 肉松饼 16 

5 饼干膨化 Cookies and puffed food 薯条, 薯片, 锅巴 13 

6 糖果布丁 Candy and pudding 棒棒糖, 巧克力, 果冻 12 

7 山珍素食 Vegetarian diet 金针菇, 水果茶, 乌龙茶 3 

8 海味河鲜 
Seafood and fish, shrimps etc. from 
rivers. 

海带丝, 鱿鱼丝, 小黄鱼干 35 

9 良品礼盒 
Gift box (several types of products 

packaged together) 

果冻礼包, 干果坚果炒货组合, 饼干

组合 
10 

 

3.2 Data Preprocessing  

3.2.1  Tag formulation 

In Tmall, tags with different names are classified according to their semantic meanings and different 

products contain certain variations of tags. In total, 734 tags were collected and were re-classified into 9 

categories as listed in Table 3. We defined the following parameters to facilitate tag analysis: 

 is the total number of tag category i at time n of product p. 

  =  is the first difference of the total number of tag category i of 

product p at time n+1 minus the total number of tag category i of product p at time n. 

 = ) if  or  

= ) if  is the natural logarithm of the first 

difference of the total number of tag category i at time n + 1 minus the total number of tag category i at 

time n. 

The difference parameter allowed us to associate the incremental increase (decrease) of the 

total number of tags with the incremental increase (decrease) in sales from time n to time n + 1. 

Table 3. Tag Classifications 

Ordinal Tag Names Explanation Examples Quantity 

1 Food Taste Taste of food (flavor, texture of food) 蛋糕很好吃; 虾干好吃; 味道好 503 

2 Food Quality Freshness, sanitation, look (size, shape, color) 分量够; 干净; 质量不错 130 

3 Packaging Packaging of food 包装很好; 包装不错; 8 

4 Delivery Service The quality of delivery service (e.g. Slow or fast) 发货快; 邮费便宜; 快递不错 7 

5 Food Smell Smell of food (e.g. Fragrant or unpleasant) 气味不错 13 

6 Food Price Price of food (e.g. Cheap or expensive) 便宜; 划算; 实惠 11 

7 
Customer 

Service 
Quality of service offered after purchasing 服务好; 态度不错 6 

8 
Purchase 
Influence 

Influence on buyer’s surrounding people (e.g. 
buyer’s friends praise the product) 

人群 1 

9 Emotion 
Personal likes and dislikes for products (e.g. a 

buyer writes ‘I love it very much’.) 

超爱鸭舌; 喜欢草莓干; 鱼嘴大

赞 
55 
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3.2.2   Sales formulation 

To analyze tags’ effect on sales, we defined product sales parameters to be used in the GEE model. 

 

 is the normalized sale growth rate of product p at time n 

+ 1. 

 

 is the normalized Chinese discount rate (打折) of 

product p at time n + 1. 

 

 is the price of product p at time n. 

 

3.2.3 Model formulation 

We formulated two estimation models with GEE to answer the research questions. In the first model the 

dependent variable is  because we wanted to validate the relationship between the incremental difference 

(increase) in the number of tags and the incremental difference (increase) in sales for the current time (see equation 

1). For the second model the dependent variable is  since we wanted to verify the incremental difference 

(increase) in the number the number of tags which could provide nowcasting to predict the next immediate future 

period of increment difference (increase) of product sales (see equation 2). The two models’ equations are 

described below. 

               (1)  

and,  

              (2) 

We then performed GEE with SPSS by transforming the data set into a panel data format. 

 

4. RESULTS 

4.1 Correlation Analysis 

To answer RQ1 and RQ2, we performed a correlation analysis to ascertain the discriminate strength of the 

review tags and their association with product sales, price and discount rate using differences model parameters. 

Table 4 depicts the descriptive statistics of the means, standard deviations, correlation coefficients and 

significance levels among the variables. For the investigation period, most of the products’ sales are declining 

on a moving average basis and are offering huge discounts to attract sales. Overall the mixtures of products 

contain high variation in price, discount rate and overall sales. 

4.2 Current tag to estimate immediate sale 

To answer RQ3, we validated the relationship between differential tag changes from time n to time n + 1 

and differential sales changes for the corresponding time from n to n + 1. We performed GEE with  as 

the dependent variable and with positive review tags as the independent variables. We 

obtained the results shown in Table 5. 

The results show that among all the positive review tags, Food Taste, Food Quality, Packaging, Delivery 

Service, Food Price and Emotion are all significant with p < .05 and all β estimates are positive. Purchase 

influence is significant at p < .1 only. Interestingly Price, Food Smell and Customer Service are not significant
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Table 4. Descriptive statistics and Correlation matrix for the variables 

Parameters Min Max M SD 1 2 3 4 5 6 7 8 9 10 11 12 

Price 1.00 135.00 26.80 15.16 
            

Discount 0.00 0.88 0.44 0.15 -.245** 
           

Sales(N+1)-Sales(N) -107788 42032 -443.36 4584.28 0.014 -0.007 
          

(Sales(N+1)-Sales(N)) 
/Sales(N)*100 

-64.04 158.24 -3.18 17.10 0.010 -.117** .386** 
         

Food Taste -8.48 8.55 -0.48 2.78 -0.041 -.093** .119** .217** 
        

Food Quality -7.90 7.71 -0.62 2.26 -.103** -0.041 .240** .222** .206** 
       

Packaging -5.95 6.39 -0.28 1.23 0.029 -.079** .077** .139** .221** .198** 
      

Delivery Service -6.65 5.95 -0.49 2.01 -.090** -.085** .272** .287** .548** .559** .285** 
     

Food Smell -5.25 3.99 -0.17 0.90 -0.006 -0.022 .075** .075** .148** .208** 0.016 .278** 
    

Food Price -6.76 6.81 -0.16 1.89 -.105** -0.006 .241** .230** .440** .469** -0.012 .588** .308** 
   

Customer Service -7.06 7.06 -0.13 1.38 0.031 -.054* 0.011 .059* .166** .162** -.112** .222** 0.044 0.042 
  

Purchase Influence -5.68 4.86 -0.35 1.45 -0.041 -.081** .276** .255** .467** .483** .246** .647** .244** .510** .179** 
 

Emotion -8.55 8.55 0.01 1.17 0.007 0.030 .095** 0.021 -.353** -0.004 -0.019 -0.009 -0.021 0.026 -0.027 -0.005 

**. Correlation is significant at the 0.01 level (2-tailed). *. Correlation is significant at the 0.05 level (2-tailed). 
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in estimating current growth of sales. However, food smell and customer service are positively correlated with 

growth of sales with a small effect size of r = .075 and r = .059 respectively of p < .01. Notice that price has no 

effect in predicting growth of sales while offering a huge discount improves sales growth which is typical for 

snack products. Price promotion indicates that products with high price are being offered at huge discounts (1- 

Chinese discount rate). 

4.3 Current tag to nowcasting next period sales 

To answer RQ4, we validated the relationship between differential tag changes from time n to time n + 1 

and differential sales changes for the corresponding time from n to n + 1. We performed GEE with  as 

the dependent variable and of positive review tags as the independent variables. We obtained 

the results shown in Table 6. 

From the results, Food Taste and Delivery Service are the only two review tags that are significant with p 

< .01 to predict the growth of sales for the next immediate period. Purchase Influence and Emotion were 

significant at p < .1. This shows that these tags are valuable predictors for nowcasting to the next immediate 

period. Other tags are not so useful to predict sales in more distant periods, suggesting that the snack product 

properties are dynamic in Tmall. 

 

5. DISCUSSION 

Our investigation demonstrates that the tag mechanism in Tmall is actually playing a role in affecting food 

product sales on the e-commerce platform. Specifically, positive tags contribute to product sales, and tags of 

different types (aspect tags) individually have different weights in promoting sales respectively. In addition, 

some tags are more capable of serving as predictors for future product sales. 

Our research fills in the gap of exploring the effect of the tag mechanism on product sales. The only existing 

research on Tmall tags was done by Liu Jingfang (2016), investigating the impact of tag-based review 

summarization on experience products and searched products in terms of perceived usefulness and system 

satisfaction but not for predicting sales. Our research suggests tags’ positive effect on promoting product sales, 

while Liu’s work focused on the improvement of customer’s feelings in the purchasing process. 

Our research pays more attention to the relevant relationship between tags and sales, and further to different 

effects of each aspect tag. Reading reviews to learn more about a product before purchase is essential for most 

buyers. However having thousands of reviews to browse will incur physical search cost and cognitive search 

cost (Q. Liu et al., 2011). Tags are essentially a mechanism that provides key phrase summarization of customer 

reviews that offer personal sentiment and judgment on products’ properties. In this way, the tag mechanism 

serves as a way to overcome the customer’s search cost of finding those reviews relevant to their favored 

product property and helps them to make faster decisions. Yatani, Novati, Trusty, and Truong (2011) study 

concluded that a system offering brief overviews of many reviews can accelerate the customer’s decision 

process. Hence the tag mechanism in e-commerce sites is highly recommended. 

Our findings also provide indirect evidence that there is a significant positive correlation between review 

volume and product sales, since essentially the difference changes in the aspect tag reviews parameter reflects 

volume change of certain types of reviews. This phenomenon can be explained by two theories. One is the 

uncertainty elimination effect. According to Chen et al. (2011) a greater volume of reviews reduce the 

customer’s uncertainty about product properties and contribute to their purchase decision. In our case, the aspect 

tags provide easy access to better eliminate customer uncertainty about their most important product property, 

therefore leading to an increase in sales. The other theory is the awareness effect. A greater volume of reviews 

diffuses the existence of a product more easily, and thereby makes more people see the product and choose to 

purchase it (W. Duan et al., 2008).  
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The aspect tags that are significant in the current study are viewed as salient features in promoting product 

sales from the buyer’s perspective. A possible explanation may be attributed to the nature of food features and 

the desired expectations from customers. Respectively, it is intuitive that Food Taste and Food Quality are both 

important criteria for customers, since a food product’s core features are its taste and quality. These features 

include not only flavor and texture, but hygiene and freshness which would greatly influence people’s desire to 

eat food, and especially for snacks which people consume more for their appealing taste rather than staple foods 

for satisfying hunger. On the other hand Packaging, Delivery Service and Food Price are essential decision 

factors not limited to food products that have a direct impact on sales. Packaging refers to the physical 

appearance of a product when a consumer sees it. Packaging designs can increase consumer intention to 

purchase (Schnurr, 2019). Delivery service refers to time spent on delivery and the condition of a product during 

the process of delivery. For food products, high quality and efficient delivery services are a key factor in 

consumer satisfaction (Suhartanto, Dean, Leo, & Triyuni, 2019). Food Price generally consists of customer 

opinions on whether the product provides value for money, which is certainly affecting their purchasing decision 

while assessing products (Buch-Andersen, Andreasen, Jørgensen, Ehlers, & Toft, 2019). 

 

6. CONCLUSION AND FUTURE RESEARCH 

In this paper, we explored the relationship between review tags, a mechanism to collect reviews with 

similar key content phrases and display them to customers, and the sales of products. Using real data from 

Chinese e-commerce platform Tmall and snack seller Bestore, we obtained specific insight into snack product 

sales mechanisms. To validate whether review tags of different semantic expressions would affect sales 

differently, we classified all review tags according to their meaning into 9 types. We performed GEE on our 

repeated observations of a longitudinal data set of review tags and sales volume, because GEE provides good 

robust parameter estimates. The results show that review tags concerning food taste, food quality, packaging, 

delivery service, food price and emotion would have a significant impact on sales. The result implies that 

customers pay considerable attention to these product properties when deciding whether to purchase in the 

immediate time frame. The second result indicates that review tags concerning food taste and delivery service 

are good predictors for a sales nowcasting model, which may help improve sales performance. Hence, our 

findings also offer real evidence for e-commerce platforms (e.g. Amazon, eBay) that do not have similar review 

tag mechanisms to consider implementing such features as they are useful in generating sales and contribute to 

reliable forecasting.  

The current study is not without limitations. First, our classification of review tags are novel so require 

further validation and to establish standards and criteria as there has been little previous relevant work that we 

can compare with. Although our classification produces meaningful results, it would be also more reliable for 

later research to produce standardization across different product types other than snacks. Second, while we 

focused our analysis on 264 Bestore snack products, there are some mainstream varieties of snacks that Bestore 

does not sell, for example chocolate. Hence, our conclusions can only be generalized to similar snack ranges 

unless further analysis can be performed on a wider variety of snack products.  

Although we obtained meaningful results about which types of review tags would influence sales, future 

research could explore how to design corresponding algorithms and visualizations to persuade potential online 

buyers to purchase the products. Future research can also look into designing interaction log experiments with 

real people from actual purchases to test different tag algorithms and visualizations. In addition, it seems very 

promising to try incorporating review tags as factors into sales prediction models, since our work implies their 

potential power as predictors. Apart from this, since reviews collected by review tags are the core elements that 

are making a difference, this offers great motivation for later research to add more review’ features to prediction 
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models. 

Table 5. Parameter estimates of current sales 

Parameters B SE 

95% Wald Confidence 

Interval 
Hypothesis Test 

Lower Upper Wald χ2 Sig. 

(Intercept) 2.09 2.03 -1.88 6.06 1.06 0.30 

Price 0.02 0.03 -0.04 0.08 0.42 0.52 

Discount -9.72 3.38 -16.35 -3.08 8.25 .004*** 

FoodTaste 0.56 0.20 0.17 0.95 7.87 .005*** 

FoodQuality 0.58 0.22 0.16 1.01 7.24 .007*** 

Packaging 0.79 0.39 0.03 1.54 4.15 .042** 

DeliveryService 0.83 0.31 0.22 1.44 7.03 .008*** 

FoodSmell -0.38 0.48 -1.31 0.55 0.65 0.42 

FoodPrice 0.66 0.29 0.08 1.23 4.95 .026** 

CustomerService 0.00 0.31 -0.62 0.62 0.00 0.99 

PurchaseInfluence 0.71 0.37 -0.02 1.45 3.61 .058* 

Emotion 0.81 0.34 0.14 1.48 5.56 .018** 

(Scale) 260.55      

***, **, and * Mean difference is significant at the ≤.01, ≤.05, and ≤.1 levels, respectively. 

Table 6: Parameter estimates for nowcasting sales 

Parameter B SE 

95% Wald Confidence 
Interval 

Hypothesis Test 

Lower Upper Wald χ2 Sig. 

(Intercept) -2.01 1.93 -5.80 1.78 1.08 0.30 

Price -0.02 0.03 -0.09 0.05 0.33 0.56 

Discount -1.62 3.34 -8.17 4.93 0.24 0.63 

FoodTaste 0.57 0.20 0.18 0.96 8.11 .004*** 

FoodQuality 0.11 0.23 -0.35 0.56 0.21 0.64 

Packaging 0.50 0.39 -0.26 1.26 1.66 0.20 

DeliveryService 1.33 0.32 0.70 1.96 17.02 .000*** 

FoodSmell -0.71 0.49 -1.67 0.26 2.04 0.15 

FoodPrice 0.00 0.28 -0.55 0.55 0.00 0.99 

CustomerService 0.33 0.33 -0.32 0.98 1.01 0.31 

PurchaseInfluence 0.81 0.42 -0.01 1.63 3.77 .052* 

Emotion 0.72 0.39 -0.04 1.48 3.47 .062* 

(Scale) 255.58      

***, **, and * Mean difference is significant at the ≤.01, ≤.05, and ≤.1 levels, respectively. 
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