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Abstract: Nowadays, e-commerce platforms have increasingly relied on contents generated by key opinion leaders to 

engage customers and drive product sales. To stay on top of the growth, e-commerce content platforms have introduced 

rewards and punishments policies to ensure content quality. However, effectiveness has remained less clear. Besides, there is 

a dearth of research that focuses on such performance-based output control in the extant platform governance and 

user-generated content (UGC) literature. In this study, based on the reinforcement theory and UGC literature, we investigate 

the effects of monetary rewards and punishments on the quantity and quality of contents generated by KOLs in the 

e-commerce content platform context. Using data collected from JD WeChat Shopping Circle, we empirically testified our 

hypotheses. Our results indicate that punishments significantly increase the quantity and quality of content generated by 

KOLs. Monetary rewards only have significantly positive effects on the quality of KOLs' generated content. Nevertheless, 

the magnitude of the effects of monetary rewards is larger compared with that of punishments. Theoretical and practical 

implications are discussed.  

 

Keywords: generated contents, key opinion leaders, output control, platform governance 

 

1. INTRODUCTION 

Recently, with the increasingly saturated online shopping markets and consumption upgrades, the fusion of 

e-commerce and online contents has been a growing trend in Chinese e-commerce and has become a new driver 

of customer engagement and product sales for e-commerce platforms
†
. Rather than conventional price or 

product differentiation strategies, e-commerce platforms now have invested heavily to develop content 

platforms
‡
 and foster key opinion leaders (KOLs) in generating product-related content. For example, Taobao, 

the most popular online shopping market in China, has developed more than twenty content channels within its 

mobile application, such as Taobao Headlines, Weitao, good goods, love shopping, must-buy lists, Taobao Live, 

and life research institute
§
. For Taobao live streaming alone, the single content channel generated a sales volume 

of RMB 100 billion in 2018, growing nearly 400% year-on-year
**

. The key to achieve, sustain, and further 

facilitate such growth relies on the continuous output of high-quality contents generated by KOLs. Therefore, it 

is imperative for e-commerce content platforms to formulate effective mechanisms to ensure both the quantity 

and quality of content outputs by KOLs.  

 The rewards and punishments are two common mechanisms adopted by e-commerce content platforms in 

practice. E-commerce content platforms use monetary rewards to prize KOLs who generate high-quality content. 

                                                           
*
 Corresponding author: Jing Zhao, School of Economics and Management, China University of Geosciences, Wuhan 430074, P.R. 

China. E-mail address: zhao5563@outlook.com . 
†
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Meanwhile, they would also punish KOLs for not generating quality content in a given period. For instance, 

Alibaba content platform launches multiple monetary incentive policies to reward KOLs to continuously 

generate high-quality contents, such as dynamic commission rewards
††

, and punishment policies to remove 

KOLs’ identity for not generating quality content within a month. Nevertheless, the effectiveness remains less 

clear. While it is institutive that monetary rewards can improve the quality of contents generated by KOLs, such 

an increase may be pseudo. Because the criteria are partially based on customer engagement, such as the number 

of readings and likes by customers, some of the KOLs may buy likes from third parties in an attempt to obtain 

the desirable rewards. As such, monetary rewards can be counterproductive for engaging customers and driving 

product sales. Besides, the effects remain less certain for punishments. Although punishing KOLs for removing 

their identities and limiting their access to platform resources can potentially deter undesirable behaviors by 

KOLs, the punishment can also negatively impact KOLs’ motivations and thus crowd out KOLs to competing 

platforms. Thus, getting clear about the effects of rewards and punishments on content generations by KOLs is 

consequential for e-commerce platforms to successfully grasp the trends of content transformation.  

 Platform governance literature mainly focuses on policies and mechanisms implemented by a platform 

owner to influence and coordinate the interaction between the two sides
[1]

 and has investigated how to leverage 

various policies or mechanisms (including pricing
[2-3]

, control
[4]

, and technical designs
[1] [5-6]

) to foster 

complementor innovations and strengthen network effects. In particular, previous studies suggest that platform 

owners should apply a certain level of control without excessively intervening complementor autonomy 
[7-8]

 so 

that the platform can appropriate the value of generativity
 [9]

. However, although prior literature has given some 

prescriptions in terms of how to balance the tension, such as standardized process and tools, graduated control 

regimes and self-selection of the desired level of control by complementors
[7-8]

, there is lack of study to quantify 

the effects of control mechanisms rather than qualitative descriptions. Moreover, the performance-based output 

control – a platform owner rewards or punishes complementors based on the quality of their outputs – which is a 

widely used control mechanism in content platforms – has been received limited attention in the platform 

governance literature.  

 The user-generated content (UGC) literature has started to examine how monetary incentives and 

non-monetary incentives (such as badges and social norms), as well as their combinations, affect the quantity 

and quality of UGC
[10-15]

. While most studies have found that monetary incentives significantly increase the 

quantity of UGC
[10][15]

, some studies have demonstrated that monetary incentives can crowd out content 

generators’ intrinsic motivations and thus reduce the quality of their generated contents 
[13]

. Nevertheless, prior 

literature largely focuses on the quantity-based monetary rewards in the context of online product reviews. 

There is a dearth of research on the implications of performance-based monetary rewards for content 

generations by key opinion leaders (KOLs) in the context of e-commerce content platforms. Moreover, in 

contrast to retaining and incentivizing KOLs by monetary rewards, e-commerce content platforms also use 

punishment policies to remove the identity of KOL for not satisfying the quality criteria predefined by the 

platform. To our best knowledge, such punishments are understudied in the UGC literature.  

 Therefore, to address the above gaps, we are motivated to ask three research questions:  

1. How do monetary rewards affect the quantity and quality of content generated by KOLs in the context 

of e-commerce content platforms? 

2. How do punishments affect the quantity and quality of content generated by KOLs in the context of 

e-commerce content platforms? 

3. What is the relative effectiveness of monetary rewards and removing punishments on quantity and 

quality of contents generated by KOLs?  

                                                           
††

 https://www.yuque.com/u229647/alczzptdrbps/zt3l4w 
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We next draw from the reinforcement theory as our overarching theoretical lens to define our core 

constructs and justify how and why monetary rewards and punishments affect the quantity and quality of 

contents generated by KOLs. We collected 128,614 contents generated by 465 KOLs from JD WeChat Shopping 

Circle, the largest e-commerce content platform embedded in WeChat, from January 1, 2017, to December 31, 

2018. By leveraging the introduction of double commission subsidy and removing policy by JD WeChat 

Shopping Circle as quasi-experiment settings, we applied the difference-in-differences (DID) approach to 

empirically test our hypotheses. We found that while punishments significantly increase the quantity and quality 

of contents generated by KOLs, monetary rewards only have significantly positive effects on the quality of 

KOLs’ generated content. Nevertheless, the magnitude regarding the effects of monetary rewards is larger 

compared with that of punishments. Theoretical and practical implications are also discussed.  

 

2. THEORETICAL AND HYPOTHESIS DEVELOPMENT 

2.1 Reinforcement theory 

The reinforcement theory explains the strength of an individual’s behavior as a function of its 

consequences 
[16]

. The theory assumes that individuals are learning agents that would adjust behaviors according 

to consequences of the behavior and the consequences are assumed as instrumental to the individual. 

Accordingly, behaviors followed by pleasurable consequences (rewards) are strengthened and tend to be 

repeated, while behaviors followed by unpleasant consequences (punishments) are weakened and are less likely 

to be repeated 
[17-18]

. Such effects diminish with the temporal distances between rewards or punishments to 

behavior
[17]

.  

 We apply the concepts of rewards and punishments, as well as the underlying theoretical arguments 

between rewards or punishments and individual behaviors from the reinforcement theory to develop our 

theoretical model. Rewards refer to adding a reward after the desired behavior is made and thus act as a positive 

reinforcer to increase the strength of the behavior. Punishments denote to adding a punishment or sanction after 

an undesired behavior is made and thus decrease the strength of the behavior
 [16]

. For e-commerce content 

platform owners, a desired behavior of KOLs is continuously generating high-quality content that improves 

consumer engagements and product sales
[19-20]

. Undesired behavior is not generating high-quality content given 

a period. Accordingly, we conceptualize the behaviors of KOLs as the quantity and quality of contents. In 

reference to previous UGC literature, we define content quantity as the volume of contents generated by a KOL
 

[10][13][15]
 and content quality as the perceived informativeness of content by users and the platform

[21]
. Besides, 

we conceptualize rewards as monetary rewards a platform owner gives to a KOL after the KOL generates 

high-quality or high-performing content 
[13]

. Meanwhile, we conceptualize punishments as removing the identity 

of a KOL and limiting a KOL’s access to platform resources for not generating high-quality content in a given 

period. 

2.2 Monetary rewards and content generations by KOLs 

The monetary rewards are monetary prizes a platform owner gives to KOLs to recognize their efforts or 

excellence in generating high-quality content
[13]

 with a high level of consumer engagement and conversion rate. 

According to the reinforcement theory, the monetary reward would act as a positive reinforcer to increase the 

strength of the desired content-generating behavior
[16]

, increasing both quantity and quality of contents 

generated by KOLs. 

 Particularly in the e-commerce content platform context, monetary rewards are consequential in 

influencing KOLs’ content-generating behaviors because KOLs rely on contents to obtain commissions and 

collaboration with brands. If consumers buy products through clicking the product link KOLs share in his or her 

content, the KOL will receive commissions of a certain percentage. Besides, another major source of KOLs’ 
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income is a collaboration with brands. The collaboration depends on the historical performance of a KOL 

(including quantity and quality of generated contents). Under such circumstances, the introduction of monetary 

rewards by the platform means that KOLs can not only increase their amount of commissions and collaboration 

opportunities with brands through generating more high-quality content but also can enjoy the monetary 

subsidies provided by platforms in appreciating their high-quality content generation behavior. In other words, 

the intrinsic and extrinsic motivations of KOL are both strengthened by rewarding their high-quality content 

generation behaviors
 [13][15]

. As such, both the quantity and quality of contents generated by KOLs are expected 

to increase. Accordingly, we hypothesize the following:  

Hypothesis 1a. The introduction of monetary rewards increases content quantity by key opinion leaders. 

Hypothesis 1b. The introduction of monetary rewards increases content quality by key opinion leaders.  

2.3 Punishments and content generations by KOLs 

The punishments refer to the identity of a KOL being removed from a content platform for not generating 

high-quality content in a given period. It is worth noting that the removal does not mean the punished KOL can 

no longer generate contents in the platform but means that the identity or status of a KOL would be removed and 

the KOL would have limited access to the platform resources, such as online traffic support and collaborations 

with brands. Besides, the KOL cannot enjoy any monetary rewards.  

Previous online review literature has demonstrated that reviewers’ identity is important peripheral 

information cues for consumers to evaluate the helpfulness of a review and make following purchase 

decisions
[22-23]

. KOL identity represents a content generator’s rich product knowledge and professional skills in 

discovering and recommending quality products
[24]

, and thus are important means to influence consumers’ 

following purchases of a KOL’s recommended products. The number of following purchases further determines 

the number of commissions a KOL can earn. As such, the removal of KOL identity would have consequential 

effects on the income of a KOL. Thereby, the punishments act as an anxious stimulus to reduce the strength of 

the undesired content-generating behavior 
[16]

. In other words, after the introduction of the punishments, KOLs 

would increase the quantity and quality of their generated content to avoid the unpleasant consequences of being 

punished. Therefore, we hypothesize that:  

Hypothesis 2a. The introduction of punishments increases content quantity by key opinion leaders. 

Hypothesis 2b. The introduction of punishments increases content quality by key opinion leaders.  

 

3. METHODOLOGY 

3.1 Research context 

We chose JD WeChat Shopping Circle as our research context. JD WeChat Shopping Circle is an online 

shopping content sharing platform introduced by a Chinese e-commerce giant JD.com with WeChat
‡‡

 in May 

2015 and has been growing as the largest content communities for product sharing and recommendation on 

WeChat
§§

. In the JD WeChat Shopping Circle, WeChat users and key opinion leaders (KOLs) can post reviews 

on products, recommend products available from JD.com, and share shopping experiences in any of twenty-five 

interest groups or circles, such as beauty, photography, books and maternal and child product circles
***

. The 

generated content by users and KOLs can be attached with a link that directs consumers to JD WeChat Shopping, 

a shopping function of WeChat that allows users to buy products from JD.com without leaving WeChat, to 

complete purchasing seamlessly. If consumers buy products through the link a user or KOL shares, the user or 

the KOL can have a commission of a certain percentage. Moreover, after years of development, the Shopping 

                                                           
‡‡

 WeChat is a Chinese multi-purpose messaging, social media, and mobile payment app developed by Tencent.  
§§

 https://www.marketingtochina.com/jd-wechat-store-one-year-anniversary-a-touch-of-circles-marketing/ 
***

 https://www.chinadaily.com.cn/a/201903/27/WS5c9b16e8a3104842260b2de0.html 
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Circle has attracted and retained a large number of users, as well as desirable converted purchases. As of May 

2018, JD WeChat Shopping Circle has accumulated more than 10 million users and more than 50 million 

user-generated content. Meanwhile, the monthly gross merchandise volume (GMV) achieved through generated 

content in Shopping Circle is over 100 million RMB.  

 JD WeChat Shopping Circle is a suitable empirical setting for several reasons. First, in contrast to 

user-generated content platforms that largely relies on users voluntarily generate contents, the Shopping Circle, 

as a typical online shopping content sharing platform introduced by traditional e-commerce firms, plays an 

active role in managing KOLs in terms of their generated contents. The generated contents by KOLs are vital in 

stimulating consumers’ purchases
†††

 and thus are important means to boost and sustain the revenue growth of 

JD WeChat Shopping. Thereby, the Shopping Circle has taken various mechanisms to regulate KOLs’ 

content-generating behavior in an attempt to increase the quantity and quality of generated contents, as well as 

prompting more following buys. This objective is aligned with our theoretical consideration of output control 

mechanisms in the e-commerce content platform context.  

Second, the double commission subsidy policy and the removing policy carried out by JD WeChat 

Shopping Circle provide a rare opportunity to investigate and compare the effects of monetary rewards and 

punishments on KOLs’ content-generating behaviors in a single setting. The double commission subsidy was 

introduced by the JD fashion division to incentivize KOLs specialized in fashion to generate more high-quality 

content related to fashion products, such as clothes, shoes, jewelry, and luxury on August 8, 2018. The reward 

policy is a performance-based reward that gives KOLs a double commission based on the number of following 

buys through their generated contents. The policy is effective during the period between August 8 to December 

31, 2018. JD WeChat Shopping Circle also introduced a removing policy to regulate KOLs’ content-generating 

behaviors on July 27, 2017. KOLs were required to have at least one content recognized by the platform as high 

quality in three months. Otherwise, a KOL would be removed from JD WeChat Shopping Circle, meaning that 

the level of a KOL would be reduced and could no longer enjoy the privileges as a KOL including the financial 

and traffic support, and cooperation opportunities with brands. These privileges are directly linked to the 

number of commissions a KOL can earn from a content platform. Besides, the two policies are largely 

exogenous to KOLs, and therefore minimizes endogeneity concerns. Moreover, the periods of the two policies 

do not overlap, thus eliminating the confounding effects between different policies.  

We collected data from JD WeChat Shopping Circle from January 1, 2017, to December 31, 2018. The 

dataset consists of 128,614 contents generated in all of the twenty-four interest groups by 465 KOLs. The data 

covers the demography of content generators (including the nickname, ID, gender, and level) and content details 

(including the date, belonged interest groups, contents, number of likes, and whether being recognized by the 

platform).  

3.2 Research design 

We exploit the introduction of a double commission subsidy policy and removing policy by JD WeChat 

Shopping Circle as an exogenous shock for the quasi-experiment. Recall that the double commission subsidy 

policy aimed at KOLs specialized in the fashion category. Thus, the introduction of the reward policy allows us 

to compared the quantity and quality of generated contents by KOLs affected by the reward policy (that is KOLs 

that are specialized in the fashion category) with the quantity and quality of generated contents by KOLs not 

affected by the reward policy (that is KOLs that are not specialized in the fashion category). Meanwhile, the 

removing policy was for KOLs who had not generated qualified content within the last three months. 

Accordingly, the introduction of the punishment policy allows us to compare the quantity and quality of 

generated contents by KOLs affected by the punishment policy (that is KOLs who had not qualified content in 

                                                           
†††

 https://jingdaily.com/nielsen-china-impulsive-shopping-comes-from-social-commerce/ 
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last three months) and quantity and quality of generated contents by general users not affected by the 

punishment policy. The quasi-experiment needs to identify the treatment group and control group to estimate the 

treatment effects on which we next elaborate.  

 For the reward policy, we identified treatment groups as KOLs who were specialized in fashion product 

categories and had not generated content in other product types. We label the treatment group as a 

RewardAffected group. There were five interest groups related to fashion products – the circle of cloth matches, 

sporting goods, shoes and bags, accessories, and child clothes. KOLs who had not generated content in the five 

interest groups before and after the reward policy was viewed as not affected by the policy and thus were 

identified as the control group which is labeled as RewardNotAffected group. Consistent with the period of JD 

WeChat Shopping Circle in assessing KOLs’ content-generating behavior, we define a six-month period – three 

months before the reward policy, May 8, 2018, as the pre-policy period and three months after the reward policy, 

November 8, 2018, as the post-policy period. Our final sample for the reward policy includes 35 KOLs in the 

treatment group and 137 KOLs in the control group, each observed over a six-month period. Our unit of analysis 

is the KOL-quarter combination.  

 For the punishment policy, we identified the treatment group as KOLs who were affected by the removing 

policy – that is KOLs who had not generated qualified content recognized by the Shopping Circle in the last 

three months before the policy. The treatment group was matched with the control group of comparable general 

users. The comparable general users refer to content generators who had not applied for KOLs but were 

qualified candidates – having more than 1000 followers and at least 30 generated content. Accordingly, we 

identified 162 KOLs in the treatment group and 64 general users in the control group. Each of them was 

observed over six months – three months before the punishment policy, April 27, 2017, and three months after 

the punishment policy, October 27, 2017. The treatment group and control group for the punishment policy are 

labeled as PunishmentAffected group and PunishmentNotAffected group.  

3.3 Variables and measurement 

Our dependent variables are the quantity and quality of generated content by content generators (including 

KOLs and general users). The content quantity (ContentQuantity) is measured by the number of generated 

contents by content generator i in quarter t. Following previous literature on user-generated content that uses the 

number of likes or helpfulness votes provided by other users as a proxy for the quality of product reviews
 [13]

, we 

first measure content quality by the number of likes content generator i received in quarter t (NumLikes). Our 

second measure of content quality is the ratio of qualified content selected by the platform (RatioSelected) 

which is operationalized by the number of qualified contents divided by the total number of generated contents 

of content generator i in quarter t. JD WeChat Shopping Circle has a predefined standard for high-quality 

content and would accordingly select and tag qualified content daily. The standards are specified in terms of 

different types of contents, including product lists, product recommendations, product reviews, videos, cloth 

matches, and general information. Take product recommendation for an example, the criteria are a length of 

more than 300 words, clear product pictures, products from diversified brands, product links to JD.com, and a 

well-designed layout. Thus, if a content is selected by the platform, we can assume the content meets the 

standard and is of high quality. We then log-transformed the values of ContentQuantity, NumLikes, and 

RatioSelected to address the skew in distributions.  

 The effects of monetary rewards and removing punishments are examined using dummies in 

difference-in-difference settings. For the monetary reward, a dummy PostReward takes a value of 0 for the quarter 

before the reward policy and a value of 1 for the quarter after the reward policy. A dummy RewardAffected takes a 

value of 1 for KOLs affected by the reward policy, and a value of 0 for KOLs not affected by the reward policy. 

Similarly, for removing punishment, a dummy PostPunishment takes a value of 0 for the quarter before the 
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punishment policy and a value of 1 for the quarter after the punishment policy. A dummy PunishmentAffected takes 

a value of 1 for KOLs affected by the punishment policy, and a value of 0 for general users not affected by the 

punishment policy. Details about constructing these groups are provided in section 4.2.   

 We also controlled for the gender and level of content generators to include their effects on the quantity and 

quality of generated content
[25]

. A dummy Gender takes a value of 1 for female, and a value of 0 for male. A dummy 

Level takes a value of 1 for high levels (levels above six), and a value of 0 for low levels (levels below five). Table 1 

and Table 2 summarize the descriptive statistics and correlations of reward and punishment sample correspondingly.  

Table 1. Descriptive statistics and correlations for reward sample 

Variables Mean S.D. Min. Max. 1 2 3 4 5 6 

1.RewardAffected 0.10 0.30 0 1 1.00      

2.Gender 0.65 0.48 0 1 0.17* 1.00     

3.Level 0.90 0.31 1 1 -0.07 -0.09 1.00    

4.ContentQuantity 0.88 1.37 0 6.02 0.25*  0.10 0.01 1.00   

5.NumLikes 1.56 2.39 0 9.26 0.16*  0.13* -0.05 0.82* 1.00  

6.RatioSelected 0.15 0.36 0 1 0.02   0.08 0.01 0.57* 0.73* 1.00 

Note: The number of observations is 344; * denotes significance at the 5% level. 

Table 2. Descriptive statistics and correlations for punishment sample 

Variables Mean SD Min Max 1 2 3 4 5 6 

1.PunishmentAffected 0.36 0.48 0 1 1.00      

2.Gender 0.66                0.47 0 1 -0.01 1.00     

3.Level 0.81 0.39 0 1 0.25* 0.05 1.00    

4.ContentQuantity 3.54 1.38 0 5.87 0.17* 0.05 -0.04 1.00   

5.NumLikes 7.59 2.79 0 11.53 0.24* 0.09* 0.09 0.80* 1.00  

6.RatioSelected 0.84 0.37 0 1 0.25* 0.05 0.07 0.59* 0.68* 1.00 

Note: The number of observations is 452; * denotes significance at the 5% level. 

 

3.4 Difference-in-differences model specifications  

We estimate the differences between the pre-reward period and the post-reward period for the 

RewardAffected and RewardNotAffected groups, as well as the differences between the pre-punishment period 

and post-punishment period for the PunishmentAffected and PunishmentNotAffected groups using a DID 

approach. By comparing the relative difference between the group affected by policy and the comparison group 

not affected by a policy, both before and after the exogenous shock of a policy change, we can infer the average 

treatment effects of a policy. We specify the following models: 

                                                                         (1) 

                                                                               (2) 

where i is the content generator index and t is the quarter index,     denotes to our outcome of interests 

including ContentQuantity, NumLikes, and RatioSelected for content generator i on quarter t, RewardAffected 

and PunishmentAffected are dummy indicators with a value of 0 for the control groups, and a value of 1 for the 

treatment groups,    are content generator fixed effects, and    is time fixed effects. Because the fixed effects 

of the content generator and time are collinear with the main effects of PostReward, RewardAffected, 

PostPunishment, and PunishmentAffected, we exclude them from our equations. The coefficient of the 

interaction,   , is the coefficient of interest, which can be interpreted as the relative changes of the treatment 

group caused by the treatment in comparison with the control group.  
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4. RESULTS 

4.1 Effects of monetary rewards 

Table 3 shows the effects of monetary rewards on the quantity and quality of generated content by KOLs. The 

coefficients of the interaction between RewardAffected and PostReward in the models for the number of likes and 

ratios of selected content by the platform are positive and significant, whereas the coefficient of the interaction 

term in the model for content quantity is positive but not significant. The results show that the introduction of 

monetary reward resulted in about 155% greater increases in the number of likes received by users and about 36.4% 

greater increase in the ratio of qualified content selected by the platform. However, there were no significant 

increases in the quantity of contents generated by KOLs. Therefore, H1a is not supported and H1b is supported.  

Table 3. Results of the effects of monetary reward 

Variables Model 1 Model 2 Model 3 

ContentQuantity NumLikes RatioSelected 

PostReward X RewardAffected 0.405 

(0.85) 

1.551** 

(2.18) 

0.364*** 

(3.26) 

Gender -0.027 

(-0.19) 

0.164 

(0.69) 

0.005 

(0.13) 

Level 0.263 

(1.23) 

0.008 

(0.02) 

0.052 

(0.97) 

Content generator fixed effects Yes Yes Yes 

Time fixed effects Yes Yes Yes 

Number of observations 344 344 344 

R-squared 0.225 0.203 0.169 

Note: * p<0.10; ** p<0.05; *** p<0.01; standard errors reported in parentheses.  

4.2 Effects of removing punishments 

Table 4 shows the effects of removing punishment on the quantity and quality of generated content by 

KOLs. The coefficients of the interaction between PunishmentAffected and PostPunishment in all the models are 

positive and significant. In particular, the introduction of removing punishment resulted in about 54.6% greater 

increases in quantity of content generated by KOLs, about 122% greater increases in number of likes received 

by users, and about 16% greater increases in the ratio of qualified content selected by the platform, indicating 

that the removing punishment increases both quantity and quality of contents generated by KOLs. Therefore, 

H2a and H2b are supported.  

Table 4. Results of the effects of removing punishments 

Variables Model 4 Model 5 Model 6 

ContentQuantity NumLikes RatioSelected 

PostPunishment X PunishmentAffected 0.546* 

(1.82) 

1.218** 

(2.03) 

0.160** 

(2.03) 

Gender 0.173 

(1.25) 

0.540** 

(2.03) 

0.036 

(1.00) 

Level -0.359* 

(-1.77) 

0.439 

(1.04) 

0.057 

(0.98) 

Content generator fixed effects Yes Yes Yes 

Time fixed effects Yes Yes Yes 

Number of observations 452 452 452 

R-squared 0.041 0.072 0.076 

Note: * p<0.10; ** p<0.05; *** p<0.01; standard errors reported in parentheses.  
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4.3 Comparison of effects of monetary rewards and removing punishments 

Table 5 summarizes the effects of monetary rewards and removing punishments. As indicated by the table, 

monetary reward and removing punishment can increase the quality of content generated by KOLs in terms of 

the number of likes received by users and the ratio of qualified contents selected by the platform, wherein the 

magnitude is greater for monetary reward. Moreover, removing punishments significantly increases the quantity 

of content generated by KOLs whereas the effects of monetary rewards on content quantity are not evident.  

Table 5. Summary of effects of monetary rewards and removing punishment 

Variables ContentQuantity NumLikes RatioSelected 

RewardAffected 0.405 

(0.84) 

1.551** 

(2.18) 

0.364*** 

(3.26) 

PunishmentAffected 0.546* 

(1.83) 

1.218** 

(2.03) 

0.160** 

(2.03) 

Note: * p<0.10; ** p<0.05; *** p<0.01; standard errors reported in parentheses. 

 

5. DISCUSSIONS 

This study investigates the effects of monetary rewards and punishments on quantity and quality of contents 

generated by key opinion leaders in the context of e-commerce content platforms. We found that the 

introduction of monetary rewards significantly increases the content quality by KOLs reflected as about 155% 

greater increases in the number of likes received by users and about 36.4% greater increase in the ratio of 

qualified content selected by the platform. But the effect is not evident on content quantity by KOLs. In contrast, 

the introduction of punishments results in about 54.6% greater increases in the content quantity by KOLs, as 

well as greater increases in KOLs’ content quality (about 122% greater increases in number of likes received by 

users, and about 16% greater increases in the ratio of qualified content selected by the platform). Although 

monetary rewards cannot significantly increase content quantity, the magnitude of its effects on content quality 

is higher in comparison with punishments. We next reflect on how these findings contribute to theory and 

practice.  

First, we contribute to the platform governance literature by incorporating the performance-based output 

control as an important but understudied form of the control mechanism and justifying how it affects 

complementors’ innovation behaviors. Previous platform governance literature has investigated the tension 

between control and autonomy 
[7-8]

 and yielded qualitative prescriptions to tackle the tension. Nevertheless, 

although various control mechanisms have been discussed in prior literature
 [1]

, such as input control and process 

control, there is a dearth of research on the performance-based output control (that is, a platform owner rewards 

or punishes complementors based on the quality of their outputs), as well as its subsequent effects on 

complementors’ behaviors. In particular, we investigate the effects of rewards and punishments on KOLs’ 

content-generating behavior in the context of e-commerce content platform. Our findings on how rewards and 

punishments affect the quantity and quality of contents generated by KOLs greatly supplement existing platform 

governance literature.  

 Second, we contribute to the UGC literature by exploring the effects of performance-based monetary 

rewards and punishments on the quantity and quality of content generations by KOLs. Previous UGC literature 

mainly focuses on the quantity-based monetary rewards in the context of online product reviews and largely 

ignores punishments as an alternative mechanism to regulate content generators’ behavior
[10-15]

. In contrast, we 

focus on the performance-based monetary rewards and punishments for content generations by key opinion 

leaders (KOLs) in the context of e-commerce content platforms. While the literature has demonstrated that 

quantity-based monetary rewards increase content quantity, we found that performance-based monetary rewards 
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increase content quality. Moreover, punishments increase both the quantity and quality of contents generated by 

KOLs. These findings help clarify the effects of different approaches of monetary rewards and add punishments 

to discussions of motivating content generations.  

 Our findings also have several practical implications. First, e-commerce content platforms should use 

different approaches to monetary rewards to encourage KOLs’ content contribution according to strategic 

purposes. Quantity-based monetary rewards increase content quantity, whereas performance-based monetary 

rewards increase content quality. Second, punishments are alternative mechanisms in regulating KOLs’ content 

generations. After attracting a certain number of KOLs, e-commerce content platforms can use punishment 

mechanisms, such as removing KOL identity, to ensure the quantity and quality of content generations, thereby 

engaging consumers and increasing product sales.  
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