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Abstract 

The internet of things (IoT) generally refers to the embedding of computing and communication 

devices in various types of physical objects (e.g., automobiles) used in people’s daily lives. This 

paper draws on feedback intervention theory to investigate the impact of IoT-enabled immediate 

feedback interventions on individual task performance. Our research context is a smart test-

simulation service based on internet-of-vehicles (IoV) technology that was implemented by a large 

driver-training service provider in China. This system captures and analyzes data streams from 

onboard sensors and cameras installed in vehicles in real time and immediately provides individual 

students with information about errors made during simulation tests. We postulate that the focal 

smart service functions as a feedback intervention (FI) that can improve task performance. We also 

hypothesize that student training schedules moderate this effect and propose an interaction effect on 

student performance based on feedback timing and the number of FI cues. We collected data about 

students’ demographics, their training session records, and information about their simulation test(s) 

and/or their official driving skills field tests and used a quasi-experimental method along with 

propensity score matching to empirically validate our research model. Difference-in-difference 

analysis and multiple regression results support the significant impact of the simulation test as an FI 

on student performance on the official driving skills field test. Our results also supported the 

interaction effect between feedback timing and the number of corrective FI cues on official test 

performance. This paper concludes with a discussion of the theoretical contributions and practical 

significance of our research. 

Keywords: Internet of Things, Internet of Vehicles, Feedback Interventions, Feedback Timing, 

Quasi-Experiments, Driver Training. 
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1 Introduction 

The internet of things (IoT) generally refers to the 

embedding of computing and communication devices 

into various types of physical objects (e.g., automobiles) 

used in people’s daily lives in order to enable real-time 

data transmission between human beings and these 

devices over the internet (Wortmann & Flüchter 2015). 

IoT technologies enable real-time capturing, tracking, 

and processing of data about individual behaviors—i.e., 

the digitized/quantified selves (Rivera-Pelayo et al. 

2012). Results from analysis of the massive amounts of 

data collected by IoT technologies can be used to enable 
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a wide array of smart services (e.g. smart home, smart 

transportation, smart cities, etc.; Wortmann & Fluchter, 

2015). McKinsey estimated the total market value of 

IoT applications at USD 900 million in 2015 and 

predicted that it will reach 3.7 billion by 2020 with a 

compound annual growth rate of 32.6%. 1  Global 

investment in IoT-based smart services is on the rise, 

with smart homes, smart wearables, and smart cities 

topping the list.2  Given the huge market potential of 

smart services, businesses have a pressing need to 

understand how to fully tap into the IoT data streams to 

create high-value service innovations (Porter & 

Heppelmann, 2015).  

Our research investigates the impacts of IoT smart 

services on individual users, focusing particularly on 

internet of vehicles (IoV) technology. IoV plays an 

important role in the entire IoT value system (ranked as 

the sixth most popular IoT topic on the web and the 

fourth most popular smart city IoT project; see 

Footnotes 1 and 2 below). The IoV infrastructure 

consists of devices connected over in-vehicle networks, 

intervehicle networks, and car-mounted mobile internet 

applications. Communication protocols and data 

exchange standards support huge volumes of wireless 

communication and information exchange between 

IoV-equipped cars and other cars, roads, pedestrians, the 

internet, and so forth, based on which smart services are 

implemented—for example, intelligent traffic 

management, smart information services, smart vehicle 

control, etc. IoV and the IoV data already generated 

have a number of potential commercial applications. For 

example, in the context of the insurance industry, by 

tracking and analyzing IoV data about drivers’ 

microdriving behaviors (e.g., sharp turns and sudden 

braking), an insurance company would be able to more 

accurately determine the risk profile of each driver (e.g., 

the probability of traffic violations or odds of accidents). 

Car insurance premiums could then be optimized, thus 

helping to increase the market share or profitability of 

insurance companies (Soleymanian, Weinberg, & Zhu, 

2016). The current study, however, focuses on an IoV 

smart service in the context of driver training in China  

1.1 The Research Context: A Smart 

Driving-Simulation Test in China 

The smart service we examine here is an IoV-based 

driving-simulation testing system adopted by a large 

driver-training service provider in China. In particular, 

the system is built to simulate the “Subject 2” (or K2) 

driving skills field test, which is administered to driver’s 

license applicants in China. K2 tests various driving 

skills—such as including backing up and parking a car, 

parking and starting a car on a hill, right- and left-hand 

 
1 https://iot-analytics.com/10-internet-of-things-applications/ 
 

turns, changing lanes and passing cars, parallel parking, 

etc. During the official K2 test, an examiner 

accompanies the applicant while they complete all the 

K2 tasks and then scores the applicant’s driving 

proficiency. Typically, before taking the test, 

individuals enroll in a training program offered by an 

accredited driving school that pairs students with a 

driving instructor who teaches them basic driving skills 

over the course of the required training hours (16 hours 

for K2). After that, the individual takes the official K2 

test. Individuals scoring over 90% pass; those that fail 

the test can retake it at a later date. Individuals who 

successfully pass the K2 test are then eligible to prepare 

and take the Subject 3 (K3) driving skills road test. 

The IoV-based driving-simulation testing system targets 

the K2 test only. It was adopted by the focal driving 

school in order to improve student performance on the 

actual test. The simulation system mimics an actual field 

test and vehicles are equipped with internet-enabled 

sensors and in-vehicle cameras. During the simulation 

test, the driving student performs various driving tasks, 

just as they would during the official test. The system 

automatically captures, tracks, and analyzes real-time 

data streams about the driving behaviors of individual 

students and provides feedback on the results of their 

driving tests directly following the simulation test (see a 

sample feedback report in Appendix A). From the 

student perspective, the system is smart because (1) it 

can detect and capture every error a driving student 

makes during the simulation test while performing 

driving tasks in an authentic field setting, and (2) it 

generates a real-time report immediately following the 

simulation test complete with the total score, details 

about the errors made, and photos of the student’s 

driving actions performed during the simulation test. 

From the driving school’s perspective, this smart service 

reduces operating costs by eliminating the need to 

provide human examiners during the simulation test and 

also adds value to the training program overall. Figure 1 

depicts the timeline of a typical K2 training program, the 

simulation test, and the official test. It also shows the 

metrics of the key variables in our study—Feedback 

Timing, Performance Metric 1, and Performance Metric 

2 (see our methods section for details). 

In this paper, we first examine whether the adoption of 

the IoV-based simulation testing system improves 

performance on the official driving test. We then 

investigate the role of the training schedule (e.g., the 

mean and the standard deviation of training session 

intervals) as the boundary condition of the simulation 

test effect. Finally, we evaluate whether the timing of 

the simulation test affects performance using the 

simulation results as the moderator. 

2 https://iot-analytics.com/top-10-iot-segments-2018-real-iot-

projects/ 
 

https://iot-analytics.com/top-10-iot-segments-2018-real-iot-projects/
https://iot-analytics.com/top-10-iot-segments-2018-real-iot-projects/
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Figure 1. The Timeline and Key Metrics 

 

Note: We mainly use the part within the red box in Figure 2 as our theoretical foundation in the current paper. 
 

Figure 2. Feedback Intervention Theory 

1.2 Literature and Theoretical 

Foundation 

Research on IoV-based smart services is limited in 

major business and transportation research journals. We 

conducted a comprehensive review and found an in-

depth understanding of the user impacts of smart 

services to be lacking (Lee & Lee, 2015). In particular, 

we found that most of the current literature focuses on 

technology evolution and prospective business 

applications (e.g., Lee & Lee, 2015; Wortmann & 

Flüchter, 2015). Both an overarching theoretical 

foundation and specific research models are needed to 

better understand the impacts of IoT services on users. 

Although recent design science research has proposed a 

few conceptual frameworks based on reflective learning 

theory (e.g., Müller, Rivera-Pelayo, & Heuer, 2012; 

Rivera-Pelayo et al., 2012), the frameworks are still too 
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broad to produce concrete propositions/hypotheses that 

can be tested by empirical studies. 

Furthermore, we found that existing empirical studies 

of driver behaviors are mainly based on data from 

onboard devices (OBDs) that are typically collected in 

batch mode. For example, transportation research has 

primarily focused on predicting driving risk/safety 

using OBD data and has found that specific driving 

behaviors (e.g., speeding, sudden braking, etc.) can 

better predict individuals’ driving risks (Paefgen et al., 

2014). The value of timely information derived from 

analyzing IoV data streams has not yet been 

investigated.  

To address these gaps in the literature, this paper 

adopts feedback intervention theory (Kluger & DeNisi, 

1996; see Figure 2) as the theoretical foundation and 

overarching framework of our research. Feedback 

intervention theory (FIT) is rooted in control theory, 

which posits that people change their behaviors when 

they are motivated by a performance gap between their 

current behavior and a goal. FIT suggests that such 

goals are hierarchically ordered on three levels—

namely, the self level, the focal-task level, and the task- 

detail level. Different feedback interventions (FIs) 

direct individuals’ attention toward different goal 

levels, which, in turn, influence behavioral 

performance through different mechanisms. For 

instance, velocity FIs concerning overall 

performance/progress impact the focal-task goal, 

which, in turn, affects overall task performance via the 

motivation mechanism—e.g., through an individual’s 

desire to fill the performance gap. In contrast, 

corrective FIs concerning behavioral errors motivate 

attention to task details, which improves performance 

through the learning mechanism—i.e., by mastering 

the skills needed to successfully perform the focal task. 

Finally, situational variables and task characteristics 

are the boundary conditions that allow FI cues to 

impact goals and, in the end, performance. 

We believe that FIT provides a solid theoretical 

foundation for studying the impacts of information 

derived from IoT data streams on individual users. The 

huge volume of IoT data on both physical objects and 

human behaviors is comprised of microdata that are 

aggregated to produce information useful for actual 

human applications. For instance, in our research 

context, IoV, microdata concerning the basic features 

of a car (e.g., brakes, speed, etc.) and human actions 

(e.g., head movements, directions of eyesight, etc.) can 

be aggregated to reflect a driver’s proficiency at the 

task-detail level—e.g., in terms of parking skill. 

Aggregating task details, in turn, reflects overall task 

performance—e.g., overall level of driving skills and, 

thus, probability of passing the driving skills field test. 

FIT’s specification of the three goal levels corresponds 

to the different levels of information that can be 

generated by aggregating IoT data streams and 

communicating their significance to users. 

Furthermore, FIT also indicates how IoT data streams 

may be used to create different FI cues aimed at 

improving performance through various mechanisms. 

For instance, in our research context, FIT suggests that 

information about parking errors would direct a 

driver’s attention toward understanding the correct 

steps needed to park a car, which, in turn, would 

improve performance the next time he or she attempted 

to park a car via the learning mechanism. 

In summary, there is a lack of theoretical development 

and empirical study of IoT-based smart services in the 

existing research. Our paper aims to fill this gap by 

adopting FIT as the theoretical foundation in the 

context of an IoV-based driving-simulation test in 

order to generate insights into how smart services 

based on IoV data streams impact individual users. We 

present two research questions: (1) Will an IoV-based 

simulation test significantly improve the official field 

test performance of driving license applicants? (2) 

Will the timing of the IoV-based simulation test and the 

number of feedback cues from the simulation jointly 

influence official field test performance? 

2 Hypotheses Development 

As illustrated in Figure 3a, we first examined the 

impact of the IoV-based driving-simulation test on 

official driving skills field test performance and then 

investigate the effect of associated boundary 

conditions—i.e., the interaction effect of the 

simulation test and the training schedule on official test 

performance. 

We predict that experience with the IoV-based 

simulation test will have a positive impact on official 

driving skills test performance. As discussed in the 

Introduction, IoV technology enables the simulation 

testing system to capture and analyze data streams 

generated from the sensors and the cameras installed in 

vehicles to produce and report simulation test results in 

real time. The results comprise both the total score a 

student receives on the simulation test and details of 

the errors made by the student during the simulation 

(see Appendix A). The results constitute the FI cues 

that we predict will impact on the student’s later 

performance on the official driving skills test. In 

particular, the total score earned on a driving- 

simulation test operates as a velocity FI cue about 

overall performance, which will activate the 

motivation mechanism by directing the student’s 

attention to the goal of the focal task—i.e., passing the 

official driving skills test. In contrast, information 

about errors made during the driving-simulation test 

serves as the corrective FI cue that will direct the 

driving student’s attention toward task details (e.g., the 

steps necessary to correctly park a car), which will 

improve official test performance through the learning 

mechanism—i.e., through mastering the skills needed 
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to pass the official test. In general, we predict that the 

immediate feedback cues provided by the simulation 

testing system will trigger both motivation and 

learning mechanisms that will improve performance 

on the official driving skills test. 

H1: Driving students who participate in the simulation 

test will perform better on the official driving 

skills field test than those who do not. 

We next propose that the simulation test will be more 

beneficial for driving students with a relatively regular 

training schedule (e.g., a small standard deviation of 

intervals between training sessions) than it will be for 

others. FIT suggests that there are boundary conditions 

such as situational variables or individual traits that 

moderate the impacts of FI cues on performance 

(Kluger & DeNisi, 1996). We focus on the moderating 

role of training regularity in the current study. Existing 

literature on learning suggests that regular learning or 

training enhances both mental and muscle memory and 

facilitates familiarity with knowledge and skills 

(Fleishman, 1972). In our research context, training 

regularity refers to the frequency with which driving 

students participate in training in order to acquire the 

knowledge and skills necessary to develop driving 

proficiency. The impact of corrective FI cues on 

learning task details depends on the individual’s prior 

knowledge and experience related to the focal task 

(Kluger & DeNisi, 1996). We anticipate that, 

compared with others, driving students who participate 

in regular training sessions will become more quickly 

familiar with the knowledge and skills needed to drive, 

will have more opportunity to improve driving skills, 

will be able to more efficiently correct errors identified 

by the simulation testing system, and will therefore 

have a lower probability of making errors during the 

official driving skills test. In short, we predict that 

regular training sessions will enhance the positive 

impact of the IoV-based simulation test on official test 

performance. 

H2: Regular training will positively moderate the 

impact of the simulation test on official test 

performance. 

 

 

Figure 3a. Research Model 1: Simulation Test, Training Schedule, and Test Performance 

 

Figure 3b. Research Model 2: Feedback Timing, Number of Cues, and Performance 

Timing of Simulation Test 

Time between the simulation test 

and the end of training 

Driving Test Performance 

Time needed to pass the K2 test 

after the simulation test 

The Number of FI Cues 

Number of corrective cues 

Driving-Simulation Test 

Joining the simulation test (0/1) 

Driving Test Performance 

Time needed to pass the K2 test 

after the end of training 

Training Schedule 

Mean / Std of interval 
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As shown in Figure 3b, we further examined the effect 

of the timing of the simulation test (i.e., feedback 

timing) on official test performance. The impact of 

feedback timing on performance has been extensively 

examined in the literature on learning and has 

produced mixed results (e.g., Butler, Karpicke, & 

Roediger, 2007). Overall, Kluger and DeNisi (1996) 

did not include an explicit notion of the role of 

feedback timing in FIT, probably because early 

literature on feedback did not emphasize feedback 

timing. However, FIT has identified the significance of 

task learning (in terms of task details and task 

characteristics), which is important for our 

understanding of the effect of feedback timing on task 

performance. Feedback timing influences task 

performance mainly by affecting how individuals 

absorb and memorize new knowledge and skills (i.e., 

the mechanism of task-detail learning in FIT). 

Furthermore, driving is a complex task that demands 

significant physical and mental effort (i.e., it is related 

to the task-complexity notion in FIT). We thus 

integrate recent literature on feedback timing, 

particularly concerning feedback timing in complex 

tasks, with FIT serving as the theoretical basis of our 

Hypothesis 3 below. In particular, we postulate that 

feedback timing influences task performance by 

affecting how details of complex tasks are mastered 

through the absorption of knowledge and skills and the 

retention of the task details in memory. Horneck 

(2016) examined feedback timing in the context of 

complex, multistep tasks (e.g., the maze game). He 

found that when performance feedback was given too 

early or too late, subjects had relatively poor task 

performance. In general, if feedback is given too early, 

subjects will not have enough time to absorb the 

knowledge through self-reflection. However, if 

feedback is given too late, subjects may forget what 

they learned. In either case, subjects will experience 

increased learning costs and/or cognitive load when 

processing feedback, potentially contributing to poor 

task performance. 

In our research context, learning how to drive is a 

complex task demanding both mental and physical 

effort; it requires the completion of a multisession 

training program, which may include a final simulation 

test. While the length of the training period may vary 

across individual driving students, the timing of the 

simulation test is exogenously determined by the 

system, based on the date the student is scheduled to 

take the official driving skills field test. While the 

general rationale about feedback timing in Thornock 

(2016) may also apply to our context, we predict that a 

higher number of days between the end of training and 

the simulation test will exert a positive effect on the 

official test performance because, given the 

complexity of both the driving task and the training 

pattern, students will benefit from having more time to 

digest driving knowledge and skills via self-reflection 

and the absorption of task details. As such, we predict 

that a longer temporal gap between the end of training 

and the simulation test will improve the processing of 

the FI cues by students and will thus improve 

performance on the official driving skills test. While it 

is plausible that later simulation test dates would result 

in students forgetting essential details of their training 

experience, which could negatively impact official test 

performance, in our research context, the driving 

school generally ensures a short temporal gap between 

the end of training and the official test. Therefore, we 

believe that memory loss is unlikely to be a factor 

associated with simulation test scheduling in our 

context and hypothesize: 

H3: The later the timing of the simulation test, the 

better the official test performance. 

We further predict an interaction effect between 

feedback timing and the number of corrective FI cues 

on official driving skills test performance. In our 

research context, the real-time analysis of IoT data 

streams enables immediate feedback in the form of 

corrective FI cues that we believe influence student 

performance on the official test. This is one of the key 

features of smart services. Hypothesis 1 proposes that, 

through the learning mechanism, providing FI cues 

will have a positive impact on task performance. We 

therefore examine the impact of the number of 

corrective FI cues (i.e., the number of errors made in 

the simulation tests) on task performance. We propose 

that the positive impact of delayed feedback timing on 

official test performance will be stronger for students 

who make more errors during the simulation test. That 

is, the greater the number of errors made during the 

simulation test, the stronger the positive impact of 

delayed feedback timing on the official test 

performance. Following FIT, the number of corrective 

cues will correspond to the number of task details that 

students will reflect upon following the simulation test, 

and this process of reflection will be further integrated 

into their driving-skills knowledge base. Providing a 

high number of corrective FI cues directly after a 

student completes training may be overwhelming 

because of the lack of time available for digesting the 

training materials via self-reflection. In contrast, if the 

same number of corrective cues are provided later, 

after the student has had time to process the basic 

training materials, we predict that the student will be 

better able to use feedback received during the 

simulation test to learn from their errors, which will 

likely improve performance on the official test. 

H4: The number of corrective FI cues provided by the 

simulation test will positively moderate the 

impact of feedback timing on official test 

performance. 
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3 Methodologies and Research 

Design 

3.1 Methodology and Research Setting 

We used a quasi-experimental method to test our 

hypotheses. The analysis unit of the study is the 

individual student of a driving school in an 

economically developed province in China. At present, 

this driving school has 30 different campuses, 44 

training sites, 700 coaches, and about 40,000 students. 

In China, individuals need to pass four subject tests in 

order to obtain a driver’s license. The Subject 1 (K1) 

and Subject 4 (K4) tests concern knowledge of driving 

laws and regulations. The Subject 2 (K2) test is a field 

test of driving skills and the Subject 3 (K3) test is a 

road test of driving skills. The tests are administered in 

order—for example, applicants must pass the Subject 

1 test before they are allowed to take the Subject 2 test, 

and so on.  

The driving school started using a K2 simulation 

testing system based on internet of vehicles (IoV) 

technology in July 2017. After completing the regular 

driving skills training program, students can make an 

appointment to use the simulation testing system. The 

simulation testing system fully simulates the 

experience and grading standards of the official 

examination. It can capture the driving action details of 

students in real time through onboard sensors and 

cameras and transfers information about students’ 

driving errors to the driving school. After completing 

the simulation test, students immediately receive a 

feedback report (see sample feedback report in 

Appendix A). The simulation testing system is 

designed to replicate the actual format of the official 

K2 driving test so that students know what to expect in 

advance and so that student driving skills can be better 

assessed. Because not every student takes the 

simulation test after completing training, the actual 

effects of the simulation testing system can be 

accurately assessed. 

3.2 Sample and Data 

Since our data end in August 2017 and the school 

began using the simulation testing system in early July 

2017, our sample period extends from May 2017 to 

August 2017, thus providing a temporally balanced 

data set (covering about two months before the 

introduction of the system and two months after). Our 

sample comprises all students enrolled in the K2 

training program from May 2017 to August 2017. 

Regarding our quasi-experimental design, the sampled 

students differ along two dimensions: (1) when they 

took the official test (i.e., before versus after the 

introduction of the smart simulation testing system), 

and (2) the application of the “treatment” (i.e., taking 

versus not taking the simulation test). Our data include 

three parts: simulation test data, student information 

data, and training data summarized below (details are 

given in Appendix B): 

1. Simulation test data are derived from the 

feedback report. They include the test date, test 

number, test score, error items, number of 

errors, deduction for each error, and so on.  

2. Student information data include the age and 

gender of the student, where the training took 

place (i.e., on which campus of the school), and 

the passing date for each subject test.  

3. Training data: After passing the K1 test, 

students train for the K2 test until they meet the 

training requirements of the driving school. 

Because students set their own schedules, each 

student’s training schedule is slightly different 

in terms of total length of the training period (in 

days), length of each training session, interval 

between training sessions, etc. The training data 

include details about the training schedule of 

each student. 

3.3 Variables  

Our first research question investigates whether the 

simulation test affects student performance on the 

official driving skills test. Thus, our dependent variable 

is the test performance of each student. Technical 

reasons prevented us from accessing test scores for each 

student, but we do know when each student actually 

passed the official K2 driving skills test. Official test 

date, length of each student’s training program, and the 

date of each student’s simulation test are reported in 

Appendix B and were largely determined by the 

following scheduling procedures: After enrolling in 

driving school, students must register for an official K2 

test date. The school then schedules the student’s 

training sessions based on this date, making sure that 

the end of the training period is as close as possible to 

the official test date. Therefore, students who take the 

simulation test will do so shortly before they take the 

official test—i.e, sometime between the last training 

session and the official K2 test date. The basic rationale 

of training scheduling training is based on giving 

students the opportunity to take the official test while 

they still have a “fresh” memory of their training. 

For our timing variable, we used the interval in days 

between the date of the last training session and the pass 

date of the official K2 driving skills test (defined as 

“Testday”) as the dependent variable measuring the 

performance of students on the K2 test. We assume that 

longer intervals indicate lower performance on the K2 

test because longer intervals suggest that the student 

may have taken the test multiple times before passing 

it. To test whether feedback timing affected test 

performance for students taking the simulation test, we 

examined how long after taking the simulation test it 
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took a student to pass the K2 test. So, the dependent 

variable we used is “Ptestday,” which equals the 

interval between the pass date of the K2 test and the 

simulation test date divided by the interval between the 

pass date of the K2 test and the date of the last training 

session.  

Our independent variables are: (1) whether the student 

took the simulation test, and (2) feedback timing. 

Whether the student took a simulation test is defined as 

“Simulation”—a dummy variable equals 1 if the 

student took the simulation test and 0 if the student did 

not take it. We used “Feedbackday” to measure the 

feedback timing of the simulation test. “Feedbackday” 

is the interval in days between the simulation test date 

and the date of the last training session. If the student 

took multiple simulation tests, we treated the median 

date of all the simulation test dates as the student’s 

simulation test date. 

Beyond this, we assessed whether the training schedule 

affected the relationship between the simulation test 

and official test performance. We used “Gapstd,” the 

standard deviation of the interval between different 

training sessions (in minutes), and “Gapmean,” the 

mean of the interval between different training sessions 

(in minutes), to measure the different training 

schedules. We also tested whether feedback 

information affected the relationship between feedback 

timing and test performance. We used 

“Falsenum_mean” to measure the feedback 

information of the simulation test. “Falsenum_mean” is 

the mean number of errors made in each simulation test 

taken by a student (some students took multiple 

simulation tests). 

Many factors determine a student’s likelihood of taking 

one or more simulation tests and these factors may also 

correlate with official test performance. Our estimated 

effect of the simulation test on official test performance 

is subject to selection biases. To mitigate this concern, 

we matched each treated student (students who took 

one or more simulation tests) with a control student 

who did not take the simulation test and used the 

matched sample throughout our regression analyses. 

We used the propensity score matching (PSM) method 

to construct our matched sample. We estimated the 

following logit model using all student data following 

the use of the simulation testing system (July 2017 and 

August 2017): 

𝐿𝑜𝑔𝑖𝑡(𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑖) = 𝛼 + 𝛽1 ∗ 𝐿𝑛(𝐴𝑔𝑒𝑖) 

+ 𝛽2 ∗ 𝐹𝑒𝑚𝑎𝑙𝑒𝑖 + 𝛽3 ∗ 𝐿𝑛(𝑇𝑟𝑎𝑖𝑛𝑑𝑎𝑦𝑖) 

+ 𝛽4 ∗ 𝐿𝑛(𝑆𝑢𝑏2𝑝𝑒𝑟𝑖𝑜𝑑𝑖) +
𝑐𝑜𝑛𝑡𝑟𝑜𝑙(𝑆𝑐ℎ𝑜𝑜𝑙 𝑐𝑎𝑚𝑝𝑢𝑠, 𝑇𝑖𝑚𝑒) + 𝜀                        (1) 

where Simulationi equals 1 if student i took the 

simulation test and 0 otherwise. We controlled for the 

log of student age (𝐿𝑛(𝐴𝑔𝑒𝑖)), gender (𝐹𝑒𝑚𝑎𝑙𝑒𝑖), the 

log of total training days (𝐿𝑛(𝑇𝑟𝑎𝑖𝑛𝑑𝑎𝑦𝑖)), the log of 

total duration of each training session 

(𝐿𝑛(𝑆𝑢𝑏2𝑝𝑒𝑟𝑖𝑜𝑑𝑖)), and School campus and Time as 

the factors that might affect a student’s likelihood of 

taking a simulation test. See Appendix C for 

definitions of the variables. 

3.4 Summary Statistics 

Table 1 presents the summary statistics of our final 

sample consisting of 2,812 students. All continuous 

variables were winsorized at the 1% level at both tails 

of their distributions. Beyond this, we took the 

logarithm of all the continuous variables with absolute 

values to mitigate the influence of distribution 

skewness and centralized them to mitigate the effect of 

multicollinearity between the variables after adding the 

interaction terms. Panel A of Table 1 presents the 

summary statistics of the variables after winsorization. 

Panel B of Table 1 presents the summary statistics of 

the continuous variables after centering. 

In our final sample, 62.2% of the students were female. 

The average age of the students was 29. It took, on 

average, 38 days after the last training session to pass 

the K2 test. On average, students trained for 1187 

minutes (19.78 hours) over 25 training days and the 

mean interval between each training session was 9492 

minutes (6.59 days). Among students who took the 

simulation test, the mean interval between the 

simulation test date and the date of the last training 

session was 34 days, and during each simulation test, 

students made an average of 3.57 errors. The 

correlation coefficient matrix of each variable in our 

regression models is shown in Table 2. 

4 Empirical Results 

4.1 The Baseline Model 

Our baseline regression specification is written as 

follows: 

𝐿𝑛(𝑇𝑒𝑠𝑡𝑑𝑎𝑦𝑖) = 𝛼 + 𝛽1 ∗ 𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑖 +
𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑠 + 𝜀                   (2) 

where Ln(Testdayi) is the log of the time interval 

between the last training session and the K2 test pass 

date in days. Simulationi is a dummy variable that 

equals 1 if student i took simulation test and 0 

otherwise. We controlled the log of student age 

(𝐿𝑛(𝐴𝑔𝑒𝑖)), gender (𝐹𝑒𝑚𝑎𝑙𝑒𝑖 ), log of total training 

days (𝐿𝑛(𝑇𝑟𝑎𝑖𝑛𝑑𝑎𝑦𝑖)), and log of the total duration of 

each training session ( 𝐿𝑛(𝑆𝑢𝑏2𝑝𝑒𝑟𝑖𝑜𝑑𝑖) ) in our 

regression. We also included campus-fixed effects to 

control for the impact of unobservable campus 

characteristics; time-fixed effects are included to 

account for the aggregate time variation in K2 test 

performance. 

We present baseline regression results in Table 3, 

where Column 1 presents the results without control 

variables and Column 2 presents the results with 
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control variables. Both columns include campus- and 

time-fixed effects. The coefficients of Simulation in 

both columns are negative and statistically significant 

(t-statistics = -2.849 and -2.883 in Columns 1 and 2, 

respectively), suggesting that, on average, compared 

with students who did not take simulation tests, 

students who took the simulation test passed the K2 

test 1.09 days (=e0.09) sooner. The coefficients of the 

control variables show that, on average, the older the 

student, the more time it took to pass the test. As a 

group, females passed the test more quickly than 

males, and, on average, the more days a student 

trained, the more quickly he or she passed the test. The 

incremental percentage of adding the Simulation 

variables of R2 is around 1.89%—in other words, 

adding the Simulation variables increased the R2 of the 

regression model from 13.21% to 13.46%. 

In order to further address the potential endogeneity 

issue, we also selected the shortest distance between 

each training school campus and the main campus as 

the instrumental variable (IV) and conducted two-stage 

least squares (2SLS) analysis. The simulation system 

was installed at the main campus only; trainees could 

decide whether or not to take simulation test based, in 

part, on the distance between their respective training 

school campus and the main campus.  

This distance, however, would not affect trainee test 

performance, so the distance is related to simulation 

possibility and is orthogonal to the test performance. 

Before conducting the analysis, we first used the 

sample following PSM and conducted the test of 

endogeneity (DWH test). Results showed that the 

variables are exogenous, suggesting that the 

endogenous problem in our sample is not serious.  

Table 1. Summary Statistics 

Variables N Mean SD Min Median Max 

Panel A summary statistics of the variables after winsorization 

Testday 2812 37.750 33.340 3.000 25.000 160.000 

Simulation 2812 0.500 0.500 0.000 0.500 1.000 

Gapmean 2812 9492.000 11000.000 802.000 5502.000 62000.000 

Gapstd 2812 9956.000 15000.000 7.778 4400.000 90000.000 

Age 2812 29.050 7.971 18.000 28.000 50.000 

Female 2812 0.622 0.485 0.000 1.000 1.000 

Trainday 2812 25.020 27.220 3.000 15.000 152.000 

Sub2period 2812 1187.000 446.200 693.000 1073.000 5060.000 

Ptestday 1406 0.100 0.120 0.006 0.063 0.667 

Feedbackday 1406 34.200 33.100 1.000 22.000 173.000 

Falsenum_mean 1406 3.573 1.742 1.000 3.250 9.500 

Panel B summary statistics of the variables after logarithm and centering 

Ln(Testday) 2812 0.000 0.855 -2.178 -0.058 1.798 

Ln(Gapmean) 2812 0.000 1.021 -1.954 -0.028 2.400 

Ln(Gapstd) 2812 0.000 1.612 -6.210 0.128 3.141 

Ln(Age) 2812 0.000 0.269 -0.442 0.000 0.580 

Ln(Trainday) 2812 0.000 0.943 -1.669 -0.059 2.256 

Ln(Sub2period) 2812 0.000 0.310 -0.485 -0.048 1.503 

Ptestday 1406 0.000 0.120 -0.095 -0.038 0.566 

Ln(Feedbackday) 1406 0.000 0.946 -3.118 -0.027 2.036 

Ln(Falsenum_mean) 1406 0.000 0.497 -1.156 0.023 1.096 

Notes: The sample includes both students who took the simulation test after July 2017 and the matched students who did not take the simulation 

test. We winsorized all the continuous variables at a 1% level at both tails. Panel A presents the summary statistics of the variables after 

winsorization. We then took the logarithm of all the continuous variables with absolute values to mitigate the influence of distribution skewness, 
and centralized all variables used in our regressions to mitigate the effect of multicollinearity between the variables after adding the interaction 
terms. Panel B presents the summary statistics of the continuous variables after centering 
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Table 2. Correlation Table 

  Ln(Testday) Simulation Ln(Gapmean) Ln(Gapstd) Ln(Age) Female Ln(Trainday) Ln(Sub2period) 

Ln(Testday) 1 
       

Simulation -0.045**  1 
      

Ln(Gapmean) -0.035*  0.029  1 
     

Ln(Gapstd) -0.067***  0.018  0.838***  1 
    

Ln(Age)  0.180*** -0.024  0.065***  0.052*** 1 
   

Female -0.147*** -0.030 -0.028 -0.001 0.038**  1 
  

Ln(Trainday) -0.075***  0.003  0.897***  0.840*** 0.079*** -0.011 1 
 

Ln(Sub2period) -0.005  0.043** -0.051***  0.058*** 0.030 -0.039** 0.136*** 1 

Notes: This table presents the correlation coefficient matrix of each variables in our regression models. The symbols ***, **, and * denote 
significance at the 1%, 5%, and 10% levels, respectively. 

Table 3. Effect of the Simulation Test on K2 Test Performance 

 1 

Ln(Testday) 

2 

Ln(Testday) 

Simulation -0.093*** 

(-2.849) 

-0.091*** 

(-2.883) 

Ln(Age)  0.605*** 

(10.541) 

Female  -0.278*** 

(-8.792) 

Ln(Trainday)  -0.056*** 

(-3.369) 

Ln(Sub2period)   -0.085 

 (-1.475) 

Intercept -0.043 

(-0.720) 

  0.099 

 (1.571) 

Campus- and time-fixed effects   Yes     Yes 

No. of Observations    2812    2812 

Adj. R-square   0.075    0.135 

Notes: The sample includes both students who took the simulation test after July 2017 and the matched students who did not take the simulation 

test. Ln(Testday) is the log of time interval between the last training session and the K2 test pass date in days. Simulation is a dummy variable that 
equals 1 if student i took the simulation test and 0 otherwise. Ln(Age) is the log of student age, Female is a dummy variable that equals 1 if the 

student is female. Ln(Trainday) is the log of total days between the date of the first training session and the date of the last training session. 

Ln(Sub2period) is the log of the sum of each training period in minutes. We included campus-fixed effects to control for the impact of unobservable 
campus characteristics and time-fixed effects to account for the aggregate time variation in K2 test performance. The t-statistics are in parentheses. 

The symbols ***, **, * denote significance at the 1%, 5%, and 10% levels, respectively. 

Following this, we conducted the DWH test using the 

sample prior to PSM; the results are presented in Table 

4. For the first-stage result, the longer the distance, the 

less likely it was that students would take the 

simulation test. For the second-stage result, the 

coefficient of 𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛̂  remains significantly 

negative, suggesting that students who took the 

simulation test generally passed the K2 test more 

quickly. 

4.2 Difference-in-Difference Analysis 

To alleviate endogeneity concerns about our baseline 

results, we used difference-in-difference (DID) analysis 

to test whether the simulation testing system improved 

K2 test performance. The external shock we employed 

was the use of the simulation testing system beginning 

in July 2017. Therefore, we defined the two months 

prior to the introduction of the simulation testing system 

(May-June 2017) as the “before” period and the two 

months after the introduction of the simulation testing 

system (July-August 2017) as the “after” period.  
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Table 4. Effect of the Simulation Test on K2 Test Performance: IV Test 

Dependent variable 

1 

first-stage 

simulation 

2 

second-stage 

Ln(Examday) 

Distance -0.003*** 

(-16.136) 

 

Simulation̂      -0.659*** 

(-3.678) 

Ln(Age) 0.015 

(1.465) 

0.464*** 

(16.704) 

Female -0.003 

(-0.655) 

-0.262*** 

(-17.556) 

Ln(Trainday) -0.002 

(-0.709) 

-0.133*** 

(-16.713) 

Ln(Sub2period) 0.048*** 

(5.566) 

0.065** 

(2.423) 

Intercept  0.002 

(0.557) 

                            -0.031* 

(-1.720) 

Time fixed effects   Yes Yes 

No. of Observations 12850                             12850 

Adj. R-square  0.160                              0.030 

Notes: The sample includes all the students who pass the K2 exam between May 2017 and August 2017. Ln(Testday) is the log of time interval 
between the last training session and the K2 test pass date in days. Simulation is a dummy variable that equals 1 if student i took the simulation 

test and 0 otherwise. Distance the instrumental variable (IV), which is defined as the shortest distance between students’ respective training 

school campuses and the main campus. Ln(Age) is the log of student age, Female is a dummy variable that equals 1 if the student is female. 
Ln(Trainday) is the log of total days between the date of the first training session and the date of the last training session. Ln(Sub2period) is the 

log of the sum of each training period in minutes. We included time-fixed effects to account for the aggregate time variation in K2 test 

performance. The t-statistics are in parentheses. The symbols ***, **, * denote significance at the 1%, 5%, and 10% levels, respectively. 

During the before period, no individuals took the 

simulation test because there was no simulation testing 

system available. So, we defined the “treatment” and 

“control” samples based on the campus on which 

students were enrolled. If students had access to the 

simulation test in July 2017 and later, then we treated all 

the students as the “treatment” group. Students that did 

not take the simulation test in July 2017 or later were 

treated as the “control” group. Also, to mitigate the 

selection bias concern, we used the PSM method to 

construct our sample. The logistic model to match the 

control sample with the treatment sample is as follows: 

𝐿𝑜𝑔𝑖𝑡(𝐶𝑎𝑚𝑝𝑢𝑠𝑠𝑖𝑚𝑢𝑖) = 𝛼 + 𝛽1 ∗ 𝐿𝑛(𝐴𝑔𝑒𝑖) 

+ 𝛽2 ∗ 𝐹𝑒𝑚𝑎𝑙𝑒𝑖 + 𝛽3 ∗ 𝐿𝑛(𝑇𝑟𝑎𝑖𝑛𝑑𝑎𝑦𝑖) 

+ 𝛽4 ∗ 𝐿𝑛(𝑆𝑢𝑏2𝑝𝑒𝑟𝑖𝑜𝑑𝑖) + 𝑐𝑜𝑛𝑡𝑟𝑜𝑙(𝑇𝑖𝑚𝑒) + 𝜀    (3) 

where Campussimui is a dummy variable that equals 1 

if students on a specific campus took the simulation test 

after July 2017 and 0 otherwise. The control variables in 

Model (3) are the same as Model (2). Because 

Campussimui is highly correlated with the school 

campus dummy, we only included time-fixed effects in 

this model.  

The DID analysis results presented in Table 5 show that, 

on average, it took more time for both the treatment and 

the control groups to pass the K2 test after 

implementation of the simulation testing system. 

However, in the two months following the introduction 

of the simulation test, the difference in Testday between 

the treatment group and the control group changed from 

1.395 days to -0.526 days, suggesting that, as a whole, 

students taking the simulation test passed the test more 

quickly than students who did not. The difference is 

significant at a 10% level (single-tail test). The analysis 

confirms our baseline results that the simulation testing 

system improves test performance. 
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Table 5. Difference-in-Difference Analysis 
 

Testday 

Before After Diff-in-diff 

Control 29.577 37.887 
 

Treated 30.972 37.361 

Diff (T-C) 1.395 -0.526 -1.921* 

Notes: The sample includes matched treatment and control groups using the PSM method. The original treatment group comprised students on 

campuses that had access to the simulation test in July 2017 and later. The original control group was made up of students on campuses that did 
not have access to the simulation test in July 2017 or later. We matched the original control group with the treatment group using the PSM 

method. The Before period includes the two months before the simulation testing system was implemented, May 2017 and June 2017. The After 

period includes the two months after the simulation testing system was implemented, July 2017 and August 2017. The symbols ***, **, * denote 
significance at the 1%, 5%, and 10% levels, respectively. Our concern is whether the diff-in-diff is significantly negative, so the difference test 

is a one-tail test. 

4.3 Moderating Effects of Training 

Schedule Differences 

To investigate whether different student training 

schedules affected the relationship between the 

simulation test and test performance, we estimated the 

following model: 

𝐿𝑛(𝑇𝑒𝑠𝑡𝑑𝑎𝑦𝑖) = 𝛼 + 𝛽1 ∗ 𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑖 + 𝛽2 ∗

𝐿𝑛(𝐺𝑎𝑝𝑚𝑒𝑎𝑛𝑖) (𝑜𝑟 𝐿𝑛(𝐺𝑎𝑝𝑠𝑡𝑑𝑖)) + 𝛽3 ∗

𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑖 × 𝐿𝑛(𝐺𝑎𝑝𝑚𝑒𝑎𝑛𝑖) (𝑜𝑟 𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑖 ×

𝐿𝑛(𝐺𝑎𝑝𝑠𝑡𝑑𝑖)) + 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑠 + 𝜀                                   (4) 

where 𝐿𝑛(𝐺𝑎𝑝𝑚𝑒𝑎𝑛𝑖) is the log of mean of interval in 

minutes between each training session and 

𝐿𝑛(𝐺𝑎𝑝𝑠𝑡𝑑𝑖) is the log of standard deviation of interval 

in minutes between each training session. We 

determined that a smaller mean of the gaps between 

training sessions indicated more intensive training, and 

that a smaller standard deviation of the gaps between 

training sessions indicated more regular training. We 

used these two variables to measure student training 

schedules. Control variables are the same as the 

variables in Model (2). We also included campus- and 

time-fixed effects in our regressions. 

Table 6 presents the regression results of Model (4). The 

variable used to measure different training schedules in 

Columns 1 and 2 is 𝐿𝑛(𝐺𝑎𝑝𝑚𝑒𝑎𝑛𝑖) and 𝐿𝑛(𝐺𝑎𝑝𝑠𝑡𝑑𝑖) 

in Columns 3 and 4. Columns 1 and 3 are results without 

control variables and Columns 2 and 4 present the 

results with control variables. All columns include 

campus- and time-fixed effects. The coefficients of 

interaction terms are all negative but insignificant, 

suggesting that, on average, different training schedules 

had no significant effect on the relationship between the 

simulation test and official test performance. The R2 of 

the regression models increased by 0.52% and 0.15%, 

respectively, after adding the moderating variables 

𝐿𝑛(𝐺𝑎𝑝𝑚𝑒𝑎𝑛𝑖) and 𝐿𝑛(𝐺𝑎𝑝𝑠𝑡𝑑𝑖). 

4.4 Feedback Timing and Test 

Performance 

To investigate whether feedback timing affects test 

performance for the students who took the simulation 

test, we ran the following regression model: 

𝑃𝑡𝑒𝑠𝑡𝑑𝑎𝑦𝑖 = 𝛼 + 𝛽1 ∗ 𝐿𝑛(𝐹𝑒𝑒𝑑𝑏𝑎𝑐𝑘𝑑𝑎𝑦𝑖) +
𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑠 + 𝜀                                                            (5) 

Where 𝑃𝑡𝑒𝑠𝑡𝑑𝑎𝑦𝑖  measures the time it takes to pass the 

K2 test after the simulation test and equals the interval 

between the K2 test pass date and the simulation test 

date divided by the interval between the K2 test pass 

date and the date of the last training session. 

𝐿𝑛(𝐹𝑒𝑒𝑑𝑏𝑎𝑐𝑘𝑑𝑎𝑦𝑖) is the log of the interval in days 

between the simulation test date and the date of the last 

training session. Control variables are the same as the 

variables in Model (2), and we also included campus- 

and time-fixed effects in our regression. Our sample 

here comprises the students who took the simulation 

tests in our final sample. 

Table 7 presents the regression results of Model (5). 

Column 1 presents the results without control variables 

and Column 2 presents the results with control 

variables. All columns include campus- and time-fixed 

effects. The coefficients of Ln(Feedbackday) are all 

significantly negative, suggesting that, on average, the 

longer the interval between the simulation test and the 

last training session, the less time it took to pass the 

official driving skills test after taking the simulation 

test. It takes time for students to digest skills learned 

during the training period. Therefore, we suspect that 

the long interval between the simulation test and final 

training session gave students enough time to fully 

understand and digest the driving skills they learned, 

allowing them to then quickly pass the official test. 

Compared with the models using control variables 

only, adding Ln(Feedbackday) increased the R2 of the 

regression model by around 217.17%. 
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Table 6. Moderating Effect of Different Training Schedules 

 1 

Ln(Testday) 

2 

Ln(Testday) 

3 

Ln(Testday) 

4 

Ln(Testday) 

Simulation -0.092*** 

(-2.822) 

-0.093*** 

(-2.917) 

-0.092*** 

(-2.802) 

-0.091*** 

(-2.871) 

Ln(Gapmean) -0.021 

(-0.915) 

0.065 

(1.469) 

  

Simulation×Ln(Gapmean) -0.013 

(-0.436) 

-0.015 

(-0.508) 

  

Ln(Gapstd)   -0.025* 

(-1.748) 

-0.006 

(-0.320) 

Simulation×Ln(Gapstd)   -0.003 

(-0.135) 

-0.008 

(-0.454) 

Ln(Age)  0.607*** 

(10.574) 

 0.604*** 

(10.521) 

Female  -0.278*** 

(-8.781) 

 -0.278*** 

(-8.796) 

Ln(Trainday)  -0.114** 

(-2.416) 

 -0.040 

(-1.347) 

Ln(Sub2period)  -0.052 

(-0.838) 

 -0.089 

(-1.533) 

Intercept -0.037 

(-0.623) 

0.090 

(1.432) 

-0.041 

(-0.687) 

0.098 

(1.567) 

Campus- and time-fixed effects Yes Yes Yes Yes 

No. of Observations 2812 2812 2812 2812 

Adj. R-square 0.077 0.135 0.078 0.135 

Notes: The sample includes both students who took the simulation test after July 2017 and matched students who did not take the simulation 

test. Ln(Testday) is the log of the time interval between the last training session and the K2 test pass date in days. Simulation is a dummy variable 
that equals 1 if student i took the simulation test and 0 otherwise. Ln(Gapmean) is the log of the mean interval in minutes between each training 

session. Ln(Gapstd) is the log of the standard deviation in minutes of the interval between each training session. Ln(Age) is the log of student 

age, Female is a dummy variable that equals 1 if the student is a female. Ln(Trainday) is the log of total days between the first training session 
and the last training session. Ln(Sub2period) is the log of the duration of each training session in minutes. The variable used to measure different 

training schedules in Columns 1 and 2 is Ln(Gapmean) and Ln(Gapstd) in Columns 3 and 4. Columns 1 and 3 are results without control variables 

and Columns 2 and 4 present the results with control variables. All columns include campus- and time-fixed effects. The t-statistics are in 
parentheses. The symbols ***, **, * denote significance at the 1%, 5%, and 10% levels, respectively. 

Table 7. The Effect of Feedback Timing on Test Performance 

 Column 1 

Ptestday 

Column 2 

Ptestday 

Ln(Feedbackday) -0.080*** 

(-20.951) 

-0.081*** 

(-20.886) 

Ln(Age)  0.014 

(1.536)  

Female  -0.014*** 

(-2.839)  

Ln(Trainday)  0.009*** 

(3.416)  

Ln(Sub2period)  -0.002 

(-0.298)  

Intercept 0.051*** 

(5.131) 

0.059*** 

(5.453) 

Campus- and time-fixed effects Yes Yes 

No. of Observations. 1406 1406 

Adj. R-square 0.491 0.500 

Notes: The sample includes students who took the simulation tests in our final sample. Ptestday is the interval between the K2 test pass date and 
the simulation test date divided by the interval between the K2 test pass date and the date of the last training session. Ln(Feedbackday) is the log 

of the interval in days between the simulation test date and the date of the last training session. Ln(Age) is the log of student age, Female is a 

dummy variable that equals 1 if the student is a female. Ln(Trainday) is the log of total days between the first training session and the last training 
session. Ln(Sub2period) is the log of the duration of each training session in minutes. Column 1 presents results without control variables and 

Column 2 us the results with control variables. All columns include campus- and time-fixed effects. The t-statistics are in parentheses. The 
symbols ***, **, * denote significance at the 1%, 5%, and 10% levels, respectively. 
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Table 8. Moderating Effect of Feedback Information 

 1 

Ptestday 

2 

Ptestday 

3 

Ptestday 

4 

Ptestday 

Ln(Feedbackday) -0.080*** 

(-21.156) 

-0.081*** 

(-21.054) 

-0.071*** 

(-13.418) 

-0.072*** 

(-13.676) 

Ln(Falsenum_mean) 0.013*** 

(2.781) 

0.010** 

(1.978) 

  

Ln(Feedbackday) 

 × Ln(Falsenum_mean) 

-0.020*** 

(-2.794) 

-0.020*** 

(-2.861) 

  

Falsenumdummy 

 

  0.011** 

(2.465) 

0.008* 

(1.772) 

Ln(Feedbackday) × Falsenumdummy   -0.017** 

(-2.242) 

-0.016** 

(-2.221) 

Ln(Age)  0.012 

(1.376) 

 0.013 

(1.444) 

Female  -0.012** 

(-2.428) 

 -0.012** 

(-2.497) 

Ln(Trainday)  0.009*** 

(3.352) 

 0.009*** 

(3.286) 

Ln(Sub2period)  -0.002 

(-0.225) 

 -0.002 

(-0.215) 

Intercept 0.044*** 

(4.579) 

0.053*** 

(4.872) 

0.040*** 

(4.076) 

0.050*** 

(4.489) 

Campus- and time-fixed effects Yes Yes Yes Yes 

No. of Observations 1406 1406 1406 1406 

Adj. R-square 0.500 0.508 0.497 0.505 

Notes: The sample includes students who took the simulation tests in our final sample. Ptestday is the interval between the K2 test pass date and 

the simulation test date divided by the interval between the K2 test pass date and the date of the last training session. Ln(Feedbackday) is the log 
of interval days between the simulation test date and the date of the last training session. Ln(Falsenum_mean) is the log of the mean number of 

errors made during the simulation tests. Falsenumdummy is a dummy variable that equals 1 if the mean of errors during the simulation tests 

(Falsenum_mean) of student i is larger than the median of the sample (treatment sample) and 0 otherwise. Ln(Age) is the log of student age, 
Female is a dummy variable that equals 1 if the student is a female. Ln(Trainday) is the log of total days between the date of the first training 

session and the date of the last training session. Ln(Sub2period) is the log of the sum of each training period in minutes. Columns 1 and 3 are 

results without control variables and Columns (2) and (4) present the results with control variables. All columns include campus- and time-fixed 
effects. The t-statistics are in parentheses. The symbols ***, **, * denote significance at the 1%, 5%, and 10% levels, respectively. 

4.5 Moderating Effects of Feedback 

Information 

To assess whether the feedback information affected 

the relationship between feedback timing and test 

performance, we used Ln(Falsenum_mean), which is 

the log of the mean number of errors made during the 

simulation tests, in our regression model to measure 

the feedback information. Our regression model is as 

follows: 

𝑃𝑡𝑒𝑠𝑡𝑑𝑎𝑦𝑖 = 𝛼 + 𝛽1 ∗ 𝐿𝑛(𝐹𝑒𝑒𝑑𝑏𝑎𝑐𝑘𝑑𝑎𝑦𝑖) 

+ 𝛽2 ∗ 𝐿𝑛(𝐹𝑎𝑙𝑠𝑒𝑛𝑢𝑚𝑚𝑒𝑎𝑛𝑖
) 

+ 𝛽1 ∗ 𝐿𝑛(𝐹𝑒𝑒𝑑𝑏𝑎𝑐𝑘𝑑𝑎𝑦𝑖) × 𝐿𝑛(𝐹𝑎𝑙𝑠𝑒𝑛𝑢𝑚𝑚𝑒𝑎𝑛𝑖
) 

+ 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑠 + 𝜀                                                        (6) 

Table 8 presents the regression results of Model (6). 

Column 1 presents the results without control variables and 

Column 2 presents the results with control variables. All 

columns include campus- and time-fixed effects. The 

coefficients of Ln(Feedbackday) are both significantly 

negative and the coefficients of the interaction term 

Ln(Feedbackday) × Ln(Falsenum_mean) are both 

significantly negative. The results show that the more 

errors the student made in the simulation test, the 

stronger the negative relation between feedback timing 

and test performance. We replaced Ln(Falsenum_mean) 

with Falsenumdummy and ran Model (6) again. 

Falsenumdummy is a dummy variable that equals 1 if 

the mean of errors during the simulation tests 

(Falsenum_mean) of student i is larger than the median 

of the sample (treatment sample), and 0 otherwise. The 

results are shown in Columns 3 and 4 of Table 8. 

Furthermore, we determined that the coefficients of 

Ln(Feedbackday) and the interaction terms are all 

significantly negative, confirming our results. 

Compared with the model with control variables and 

main effect, adding moderating variables increased the 

R2 of the regression model by around 1.58% for 

Ln(Falsenum_mean) and 1.00% for Falsenumdummy. 

Presumably, students who make higher numbers of 

errors in the simulation test have relatively poor driving 

skills. Their need to spend time digesting and absorbing 

the information learned during training may therefore be 

higher. We thus suspect that the digestion effect of 

feedback time is more significant for these students. 
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5 Discussion 

5.1 Theoretical Implications 

Drawing on the theory of feedback intervention, the 

current research examines the impact of a smart 

simulation testing system on individual students in the 

context of a driving school supported by internet of 

vehicles (IoV) technology. Our research makes a 

number of theoretical contributions to the smart 

services literature, in general, and to research on the 

impact of smart technologies on individual users’ task 

performance, in particular. 

First, we contribute to the literature on service science 

by focusing on the smart element enabled by the 

internet of things (IoT) used in a service context. We 

postulate that the data streams generated in IoT 

technologies can serve as the foundation to invent new 

and smart services that at least partially replace human 

intelligence in a standard service setting and, more 

importantly, exert significant influence on 

performance outcomes. In our research context, the 

simulation test is a standard service setting where 

driving students perform a predefined set of actions 

during the course of a standard test and receive 

standard evaluations of their task performance. The 

service is smart because it provides feedback that is 

usually offered by human coaches based on real-time 

data streams from sensors and cameras installed in a 

vehicle using IoV technology. Real-time data analytics 

provide feedback on both overall task performance and 

diagnostic information about task details. Our 

empirical study demonstrates that feedback from the 

smart service significantly impacts student 

performance on the official driving skills field test 

necessary to receive a driver’s license in China. Our 

research thus provides initial evidence of the value of 

smart services in this context. 

Second, we focus on the impacts of smart IoT 

technologies on individual users and introduce 

feedback intervention theory (FIT) as the overarching 

theoretical foundation for examining the impacts of 

IoT-based smart services on individuals’ task 

performance. Following FIT, we theorize two 

mechanisms underlying the hypothesized effect: the 

motivation mechanism and the learning mechanism, 

which correspond, respectively, to the two types of FI 

cues—velocity cues and corrective cues. In our 

research context, these two types of cues take the form 

of overall simulation test scores and the specific errors 

made during the test, respectively. We theorize that 

this feedback from the smart test-simulation system 

has a positive impact on students’ official driving skills 

test performance. Our results support the validity of 

these hypothesized impacts. 

Third, we adapt FIT and propose feedback timing as an 

antecedent of task performance. Moreover, we also 

propose an interaction effect between feedback timing 

and the number of feedback cues related to task details. 

Feedback timing and the number of feedback cues 

were not explicitly discussed in the original FIT 

framework. However, in the context of a smart service, 

the rich data streams generated from IoT technology 

can enable a large quantity of feedback cues at a 

granular level. Also, the real-time nature of data 

streams implies that feedback can be provided 

anytime. Therefore, both the timing and the amount of 

feedback should be optimized to fit individuals’ ability 

to process the information. Following the fundamental 

notion of task-details learning in FIT, we developed 

hypotheses regarding the impact of feedback timing 

and its interaction with the number of feedback cues in 

the context of the smart simulation testing system. 

Feedback timing is defined as the time elapsed 

between the end of driving school training and the 

simulation test event, while the number of feedback 

cues comprises the number of errors made by a student 

during the simulation test. We found that both 

feedback timing and its interaction with the number of 

cues significantly influenced student performance on 

the official driving skills test. 

5.2 Managerial Implications 

Our findings also have managerial implications for the 

design and management of IoT-based smart services—

for example, the use of real-time data streams from IoV 

for the purpose of smart service innovation. 

First, our research shows that smart services can offset 

the high costs of human capital by partially replacing 

human intelligence—in our context, through replacing 

human coaching during the simulation test. According 

to our interviews with both the director of the driving 

school and coaching representatives, simulation testing 

offers an effective means of better preparing students 

for the official driving skills test. The smart system 

provides students with additional opportunities to 

perform tasks in an authentic testing scenario, which 

effectively facilitates the self-diagnosis of their driving 

skills. Therefore, this system improves the official test 

performance of driving school students, increases the 

turnover volume of the driving school, and saves 

human  time and energy, which can then be invested in 

the training of additional students. Finally, according 

to our interviews with the students, they perceived the 

simulation testing system to be a sufficiently smart and 

important complement to traditional face-to-face 

coaching methods because it offers students additional 

learning options and thereby contributes to a diverse 

learning environment. 

Second, our results also have implications for 

designing smart services, in general, and smart 

feedback, in particular. Our research demonstrates not 

only the importance of the form of feedback (overall 

score vs. detailed summary of errors) for influencing 
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performance outcomes (official test success), but show 

that the timing and the quantity of feedback are also 

crucial for performance outcomes. Therefore, 

developers and managers of smart IoT applications 

should pay attention to all these key design factors to 

make their services/feedback smarter—i.e., more 

personalized toward the heterogeneous needs of users. 

The key is to reach an optimal trade-off between giving 

users enough time to adequately digest and process 

their training while also making sure that user memory 

is fresh and active enough to effectively perform 

critical tasks. 

6 Limitation and Future Research 

Directions 

Our research has a number of limitations. First, this 

research primarily focuses on the context of IoV-based 

smart services (simulation tests). Future research is 

needed to evaluate the generalizability of our research 

in other IoT scenarios—for example, in the area of 

health care, our research could be used to  test the 

impact of feedback interventions on patient attempts to 

integrate healthy habits. Second, our research model 

only covers part of the FIT framework. Future research 

could examine the role of other FIT elements such as 

higher-level motivations (i.e., self-realization—the 

self level in feedback intervention theory) in the 

context of IoT-based smart services. Third, we adopted 

a quasi-experimental design in our study based on the 

nature of the secondhand data we used. We adopted the 

PSM method to minimize possible causality issues 

such as sample heterogeneity; however, we cannot rule 

out other alternative explanations—for example, 

unobservable traits like motives and ability. Students 

who take the official test more seriously, for instance, 

might want to be better prepared and thus might engage 

in off-the-record self-training or might sign up for the 

simulation test even though they are training at a 

campus that does not offer simulation testing. 3  In 

addition, while the timing of the simulation test 

(feedback timing) is generally scheduled to be as close 

as possible to the official test date, there still exists the 

potential endogeneity issue resulting from eager 

driving students or those with hard time constraints 

seeking an earlier simulation test date. In such cases, 

then the empirical analysis of the interaction effect 

between feedback timing and other variables might not 

be causal. Future research could employ a random-

field-experiment approach to better asses causality 

inferences. Finally, while using official test scores for 

all the students as the performance metric of the 

dependent variable would certainly be desirable, 

government regulations prevented us from accessing 

these data, which therefore necessitated the current 

temporal proxy of official test performance. We call 

for future research with richer field data to provide a 

more direct measure of official test performance and 

thus a more direct test of our hypotheses. 

In the specific context of driver training, a more 

traditional method of offering feedback is in a face-to-

face (FTF) setting—i.e., having a coach sit next to a 

student during a simulation test to provide immediate 

feedback. To assess whether FTF feedback is used 

during the simulation testing at the focal driving 

school, we interviewed the director of the driving 

school and learned that students on all campuses 

receive FTF feedback from their coach during a 

simulated driving test. The IoV-based smart system we 

examine here thus offers additional feedback following 

completion of the training program and before taking 

the official test. As such, we can still consider the IoV-

enabled simulation test as a “treatment,” with the 

comparison we make here being essentially one 

between FTF and FTF+IoV. Since the research setting 

and the quasi-experimental design of the current 

research do not allow us to make a direct comparison 

between FTF and IoV, we call on future research with 

randomized field experiments to make this direct 

comparison. 
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Appendix A 

 

Figure A1. Sample Driving-Simulation Report  
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Appendix B 

Table B1. Data Structure  

Name Type Description 

Part A: Simulation test data 

Id char Encoding of the simulation test 

Id_card_md5 char Postencryption encoding of student’s ID card number 

Car_type char Vehicle type 

Test_no tinyint Simulation test number 

Score smallint Simulation test score 

Test_date date Simulation test date 

Test_id char Encoding of the simulation test 

Test_item varchar Test item (total of 6 items in Subject 2 test) 

Deduction smallint Deduction from score for each error 

Reason text Deduction reason for each error 

Part B: Student information data 

Id_card_md5 varchar Postencryption encoding of student’s ID card number 

Subject1_date date Subject 1 test pass date 

Subject2_date date Subject 2 test pass date 

Long_way_date date Long-Way test pass date 

Subject3_date date Subject 3 test pass date 

Safe_training date Safe-Training test pass date 

Student varchar Name of student 

Gender varchar Gender of student 

Birthday date Student date of birth 

Age varchar Age of student 

Training_campus date Campus where student was enrolled 

Part C: Training data 

Id int ID number of training record 

Student varchar Name of student 

Id_card_md5 char Postencryption encoding of student’s ID card number 

Gender varchar Gender of student 

Birthday date Student date of birth 

Age varchar Age of student 

Training_campus varchar Campus where student was enrolled 

Start_time datetime Start time (in year-month-date hh:mm:ss format) of each training session 

End_time datetime End time (in year-month-date hh:mm:ss format) of each training session 

Period int Duration (in minutes) of each training session. 

Subject varchar Training topic  

Trainer varchar Name of coach for each training 

License varchar License type 
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Appendix C 

Table C1. Definition of Variables 

Variable Definition 

Testday Interval in days between the date of last K2 training session and the K2 test pass date  

Simulation Dummy variable equals 1 if the student took a simulation test and 0 otherwise 

Gapstd Standard deviation of interval (in minutes) between each two training sessions 

Gapmean Mean of interval (in minutes) between two training sessions 

Ptestday Interval between the simulation test date and the K2 test pass date divided by the interval 

between the K2 test pass date and the date of the last training session 

Feedbackday Interval in days between simulation test date and date of the last training session 

Falsenum_mean Mean number of errors made by the student in the simulation tests. 

Falsenumdummy Dummy variable equals 1 if the student’s Falsenum_mean is larger than the median of 

sample’s Falsenum_mean 

Age Age of student 

Female Dummy variable equals 1 if the student is female 

Trainday Totals days between the date of last training session and the date of the first training session 

Sub2period The number of periods (in minutes) of each training session. 
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