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Abstract 

Development methods are rarely followed to the letter, and, consequently, their effects are often in 

doubt. At the same time, information systems scholars know little about the extent to which a given 

method truly influences software design and its outcomes. In this paper, we approach this gap by 

adopting a routine lens and using a novel methodological approach. Theoretically, we treat methods 

as (organizational) ostensive routine specifications and deploy routine construct as a feasible unit of 

analysis to analyze the effects of a method on actual, “performed” design routines. We formulated a 

research framework that identifies method, situation fitness, agency, and random noise as main 

sources of software design routine variation. Empirically, we applied the framework to examine the 

extent to which waterfall and agile methods induce variation in software design routines. We trace-

enacted design activities in three software projects in a large IT organization that followed an object-

oriented waterfall method and three software projects that followed an agile method and then 

analyzed these traces using a mixed-methods approach involving gene sequencing methods, Markov 

models, and qualitative content analysis. Our analysis shows that, in both cases, method-induced 

variation using agile and waterfall methods accounts for about 40% of all activities, while the 

remaining 60% can be explained by a designer’s personal habits, the project’s fitness conditions, and 

environmental noise. Generally, the effect of method on software design activities is smaller than 

assumed and the impact of designer and project conditions on software processes and outcomes 

should thus not be understated. 

Keywords: Software Development, Agile, Waterfall Methodology, Method-In-Use, Routine 

Variation, Method Fit, Mixed Methods, Silhouette Clustering 
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1 Introduction 

Some routines show a lot of variation; others 

do not. Some are flexible; others are not. 

Some are easy to transfer; others are not. 

These variations may seem like noise or bad 

measurement, but they are not. They are 

indications of underlying phenomena and 

dynamics. By unpacking routines, we can 

begin to apply ideas and theories from all 

branches of social and behavioral sciences 

to explain these kinds of differences 

(Pentland & Feldman, 2005, p. 794).  
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A long-established design science tradition in 

information systems (IS) has examined the creation 

and implementation of system or software 

development methodologies, or methods, and the 

impact of their use (Hirschheim, Klein, & Lyytinen, 

1995; Russo, Wynekoop, & Walz, 1995). A primary 

premise in this scholarship is that we can and need to 

differentiate between the effect of using or not using a 

method—that is, the use of the method matters for 

software and its process quality and/or user 

satisfaction. Over the years, the main motivation of 

software organizations has been to adopt, design, and 

invest in a variety of methods ranging from early 

waterfall methods to recent agile variants (Gordon & 

Bieman, 1993). However, the actual effects of such 

choices and investments remain largely anecdotal 

(Lindvall et al., 2002), although some evidence 

suggests that, for example, agile methods result in 

faster development processes, higher user satisfaction, 

and improved system quality. Even here, results 

remain mixed (Berente & Lyytinen, 2007).  

The development activity conditions under which a 

development method is used to an effect that changes 

the process and outcomes continue to be poorly 

understood. For example, when an agile method is 

chosen, the extent to which activities are affected 

remains unclear. The few detailed analyses of actual 

uses of methods such as the agile method in specific 

design contexts (e.g., Vidgen & Wang, 2009) are 

highly illuminating in that they report in detail agile 

design practices and articulate how the method shapes 

such practices. However, most relevant studies are 

largely descriptive and fail to capture how the method 

truly shapes specific aspects of the design activity. 

One primary deficiency in prior studies is that most 

analyses assume that the whole method and its use 

constitute the unit of analysis. Consequently, these 

studies simply detect the presence or absence of a 

method in a particular setting. Such high-level 

treatment hides how the method actually shapes design 

practice. Abrahamsson et al. (2002) eloquently 

summarize the current state of the understanding: 

“Despite the high interest in the subject, no clear 

agreement has been achieved on how to distinguish 

agile software development from more traditional 

approaches. The boundaries—if such exist—have thus 

not been clearly established” (Abrahamsson et al. 

2002, p. 8). 

One way to overcome this conundrum is to be more 

diligent in choosing and theorizing about the unit of 

analysis when analyzing method use and its impact, 

particularly when the true effects of a given method on 

a designer’s behavior can be readily identified. One 

promising approach to such analysis is adopting a 

routine lens and analyzing designers’ behavior as an 

enactment of routines that are shaped by a method 

(Feldman & Pentland, 2003). Accordingly, a design 

routine can be defined as a set of (sequential and/or 

parallel) activities that are repetitively carried out by a 

designer to transform “some representational inputs 

into a set of material and representational outputs, 

leading ultimately to a generation of a design artifact 

that offers a set of functions for a community of users” 

(Gaskin et al., 2012, p. 2). According to this approach, 

a design method is viewed as an “ostensive” 

specification of a design routine that provides a 

prescriptive recipe (resource) for a designer’s design 

activities to be performed, whereas a “performative” 

design routine is a designer’s enactment of the routine 

of specific design activities carried out while following 

a given recipe (Glaser, 2017). A design method par 

excellence conveys an official and formal statement of 

the ostensive specification of a design routine, whereas 

a designer’s situated design practices when the method 

is “enacted” constitute the performative dimension of 

the design routine. In other words, the ostensive part 

captures how the organization formally and officially 

defines and expects its software design activities to 

unfold—that is, how the organization collectively 

“thinks” about its software process and accounts for its 

meaning and goals. The performative dimension 

captures the situated and embodied way in which 

designers in organizational settings carry out design 

activities that more or less comply with the method. 

Naturally, the ostensive enactment never fully captures 

the performative enactment (Feldman & Pentland, 

2003). This has also been demonstrated in several 

method use studies in which the method “use” has been 

found to be adaptive and improvised (Russo et al., 

1995; Feldman & Pentland, 2003), calling for constant 

“situational method adaptation” (Smolander, 

Tahvanainen, & Lyytinen, 1990). 

Recently, some IS scholars have used a routine lens to 

observe variations in general design behaviors and to 

compare and explain design behaviors and their 

outcomes (Gaskin et al., 2014; Lindberg et al., 2016). 

However, they have not more deeply examined the 

extent to which the ostensive dimension of a method 

(Fitzgerald, 2000; Vidgen & Wang, 2009) serves as a 

true source of the detected design routine variation, 

defined here as the space of possibilities in the design 

routine’s activity composition and order (Gaskin et al., 

2012). Further, there is insufficient understanding of 

the extent to which different methods induce different 

levels of design routine variation—that is, whether 

different methods exercise differential effects on actual 

design routine variation and under what conditions. 

Overall, we know surprisingly little about how design 

methods are enacted in different settings, whether and 

how design activities are shaped by a given method, 

and whether the design outcomes truly differ because 

of the use of the method or because of some other 

factor or combination of factors (Berente & Lyytinen, 

2007). To address this gap, we study the following 

questions: 
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RQ1: To what extent do design methods affect design 

routine variation during software development? 

RQ2: Does such design routine variation differ across 

different methods, such as agile and waterfall 

methods, and in what ways? 

We address these questions by formulating a design 

routine analysis framework that identifies four main 

sources of design routine variation during software 

development; we also discuss their theoretical 

foundations. This addresses RQ1 in that the framework 

offers an analytical, systematic approach for 

identifying and evaluating the impact of method use on 

design activities and software processes. To address 

RQ2, we empirically observe the extent to which the 

chosen method—in our case agile or waterfall—

influences the performative dimension of a routine and 

the manifested differences in observed design routine 

variation. In particular, we probe the proportions of the 

observed design routine variation that are influenced 

by the followed method through a multicase study 

(Yin, 2017). The study focuses on the use of agile and 

waterfall methods and their impact on design routine 

variation in six midsize software projects over four 

years in a large software development unit responsible 

for managing bill of material (BOM) applications at a 

global original equipment manufacturing (OEM) 

automotive firm, referred to here as “Beta.” The case 

study uses a mixed-methods research design and 

combines qualitative content analysis with 

computational techniques (such as Markov chain 

analysis, sequence analysis, and cluster analysis) to 

detect and explain structural variations in design 

activity composition and order. 

We advance our argument as follows. In the next 

section, we review the extant literature on design 

methods, method use, and ostensive and performative 

dimensions of routines. Then, we review studies on 

method use and examine what we know about the 

effects of method use on design processes and 

outcomes. We briefly report our research methods and 

data collection and analysis techniques, followed by a 

section reporting the main research findings. We 

conclude by discussing the novelty of the introduced 

theoretical and analysis approach and evaluate how it 

can shape future studies on the use of software 

methods. 

2 Theoretical Background 

2.1 System Design Methods as Bundles 

of Ostensive Routines 

Software development is widely recognized as a 

complex undertaking with many elements 

unaccounted for and often negative variation in its 

processes and outcomes. Because of this, software 

organizations have, for some time, paid attention to 

directing and reducing such variation to improve 

design processes and outcomes. One approach has 

been to prescribe ex ante specific ways of carrying out 

design activities expressed in a method intended to 

reduce the variation that follows (Glass, 1991). Since 

most methods share a reductionist worldview, it is 

widely assumed that better design solutions can be 

reached by following a prescribed set of sequential 

steps (Baskerville, Travis, & Truex, 1992; Fitzgerald, 

1996). Since the mid-1960s, design methods have been 

invented, introduced, and applied to shape 

organizational responses to a large set of design tasks 

to avoid or mitigate the likelihood of a design or 

system failure that may negatively affect design 

quality, cost, or time parameters (Fitzgerald, 1996; 

Sommerville, 1996; Fitzgerald, 2000). Although most 

methods carry the ethos of control and seek reduction 

in design routine variation, significant differences in 

the proposed methods prevail because of differences in 

underlying philosophies, beliefs, and values or because 

of “product differentiation, personal ego, and territorial 

imperatives” (Fitzgerald, 1996, p. 11). Moreover, as 

Baskerville et al. (1992) posit, most methods are 

intended for large-scale development tasks that involve 

significant development time (Baskerville et al., 1992; 

Feller & Fitzgerald, 2000; Fitzgerald, 2000). However, 

these goals are not universally shared and additional 

factors (including organizational competencies and 

learning) have been recognized as reasons for choosing 

a specific method (Lyytinen, 1987). Accordingly, 

some methods like waterfall approaches may not be 

suitable for all situations because they may contradict 

the assumptions underlying the method (Baskerville et 

al., 1992; Petersen, Wohlin, & Baca, 2009). Generally, 

given the complexity of design processes and 

situations, no method is perfect. Even a light desk 

evaluation can easily find weaknesses in most methods 

for certain situations. Hence, one size does not fit all 

and organizations have thus learned to be more 

attentive in flexibly selecting a method for a given 

design situation (Laplante & Neill, 2004).  

Due to the potential incompleteness of any one 

method, each method has been shown to leave 

designers significant degrees of freedom regarding use 

for a particular task (Berente & Lyytinen, 2007). 

Consequently, no daily set of design activities can ever 

faithfully reflect a given method. Examining the extent 

to which a designer has followed a method’s 

prescriptions when evaluating design performance 

affords a limited understanding of the outcomes, 

because a significant amount of activity is always left 

unaccounted for. Indeed, research shows that 

significant deviations prevail at both contextual and 

individual levels regarding a method’s enactment and 

the amount of design routine variation a designer can 

acceptably employ while still demonstrating coherence 

with any particular method (Russo et al., 1995). 
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Recent research on the dual nature of routines provides 

a fruitful lens for understanding and accounting for the 

observed gap between formally enforced and actually 

observed variation in the use of a method (Feldman & 

Pentland, 2003). Traditionally, changes in software 

development have been viewed as resulting from 

failures to adopt a given design method (Baskerville et 

al., 1992). However, Feldman and Pentland’s work 

offers an alternative explanation: design routine 

variation is an inherent property of method use and 

results from endogenous interactions between 

ostensive (structure) and performative (agency) 

aspects of a routine (Feldman & Pentland, 2003). Here, 

the ostensive dimension represents the ideal, abstract 

dimension of a routine, whereas the performative 

dimension is formed by intermittent and ephemeral 

instantiations of action employed while the actor is 

paying attention to ostensive “principles” (Latour, 

1986). The ostensive dimension is “the ideal or 

schematic form of a routine” (Feldman & Pentland, 

2003, p. 101), whereas the performative dimension 

“consists of specific actions, by specific people, in 

specific places and times. It is the routine in practice” 

(Feldman & Pentland, 2003, p. 101). The ostensive 

dimension can be thought of as a foundational 

“structure” that guides and orients the designer’s 

actions, while the performative dimension manifests in 

real, observed, design “actions.” Ultimately, the 

performative dimension contributes to the continued 

creation, maintenance, and modification of the 

ostensive dimension and, together, they form a 

“duality” (Giddens, 1984; Feldman & Pentland, 2003).  

According to this view, the software development 

process is a bundle of performative routines carried out 

by designers and other stakeholders. The ostensive 

dimension of a software process consists of abstract 

ideas: some are embedded in general design methods, 

while others represent local or individual ideas and 

abstractions. Over time, such development ideas and 

abstractions are codified in written methods based on 

the repetitive execution of completing specific design 

tasks (learning by doing). Sometimes they are crafted 

from outside by absorbing design guidelines and ideas 

that have worked elsewhere (often those introduced by 

consultants or academics). 

Scholars, however, often misconstrue a method as a 

single ostensive system that constitutes a monolithic 

object to be followed mechanistically (Feldman & 

Pentland, 2003). In reality, software development is 

continually socially constructed and, accordingly, 

local abstractions are influenced by multiple, often 

contradictory and incomplete extrasomatic sources. 

Designers continually attribute their “intersubjective 

interpretations” to design performances, which 

introduce irregularities into local design behaviors and 

related ideas (Lyytinen, 1986; Bijker, 1997). Design 

performances ultimately are like “improvised actions” 

that draw partially from the ostensive dimension and 

continually alter it by “situating” the ostensive 

dimension based on actors’ situated needs and 

opportunities (Suchman, 1987; Bourdieu, 1990). Thus, 

methods as ostensive specifications serve only as 

generic guides, standards, or principles and leave 

significant degrees of freedom for designers to modify, 

vary, and adapt the ostensive dimension and act 

differently (Berente & Lyytinen, 2007). According to 

the routine literature, varying degrees of freedom can 

be granted to the ostensive dimension, depending on 

the context—that is, depending on the setting, 

designers can enact different levels of choice 

surrounding the ostensive dimension in the 

performance of a routine. Yet each established and 

identified routine necessarily comes with a certain 

number of shared and understood expectations 

regarding the performance of the activity. To be and 

act like a method, each method must mitigate 

deviations and lower the degrees of freedom available 

to a designer to control design routine variation 

(Dionysiou & Tsoukas, 2013).  

Overall, when we approach design methods as 

“bundles of ostensive routines” (Felin et al., 2012), we 

can sort software development into sets of separate 

design tasks and associated routines, such as gathering 

requirements. Each of these separate routines can be 

thought of as a family of activities. For some activities, 

designers use specific techniques—for example, 

collecting and recording requirements (use cases). In 

other activities, designers apply rules that specify the 

scope of included functions (e.g., house of quality) and 

follow protocols to validate the needs of users (e.g, 

quality reviews). Other activities use different 

techniques to estimate the cost of included functions 

(function analysis and cost-benefit evaluation) and so 

on. At the same time, the overall bundle of routines 

involved in gathering requirements comes with 

openness and ambiguity (which we refer to as “degrees 

of freedom”) in its ostensive specification. This allows 

for variations in the performative dimension of the 

routine, regarding, for example, the level of detail at 

which the use cases should be drawn, who should 

analyze them, or whether the scope of use cases should 

be determined at the start of the project) (Dionysiou & 

Tsoukas, 2013). Generally, we can say that any design 

method comes with an ostensive specification, but 

each design method can have varying effects on the 

performative dimension of the routine. This depends, 

among other things, on the uncertainty concerning the 

meaning of method specification and its usability in a 

given task or on the designer’s skills to apply it.  

It has also been shown that designers strategize around 

their design performances and select strategically 

ostensive elements to which they adhere in order to 

demonstrate their accountability (Feldman & Pentland, 

2003) or make the method fit their established habits 
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and skills (Cohen & Bacdayan, 1994). Based on future 

interpretations, these choices are likely to change the 

ostensive element. However, according to Pentland 

(2003, p. 538), “there has been little attention to the 

issue of how to characterize these divergences.” This 

prompts the question: To what extent does the actual 

design performance conform to the specified ostensive 

element of a method and under what conditions does a 

designer deviate from it? In the next section, we 

formulate a framework to identify and explain such 

design routine variation. 

2.2 Design Routine Variation in 

Software Development 

In the past, researchers have used surveys and related 

perceptual measures to detect variation in design 

routine (Pentland, 2003). Variation is generally 

couched in standardized question items that question, 

for example, respondents’ perceptions of the 

maximum and minimum range of experienced 

variability in a task; variations are typically captured in 

the shifts and distances from the computed means. 

Unfortunately, such measures are not likely to capture 

the true variation because of anchoring effects, poor 

recall, and so forth. Such measures approach design 

routine variation as an aggregate across a whole 

project, which makes them inadequate for detecting the 

potential distance between the ostensive and 

performative dimensions (Vidgen & Wang, 2009). 

They fail to detect varying dimensions of this 

“unobserved design routine variation” because they 

capture variability in the activities’ compositions, 

order, and perhaps interactions (Gaskin et al., 2012). 

Detecting true variations should help improve the 

understanding of how design activities differ across 

projects and under different contingencies, such as 

different methods used.  

Recent studies that have focused on teasing out routine 

variation adopt the notion of a task, its related 

outcomes, and the concept of an activity as a pattern of 

actions that deliver those outcomes. The activity 

concept captures a fundamental idea that there are 

multiple ways that any given task can be done (Gaskin 

et al., 2012). One approach to capturing this variety 

involves separating between sequential variety (or 

order variation) and configural variety (or 

compositional variation). The latter refers to the 

variability across the activities, whereas the former 

captures the variation in the temporal structure of the 

activities (Gaskin et al., 2012). We use this line of 

thought to capture the latent, unobserved variation in 

design activities as a means to tap into the extent of 

design routine variation manifested both in the 

 
1 This notion is similar to the idea of error term in ordinary 

least squares regressions—i.e., the remaining unaccounted 

variance. 

composition and the order of design activities (Roy, 

1959; Feldman & Pentland, 2003; Hærem, Pentland, & 

Miller, 2015). The next question to explore is what 

determines the variation in both dimensions as the 

design process unfolds. 

We identify and characterize four tentative sources that 

influence design routine variation—namely, method-

induced variation, fitness-induced variation, agency-

induced variation, and random variation. We deem 

these sources to be similar to sources of variance in 

classic measurement theory, i.e., analytically 

orthogonal and independent sources that nevertheless 

organically intertwine during any design activity (see 

Table 1). Some of these sources have been generally 

recognized in prior research (see Feldman & Pentland, 

2003; Leonardi, 2011) and some studies have also 

recognized “attributes of the environment (fitness 

induced variation), individual cognitive processes, and 

the variety of an individual’s experience (agency 

induced variation)” (Downey & Slocum, 1975, p. 765) 

as sources of routine variation. However, while the 

unique role of the ostensive dimension in inducing 

design routine variation has been generally recognized 

in past studies, it remains largely unaccounted for (see 

Feldman & Pentland, 2003; Leonardi, 2011). Most 

studies also recognize but do not extensively discuss 

random variation and its role.1 Overall, the proposed 

framework is more complete than frameworks used in 

previous research because it adds method-induced 

variation and random variation as significant potential 

sources of design routine variation. Next, we discuss 

each variation type in more detail. 

Method-induced variation: As noted, design 

methods serve the purpose of improving software 

processes because of their capacity to give systematic 

direction to development activity by controlling the 

range of variation in terms of how development 

activities are carried out (Fitzgerald, 2000, Pentland, 

2003). Methods achieve this by conveying cognitive 

frames and establishing common ground for 

understanding and coordinating development; they 

also include normative principles (who should do 

what, when) that coordinate work dependencies. 

Finally, they impose standards for evaluating design 

decisions (such as rules of decomposition) (Lyytinen, 

1986). When adopted and invested, methods act as 

primary (ostensive) sources for determining a range of 

design routine variations. Here, each design activity in 

such ostensive specification has specific outputs (task 

outcomes), which connect it to other activities and 

related routine bundles. Choices regarding how the 

connection is implemented influence the order of 

activities.  
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For example, a waterfall method entails distinct sets of 

activities (such as design and coding) that are carried 

out sequentially (i.e., coding is not expected to start 

until design is finished) (Royce, 1970). In contrast, 

agile approaches seek to interlace design and coding 

activities by “layering” design outputs over time (see 

Figures 1 and 2; Abrahamsson et al., 2002). Activities 

complying with agile methods will shy away from 

documenting design activities as inputs to the next set 

of activities (Abrahamsson et al., 2002). Thus, 

selecting and adopting a method is likely to have a 

significant impact on how routines are composed and 

organized and on their variation. 

Fitness-induced variation: Method developers 

cannot have perfect foresight of all the activities that 

need to be carried out during the development process. 

Designers must improvise and “retrofit” the method to 

unexpected organizational contingencies arising from 

method incompleteness or inadequacy (Glass, 1991; 

Kumar & Welke, 1992). Retrofitting increases the 

potential fit of the method (routine) with the situation 

(Levinthal & Rerup, 2006). Fitness-induced variations 

emanate either from initial omissions of specific, 

targeted guidelines or from the inappropriateness of 

the guidelines to the situation. Lack of fit can emerge 

from multiple sources and often comes as a surprise 

(Levinthal & Rerup, 2006). Contingency conditions 

include unexpected requirements, inappropriate 

technologies, and emerging insights that change the 

scope and functions of the system. As such, fitness 

variations are not detrimental—they add significant 

value to the design and are often necessary to render 

the final outcome functional. 

Table 1. Design Activity Variation 

Terms Description 

Variation/design routine variation Variation highlights differences between two or more forms of the same activity. 

“Design routine variation” refers to multiple possibilities in the composition and 

order of activities and their variability across contexts. Researchers have used the 

construct to compare differences between two routines with similar outcomes (e.g., 

hiring routines; see Feldman & Pentland, 2003).  

Method-induced variation Differences in design practice due to the usage of a method(s), i.e., such activities 

would not be present in the same frequency if the ostensive element were not present. 

Fitness-induced variation Differences in design practice due to the structural contingencies in the design 

environment (e.g., unreliable technologies).  

Agency-induced variation Differences in design practices based on the habits or skills of the designer.  

Random variation Differences in design practice because of environmental noise such as fatigue or 

incidental misconception.  

 

Figure 1. Iterations in the Agile Process (Abrahamsson et al., 2002, p. 28)

Iteration 
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Figure 2. Iterations in Waterfall Methods (Royce, 1970, p. 330) 

 

However, fitness variations do imply an additional 

range of (unexpected) routine variations, especially 

when contingencies start to dominate the design task. 

For example, a project manager in our field study 

observed that their actual process was far more 

iterative than planned due to unforeseen challenges in 

testing:  

Yeah. When we are testing it, we found a few 

… issues and then they … did not match the 

requirements so we had to go through … 

iterations to make sure we implement those 

correctly. And … we found some different 

…, because when we had calculated … we 

had to make sure those were also 

implemented. 

Agency-induced variation: Agency ultimately 

determines development outcomes—in other words, 

the competency of actors who develop and work in the 

project matters. Accordingly, agency acts as a third 

source of design routine variation because individual 

skills, aptitudes, and experience vary. Designer 

behaviors rely mostly on experience and acquired 

knowledge, rather than on seeking fit with the provided 

method (Hirschheim, 2007). Differences in an actor’s 

skills, experiences, and competencies modify 

performative routines (Cohen & Bacdayan, 1994, 

Feldman and Pentland 2003). Thus, agency-induced 

variation can have both negative and positive effects 

on design outcomes. If permitted to run unchallenged, 

developers will solely depend on their own, often 

variable skills and idiosyncratic views and ignore 

shared ostensive routines (such as strict documentation 

requirements, generating common test sets). This can 

make project-level coordination difficult or even 

impossible and initially motivates the introduction of 

methods when software projects begin to scale up. If 

allowed to run uncontrolled, reliance on personal skills 

can sow the seeds of large-scale failures. Nevertheless, 

individual skills and behaviors can significantly and 

positively influence software development outcomes 

and productivity (Scacchi, 2002). One actor (a 

developer) at Beta Corporation revealed how he found 

his skills to be insufficient for the project:  

The beginning of the project. I was learning 

what is PD because I’m new to this whole 

thing. Because I am from HR group. I am 

used to dealing with the employee, human 

resources, and all these things. That’s me 

basically. Even though I’m a JAVA 

developer, the domain knowledge I had was 

not that broad—the ins and outs of things. 

So, I had to learn. Then I learned that, and 

then I was given the introduction to what is 

LDM, what is this project.  

Random variation: Organizational behaviors always 

involve random noise. Due to the complexity of 

external and internal contingencies, behaviors in 

organizational settings are highly variable and random 

mutations in behaviors always emerge (Aldrich & 

Pfeffer, 1976). Random variation is often associated 

with unique, unexpected, singular conditions 

embedded in the environment, in an actor’s psycho-

physiological conditions (like fatigue), or in complex 

interactions in the interactive technological 

environment (Ciborra, Migliarese, & Romano, 1984). 
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In conclusion, the analysis of sources of design routine 

variation helps identify and clarify how performative 

routines are built and how they interrelate with 

ostensive approaches in complex ways (Dionysiou & 

Tsoukas, 2013). This helps frame our analysis that 

seeks to address our research questions: (1) To what 

extent do methods influence design processes viewed 

as bundles of routines? (2) Do different methods 

influence performative routines differently? 

3 Research Design 

We carried out a longitudinal four-year case study 

between 2010 and 2013 on software development in a 

large multinational manufacturing company (referred 

to as Beta), which is a large US manufacturing 

company known for its technological prowess in 

designing and manufacturing automotive vehicles. Our 

purpose was to identify sources of variation associated 

with methods in sampled projects and detect their 

effects on design routine variation. It was organized as 

a multilevel study, and it involved within- and cross-

case analyses (Yin, 2017). The scale and complexity of 

the setting made the study an ideal setting for 

understanding sources of variation in routines. The 

research focused on the effects of enacting two 

contrasting software development methods—

structured object-oriented method (waterfall) and agile 

methods.  

3.1 Research Site 

The study context was project teams that developed a 

large, critical family of applications within Beta called 

the Bill of Material foundation (BOM). This is a 

mission-critical suite of information systems that 

maintains critical part-related information associated 

with the design, manufacturing, supply chain, 

marketing, and service of cars. Over the past decade, 

Beta had been creating its BOM architecture in its 

information technology (IT) division and established a 

dedicated unit for this domain. The goal of the unit was 

to develop and maintain a family of applications that 

helped manage all product part-related information 

across the life cycle of a car. Due to the centrality of 

part information in anything that deals with designing, 

manufacturing, or selling cars, the unit was relatively 

large and viewed as highly important in the IT division 

and its projects were approached as mission critical. 

Each year, the unit ran multiple projects (large and 

small) to expand, revise, and improve part-related data 

management and service functions. During our study 

period, the unit underwent a major shift toward a new, 

more powerful data management platform. Related 

software development activities were globally 

distributed (in the United States, Europe, and India), 

because Beta runs geographically distributed design 

 
2 http://en.wikipedia.org/wiki/Rational_Unified_Process. 

centers and has to share product and part information 

during design and marketing. Most of the final 

software was written in India in a development center 

owned and run by Beta. The design processes were 

digitally intense and used a suite of supporting 

software tools to share code and related information, 

such as test cases. This created a space to detect and 

analyze traces of design processes (Shoval & Isaacson, 

2007). 

In developing the BOM software, the unit relied on two 

methods for different projects. The first method was 

driven by the waterfall idea of proximal iterations, was 

based on object-oriented design and modeling, and 

used a local version of rational unified process.2 The 

method had been developed and refined within the unit 

beginning in the mid-1990s. The second, a later 

approach, followed agile design and was based on 

Scrum (Schwaber, 1995). At the start of the study, Beta 

was mainly a waterfall practitioner; over the course of 

the study period, Beta significantly expanded its use of 

agile so that toward the end of the period, it mainly 

used agile design to develop applications. 

3.2 Data Collection and Validation 

We collected process data from six software projects 

with the goal of understanding the extent to which 

development routines differed in terms of the two 

design methods. Three software development projects 

were carried out with the object-oriented method and 

three followed agile methods. We collected data using 

replication logic from multiple projects to detect 

within and between variations in routines when a given 

method was used. This allowed us to locate overall 

variations within design processes and use related 

method data to infer the extent to which the variation 

was induced by the use of the method. The projects 

focused on developing specific features of the BOM 

database system and several front-end applications to 

manage or use product information during the car 

design process.  

The projects were purposefully sampled to have 

comparable scale and complexity and were developed 

during roughly the same time period, using similar-

sized teams. We sampled three Bill of Material (BOM) 

waterfall projects, referred to as BOM Search, PADB 

1.4, and BOMFI in our data set (see Appendix A for 

more details about the project descriptions). The other 

three projects we sampled were agile projects (LCM 

1.5-1.6, LCM 1.7, and LCM 1.8). We call these 

projects LCM projects because since most of them 

focused on managing product information and related 

change they were referred to as lightweight change 

management projects in the company. Agile methods 

were first used to develop this suite of applications for 
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managing early part and product changes during car 

design—hence the name lightweight change. All 

projects shared the principal artifacts and critical 

infrastructural elements for software development 

covering project management, budgeting, personnel, 

and other support environments. Overall, the sampling 

offered the possibility of conducting a sort of quasi-

experiment in that the projects were sampled to be 

similar and the main difference between them was the 

use of agile or waterfall methods (Shadish, Cook, & 

Campbell, 2002).  

We chose to use semistructured interviews as our 

primary data collection method because they enabled 

us to systematically access fine-grained details of the 

design processes and outcomes. Toward this end, we 

developed a common interview protocol that focused 

on capturing the details of the design processes, their 

goals, actors involved, tools used, related inputs and 

outputs, key decision points, and so on (see Appendix 

B for the interview protocol). All interviews were 

conducted on-site, except in one case, where we 

interviewed an offshore team in India using phone and 

videoconferencing. During the interviews, we asked 

designers to show relevant system documentation, 

artifacts, or snippets of the actual implemented 

systems. We conducted 28 in-depth interviews with 

project managers and team members and validated the 

process models of their design processes using a 

thorough review process (see Table 2). 

For each studied project, the data corpus was collected 

in two consecutive rounds. In the first round, we 

collected the primary process data, which were 

validated during the second round. In the first round of 

interviews (in 2010), we also interviewed the directors 

and vice presidents of the software development unit 

to understand the high-level and strategic reasons for 

following chosen methodologies. After this, we carried 

out interviews with software developers with different 

roles in BOM projects.  

Table 2. Data Collection 

Dates  Interview participants  Type of interview Number of interviews 

Jan-10 Vice president, three project 

managers 

Face-to-face 3 

Mar-10 Two project managers, 

business analysts  

Face-to-face 3 

Apr-10 Project managers, 

developers,  

Face-to-face 5 

May-10 Developers  Face-to-face 4 

Dec-10 Project manager, developers Face-to-face 2 

Dec-11 Developers  Skype 2 

Sep-12 Project managers, developers Face-to-face 6 

May-13 Project manager, developers Face-to-face 3 

Total    28 

 

 

Figure 3. Development Process Model Visual Description 
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During these interviews, we included people in charge 

of methods, tools, and management strategies for these 

projects. Initially, we collected data on one waterfall 

project and one agile project and developed detailed 

workflow models of the routine composition and 

structure (see Figure 3). These were subsequently 

validated with the developers and managers. The 

detailed workflow sketches with information about the 

types of actors, activity types, design objects, and 

affordances used in carrying out each design activity 

were subsequently modified at this stage (see Figure 3) 

(Gaskin et al., 2014). 

Typical projects contained between 200 and 1,000 

activities with more than 40,000 total design elements. 

In 2011 and 2012, we added iteration objects to these 

models to improve coding procedures and simplify the 

visual layout of the models, which allowed us to 

quickly collect data when the process had a significant 

number of iterations. We validated each process model 

during the next field trip for all six software projects 

with their respective teams (see Appendix C for the 

visual workflows of all the projects).  

3.3 Data Analysis and Coding 

To address the general research questions, we broke 

them down into three detailed subquestions, which 

address  the extent to which methods influenced how 

each activity within the process was carried out (so-

called routine composition variation or configural 

variety) and the extent to which methods influenced 

how the activities were ordered, or so-called sequence 

variation or sequential variety (for a more detailed 

discussion about the types of variation in routines, see 

Gaskin et al., 2012). We address each specific 

subquestion below and describe how the data were 

analyzed.  

3.3.1 At the Project Level, How Much Does a 

Method Induce Variation in Activities? 

This subquestion seeks to generally assess the extent to 

which performative routines addressing a similar type 

of task (such as design) are similar to their ostensive 

specifications. We sought answers to this question 

through conducting three steps of analysis outlined 

below. We describe them briefly to show how we 

derived similarity/dissimilarity measures that helped 

us answer this research subquestion. Details for each 

step and the algorithms used are presented in Appendix 

D.  

Step 1: Prepare and identify activity sequences. We 

divided the sequence data set into two data sets, BOM, 

representing waterfall projects, and LCM for agile 

projects. The first data set contained sequences of all 

three waterfall projects and the second data set 

contained sequences of all three agile projects. Overall, 

the two data sets were roughly comparable and 

contained 1,482 and 1,603 activities in waterfall and 

agile projects, respectively. The larger number of agile 

projects does not indicate larger projects but rather the 

presence of smaller steps and more iterations. Next, we 

identified specific activity types, such as generate, 

choose, and validate, and related design objects for 

each design activity to reveal the method-induced 

variation for each type of similar activity (see 

Appendix E for the list of all activity types). We 

assumed that the elements of design activities and 

design objects would capture most variation induced 

by design methods because people or settings are not 

controlled by the method (Royce, 1970; Cockburn & 

Highsmith, 2001).  

Step 2: Cluster the sequences. To measure the 

dissimilarity between the activity sequences, we 

computed the Levenshtein distance (a metric for 

calculating the differences between two or more 

sequences using insertion and deletion costs) between 

the concatenated strings with the first three characters 

of the series of elements in a sequence (Lindberg et al., 

2016). Assuming the cost for a single conversion is set 

to 1, the total cost of the Levenshtein distance between 

these sequences would be 2 (Abbott 1995). We 

calculated the distances between every sequence pair, 

i.e., the “pairwise distance,” to form a distance matrix. 

Next, we clustered the design activities based on the 

similarity scores using k-medoid algorithms and used 

grounded theory to identify the designated themes of 

design activity in identified clusters (Kaufman & 

Rousseeuw, 1990; Studer, 2013). We chose k-medoids 

algorithms because this technique is more robust to 

noise and outliers than other clustering methods, such 

as k-means. This gives an average silhouette width 

(ASW) for each cluster based on the similarity. A value 

of ASW of close to 1 indicates a high degree of 

similarity between the sequences; a value of 0 indicates 

that the sequences are highly dissimilar (see 

Appendixes D and F for more details on the 

clustering).  

Table 3. Ostensive Dimensions for Method Comparison 

Design methods Application  Management  Technical  Personnel 

Agile  Agility, responsiveness  Tacit communications  Informal, simple designs Collocated, thriving 

on chaos  

Waterfall  Stability, predictability  Document-driven 

communications  

Formal, complex designs Distributed, thriving 

on order  
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Step 3: Calculate method-induced variation from 

silhouette width and ostensive correction. In 

carrying out this task, we were inspired by Boehm and 

Turner’s (2003) model dimensions to compare agile 

and waterfall methods based on their ostensive aspects 

(Boehm & Turner, 2003). This resonates with our 

study goals and has a close parallel to the underlying 

organizational routine concept. Like the analysis of 

organizational routine literature, Boehm and Turner’s 

analysis emphasizes two parts in devising methods: 

one leading to stability and another creating flexibility. 

They suggest that agile and waterfall methods are 

introduced to create either agility or stability, and their 

framework identifies four dimensions (see Table 3) on 

which the ostensive aspects of agile and waterfall 

method can be compared (Boehm & Turner, 2003). 

This provides a means to analyze the level at which 

studied performative routines align with those four 

dimensions of method. Next, we briefly describe each 

dimension as a baseline for comparing agile and 

waterfall activities and discuss the extent to which they 

align with respective ostensive dimensions. 

It should be noted that according to Boehm and 

Turner’s analysis, application refers to the application 

of the design method to either increase stability or 

instability, typically through higher degree of agility 

and responsiveness or control. Management refers to 

customer relations, project planning, control, or project 

communications that occur in projects. Technical 

refers to approaches to requirements, testing and 

development, and their articulation in design methods. 

Personnel refers to customer characteristics, developer 

characteristics, and the culture around which design 

activities are organized (Boehm & Turner 2003, p. 51-

52). 

Using these dimensions, we coded all activities in the 

agile and waterfall projects and assigned a rank to the 

clusters based on how well the performative activities 

matched with the ostensive specifications (see 

Appendix G for more details about coding and 

illustrative evidence.) For example, the “collective 

code monitoring” cluster has activities that increase 

agility by “keeping the developers on their toes”; 

hence, we coded this cluster with a rank of 1 on the 

application dimension and coded the other clusters 

based on the decreased rate of agility derived from 

qualitative data (see Appendix Table G1 for details on 

the ranks of the clusters). Similarly, we ranked other 

clusters on all four proposed dimensions according to 

waterfall or agile. Then, we calculated a composite 

rank, which in principle expresses how well the design 

activities purport the ostensive goals of the method. 

This allowed us to calculate an average for the overall 

 
3 A correction factor is needed for understanding the real 

effect of design method on the project activities from random 

clustering of the sequences. If the correction factor is high, it 

method-induced variation of the design method. 

Because the silhouette width is still quite generic, the 

clustering analysis may not validly reflect why some 

sequences have been clustered. Hence, we introduced 

a correction factor for providing a more realistic 

method effect. A higher rank suggests that the 

observed activities in the sequences followed the 

ostensive principles more accurately for that 

dimension, and, to this end, we assigned a correction 

factor3 of 1 for high-influence clusters and 0.1 for low-

influence clusters. This corrected the average 

silhouette width obtained in the prior step with the 

correction factor per the formula below where i refers 

to the number of the cluster and n refers to the total 

number of clusters. The step introduced a corrected 

ostensive alignment score, which principally evaluates 

the effect of design method in shaping the observed 

design activities.  

𝑚𝑒𝑡ℎ𝑜𝑑 − 𝑖𝑛𝑑𝑢𝑐𝑒𝑑 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛

=
1

𝑛

∗ ∑(𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑠𝑖𝑙ℎ𝑜𝑢𝑒𝑡𝑡𝑒 𝑤𝑖𝑑𝑡ℎ)𝑖

𝑛

𝑖=1

∗ (𝑜𝑠𝑡𝑒𝑛𝑠𝑖𝑣𝑒 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛)𝑖 

3.3.2 What Are the High-Level Differences 

Between Agile and Waterfall Projects in 

Terms of Their Ostensive Aspects? 

To address this subquestion, we read the transcripts 

multiple times to derive and capture the meaning and 

nature of activities (refer to Appendix G for more 

details about coding and illustrative evidence). We 

used content analysis and related coding techniques to 

detect observed differences in activities by using the 

four dimensions of application, management, 

technical, and personnel. This provided additional 

evidence of actual method use and related differences 

and triangulated the findings with computational 

findings. This helped us identify how the two methods 

actually differ in the associated design practice, i.e., 

how much it is being guided by the ostensive 

dimension of the method (Stemler, 2001). 

3.3.3 What is the Method-Induced Variation 

in Ordering Activities Including Their 

Level of Iteration in Agile and 

Waterfall Methods?  

Order variance measures the extent to which the 

method influences the order of development activities 

and, specifically, the extent to which activity patterns 

repeat, or iterate, over time (Gaskin et al., 2012). For 

indicates the clustering of sequences occurred due to the 

presence of ostensive principles.  
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calculating the level of repeated activities, we 

computed the proportion of unique activities (the 

activities that do not repeat in the overall sequence of 

activities) and then determined the unique activity ratio 

in relation to the overall project activity) (for more 

details about order variance/sequential variety, see 

Gaskin, 2012). For instance, for a set of activities in the 

following sequence A-B-C-A-B-D, the % of unique 

activities would be 33.3 (2/6 * 100), because there are 

only two unique activities, C and D (as highlighted). 

Based on this, we determined the repeated activities 

percentage to be 66.6% (=100-33.3). Using this 

measure, we computed the repeated activity 

percentage distribution across the agile and waterfall 

projects.  

To detect order variance, we classified identified traces 

of activities (identified in Step 1 of the first question) 

and their sequences (i.e., computed observed 

permutations) into three categories. These categories 

helped us operationalize three facets of iteration in 

development activity: (1) no iteration, (2) presence of 

iteration (a sequence repeats itself in a straight 

sequence), and (3) iteration within iteration (a repeated 

sequence is included within a repeated sequence). We 

analyzed the relationships between these different 

states of iteration by creating Markov chains that 

would model transitions and transition probabilities 

between these states in each project and within similar 

types of projects. To build the Markov chains, we 

coded activities and their sequences into three 

categories to identify three levels of iteration within 

each project. We classified activities that did not iterate 

as “nonrecurring” states and classified activities that 

iterated into two types of states: simple recurring and 

embedded recurring iterations. Simple recurring 

iteration states involved activities that had a 

probability of repeating throughout the development 

process. We defined “embedded recurring” states as 

repeated activities nested within recurring activities as 

a special class of recurring state. Recent work on 

Markov chains shows that first-order Markov chains 

can have memory, use the concept of “partitions” 

instead of states, and suggest this as an appropriate way 

to model the Markov chains with memory. In other 

words, instead of purely calling a state open or closed, 

states can be recoded as partitions and can have more 

states (in our case, three partitions: nonrecurring, 

recurring, embedded recurring) capable of taking 

memory into account ( for more on this, see Lacorata, 

Pasmanter, & Vulpiani, 2003).  

To illustrate this coding, we present two scenarios of 

requirement-gathering activities. The first involves 

sequential steps of gathering requirements (like in 

waterfall projects), and the second involves a string of 

activities where gathering requirements occurs in 

parallel with the design activity (like in agile projects, 

see Table 4). In the first scenario, gathering 

requirements happens sequentially through the 

following activities: (A1) virgin data model creation, 

(A2) first round of gathering requirements, (A3) 

meeting to negotiate requirements, (A4) clarification 

of requirements in email, (A5) updating use cases. In 

this scenario, there is one iteration/repetition of a 

sequence of activities (3, 4, and 5) twice. We code 

these repeated activities as “recurring state (R)” (see 

Table 4, Scenario 1). The first two events of (1) virgin 

data model creation, and (2) first round of gathering 

requirements do not repeat themselves and are coded 

as a nonrecurring state (N). 

In the second scenario, gathering requirements 

happens concomitantly with writing test cases, 

whereby two repeated activities (A6, writing test cases; 

A7, testing the use cases) are squeezed between 

activities A4 and A5 (see Table 4). In this case, 

activities A6 and A7 repeat within the larger repeated 

sequence (A3, A4, and A5), and this happens as part of 

the iterated sequence in the first scenario. Iteration is 

now embedded in a bigger iteration cycle, and this is 

called embedded recurring state (E). Herein all 

sequences of activities (A6, A7) are coded as 

embedded the recurring state E. (For more details, see 

Appendix D.) Next, we report our research findings.  

Table 4. States of Iteration for Two Given Sequences of Activities 

Scenario 1 

Nonrecurring state (N) A1A2 A3A4A5 A3A4A5  

Recurring state (R) A1A2 A3A4A5 A3A4A5  

Scenario 2 

Nonrecurring state (N) A1A2 A3A4A6A7A5 A3A4A6A7A5 

Recurring state (R) A1A2 A3A4A6A7A5 A3A4A6A7A5 

Embedded recurring state (E) A1A2 A3A4A6A7A5 A3A4A6A7A5 
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4 Findings 

We address the subquestions outlined in the methods 

section and then report design routine variation in 

software processes across sampled methods to show 

overall variation in detected activity sequences. We 

analyze the method variation as induced by the method 

specifications qualitatively and, finally, discuss the 

effect of methods on observed activity-order variation. 

4.1 At the Project Level, How Much 

Does a Method Induce Variation in 

Activities? 

We leverage a novel computational technique 

proposed in the method section that calculates method-

induced variation by taking into account ostensive and 

performative aspects of design activities. Using this 

procedure, we found that agile projects had an overall 

method-induced variation of 0.42 of the activities. This 

is slightly higher than that observed in the use of the 

waterfall method, which had about 0.40 of variations 

explained by the method. The reason for the high 

degree of variation in agile projects can be associated 

with higher conformance to ostensive aspects, 

especially in terms of increasing agility in the process. 

We tabulated the amount of method-induced variation 

in the descending order in agile projects to highlight 

the influence of the ostensive aspects on different types 

of performative activities and their compositions (see 

Table 5; see Appendix G for more detail). As can be 

seen in Table 5, Clusters C1-C5 provide higher 

method-induced variation and reduce the 

dissimilarities in the types of activities performed at 

the cluster level. Clusters C1-C5 contain several 

families of iterative activities around coding, 

monitoring, and testing, and the variations in these 

clusters ranged from 0.8 to 0.37, indicating that a wide 

range of activities was performed within the limits of 

the ostensive guidelines. These activities were 

performed frequently to improve the project’s agility. 

This finding shows that agility and iteration are 

important facets that reduce the differences across 

design activities performed on a periodic basis. We 

also found that activities in clusters C6-C10 were less 

iterative and had a lesser degree of ostensive 

specification. The difference often emerged because of 

a high usage of the specific contextual IT artifact. The 

activities’ similarity with the ostensive element in 

these clusters ranged from 0.35 to 0.05. 

We tabulated the amount of method-induced variation 

in the descending order in the waterfall method 

projects to identify and highlight the level of influence 

of the ostensive specification on the performed 

activities and their compositions (see Table 6). 

Clusters C1-C5 with high similarity contained several 

families of activities that center around planning, 

testing, and meetings. The variations in these clusters 

ranged from 0.97 to 0.40, indicating significant 

uniform compositional variance and similarity with the 

ostensive element. Most activities seek to increase 

stability and predictability of the design process. We 

found that the similarity of activities in Clusters C6-

C10 ranged from 0.35 to 0.09. These clusters had fewer 

formal activities and contained activities such as 

prototyping, design sketches, and undocumented 

requirements. Such activities were not specified in the 

ostensive element of the method. One reason for the 

emergence of these types of behavior is associated with 

changes in design routine variations created by fitness 

and actor-related factors. 

Table 5. Method-Induced Variation in Agile Methods 

 
Cluster name Method-induced variation 

C1 Code iteration .8 

C2 Collective code-monitoring  .71 

C3 Test cycles .63 

C4 Pair debugging  .58 

C5 Task delegation .37 

C6 Code promotion  .35 

C7 Program testing  .27 

C8 Code inspection .25 

C9 Test case generation .2 

C10 Use case scenarios .05 

 Average  .42 



Design Variation in Agile and Waterfall Projects 

877 

Table 6. Method-Induced Variation in Waterfall Methods 

 
Cluster name Method-induced variation 

C1 Planning through IT artifacts .97 

C2 Testing code .61 

C3 Meeting, testing, and releasing .50 

C4 Test, fix, and release .44 

C5 Status checking .40 

C6 Prereviewing code .35 

C7 Quality control .26 

C8 Architecting and validating  .19 

C9 Use case-driven programming .15 

C10 Prototyping .09 

 Average .40 

Overall, we found that design routines in both design 

methods aligned relatively well with the ostensive 

approach. This was specifically pronounced across 

technical and application dimensions of the projects, 

which generated the requisite speed in the agile 

projects and sufficient control of the design target in 

the waterfall projects.  

4.2 What are the High-Level 

Differences Between Agile and 

Waterfall Projects in Terms of Their 

Ostensive Aspects? 

Here, we again address our second question, which 

seeks to understand whether there are differences in the 

respective impact of agile and waterfall methods 

across projects. This will be evaluated in terms of each 

method’s impact on its application purpose and the 

management, technical, and personnel dimensions of 

the project.  

4.2.1 Application 

Application refers to the application purpose of the 

method to either increase artifact stability or instability 

allowing a higher degree of responsiveness. According 

to Boehm and Turner (2003), agile projects emphasize 

a higher degree of agility and are therefore different 

from waterfall projects, which seek stability and 

predictability. Our qualitative coding of the agile and 

waterfall interview data provides additional insights 

and reveals the extent to which these purposes were 

followed. Agile projects carried out multiple activities 

that increased agility by being responsive to 

continually changing requirements. For example, one 

developer emphasized that he could change the code 

on the fly and use tricks in the project environment to 

increase its agility. He mentioned that he “could 

change it right now and if someone’s using that 

service, they’re going to see my change. We have 

coding tricks to get around that, where you make a 

copy of it and you’d work on the copy.” 

In contrast, waterfall projects carried out more stable 

activities. For example, designers used technical 

inspections and prereview meetings to increase the 

stability of the artifact and reduce the defect rate at the 

end of each project stage. As the code went through 

multiple screenings, the defects were reduced, but this 

process consumed more time and reduced 

responsiveness. One project manager noted:  

We had a premeeting. That was probably 

about a week in advance of that … It was 

actually a technical inspection at that point 

where defects were recorded, identified, 

and recorded. I think the premeeting was to 

try and minimize the amount of defects that 

were generated from that, from our eyes 

and the design team’s eyes.  

Overall, agile projects were less predictable and were 

prone to a higher proportion of trial-and-error and 

high-risk design activities. However, we conclude that 

both agile and waterfall methods aligned relatively 

well in terms of ostensive principles in the application 

purpose area.  

4.2.2 Management 

Management refers to how the method approaches 

customer relations, project planning, control, and related 

project communications (Boehm & Turner, 2003). 

According to Boehm and Turner (2003), agile projects 

emphasize a high degree of tacit knowledge and are 

different from waterfall projects, which demand 

extensive documentation for managing and dealing with 

stakeholder concerns. Our coding of project data 
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provides insights into the extent to which these 

management principles were followed, i.e., on the 

detailed level of usage of documentation and related IT 

artifacts. Agile projects in the formative stages relied 

less on documents; the requirements were largely tacit 

and informal and were typically held in the minds of 

developers. In the later stages, the requirements were 

managed with increased attention to the explicit 

documentation, sometimes providing even more 

documentation than required. One developer noted:  

We concentrate on writing more in detail 

requirements; it used to be just the one-pager 

from the customer, and we don’t really have 

a lot of, like, ID-related stuff inside. 

Requirements in 1.8 are in detail, more 

concrete, so everybody can look at that, most 

of the people can look at that requirement 

and understand what’s in it. 

Waterfall projects faced anomalies in managing 

documents. Even though the developers were expected 

to produce extensive documentation, there were 

sometimes deviations in this process. One offshore 

developer noted that sometimes the changes in the 

components were not tracked. When we asked about 

related documentation, he said:  

And then in other ones you have like 

SharePoint to develop the components. 

Should there be additional where you write 

additional documentation? Or is there none 

of that. Not typically at that level. So you 

don’t update the documents like which you 

would put into SharePoint? There’s nowhere 

after this point where you update it? Yeah, 

unfortunately. The code is the master. What’s 

worse than no documentation? Bad 

documentation. 

This showcases that both agile and waterfall methods 

typically had weaker alignment with the ostensive 

elements in the management dimension but still sought 

to align with expected ways of relating to project 

stakeholders.  

4.2.3 Technical 

Technical or technical design refers to specific 

approaches applied to requirements, testing, and 

development and how they are articulated in the design 

method (Boehm & Turner, 2003). According to Boehm 

and Turner (2003), agile projects are more informal and 

simpler compared to waterfall projects in this 

dimension. Our analysis showed that agile projects were 

less formal and engaged in many informal meetings that 

led to greater productivity and faster code development. 

The code constituted the primary artifact around which 

the design iterations took place. This reduced the 

generation of other (unnecessary) design artifacts. At the 

same time, the requirement generation followed an 

informal process. One project manager noted:  

So, this is the Santa Claus process, right? 

Who’s been naughty, who’s been nice. 

Everyone puts in their wish list. Some are 

valid, some are priorities, some are must-

haves. And that whole process of rooting 

through, that is an interactive, coming 

together and then dispositioning them and 

tossing them, deferring them or going. 

Waterfall projects tended to be more formal and carried 

out many meetings and interactions with users that were 

documented in formal protocols. For example, one 

developer suggested:  

So there’s a big portion from September to 

December of all . . . There’s a whole 

dedicated user team testing, so not the QC 

team, but actual users, a whole of lot of them, 

dedicated in testing and trying to break it. 

This snippet showcases that waterfall projects were 

generally more formal and facilitated repeated 

interaction with users based on stated protocols.  

4.2.4 Personnel 

Personnel refers to customer characteristics, developer 

characteristics, and the culture around which design 

activities are organized in the method (Boehm & 

Turner, 2003). Cockburn (2007) emphasizes that in 

agile projects, it is important to have dedicated 

personnel with higher cognitive skills and that 

personnel with poor collaborative skills should be 

avoided. Our analysis shows that agile projects did not 

have a dedicated collocated customer (Cockburn, 

2007). One developer mentioned, “the customers 

didn’t understand what they wanted. That was the 

major hang-up on that.” Agile projects often operate at 

the edge of chaos because of the lack of a fixed set of 

requirements. In contrast, waterfall projects operated 

with customers who were collocated, and part of the 

development took place in India. As a result, the 

process was less chaotic. In our case, agile projects 

were less aligned in the personnel dimension because 

they did not have a dedicated collocated customer. At 

the same time, the waterfall projects were more 

organized and aligned well with the ostensive 

personnel dimension of the method.  

Overall, our analysis shows that both agile and 

waterfall projects aligned well with ostensive aspects 

in terms of the application and technical dimensions. 

The activities of both types of projects had less 

alignment in the management and personnel 

dimensions. This was largely due to uncertainty 

concerning how much to document and how to 

organize and coordinate between project members. 
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4.3 What Is the Method-Induced 

Variation in Ordering Activities 

Including Their Level of Iteration in 

Agile and Waterfall Methods?  

To answer this question, we tabulated the percentage 

of distributions of the repeated activities in both agile 

and waterfall projects. As expected, the tally shows 

that agile projects contained a higher proportion of 

repeated activities (see Figure 4). We therefore 

conclude that, in general, agile projects were more 

iterative—that is, they repeated the same patterns of 

activities. Furthermore, LCM 1.8 project, the fourth 

version release of LCM, was the latest project and 

actually contained no singular, unique activities—in 

other words, the proportion of unique activities 

appeared to reduce over time. One reason for this is 

that the later projects could eliminate slack from 

implementation activities and reduced error rates.  

Interestingly, we found that the waterfall projects were 

also iterative. The proportion of repeated activities in 

the waterfall projects ranged from 85% to 99.8% 

(Figure 5), indicating that the waterfall projects also 

had a tendency to significantly iterate over certain 

design elements. PADB 1.4 and BOMFI projects were 

the most iterative because of quality-related concerns 

and the extensive iterations across use cases and design 

options. 

We also examined patterns of iterations across the 

projects to determine the levels of nonrecurring, 

recurring, or embedded recurring states in related 

processes. We found that four projects had only simple 

process structures—that is, they involved movements 

between nonrepeating moves (N) to repeating moves 

(R). Two of these projects followed waterfall 

methodology, whereas all agile projects had such 

simple iterative structures. Figure 5 shows that the 

PADB 1.4 and BOMFI waterfall projects had only 

simple structures. A common thread connecting these 

projects was that they all experienced similar planning 

environments, which resulted in the increased use of 

extensive planning with project management tools to 

reduce the need for complicated transitions and 

iterations. Furthermore, these two projects also 

displayed similarities in transitioning to an iterative 

state (R) (Figure 5) 

Two agile projects had simple iterative structures 

(Figure 6). LCM 1.5-1.6 represented the first project 

and thus had higher complexity because of insufficient 

understanding of the initial requirements. Hence, the 

probability of going from nonrecurring to 

nonrecurring/recurring was equally split (50/50). 

However, in LCM 1.8, the probability of transitioning 

from nonrecurring to recurring was very low (0.06), 

indicating lower levels of process complexity. Overall, 

we notice that the probability of iterations in both the 

agile and waterfall projects remained roughly the same 

(0.98-0.99) across time, indicating that these methods 

enable a similar proportion of iterations. This was 

somewhat surprising in that agile processes are 

generally viewed as iterating more than waterfall 

processes. What was not surprising was that waterfall 

projects ran several iterations because of later 

challenges in tracing requirements and the need to 

implement related design decisions. 

Agile  Waterfall  

 

 

Figure 4. Distribution of Repeated Activties  
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Figure 6. Complex Iterative Structures 

The projects that involved complex iterations (i.e., 

nested iterations) had a higher average probability of 

iterations. When nested iterations were present, this 

probability was 1.1 times higher in agile projects than 

in waterfall projects (Figure 6). Agile LCM 1.7 had 

more complex iterations due to the need for 

coordinating activities across several functional groups 

participating in the project (i.e., the business analyst 

group and developer group). Therefore, LCM 1.7 had 

an embedded iteration within the “requirements 

gathering” iteration for prototyping the collected 

requirements (Figure 6). The iteration was introduced 

strategically to minimize the discovery of bugs in the 

later phases, which could have resulted in a higher 

iteration probability in the project as a whole. 

Similarly, BOM Search waterfall project contained 

some complex iterations because of the significant 

overlap of development and testing activities in some 

stages. Overall, these findings suggest that agile and 

waterfall projects both iterate significantly but the 

reasons for this are different in the case of highly 

nested iterations. 

5 Conclusions and Limitations 

5.1 General Contributions 

This study contributes to the large and well-established 

body of research on design methods and their effects. 

This work is unique in that it is carried out as a quasi-

natural experiment, which allowed us to tease out the 

variation induced by the chosen method in design 

processes. To accomplish this, we adopted a novel 

theoretical lens of design processes as bundles of 

routines and used the construct of design routine 

variation as a conceptual means to detect how software 

development activities unfold and how variations in 

the activities can be explained by the chosen method.  

Specifically, we examined how and to what extent 

performative manifestations of agile and waterfall 

methods differ and were able to attribute such observed 

differences to the presence of ostensive elements in 

these methods. We compared the profiles of design 

activities with the espoused profiles of chosen methods 

and compared the frequencies of repeated activities 

and structures of iterations with the probabilities to 

repeat the same set of activities between method 

conditions. Our findings suggest that the effect of 
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using agile or waterfall methods is around 40% of 

performed design activities. The rest, about 60%, can 

be accounted for by other sources, such as method 

incompleteness, new or different fitness conditions, 

designers’ skills and habits, and organizational noise. 

Both agile and waterfall methods had a stronger 

influence on the technical and application dimensions 

of the method than on the management and personnel 

dimensions. This suggests that the deviations from the 

methods multiply when designers face complex social 

or cognitive situations that are ambiguous, unclear, or 

difficult to coordinate. Third, unsurprisingly, the agile 

method involved more repetitive activities than the 

waterfall method, though the difference was smaller 

than expected. The probability of iterating in the agile 

method was 1.1 times higher than in the waterfall 

method when nested iterations were included. At the 

same time, the general iterations between the two 

methods remained the same when only simple 

iterations were included. Together, these findings 

advance our understanding of the effects of design 

methods and show that such effects are significant but 

probably less pronounced than often assumed in the 

literature. We also show that agile and waterfall 

processes actually mimic each other in many ways, 

with respect to iterations, and demonstrate how unique 

requirements are solved locally.  

5.2 Contribution to Studies on Method 

Impact  

A central contribution of the study is to empirically 

analyze differences in design routine variation between 

agile and waterfall projects. By doing so, we 

operationalize how to detect the effects of the ostensive 

dimension of the method on its related process 

enactment (Pentland, 2003). Prior research has already 

shown that, in specific settings, the performative 

dimension varies between agile and waterfall methods, 

although none of the studies have carried out strict 

comparisons (Mitchell & Seaman, 2009; Vidgen & 

Wang, 2009). These studies have focused primarily on 

qualitative, phenomenological differences, examining 

variations across design activities less systematically. 

One reason for this is that teasing out the influence of 

the ostensive dimension of a design method during its 

process enactment has been a challenging research task 

because of the lack of extensive process data and 

robust techniques to identify and capture such variance 

(Pentland, 2003). This study addresses some of these 

concerns. Our empirical results, though tentative and 

directional, support the general argument that the 

ostensive dimension of the method matters and indeed 

creates differences in the enactment of a design 

method. Furthermore, by developing measures of 

method-induced variance across two dimensions 

(composition and order) and using a detailed 

computational approach, we develop a way to tease out 

such variance. Our study provides a fine-grained 

analysis of how software design processes are 

orchestrated and shaped by design methods. Indeed, 

our analysis shows that there are true differences in 

how agile and waterfall methods influence 

development processes.  

Our study also suggests that the current understanding 

of the effects of the ostensive dimension on the 

performative dimension is heading in the right 

direction: the effect of the method on performative 

routine variance is significant. At the beginning of the 

study, we expected the method effect to be more 

pronounced with the use of waterfall methods. 

However, we found that the different effects of the 

methods were not that far off from each other. This 

indicates that choosing any method matters to a certain 

extent in that it reduces and directs the compositional 

variance of the design activities. We also show that the 

order variation was different between waterfall and 

agile methods. We still cannot rule out the method 

effects in other facets of design, such as changes in the 

designer’s attitudes and behaviors of other actors (such 

as users) because of the presence and reading of the 

ostensive specification. This is left for future study. 

A second contribution of this work highlights the 

differences between agile and waterfall approaches in 

the application, management, technical, and personnel 

dimensions. This helps evaluate the extent to which the 

method used faithfully follows its espoused design 

principles. Our analysis suggests that both agile and 

waterfall methods follow the official design principles 

more thoroughly in application and technical 

dimensions, i.e., in terms of how the method-induced 

activities address the concern for agility or of formality 

and stability (Conboy, 2009). Our analysis shows, 

however, that designers often use coding tricks and 

create more dynamic environments to increase the 

agility of the processes. In our study, waterfall projects 

were more stable because they involved extensive 

quality and inspection tests that increased the stability 

of designs as well as the level of formality of the 

project activities.  

We also found that agile and waterfall methods aligned 

less in the management and personnel aspects. For 

example, agile methods generally rely on informal 

knowledge exchanges that assume little or no 

documentation. In our study, this lack of 

documentation led to unexpected problems. Therefore, 

designers contextually modified the method over time 

by incorporating ostensive elements to increase the 

level of documentation. These findings suggest that in 

situ agile practices are often retrofitted and altered to 

support more explicit and formal method use. Even 

though the use of documentation might impair agility, 

such modified routines were often carried out to 

improve the final quality of the software. These 

findings illustrate that agile projects also showcase 

situational method adaptation, i.e., the ability to 
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change and use project resources effectively and 

economically (Conboy, 2009).  

A third contribution of our study provides novel 

empirical evidence for a well-established fact that the 

agile method involves more iterations than the 

waterfall method (Berente & Lyytinen, 2007). In 

practice, the waterfall method also demonstrated 

iterations. Designers carried out often repetitive 

activities akin to an agile process. However, we 

detected significant differences in the structures of 

iterations between agile and waterfall projects. This 

happened, in particular, when the iterations spanned 

multiple project tasks and involved several groups of 

project participants—that is, when iterations became 

embedded in multiple iterative cycles calling for more 

coordination. For example, when iterations were 

embedded, the average probability for iteration in agile 

and waterfall was 0.96 and 0.85 respectively. This 

suggests that agile projects tend to be a bit more 

iterative when there are multiple design groups, and 

they will repeat the same type of activities. At the same 

time, the average probability to iterate in agile and 

waterfall was similar even in situations when there 

were no iterations across groups and tasks. Our results 

suggest that agile and waterfall processes both involve 

iterations, although their frequency will vary according 

to method. Future research needs to elicit such 

differences by evaluating specific conditions that 

provoke or pacify alternative types of iterations. 

5.3 Contribution to Studies on Software 

Processes 

A considerable body of literature has addressed the 

differences between agile and waterfall methods in 

terms of cost, quality, and productivity (Lyytinen 

1986; Lyytinen, 1987; Vidgen & Wang 2009). As 

expected, previous comparative studies found that 

agile developers spend less time in early stages 

managing requirements and produce more lines of 

code than their waterfall counterparts. Furthermore, 

agile developers are better at estimating effort and 

coming up with higher-quality products (Mitchell & 

Seaman, 2009). However, most of these studies were 

experimental and used students as study subjects, 

which raises some concerns about their external 

validity or real-world faithfulness. We need to question 

the extent to which can we directly translate such 

results to practice. Also, these studies did not use 

qualitative sampling techniques to explicate how the 

processes unfold contextually in real settings. In this 

regard, our study specifically contributes to the process 

side of software process research, which seeks to 

understand the real effects of method on process 

characteristics through fine-grained activity-level 

comparisons. We illustrate how much of the ostensive 

aspect of the methods are being followed in real-world 

settings. Our findings support the notion that methods 

are never fully followed and the designers need to be 

empowered to reflect on the evolving work practices in 

situ (Mathiassen and Stage 1990, Mathiassen and 

Purao 2002). 

Future research may benefit from ethnographic studies 

that seek to understand the habits and skills of the agent 

and fitness-induced variations. Recent literature on 

open-source informalisms can provide a fruitful 

avenue to access the agency and fitness-based 

variations in agile and waterfall methods (Scacchi, 

2002). Insight into the design rationale for the 

activities, artifacts, and affordances would likely shed 

light on the deeper issues around how design 

performance is orchestrated to reach an envisioned 

outcome (Conboy, Gleasure, & Cullina, 2015).  

5.4 Contributions to Routine Research 

Finally, we contribute to the routine literature by 

extending the ideas of ostensive and performative 

dimensions to reflect how design routine variations 

occur because of the presence of method, agency, 

fitness, and noise. Up to this point, only a few studies 

have discussed the emergence of performative routine 

variations, given the gulf between the ostensive and 

performative dimensions (Rerup & Feldman, 2011). 

The few exceptions are Turner and Rindova (2012), 

Jarzabkowski, Lê, and Feldman (2012) and Bucher and 

Langley (2016). These studies expose the 

microdynamics of the routine change based on agency 

and/or fitness-induced variation through concepts of 

“truce” and “reflective talk” (Zbaracki & Bergen, 

2010; Jarzabkowski et al., 2012; Turner & Rindova, 

2012; Bucher & Langley, 2016; Dittrich, Guérard, & 

Seidl, 2016). Our study complements these works by 

capturing variations that happen due to specific 

endogenous forces manifested in “iterations” (Patriotta 

& Gruber, 2015). We also highlight the effects of 

normative design methods, which have not been 

carefully addressed in prior studies. Accordingly, we 

observed design methods as the first source of 

performative variation in that they convey complex 

rule specifications that methods can use to exercise 

differential effects on performance. As yet, the 

research on routines has been silent about expanding 

the framework of ostensive and performative 

dimensions to study varying the effects of different 

sources of variation (Glaser, 2017). Our study 

complements the existing literature by demonstrating a 

way of analyzing and articulating variations within 

design routines and accounting for the strength of the 

relationship between ostensive and performative 

dimensions in the context of complex organizational 

work processes that follow rules or guidelines.  
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5.5 Implications for Practice  

Our findings have practical value for software 

development organizations. Managers currently tend 

to be unaware of the extent to which and the 

dimensions in which ostensive principles shape the 

performance of process. For instance, project 

managers are expected to follow a design method that 

serves as a guiding template for providing timely 

software release (D’Adderio, 2014). Our analysis 

reveals that slippages from ostensive principles must 

be expected. We conclude that ostensive principles 

matter less than other aspects that influence projects. 

Thus, organizations should be cautious in investing in 

new methods and should adjust them only when 

needed.  

5.6 Limitations and Future Research 

Our study has several limitations. First, our research 

involved six projects in one firm. The sample remains 

limited, and the study should be considered 

exploratory. It is not necessarily generalizable across 

all organizations and software development situations. 

However, being the first study of its kind, it provides 

some new pathways that IS researchers could use to 

collaborate and seek additional insights about design 

processes. Future studies might ponder the effects on 

agency and evaluate how fitness in software 

development environments is achieved. The 

framework could be extended and generalized to 

reveal specific interconnections and variations in 

routines in different contexts (Dionysiou & Tsoukas, 

2013). This study uses first-order Markov chains to 

compute order variance. In this regard, our analysis 

considers only the prior state to be important and 

relevant. Even though the sequences in the study have 

some memory, we do not apply higher-order Markov 

chains, as do some other works (Lacorata et al., 2003). 

In fact, some researchers suggest that this is not the 

appropriate way to model the Markov chain process 

with memory (for more details, see Lacorata et al., 

2003). Because there is no clear understanding about 

how to model these processes for real-world settings, 

our Markov chain analysis has limitations regarding 

the estimation of the transition probabilities and how 

well they apply to other software development settings. 

However, because we are interested in comparing 

software design processes, the effects should be treated 

as illustrative of potential differences. Future research 

should focus on expanding the study to better 

understand the nuances of transitions and potential 

ways to extend Markov chain analyses and related 

design routine variations. In this regard, researchers 

should ask targeted questions regarding the extent to 

which actors and environments shape design situations 

given the level of risk involved (Schmidt, Lyytinen, & 

Mark Keil, 2001; Ramasubbu, Bharadwaj, & Tayi, 

2015). 
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Appendix A: Data Description 

Table A1. Description of Waterfall Projects (BOM)  

Name of the project Project description  

BOM Search The Bill of Material (BOM) search project followed a traditional waterfall structure as dictated by 

Beta’s life cycle development methodology that is founded on object-oriented data modeling, use 

cases, and derivation of a software design architecture using object-oriented design. The project was 

initiated in the first quarter of 2009 to enhance search in the BOM database and it lasted for about two 

years. It was relatively large in size (over 20 person-years) and involved 24 people working in two 

locations (United States and India). This BOM search project followed traditional phases of the 

waterfall methodology that involved gathering requirements, creating designs, coding and debugging, 

and testing the product sequentially with gate decisions in between (Davis, Bersoff, & Comer, 1988). 

The project also involved iterations within development and testing phases (Booch, Jacobson, & 

Rumbaugh, 1999). Overall, the BOM project followed the sequential phases as dictated by the 

waterfall methodology with partial overlaps.  

Part Address Database 

(PADB) 1.4 

PADB 1.4 is a continuity project to the PADB 1.2 project and was carried out in 2011 and 2012. With 

the growing requirements and scope, PADB 1.4 was kicked off to trace out the information that is 

embedded in a part number for detecting the type of parts used in the automobiles. This project used 

a phased approach inspired by waterfall principles for carrying out phases like inception, elaboration, 

transformation, transition with checkpoints in between stages. The interface that was built in this 

process was good functionally. However, schedule slippages occurred due to more development time 

and collaboration efforts. This project was distributed in the United States and India with 15 people 

in the project.  

BOMFI 

 

Bill of Material Foundation Integration (BOMFI) project was carried out in 2011 and 2012 to add 

additional databases and integrate them to the Bill of Material search database. Because the 

functionality was already in place, this project used waterfall principles to develop the product 

sequentially. Due to the smaller development effort required, this project contained 6 people and 

required around 12 person-years of overall effort. The project was carried out in the United States, 

Europe, and India. 

 

Table A2. Description of Agile Projects (LCM) 

Name of the project Project description  

LCM 1.5-1.6 This project addressed how the BOM database deals with engineering specification changes. The 

project has now been running for a few years and the software team creates a new release every three 

months with patches in between. We specifically investigated the design of the 1.5 and 1.6 releases 

referred to as “lightweight change management” or LCM. The 1.5 release began in September 2009 

and went live with the release of 1.6 in January 2010. The development team chose to use an 

amalgamated Agile process for developing this application that was not strictly based on any 

particular method but was similar to the sprint phase of Scrum containing requirements, design, 

development, and testing. The room formation was adopted from the Team Room concept of Extreme 

Programming. The software progress and deadlines are reassessed daily, and changes are made as 

necessary. Thus, everyone involved is always knowledgeable about the status of the application and 

the deadlines. 

LCM 1.7 LCM 1.7 was another version release of LCM carried out in 2010-2011. The project was carried out 

with five people distributed in the United States, Europe, and India. This project was implemented to 

change the back-end databases that integrate with the search for part-related information, namely, 

BOM. This was challenging, as the rapid changes in the agile back-end system caused struggles in 

the administrative areas in terms of coping with the change. 

LCM 1.8  LCM 1.8 was the next version release of 1.7 and was carried out in a similar manner to that of LCM 

1.7, though the scope of the project evolved through the backlogs and user stories that were originally 

created in the previsions releases. The project was carried out with five people distributed in the 

United States, Europe, and India. 
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Appendix B: Interview Protocol (Sample Questions) 

1. Please begin by giving me a short history of your own career and how you came to be working with your present 

organization. 

2. Please describe your current project, how it is organized, and what types of tools and artifacts you use or deploy? 

How much of this work is distributed in time and space? What are its main deliverables? 

3. We are interested in various forms of information technologies that you use in your project. List all the main tools 

(both digital and nondigital) that you use for your design project. Tell me their main functions and how you use 

those functions to accomplish which goals. 

a. Can you tell us what one or two most important collaborative digital information technologies that your 

team has adopted recently? 

b. How did you come to adopt these tools? 

c. How are these tools currently being used in your projects and for which tasks? 

4. We are interested in studying if and how the work practices and information technology use of your organization 

have changed based on your adoption of the tools you mentioned above. 

a. How has the nature of tasks in your project changed? 

b. How has the nature of collaboration in your project changed due to the adoption of new digital tools? 

Please give us specific examples of changes. 

5. Have your design and development of these application platforms triggered the exploration of other digital or 

nondigital tools? Which ones? 

6. Has your use of the digital tools affected the behaviors of other firms/stakeholders participating in your projects 

in any way? 

7. How do you share, store, and coordinate various information related to your design project? How do you use 

digital tools in the process? 

8. What were the main barriers, if any, in adopting these tools among different members on your project team at 

different sites involved? 

a. What were the main benefits for each group, individual, and tasks? 

b. Were there differences in the ways in which each group or individual had to work? 

9. We are also interested in how these collaborative technologies relate to nondigital forms of collaboration. 

a. What has been the relationship between the use of digital and nondigital collaboration during this 

project? What is the proportion of each type of engagement? 

b. How has this relationship changed over the life of the projects? 

10. How did your project members respond to the use of these digital tools? 

a. How did it compare to their “standard” or “traditional” way of working? 

b. How did they have to change the way they worked because of these tools? 

11. How has the use of these tools affected your work and project management in the dimensions of cost, risks, 

quality, and work organization? 

12. Next, we are going to analyze your current design processes and evaluate how digital tools are embedded in each 

step and phase of the task. Describe in chronological sequence a set of design tasks that you have carried out in 

this project since its start (can you check details from your calendar, email, activity log, etc.). 

For each activity, please answer the following: 

1. What were the tasks—what were their precedents, successors? 

2. Was this part of a larger activity, and what was the purpose of the task? 

3. What was your role in this task? 

4. What were the deliverables and related design objects 

5. Who was involved in this task and in what role (individual, meeting, etc.)? Where was the task located? 

6. What tools were used? 

7. How were those tools used? 

8. How long did it take (duration)? 
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Appendix C: Descriptive Models of Agile and Waterfall Projects 

 
 

 

LCM 1.5-1.6  LCM 1.7  LCM 1.8 

Notes: The first visual was developed without iterations and visually appears to contain more activities. LCM 1.5-1.6 had several massive 

iterations and resulted in the figure above. The later models were developed with the concept of iteration, which tremendously reduced the 

sketching of the process workflows. 

Figure C1. Process Models of LCM (Agile Projects) 

 

 
 

 

BOM Search BOMFI PADB 1.4 

Notes: The first visual on BOM Search project also had iterations but had less iteration than LCM 1.5-1.6. The later waterfall models were 

developed with the concept of iteration as discussed above, which tremendously reduced the sketching of the process workflows. 

Figure C2. Process Models of BOM (Waterfall Projects) 
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Appendix D: Data Analysis Procedures 

The data corpus had rich process descriptions and contained detailed data about the influence of methods, developers’ 

expertise, and unexpected project conditions. Overall, the study was an embedded mixed-method study that used 

coding, content analysis, sequence analysis, and descriptive statistics as complementary techniques to detect and 

illustrate the design routine variation and its sources. The mixed-method design followed “complementarity” in using 

research methods. We sought elaboration, enhancement, illustration, and clarification of the results from one method 

with results from the other method (Johnson, Onwuegbuzie, & Turner, 2007, p 116) and expansion, and sought to 

expand the breadth and range of inquiry by using different methods for different inquiry questions (Johnson et al., 

2007, p 116) to strengthen our analysis. After validating the process models, we used excel and R scripts to generate 

sequences that depict the actual design process. A typical sequence in the software process sequence contains seven 

elements: actor configuration, activity type, location, affordance type, tool type, data flow, and design object types (see 

Appendix E for full details about taxonomy) (Gaskin et al., 2014).  

Method-induced variation is caused due to sequential nature of design activity or due to the usage and interplay of IT 

artifacts in design activity (Beck et al., 2001; Boehm, 2002; Cockburn, 2007). To analyze method-induced variation, 

we chose to analyze structural (sequential) and activity composition variation to capture the overall impact of methods 

on design performances. To this end, we carried out a structural analysis of the order of activities using Markov chains 

and state transition tables. This helped us understand the scope, frequency, and structure of iterations in agile and 

waterfall processes. One assumption behind the first-order Markov chain analysis is that it assumes that any given 

sequence of states or activities obey a Markov property—that is, the occurrence of any given event is only dependent 

on the immediately preceding event (Gilks, Richardson, & Spiegelhalter, 1996). Though not always reachable in 

software design, approximations based on first-order Markov models help detect structural differences in processes 

and their regularities. In our case, we used Markov chains to help identify distinct states of iteration and hence 

differentiate distinct states of iteration within agile and waterfall processes (Pentland, 2003). We then used sequence 

analysis to analyze the extent of variation in the composition of activities. At the same time, we relied on grounded 

theory and text mining techniques to identify and attribute the sources of such variation to methods. 

To build the Markov chains, we coded the process activities and their sequences into three categories to operationalize 

three aspects of iteration. We classified activities that did not iterate as “nonrecurring” states. Those activities that had 

some probability of iterating (repeating) were classified into two types of “recurring” states: simple recurring and 

embedded recurring. Simple recurring states (hereafter “recurring states”) involve activities that have some probability 

greater than 0 for repeating at some point throughout the development process. We further define “embedded 

recurring” states as subactivities nested within recurring activities as a special class of recurring state.  

To clarify the coding, we elicited two scenarios where gathering requirements took place. The first involved sequential 

requirements gathering (i.e., waterfall), and the second involved a process in which requirements gathering paralleled 

the design activity (i.e., agile, see Table D1). In the first scenario, requirements gathering happened sequentially 

following the activities (A1) virgin data model creation, (A2) first round of gathering requirements, (A3) meeting to 

negotiate requirements, (A4) clarification of the requirements in e-mails, (A5) updating use cases. In this scenario, 

there was an iteration, i.e., a repetition of a set of events (3, 4, and 5) activities twice. We coded these repeating 

activities as “recurring state (R)” (see Table 2, Scenario 1). The first two events of (1) virgin data model creation, and 

(2) the first round of gathering requirements did not repeat themselves and were thus coded as a “nonrecurring state 

(N).” 

Table D1. States of Iteration for Two Given Sequences of Activities 

Scenario 1 

Nonrecurring state (N) A1A2 A3A4A5 A3A4A5  

Recurring state (R) A1A2 A3A4A5 A3A4A5  

Scenario 2 

Nonrecurring state (N) A1A2 A3A4A6A7A5 A3A4A6A7A5 

Recurring state (R) A1A2 A3A4A6A7A5 A3A4A6A7A5 

Embedded recurring state (E) A1A2 A3A4A6A7A5 A3A4A6A7A5 

 

Next, we describe the second scenario in which requirements gathering happened together with writing test cases. In 

this scenario, two new repeated activities (A6- writing test cases, A7- testing the use cases) were squeezed between 

Activities A4 and A5 (see Table 3). In this case, Activities A6 and A7 repeated within the larger repeated sequence 

(A3, A4, A5) in relation to the iterated sequence described in the first scenario. Hence, iteration here is embedded in a 

larger iteration cycle and it is thus called an “embedded recurring state (E).” In this scenario, Activities A6 and A7 
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were coded as an embedded recurring state, i.e., (E). (See Table 3, Scenario 2). We also show how transitions move 

from one state into another state in a specific set of activities (see Table D3). 

Table D2. State Transitions 

Input states Output states 

Nonrecurring Recurring 
Embedded 

recurring 

Nonrecurring 1(Ex: A1-A2) 1(Ex: A2-A3) 0 

Recurring 0 1 (Ex: A3-A4 ) 1(Ex: A3-A6 ) 

Embedded recurring 0 1 (Ex: A7-A5) 1(Ex: A6-A7) 

Notes: 0 indicates no possibility of transition input states to output states; 1 indicates the possibility of transition 

input states to output states 

Next, to analyze activity variations, we divided the sequence data set into two data sets: BOM for waterfall projects 

and LCM for agile projects. The first data set contained sequences of three waterfall projects, which included BOM 

Search, PADB 1.4, and BOMI projects. The second data set included LCM 1.5-1.6, 1.7, and 1.8 projects. Overall, the 

two data sets were roughly comparable, as they contained about 1,482 and 1,603 observations of activities in waterfall 

and agile projects, cumulatively.  

To analyze the method-induced variation through ostensive rules, we selected a subset of the elements of the overall 

activity model and, for each activity, used information about its activity type and participating design objects. These 

two object elements from the activity model were selected because they tapped into the nature of design activity and 

identified involved design objects and their roles. We believe that this captures most of the variation induced by design 

methods (Royce, 1970; Cockburn & Highsmith 2001). Consider the following routine sequences A and B carried out 

in a waterfall project for (A) “gathering requirements,” and (B) for “status meetings.”  

A: Generate/Specification/Specification/Prototype  

B: Choose/Specification/Specification/Specification 

For measuring the dissimilarity between these sequences, we computed the Levenshtein distance 4  between the 

concatenated strings containing the first three characters of the series of elements in a sequence. Assuming the cost for 

single conversion is set to 1, the total cost of Levenshtein distance between these sequences is 2 (Abbott, 1990). We 

calculated the distances between every sequence pair, called “pairwise distance,” to form a distance matrix. We then 

used k-medoids algorithm to partition the data sets into groups based on the value of pairwise distance scores between 

the sequences. We chose k-medoids algorithm because this technique is more robust to noise and outliers than other 

methods such as k-means (Kaufman and Rousseeuw 1990). For determining the number of clusters, we used the 

optimum average silhouette width (ASW), which seeks to increase the homogeneity of each cluster and ensures better 

validity of the identified clusters. Typically silhouette width ranges from -1 to 1 and ASW ranges from 0 to 1. Kaufman 

and Rousseeuw (1990) suggest that ASW > 0.71 for the identification of strong structures in the groups of data, and 

that silhouette width values are closer or nearer to 1 for well-classified observations. Based on these considerations, 

we extracted the clusters and silhouette width information for each observation. Further, we used grounded theory to 

systematically code activities in each cluster into respective key activity themes.  

 
4 Levenshtein distance is a metric that is used for calculating the differences between two or more sequences using insertion and 

deletion costs. Andrew Abbott (1990) popularized these concepts in social sciences with optimal matching algorithms that compute 

distance scores iteratively.  
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Appendix E: Taxonomy for Encoding Process Sequences 

Table E1. State Transitions 

Design component Items Description  

Activity type 

refers to the purpose of 

the design activity.  

Generate 
Action-oriented planning and creativity-driven tasks such as 

brainstorming, coming up with plans, or producing something as a design 

Transfer Transferring information or objects between people or locations 

Choose Picking a correct or preferred option or answer. Coming to consensus 

Negotiate Resolving policy and payoff conflicts 

Execute 
Performing or executing a plan—producing an object according to a plan 

or a design  

Validate Verifying quality and consistency 

Actor configuration 

refers to the number 

and grouping of the 

actors involved in the 

activity. 

One individual Single individual 

One group A group of individuals with a single functional purpose 

Many individuals More than one individual, each with a separate functional purpose 

Many groups More than one group, each with a separate functional purpose 

Individuals and groups 
A mix of both individuals and groups, each with a separate functional 

purpose 

Tool materiality 

refers to the material 

makeup of the tool 

being used for a 

particular design task. 

Physical 

The material nature of the functional aspects of the tool is physical, rather 

than digital. For example, the functional aspect of paper (ability to 

represent information) is physical 

Digital 

The material nature of the functional aspects of the tool is digital, rather 

than physical. For example, a word processing document (ability to 

represent information) is digital 

Tool affordance 

refers to “the 

possibilities for goal 

oriented action afforded 

by technical objects to a 

specified user group 

understood as relations 

between technical 

objects and users and 

understood as 

potentially necessary 

(but not necessary and 

sufficient) conditions 

for ‘appropriation 

moves’ (IT uses) and 

the consequences of IT 

use” (Markus & Silver, 

2008, p. 622).  

Representation 
Functionality to enable the user to define, describe or change a definition 

or description of an object, relationship or process 

Analysis 
Functionality that enables the user to explore, simulate, or evaluate 

alternate representations or models of objects, relationships or processes 

Transformation 
Functionality that executes a significant planning or design task, thereby 

replacing or substituting for a human designer/planner 

Control 

Functionality that enables the user to plan for and enforce rules, policies 

or priorities that will govern or restrict the activities of team members 

during the planning or design process 

Cooperative  

Functionality that enables the user to exchange information with another 

individual(s) for the purpose of influencing (affecting) the concept, process 

or product of the planning/design team 

Support 

Functionality and associated policy or procedures that determine the 

environment in which production and coordination technology will be 

applied to the planning and design process 

Infrastructure 
Functionality standards that enable portability of skills, knowledge, 

procedures, or methods across planning or design processes 

Store Functionality that allows information to be housed within a device 

Activity location 

refers to where the 

design activity takes 

place. 

Collocated 
Actors are located in close proximity to each other at headquarters during 

the design activity 

Distributed Actors are distributed during the design process 

Remote collocated 
Actors, though located in close proximity to each other, are not at 

headquarters during the design activity 

Remote distributed Actors are distributed and not at headquarters during the design activity 

Design object type 

refers to the purpose of 

the design object being 

used as an input, being 

updated, or resulting as 

an output of a design 

activity. 

Specification 
The design object is instructions for design product parameters and 

constraints 

Design 

The design object is a physical or digital prototype of part or the entirety 

of the intended eventual design product. This design object is used for 

further analysis and representation 

Implementation 
The design object is actually used to complete, in part or whole, the 

intended eventual design product 

Process planning The design object is instructions for future design activities 

Tool-design object 

connection 

 

Output 
The data flow when the design object did not exist prior to the task, but 

was created during the task 

Input The data flow existed prior to the task, but did not change during the task 

Update The data flow existed prior to the task and did change 
Notes: See Gaskin et al. (2014) Appendix A for more details about the taxonomy. 
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Appendix F: Clustering in Method Solution and Examples 

 

Table F1a. Silhouette Plot Clustering Solutions in Agile Projects  

 

 

dddds 

Table F1b. Silhouette Plot Clustering Solutions in Waterfall Projects  

 

 

 

 

 

 

 

Silhouette width si
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Silhouette plot of Agile routines

Average silhouette width :  0.76

n = 1603 10  clusters  Cj

j :  nj | aveiÎCj  si

1 :   304  |  0.67

2 :   120  |  0.71

3 :   85  |  0.51
4 :   30  |  0.54
5 :   59  |  0.56

6 :   260  |  0.70

7 :   110  |  0.62

8 :   235  |  0.83

9 :   200  |  1.00

10 :   200  |  1.00

Silhouette width si
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0.0 0.2 0.4 0.6 0.8 1.0

Silhouette plot of Waterfall routines

Average silhouette width :  0.8

n = 1482 10  clusters  Cj

j :  nj | aveiÎCj  si

1 :   92  |  0.97

2 :   147  |  0.51

3 :   462  |  0.83

4 :   106  |  0.93

5 :   103  |  0.94

6 :   88  |  0.87

7 :   98  |  0.44

8 :   54  |  0.68
9 :   59  |  0.37

10 :   273  |  1.00

Notes: 

Here n refers to the total number of observations, j 

refers to the serial number of the cluster, nj  refers to 
size of the cluster and si is the silhouette width of the 

cluster. Below are the names of the clusters for 1-10 in 

the picture on the left.  

Cluster 1: Program testing  

Cluster 2: Collective code monitoring 

Cluster 3: Use case scenarios 
Cluster 4: Code promotion 

Cluster 5: Code inspection 

Cluster 6: Test cycles 
Cluster 7: Task delegation 

Cluster 8: Pair debugging 
Cluster 9: Code iteration 

Cluster 10: Test case generation 

Notes: 

Here n refers to the total number of observations, j 
refers to the serial number of the cluster, nj  refers to 

size of the cluster and si is the silhouette width of the 

cluster. Below are the names of the clusters for 1-10 in 

the picture on the left. 

Cluster 1: Planning through IT artifacts 

Cluster 2: Use-case driven programming 
Cluster 3: Meeting, testing, and releasing 

Cluster 4: Prototyping  

Cluster 5: Architecting and validating  
Cluster 6: Test, fix and release 

Cluster 7: Pre-reviewing code 

Cluster 8: Testing code 
Cluster 9: Quality control 

Cluster 10: Status checking 
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Table F1. Examples of Activities in Each Cluster in LCM (Agile Methods) 

Cluster no. Name of the cluster Size Examples 

1 Program testing  304 Use case validation, bug fixing  

2 Collective code-monitoring  120 Coding, 10 AM (status) meeting 

3 Use case scenarios 85 Test case writing, 4 PM (show and tell) meeting 

4 Code promotion  30 9 AM status meeting, promoting code  

5 Code inspection 59 Test case writing, QC testing 

6 Test cycles 260 Status meeting, validate prototype 

7 Task delegation 110 Morning meeting, afternoon meeting 

8 Pair debugging  235 Small team meeting 

9 Code iteration 200 Coding 

10 Test case generation 200 Test case writing 

 

Table F2. Examples of Activities in Each Cluster in BOM (Waterfall Methods) 

Cluster no. Name of the cluster Size Examples 

1 Planning through IT artifacts 92 Roundtable meetings, developing project plan 

2 Use case driven programming 147 Writing user stories, developing components  

3 Meeting, testing, and releasing 462 Daily development standups, weekly status meeting  

4 Prototyping 106 Generate raw data file/model 

5 Architecting and validating  103 Validate the model, developing implementation model  

6 Test, fix, and release 88 Clone environment development, Prod 2 launch  

7 Prereviewing code 98 QC testing, premeeting, technical inspection 

8 Testing code 54 User team testing, review by lead  

9 Quality control 59 Clarification in emails communications, fix the defects 

10 Status checking 273 Daily status meeting 
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Appendix G: Findings 

To assess the performative variation of BOM and LCM projects, we computed clustering solutions to partition activity 

data into meaningful clusters. We used optimal average silhouette width (ASW) to partition data. This method 

maximizes the intercluster distances and minimizes the intracluster distance and can hence be considered a relatively 

robust solution than other competing clustering techniques, such as point bisreal correlation, Hubert’s gamma, etc. 

(Studer 2013). To illustrate our clustering solutions, we plot average silhouette widths for different values of k (where 

k represents the number of clusters) (see Figures G3, G4). We obtained an optimum ASW of 0.8 and 0.76 in BOM and 

LCM projects at k = 10. Typically, ASW > 0.71 indicates an excellent split and indicates a high degree of homogeneity 

(Kaufman & Rousseeuw, 1990). It also indicates that a strong structure is found in the clustering solution. 

 

  

Figure G1. Agile Clustering Solutions Figure G2. Waterfall Clustering Solutions 

 

We ranked the clusters based on the ostensive aspects in terms of the application, technical, management, and personnel 

dimensions. See Tables G1 and G4 to find the ostensive correction of the cluster. 

 

Table G1. Ranking of the Clusters Based on Dimensions of Ostensive Aspects 

Cluster name 

Application 

(agility and 

responsiveness)  

Management 

(document 

driven, tacit) 

Technical 

(informal vs. 

formal, simple 

vs. complex) 

Personnel 

(collocation vs. 

distributed, 

thriving on 

chaos vs. order). 

Overall rank 

1. Program testing  8 7 5 5 7 

2. Collective code-

monitoring  

1 3 2 6 
1 

3. Use case scenarios 9 8 9 10 10 

4. Code promotion  7 4 10 1 6 

5. Code inspection 4 10 8 9 8 

6. Test cycles 2 5 3 3 2 

7. Task delegation 5 1 4 7 5 

8. Pair debugging  6 2 6 2 4 

9. Code iteration 3 6 1 4 3 

10. Test case 

generation 

10 9 7 8 
9 
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Table G2. Illustrative Quotations of the Agile Clustering Activities 

Cluster name Examples  Illustrative quotations 

1. Program testing  Use case validation, bug 

fixing  

Instructors also used, for the big launch—for 1.0—where we had actual use 

cases and we had a dedicated—with them we have a dedicated QC person 

who tried to get as much knowledge as they can for that release. And then 

they’ll create use cases for each. 

 

No, there was definitely like a lull period until users started using it and 

then there was sort of an onslaught of production bugs that came up. 

2. Collective code-

monitoring  

Coding, 10 AM (status) 

meeting 

That’s one thing I should’ve mentioned earlier. 10:00 status, no matter 

what. Around the table. We also go through that task director. “Okay, these 

defects are still open,” or “Are you working on these?” Because what they 

do it is they bid them to what release these defects are going to. So usually 

we know we are going to the next release, so we kind of keep going, “Okay, 

this is for the next release, this is for the next release, are you still making 

it?” Keeps us on our toes. 

 

Oh, the way Teamworks works is, you work on the code is this environment 

and it’s live right as you’re changing it. Yeah. It’s interesting about 

Teamworks. Yeah. I could change it right now and if someone’s using that 

service, they’re going to see my change. We have coding tricks to get 

around that where you make a copy of it and you’d work on the copy. And 

when you’re ready, you’d put it in the live version. We do stuff like that. 

3. Use-case 

scenarios 

Test case writing, 4 PM 

(show and tell) meeting 

Yes. By the time we hit December, they were writing their test cases. 

Because we have to get all that code bundled up and put in their testing 

environment. Exactly. Exactly. That’s exactly how it works. And then what 

period of time until it passed all the test cases? Um, let me see here. By the 

end, let’s say before the break, that last week, there were only a few defects 

left. 

4. Code promotion  9 AM status meeting, 

promoting code  

So, Charlene goes in, and we did this every day for I think a week. We’d go 

in there, create a change, do this, and then we’d just kind of run an end-to-

end test just to see if it went successful from the point at which the customer 

makes a change to the point at which you actually get an e-mail that it’s 

been committed. So, we did that for a week. That was part of our daily 

status. “Oh, there’s a bug. I see it. Here, let’s fix it, try again. Oh, here’s a 

bug. Let’s work on that and we’ll fix it tomorrow.” So at certain points 

we’d stop, “Okay, let’s see what we’ve got to do. Everyone go back and 

work on it. See if we can get it to work tomorrow.” So, we’d go back and 

see if we could make those changes. And it probably took a good week to 

week and ½ to get a whole end-to-end test successful, where you could see 

the whole process stepping away. And the final complete was, “The email is 

sent. BOM changes are complete.” Yay! 

5. Code inspection Test case writing, QC 

testing 

Yeah. So, the formal QC happened I guess, maybe a little past the first week 

of December. We had dedicated the QC person to be launched … No, no. 

They’re … cause they’re just no room. They’re in the next team room. So 

they’re very close. They just walk over. They were also in those 11:00s as 

well. So they could get, have some knowledge what they’re supposed to do. 

So they really know this stuff inside and out and by that point, has the QC 

person written all the test cases and everything? Yes. By the time we hit 

December, they were writing they’re test cases. So their test cases are 

written and you think it’s integrated and good? And you give it to them and 

they do all their test cases and they’re letting you know? 

 

No, they were all still engaged and some of us were like, many of us were 

doing the testing but there were still some bug fixes and they were minor, 

but they didn’t stop the process. Or, they were just changes to the coaches 

and stuff like—to the screens. So, we were kind of doing both. We were 

doing system integration testing as well as “Well, let’s fix the screen to say 

this.” So, we were doing the clean-up work as well as the system and the 

end testing. 

6. Test cycles Status meeting, validate 

prototype 

So, from the PowerPoint, he starts mocking up some … not mocking up. He 

starts building some artifacts that are going to handle the changes 

correctly. And from that, he can show the users, “Here’s the change 
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process. So, what we’re going to do is cut it here and split it off here and do 

this and do that.”  

 

He also created some tables, which would house the changes. What we’re 

doing is we take a change object and from that, we look into what pieces 

are important. In this case, it was cost. As an example, the customer said, 

“I don’t want any cost changes going through for this vehicle line.” So, he 

puts together a data model that can support that change. He puts together 

some screens that can support it. And then showed that back to Dave. And 

then from that. 

7. Task delegation Morning meeting, 

afternoon meeting 

We had two days. We had a morning meeting and an afternoon meeting as 

well. So, there were two kinds or different types of meetings? So, your 

morning one would be issues and your afternoon one would be show and 

tell kind of? Yes, for the most part, but you do a mix of everything. Whoever 

had something to talk about, basically. I think our group was at least eight 

to ten people by the end of it. So, everyone had their own piece of code—

their own section of it. So, whoever had problems—whoever had something 

to show. 

8. Pair debugging  Small team meeting And, it was under his guidance that the subteams met daily by phone. 

Charlene is in England. And proceeded to chew on the problem and break 

it down into smaller and smaller components that we were able to start 

building some artifacts to implement bits and pieces of it and push some 

sample data through and larger pieces of real data in sub-sections to see if 

the process was working. 

9. Code Iteration Coding “Okay, by Friday, let’s have our code ready. So, there’s also a process of 

submitting your code, getting it approved. And all of the code is bundled in 

what we call modules. So, every piece of code in the module has to be ready 

in order for the code to be moved to the upper environment.  

10. Test case 

generation 

Test case writing Yes. By the time we hit December, they were writing their test cases. 

Because we have to get all that code bundled up and put in their testing 

environment. 

 

Table G3: Ranking the Clusters Based on Dimensions of Ostensive Aspects 

Cluster name 

Application 

(agility and 

responsiveness)  

Management 

(document 

driven, tacit) 

Technical 

(informal vs. 

formal, simple 

vs. complex) 

Personnel 

(collocation vs. 

distributed, 

thriving on 

chaos vs. order). 

Overall rank 

1. Planning through 

IT artifacts 

3 1 3 1 
1 

2. Use case driven 

programming 

5 10 2 9 
8 

3. Meeting, testing, 

and releasing 

6 5 6 2 
5 

4. Prototyping 10 8 9 10 10 

5. Architecting and 

validating  

9 9 4 7 
9 

6. Test, fix, and 

release 

3 7 5 8 
6 

7. Prereviewing code 1 2 10 5 3 

8. Testing code 4 4 1 4 2 

9. Quality control 2 3 8 6 4 

10. Status checking 7 6 7 3 7 
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Table G4: Illustrative Quotations of Waterfall Clustering Activities  

Cluster name Examples  Illustrative quotations 

1. Planning through 

IT artifacts 

Roundtable meetings, developing 

project plan 
A lot of it was we had just a roundtable project and we walked 

through pretty much code. 

 

Microsoft Project, and we also used a tool called Clarity, and those 

project plans are loaded into Clarity, which produces a scorecard 

that management can recognize, and value and such. 

2. Use case-driven 

programming 

Writing user stories, development 

of the components  
And when you had those user stories, then the idea was that you 

would write them for each use case a different implementation on a 

different platform in Java. Yeah. So that was through a SharePoint 

and then it wrote down all these user stories. There was a lot of 

project management with this. 

 

And then in other ones you have like SharePoint to develop the 

components. Should there be additional where you write additional 

documentation? Or is there none of that. Not typically at that level. 

3. Meeting, testing, 

and releasing 

Daily development standups, 

weekly status meeting  
So the daily status meeting is done strictly with the development 

team and the testing, depending on the phase of the project, and the 

weekly status meeting is being done between me and my leads, and 

then another weekly meeting where we have a video call of the 

product backlog with the customer, and that’s a weekly meeting. 

And then we can invite the customer or any other related customer 

to these weekly meetings when they choose later the business, we’ll 

call them. So, the audience could vary, depending on the 

necessary… 

4. Prototyping Generate raw data file/model Yeah, because the data relationships fundamentally were the ones 

we instituted with the U-BOM strategy, but what happened was, 

over a period of time they kept adding more and more attributes to 

AV-BOM that were not in the original U-BOM model. So there was 

a lot of catch-up on the attribute side to be done, understanding 

what had been done ‘cause obviously at that point you’re coming 

from a physical database and trying to work your way back through 

to you know logically what’s there, conceptually what’s there, and 

then how do we really want to represent that in the U-BOM world? 

5. Architecting and 

validating  

Validate the model, developing 

implementation model  
Right. So what’s driving behind the back of this, is as we have gone 

global and as we’re bringing in the European development 

activities, the vehicles, there are some capabilities and 

functionalities that are needed in the European space that we 

haven’t addressed, and so we’re launching the software on vehicle 

programs and having some pretty significant problems with 

implementation. 

6. Test, fix, and 

release 

Clone environment development, 

Prod 2 launch  
So after that first three months we, like I said, we got a clone 

environment of our existing development environment. All the code 

got imported there and we started developing from there. 

 

What does that mean, “practice launch”? So that strategy of 

launching, we get into the Prod II environment. We’d start from 

scratch with nothing and have a whole strategy of getting the DVAs 

involved loading data and then loading code. You’d have to do loads 

on the BOM-F side, so it’s their launch strategy. So I think they took 

three days each.  

7. Prereviewing 

code 

QC testing, premeeting, technical 

inspection 
There’s also another quality inspection, I guess you’d call it, but 

that you’d say “do the design documents match the analytical 

documents,” right? So there’s like defects in that. 

8. Testing code User team testing, review by lead  So there’s a big portion from September to December of all… 

There’s a whole dedicated user team testing, so not the QC team, 

but actual users, a whole of lot of them, dedicated in testing and 

trying to break it. 
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9. Quality control Clarification in emails 

communications, fix the defects 
Yes. Firstly, I send an e-mail because they need to acknowledge it 

right away that this is the amount of discrepancy we found between 

the original use case and the design today. And then I’m actually 

updating my test cases based on this document. So this is my final 

version today. So, in case, tomorrow, if I’m logging in a defect or if 

I’m saying it didn’t work the way you intend to, I reflect it in this 

document. Not to the one which we did before. So that was my 

clarification to them.  

10. Status checking Daily status meeting So, I understand. So these latter types of meetings which you discuss 

more operational coordination and knowledge sharing within the 

project, whereas you have these bigger meetings with the clients like 

accepting the scope and other things, and then the other one was 

that now we are done with things, the inception phase, we can move 

to the next phase. 
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