

ISSN 1536-9323

Journal of the Association for Information Systems (2020) 21(4), 864-900

doi: 10.17705/1jais.00623

RESEARCH ARTICLE

864

How Much Method-in-Use Matters?

A Case Study of Agile and Waterfall Software Projects

and their Design Routine Variation

Babu Veeresh Thummadi1, Kalle Lyytinen2
1University of Limerick, Ireland, veeresh.thummadi@lero.ie

2Case Western Reserve University, USA, kalle@case.edu

Abstract

Development methods are rarely followed to the letter, and, consequently, their effects are often in

doubt. At the same time, information systems scholars know little about the extent to which a given

method truly influences software design and its outcomes. In this paper, we approach this gap by

adopting a routine lens and using a novel methodological approach. Theoretically, we treat methods

as (organizational) ostensive routine specifications and deploy routine construct as a feasible unit of

analysis to analyze the effects of a method on actual, “performed” design routines. We formulated a

research framework that identifies method, situation fitness, agency, and random noise as main

sources of software design routine variation. Empirically, we applied the framework to examine the

extent to which waterfall and agile methods induce variation in software design routines. We trace-

enacted design activities in three software projects in a large IT organization that followed an object-

oriented waterfall method and three software projects that followed an agile method and then

analyzed these traces using a mixed-methods approach involving gene sequencing methods, Markov

models, and qualitative content analysis. Our analysis shows that, in both cases, method-induced

variation using agile and waterfall methods accounts for about 40% of all activities, while the

remaining 60% can be explained by a designer’s personal habits, the project’s fitness conditions, and

environmental noise. Generally, the effect of method on software design activities is smaller than

assumed and the impact of designer and project conditions on software processes and outcomes

should thus not be understated.

Keywords: Software Development, Agile, Waterfall Methodology, Method-In-Use, Routine

Variation, Method Fit, Mixed Methods, Silhouette Clustering

Sandeep Purao was the accepting senior editor. This research article was submitted on May 18, 2016 and underwent

one revision.

1 Introduction

Some routines show a lot of variation; others

do not. Some are flexible; others are not.

Some are easy to transfer; others are not.

These variations may seem like noise or bad

measurement, but they are not. They are

indications of underlying phenomena and

dynamics. By unpacking routines, we can

begin to apply ideas and theories from all

branches of social and behavioral sciences

to explain these kinds of differences

(Pentland & Feldman, 2005, p. 794).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/351021729?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Design Variation in Agile and Waterfall Projects

865

A long-established design science tradition in

information systems (IS) has examined the creation

and implementation of system or software

development methodologies, or methods, and the

impact of their use (Hirschheim, Klein, & Lyytinen,

1995; Russo, Wynekoop, & Walz, 1995). A primary

premise in this scholarship is that we can and need to

differentiate between the effect of using or not using a

method—that is, the use of the method matters for

software and its process quality and/or user

satisfaction. Over the years, the main motivation of

software organizations has been to adopt, design, and

invest in a variety of methods ranging from early

waterfall methods to recent agile variants (Gordon &

Bieman, 1993). However, the actual effects of such

choices and investments remain largely anecdotal

(Lindvall et al., 2002), although some evidence

suggests that, for example, agile methods result in

faster development processes, higher user satisfaction,

and improved system quality. Even here, results

remain mixed (Berente & Lyytinen, 2007).

The development activity conditions under which a

development method is used to an effect that changes

the process and outcomes continue to be poorly

understood. For example, when an agile method is

chosen, the extent to which activities are affected

remains unclear. The few detailed analyses of actual

uses of methods such as the agile method in specific

design contexts (e.g., Vidgen & Wang, 2009) are

highly illuminating in that they report in detail agile

design practices and articulate how the method shapes

such practices. However, most relevant studies are

largely descriptive and fail to capture how the method

truly shapes specific aspects of the design activity.

One primary deficiency in prior studies is that most

analyses assume that the whole method and its use

constitute the unit of analysis. Consequently, these

studies simply detect the presence or absence of a

method in a particular setting. Such high-level

treatment hides how the method actually shapes design

practice. Abrahamsson et al. (2002) eloquently

summarize the current state of the understanding:

“Despite the high interest in the subject, no clear

agreement has been achieved on how to distinguish

agile software development from more traditional

approaches. The boundaries—if such exist—have thus

not been clearly established” (Abrahamsson et al.

2002, p. 8).

One way to overcome this conundrum is to be more

diligent in choosing and theorizing about the unit of

analysis when analyzing method use and its impact,

particularly when the true effects of a given method on

a designer’s behavior can be readily identified. One

promising approach to such analysis is adopting a

routine lens and analyzing designers’ behavior as an

enactment of routines that are shaped by a method

(Feldman & Pentland, 2003). Accordingly, a design

routine can be defined as a set of (sequential and/or

parallel) activities that are repetitively carried out by a

designer to transform “some representational inputs

into a set of material and representational outputs,

leading ultimately to a generation of a design artifact

that offers a set of functions for a community of users”

(Gaskin et al., 2012, p. 2). According to this approach,

a design method is viewed as an “ostensive”

specification of a design routine that provides a

prescriptive recipe (resource) for a designer’s design

activities to be performed, whereas a “performative”

design routine is a designer’s enactment of the routine

of specific design activities carried out while following

a given recipe (Glaser, 2017). A design method par

excellence conveys an official and formal statement of

the ostensive specification of a design routine, whereas

a designer’s situated design practices when the method

is “enacted” constitute the performative dimension of

the design routine. In other words, the ostensive part

captures how the organization formally and officially

defines and expects its software design activities to

unfold—that is, how the organization collectively

“thinks” about its software process and accounts for its

meaning and goals. The performative dimension

captures the situated and embodied way in which

designers in organizational settings carry out design

activities that more or less comply with the method.

Naturally, the ostensive enactment never fully captures

the performative enactment (Feldman & Pentland,

2003). This has also been demonstrated in several

method use studies in which the method “use” has been

found to be adaptive and improvised (Russo et al.,

1995; Feldman & Pentland, 2003), calling for constant

“situational method adaptation” (Smolander,

Tahvanainen, & Lyytinen, 1990).

Recently, some IS scholars have used a routine lens to

observe variations in general design behaviors and to

compare and explain design behaviors and their

outcomes (Gaskin et al., 2014; Lindberg et al., 2016).

However, they have not more deeply examined the

extent to which the ostensive dimension of a method

(Fitzgerald, 2000; Vidgen & Wang, 2009) serves as a

true source of the detected design routine variation,

defined here as the space of possibilities in the design

routine’s activity composition and order (Gaskin et al.,

2012). Further, there is insufficient understanding of

the extent to which different methods induce different

levels of design routine variation—that is, whether

different methods exercise differential effects on actual

design routine variation and under what conditions.

Overall, we know surprisingly little about how design

methods are enacted in different settings, whether and

how design activities are shaped by a given method,

and whether the design outcomes truly differ because

of the use of the method or because of some other

factor or combination of factors (Berente & Lyytinen,

2007). To address this gap, we study the following

questions:

Journal of the Association for Information Systems

866

RQ1: To what extent do design methods affect design

routine variation during software development?

RQ2: Does such design routine variation differ across

different methods, such as agile and waterfall

methods, and in what ways?

We address these questions by formulating a design

routine analysis framework that identifies four main

sources of design routine variation during software

development; we also discuss their theoretical

foundations. This addresses RQ1 in that the framework

offers an analytical, systematic approach for

identifying and evaluating the impact of method use on

design activities and software processes. To address

RQ2, we empirically observe the extent to which the

chosen method—in our case agile or waterfall—

influences the performative dimension of a routine and

the manifested differences in observed design routine

variation. In particular, we probe the proportions of the

observed design routine variation that are influenced

by the followed method through a multicase study

(Yin, 2017). The study focuses on the use of agile and

waterfall methods and their impact on design routine

variation in six midsize software projects over four

years in a large software development unit responsible

for managing bill of material (BOM) applications at a

global original equipment manufacturing (OEM)

automotive firm, referred to here as “Beta.” The case

study uses a mixed-methods research design and

combines qualitative content analysis with

computational techniques (such as Markov chain

analysis, sequence analysis, and cluster analysis) to

detect and explain structural variations in design

activity composition and order.

We advance our argument as follows. In the next

section, we review the extant literature on design

methods, method use, and ostensive and performative

dimensions of routines. Then, we review studies on

method use and examine what we know about the

effects of method use on design processes and

outcomes. We briefly report our research methods and

data collection and analysis techniques, followed by a

section reporting the main research findings. We

conclude by discussing the novelty of the introduced

theoretical and analysis approach and evaluate how it

can shape future studies on the use of software

methods.

2 Theoretical Background

2.1 System Design Methods as Bundles

of Ostensive Routines

Software development is widely recognized as a

complex undertaking with many elements

unaccounted for and often negative variation in its

processes and outcomes. Because of this, software

organizations have, for some time, paid attention to

directing and reducing such variation to improve

design processes and outcomes. One approach has

been to prescribe ex ante specific ways of carrying out

design activities expressed in a method intended to

reduce the variation that follows (Glass, 1991). Since

most methods share a reductionist worldview, it is

widely assumed that better design solutions can be

reached by following a prescribed set of sequential

steps (Baskerville, Travis, & Truex, 1992; Fitzgerald,

1996). Since the mid-1960s, design methods have been

invented, introduced, and applied to shape

organizational responses to a large set of design tasks

to avoid or mitigate the likelihood of a design or

system failure that may negatively affect design

quality, cost, or time parameters (Fitzgerald, 1996;

Sommerville, 1996; Fitzgerald, 2000). Although most

methods carry the ethos of control and seek reduction

in design routine variation, significant differences in

the proposed methods prevail because of differences in

underlying philosophies, beliefs, and values or because

of “product differentiation, personal ego, and territorial

imperatives” (Fitzgerald, 1996, p. 11). Moreover, as

Baskerville et al. (1992) posit, most methods are

intended for large-scale development tasks that involve

significant development time (Baskerville et al., 1992;

Feller & Fitzgerald, 2000; Fitzgerald, 2000). However,

these goals are not universally shared and additional

factors (including organizational competencies and

learning) have been recognized as reasons for choosing

a specific method (Lyytinen, 1987). Accordingly,

some methods like waterfall approaches may not be

suitable for all situations because they may contradict

the assumptions underlying the method (Baskerville et

al., 1992; Petersen, Wohlin, & Baca, 2009). Generally,

given the complexity of design processes and

situations, no method is perfect. Even a light desk

evaluation can easily find weaknesses in most methods

for certain situations. Hence, one size does not fit all

and organizations have thus learned to be more

attentive in flexibly selecting a method for a given

design situation (Laplante & Neill, 2004).

Due to the potential incompleteness of any one

method, each method has been shown to leave

designers significant degrees of freedom regarding use

for a particular task (Berente & Lyytinen, 2007).

Consequently, no daily set of design activities can ever

faithfully reflect a given method. Examining the extent

to which a designer has followed a method’s

prescriptions when evaluating design performance

affords a limited understanding of the outcomes,

because a significant amount of activity is always left

unaccounted for. Indeed, research shows that

significant deviations prevail at both contextual and

individual levels regarding a method’s enactment and

the amount of design routine variation a designer can

acceptably employ while still demonstrating coherence

with any particular method (Russo et al., 1995).

Design Variation in Agile and Waterfall Projects

867

Recent research on the dual nature of routines provides

a fruitful lens for understanding and accounting for the

observed gap between formally enforced and actually

observed variation in the use of a method (Feldman &

Pentland, 2003). Traditionally, changes in software

development have been viewed as resulting from

failures to adopt a given design method (Baskerville et

al., 1992). However, Feldman and Pentland’s work

offers an alternative explanation: design routine

variation is an inherent property of method use and

results from endogenous interactions between

ostensive (structure) and performative (agency)

aspects of a routine (Feldman & Pentland, 2003). Here,

the ostensive dimension represents the ideal, abstract

dimension of a routine, whereas the performative

dimension is formed by intermittent and ephemeral

instantiations of action employed while the actor is

paying attention to ostensive “principles” (Latour,

1986). The ostensive dimension is “the ideal or

schematic form of a routine” (Feldman & Pentland,

2003, p. 101), whereas the performative dimension

“consists of specific actions, by specific people, in

specific places and times. It is the routine in practice”

(Feldman & Pentland, 2003, p. 101). The ostensive

dimension can be thought of as a foundational

“structure” that guides and orients the designer’s

actions, while the performative dimension manifests in

real, observed, design “actions.” Ultimately, the

performative dimension contributes to the continued

creation, maintenance, and modification of the

ostensive dimension and, together, they form a

“duality” (Giddens, 1984; Feldman & Pentland, 2003).

According to this view, the software development

process is a bundle of performative routines carried out

by designers and other stakeholders. The ostensive

dimension of a software process consists of abstract

ideas: some are embedded in general design methods,

while others represent local or individual ideas and

abstractions. Over time, such development ideas and

abstractions are codified in written methods based on

the repetitive execution of completing specific design

tasks (learning by doing). Sometimes they are crafted

from outside by absorbing design guidelines and ideas

that have worked elsewhere (often those introduced by

consultants or academics).

Scholars, however, often misconstrue a method as a

single ostensive system that constitutes a monolithic

object to be followed mechanistically (Feldman &

Pentland, 2003). In reality, software development is

continually socially constructed and, accordingly,

local abstractions are influenced by multiple, often

contradictory and incomplete extrasomatic sources.

Designers continually attribute their “intersubjective

interpretations” to design performances, which

introduce irregularities into local design behaviors and

related ideas (Lyytinen, 1986; Bijker, 1997). Design

performances ultimately are like “improvised actions”

that draw partially from the ostensive dimension and

continually alter it by “situating” the ostensive

dimension based on actors’ situated needs and

opportunities (Suchman, 1987; Bourdieu, 1990). Thus,

methods as ostensive specifications serve only as

generic guides, standards, or principles and leave

significant degrees of freedom for designers to modify,

vary, and adapt the ostensive dimension and act

differently (Berente & Lyytinen, 2007). According to

the routine literature, varying degrees of freedom can

be granted to the ostensive dimension, depending on

the context—that is, depending on the setting,

designers can enact different levels of choice

surrounding the ostensive dimension in the

performance of a routine. Yet each established and

identified routine necessarily comes with a certain

number of shared and understood expectations

regarding the performance of the activity. To be and

act like a method, each method must mitigate

deviations and lower the degrees of freedom available

to a designer to control design routine variation

(Dionysiou & Tsoukas, 2013).

Overall, when we approach design methods as

“bundles of ostensive routines” (Felin et al., 2012), we

can sort software development into sets of separate

design tasks and associated routines, such as gathering

requirements. Each of these separate routines can be

thought of as a family of activities. For some activities,

designers use specific techniques—for example,

collecting and recording requirements (use cases). In

other activities, designers apply rules that specify the

scope of included functions (e.g., house of quality) and

follow protocols to validate the needs of users (e.g,

quality reviews). Other activities use different

techniques to estimate the cost of included functions

(function analysis and cost-benefit evaluation) and so

on. At the same time, the overall bundle of routines

involved in gathering requirements comes with

openness and ambiguity (which we refer to as “degrees

of freedom”) in its ostensive specification. This allows

for variations in the performative dimension of the

routine, regarding, for example, the level of detail at

which the use cases should be drawn, who should

analyze them, or whether the scope of use cases should

be determined at the start of the project) (Dionysiou &

Tsoukas, 2013). Generally, we can say that any design

method comes with an ostensive specification, but

each design method can have varying effects on the

performative dimension of the routine. This depends,

among other things, on the uncertainty concerning the

meaning of method specification and its usability in a

given task or on the designer’s skills to apply it.

It has also been shown that designers strategize around

their design performances and select strategically

ostensive elements to which they adhere in order to

demonstrate their accountability (Feldman & Pentland,

2003) or make the method fit their established habits

Journal of the Association for Information Systems

868

and skills (Cohen & Bacdayan, 1994). Based on future

interpretations, these choices are likely to change the

ostensive element. However, according to Pentland

(2003, p. 538), “there has been little attention to the

issue of how to characterize these divergences.” This

prompts the question: To what extent does the actual

design performance conform to the specified ostensive

element of a method and under what conditions does a

designer deviate from it? In the next section, we

formulate a framework to identify and explain such

design routine variation.

2.2 Design Routine Variation in

Software Development

In the past, researchers have used surveys and related

perceptual measures to detect variation in design

routine (Pentland, 2003). Variation is generally

couched in standardized question items that question,

for example, respondents’ perceptions of the

maximum and minimum range of experienced

variability in a task; variations are typically captured in

the shifts and distances from the computed means.

Unfortunately, such measures are not likely to capture

the true variation because of anchoring effects, poor

recall, and so forth. Such measures approach design

routine variation as an aggregate across a whole

project, which makes them inadequate for detecting the

potential distance between the ostensive and

performative dimensions (Vidgen & Wang, 2009).

They fail to detect varying dimensions of this

“unobserved design routine variation” because they

capture variability in the activities’ compositions,

order, and perhaps interactions (Gaskin et al., 2012).

Detecting true variations should help improve the

understanding of how design activities differ across

projects and under different contingencies, such as

different methods used.

Recent studies that have focused on teasing out routine

variation adopt the notion of a task, its related

outcomes, and the concept of an activity as a pattern of

actions that deliver those outcomes. The activity

concept captures a fundamental idea that there are

multiple ways that any given task can be done (Gaskin

et al., 2012). One approach to capturing this variety

involves separating between sequential variety (or

order variation) and configural variety (or

compositional variation). The latter refers to the

variability across the activities, whereas the former

captures the variation in the temporal structure of the

activities (Gaskin et al., 2012). We use this line of

thought to capture the latent, unobserved variation in

design activities as a means to tap into the extent of

design routine variation manifested both in the

1 This notion is similar to the idea of error term in ordinary

least squares regressions—i.e., the remaining unaccounted

variance.

composition and the order of design activities (Roy,

1959; Feldman & Pentland, 2003; Hærem, Pentland, &

Miller, 2015). The next question to explore is what

determines the variation in both dimensions as the

design process unfolds.

We identify and characterize four tentative sources that

influence design routine variation—namely, method-

induced variation, fitness-induced variation, agency-

induced variation, and random variation. We deem

these sources to be similar to sources of variance in

classic measurement theory, i.e., analytically

orthogonal and independent sources that nevertheless

organically intertwine during any design activity (see

Table 1). Some of these sources have been generally

recognized in prior research (see Feldman & Pentland,

2003; Leonardi, 2011) and some studies have also

recognized “attributes of the environment (fitness

induced variation), individual cognitive processes, and

the variety of an individual’s experience (agency

induced variation)” (Downey & Slocum, 1975, p. 765)

as sources of routine variation. However, while the

unique role of the ostensive dimension in inducing

design routine variation has been generally recognized

in past studies, it remains largely unaccounted for (see

Feldman & Pentland, 2003; Leonardi, 2011). Most

studies also recognize but do not extensively discuss

random variation and its role.1 Overall, the proposed

framework is more complete than frameworks used in

previous research because it adds method-induced

variation and random variation as significant potential

sources of design routine variation. Next, we discuss

each variation type in more detail.

Method-induced variation: As noted, design

methods serve the purpose of improving software

processes because of their capacity to give systematic

direction to development activity by controlling the

range of variation in terms of how development

activities are carried out (Fitzgerald, 2000, Pentland,

2003). Methods achieve this by conveying cognitive

frames and establishing common ground for

understanding and coordinating development; they

also include normative principles (who should do

what, when) that coordinate work dependencies.

Finally, they impose standards for evaluating design

decisions (such as rules of decomposition) (Lyytinen,

1986). When adopted and invested, methods act as

primary (ostensive) sources for determining a range of

design routine variations. Here, each design activity in

such ostensive specification has specific outputs (task

outcomes), which connect it to other activities and

related routine bundles. Choices regarding how the

connection is implemented influence the order of

activities.

Design Variation in Agile and Waterfall Projects

869

For example, a waterfall method entails distinct sets of

activities (such as design and coding) that are carried

out sequentially (i.e., coding is not expected to start

until design is finished) (Royce, 1970). In contrast,

agile approaches seek to interlace design and coding

activities by “layering” design outputs over time (see

Figures 1 and 2; Abrahamsson et al., 2002). Activities

complying with agile methods will shy away from

documenting design activities as inputs to the next set

of activities (Abrahamsson et al., 2002). Thus,

selecting and adopting a method is likely to have a

significant impact on how routines are composed and

organized and on their variation.

Fitness-induced variation: Method developers

cannot have perfect foresight of all the activities that

need to be carried out during the development process.

Designers must improvise and “retrofit” the method to

unexpected organizational contingencies arising from

method incompleteness or inadequacy (Glass, 1991;

Kumar & Welke, 1992). Retrofitting increases the

potential fit of the method (routine) with the situation

(Levinthal & Rerup, 2006). Fitness-induced variations

emanate either from initial omissions of specific,

targeted guidelines or from the inappropriateness of

the guidelines to the situation. Lack of fit can emerge

from multiple sources and often comes as a surprise

(Levinthal & Rerup, 2006). Contingency conditions

include unexpected requirements, inappropriate

technologies, and emerging insights that change the

scope and functions of the system. As such, fitness

variations are not detrimental—they add significant

value to the design and are often necessary to render

the final outcome functional.

Table 1. Design Activity Variation

Terms Description

Variation/design routine variation Variation highlights differences between two or more forms of the same activity.

“Design routine variation” refers to multiple possibilities in the composition and

order of activities and their variability across contexts. Researchers have used the

construct to compare differences between two routines with similar outcomes (e.g.,

hiring routines; see Feldman & Pentland, 2003).

Method-induced variation Differences in design practice due to the usage of a method(s), i.e., such activities

would not be present in the same frequency if the ostensive element were not present.

Fitness-induced variation Differences in design practice due to the structural contingencies in the design

environment (e.g., unreliable technologies).

Agency-induced variation Differences in design practices based on the habits or skills of the designer.

Random variation Differences in design practice because of environmental noise such as fatigue or

incidental misconception.

Figure 1. Iterations in the Agile Process (Abrahamsson et al., 2002, p. 28)

Iteration

Journal of the Association for Information Systems

870

Figure 2. Iterations in Waterfall Methods (Royce, 1970, p. 330)

However, fitness variations do imply an additional

range of (unexpected) routine variations, especially

when contingencies start to dominate the design task.

For example, a project manager in our field study

observed that their actual process was far more

iterative than planned due to unforeseen challenges in

testing:

Yeah. When we are testing it, we found a few

… issues and then they … did not match the

requirements so we had to go through …

iterations to make sure we implement those

correctly. And … we found some different

…, because when we had calculated … we

had to make sure those were also

implemented.

Agency-induced variation: Agency ultimately

determines development outcomes—in other words,

the competency of actors who develop and work in the

project matters. Accordingly, agency acts as a third

source of design routine variation because individual

skills, aptitudes, and experience vary. Designer

behaviors rely mostly on experience and acquired

knowledge, rather than on seeking fit with the provided

method (Hirschheim, 2007). Differences in an actor’s

skills, experiences, and competencies modify

performative routines (Cohen & Bacdayan, 1994,

Feldman and Pentland 2003). Thus, agency-induced

variation can have both negative and positive effects

on design outcomes. If permitted to run unchallenged,

developers will solely depend on their own, often

variable skills and idiosyncratic views and ignore

shared ostensive routines (such as strict documentation

requirements, generating common test sets). This can

make project-level coordination difficult or even

impossible and initially motivates the introduction of

methods when software projects begin to scale up. If

allowed to run uncontrolled, reliance on personal skills

can sow the seeds of large-scale failures. Nevertheless,

individual skills and behaviors can significantly and

positively influence software development outcomes

and productivity (Scacchi, 2002). One actor (a

developer) at Beta Corporation revealed how he found

his skills to be insufficient for the project:

The beginning of the project. I was learning

what is PD because I’m new to this whole

thing. Because I am from HR group. I am

used to dealing with the employee, human

resources, and all these things. That’s me

basically. Even though I’m a JAVA

developer, the domain knowledge I had was

not that broad—the ins and outs of things.

So, I had to learn. Then I learned that, and

then I was given the introduction to what is

LDM, what is this project.

Random variation: Organizational behaviors always

involve random noise. Due to the complexity of

external and internal contingencies, behaviors in

organizational settings are highly variable and random

mutations in behaviors always emerge (Aldrich &

Pfeffer, 1976). Random variation is often associated

with unique, unexpected, singular conditions

embedded in the environment, in an actor’s psycho-

physiological conditions (like fatigue), or in complex

interactions in the interactive technological

environment (Ciborra, Migliarese, & Romano, 1984).

Design Variation in Agile and Waterfall Projects

871

In conclusion, the analysis of sources of design routine

variation helps identify and clarify how performative

routines are built and how they interrelate with

ostensive approaches in complex ways (Dionysiou &

Tsoukas, 2013). This helps frame our analysis that

seeks to address our research questions: (1) To what

extent do methods influence design processes viewed

as bundles of routines? (2) Do different methods

influence performative routines differently?

3 Research Design

We carried out a longitudinal four-year case study

between 2010 and 2013 on software development in a

large multinational manufacturing company (referred

to as Beta), which is a large US manufacturing

company known for its technological prowess in

designing and manufacturing automotive vehicles. Our

purpose was to identify sources of variation associated

with methods in sampled projects and detect their

effects on design routine variation. It was organized as

a multilevel study, and it involved within- and cross-

case analyses (Yin, 2017). The scale and complexity of

the setting made the study an ideal setting for

understanding sources of variation in routines. The

research focused on the effects of enacting two

contrasting software development methods—

structured object-oriented method (waterfall) and agile

methods.

3.1 Research Site

The study context was project teams that developed a

large, critical family of applications within Beta called

the Bill of Material foundation (BOM). This is a

mission-critical suite of information systems that

maintains critical part-related information associated

with the design, manufacturing, supply chain,

marketing, and service of cars. Over the past decade,

Beta had been creating its BOM architecture in its

information technology (IT) division and established a

dedicated unit for this domain. The goal of the unit was

to develop and maintain a family of applications that

helped manage all product part-related information

across the life cycle of a car. Due to the centrality of

part information in anything that deals with designing,

manufacturing, or selling cars, the unit was relatively

large and viewed as highly important in the IT division

and its projects were approached as mission critical.

Each year, the unit ran multiple projects (large and

small) to expand, revise, and improve part-related data

management and service functions. During our study

period, the unit underwent a major shift toward a new,

more powerful data management platform. Related

software development activities were globally

distributed (in the United States, Europe, and India),

because Beta runs geographically distributed design

2 http://en.wikipedia.org/wiki/Rational_Unified_Process.

centers and has to share product and part information

during design and marketing. Most of the final

software was written in India in a development center

owned and run by Beta. The design processes were

digitally intense and used a suite of supporting

software tools to share code and related information,

such as test cases. This created a space to detect and

analyze traces of design processes (Shoval & Isaacson,

2007).

In developing the BOM software, the unit relied on two

methods for different projects. The first method was

driven by the waterfall idea of proximal iterations, was

based on object-oriented design and modeling, and

used a local version of rational unified process.2 The

method had been developed and refined within the unit

beginning in the mid-1990s. The second, a later

approach, followed agile design and was based on

Scrum (Schwaber, 1995). At the start of the study, Beta

was mainly a waterfall practitioner; over the course of

the study period, Beta significantly expanded its use of

agile so that toward the end of the period, it mainly

used agile design to develop applications.

3.2 Data Collection and Validation

We collected process data from six software projects

with the goal of understanding the extent to which

development routines differed in terms of the two

design methods. Three software development projects

were carried out with the object-oriented method and

three followed agile methods. We collected data using

replication logic from multiple projects to detect

within and between variations in routines when a given

method was used. This allowed us to locate overall

variations within design processes and use related

method data to infer the extent to which the variation

was induced by the use of the method. The projects

focused on developing specific features of the BOM

database system and several front-end applications to

manage or use product information during the car

design process.

The projects were purposefully sampled to have

comparable scale and complexity and were developed

during roughly the same time period, using similar-

sized teams. We sampled three Bill of Material (BOM)

waterfall projects, referred to as BOM Search, PADB

1.4, and BOMFI in our data set (see Appendix A for

more details about the project descriptions). The other

three projects we sampled were agile projects (LCM

1.5-1.6, LCM 1.7, and LCM 1.8). We call these

projects LCM projects because since most of them

focused on managing product information and related

change they were referred to as lightweight change

management projects in the company. Agile methods

were first used to develop this suite of applications for

Journal of the Association for Information Systems

872

managing early part and product changes during car

design—hence the name lightweight change. All

projects shared the principal artifacts and critical

infrastructural elements for software development

covering project management, budgeting, personnel,

and other support environments. Overall, the sampling

offered the possibility of conducting a sort of quasi-

experiment in that the projects were sampled to be

similar and the main difference between them was the

use of agile or waterfall methods (Shadish, Cook, &

Campbell, 2002).

We chose to use semistructured interviews as our

primary data collection method because they enabled

us to systematically access fine-grained details of the

design processes and outcomes. Toward this end, we

developed a common interview protocol that focused

on capturing the details of the design processes, their

goals, actors involved, tools used, related inputs and

outputs, key decision points, and so on (see Appendix

B for the interview protocol). All interviews were

conducted on-site, except in one case, where we

interviewed an offshore team in India using phone and

videoconferencing. During the interviews, we asked

designers to show relevant system documentation,

artifacts, or snippets of the actual implemented

systems. We conducted 28 in-depth interviews with

project managers and team members and validated the

process models of their design processes using a

thorough review process (see Table 2).

For each studied project, the data corpus was collected

in two consecutive rounds. In the first round, we

collected the primary process data, which were

validated during the second round. In the first round of

interviews (in 2010), we also interviewed the directors

and vice presidents of the software development unit

to understand the high-level and strategic reasons for

following chosen methodologies. After this, we carried

out interviews with software developers with different

roles in BOM projects.

Table 2. Data Collection

Dates Interview participants Type of interview Number of interviews

Jan-10 Vice president, three project

managers

Face-to-face 3

Mar-10 Two project managers,

business analysts

Face-to-face 3

Apr-10 Project managers,

developers,

Face-to-face 5

May-10 Developers Face-to-face 4

Dec-10 Project manager, developers Face-to-face 2

Dec-11 Developers Skype 2

Sep-12 Project managers, developers Face-to-face 6

May-13 Project manager, developers Face-to-face 3

Total 28

Figure 3. Development Process Model Visual Description

Design Variation in Agile and Waterfall Projects

873

During these interviews, we included people in charge

of methods, tools, and management strategies for these

projects. Initially, we collected data on one waterfall

project and one agile project and developed detailed

workflow models of the routine composition and

structure (see Figure 3). These were subsequently

validated with the developers and managers. The

detailed workflow sketches with information about the

types of actors, activity types, design objects, and

affordances used in carrying out each design activity

were subsequently modified at this stage (see Figure 3)

(Gaskin et al., 2014).

Typical projects contained between 200 and 1,000

activities with more than 40,000 total design elements.

In 2011 and 2012, we added iteration objects to these

models to improve coding procedures and simplify the

visual layout of the models, which allowed us to

quickly collect data when the process had a significant

number of iterations. We validated each process model

during the next field trip for all six software projects

with their respective teams (see Appendix C for the

visual workflows of all the projects).

3.3 Data Analysis and Coding

To address the general research questions, we broke

them down into three detailed subquestions, which

address the extent to which methods influenced how

each activity within the process was carried out (so-

called routine composition variation or configural

variety) and the extent to which methods influenced

how the activities were ordered, or so-called sequence

variation or sequential variety (for a more detailed

discussion about the types of variation in routines, see

Gaskin et al., 2012). We address each specific

subquestion below and describe how the data were

analyzed.

3.3.1 At the Project Level, How Much Does a

Method Induce Variation in Activities?

This subquestion seeks to generally assess the extent to

which performative routines addressing a similar type

of task (such as design) are similar to their ostensive

specifications. We sought answers to this question

through conducting three steps of analysis outlined

below. We describe them briefly to show how we

derived similarity/dissimilarity measures that helped

us answer this research subquestion. Details for each

step and the algorithms used are presented in Appendix

D.

Step 1: Prepare and identify activity sequences. We

divided the sequence data set into two data sets, BOM,

representing waterfall projects, and LCM for agile

projects. The first data set contained sequences of all

three waterfall projects and the second data set

contained sequences of all three agile projects. Overall,

the two data sets were roughly comparable and

contained 1,482 and 1,603 activities in waterfall and

agile projects, respectively. The larger number of agile

projects does not indicate larger projects but rather the

presence of smaller steps and more iterations. Next, we

identified specific activity types, such as generate,

choose, and validate, and related design objects for

each design activity to reveal the method-induced

variation for each type of similar activity (see

Appendix E for the list of all activity types). We

assumed that the elements of design activities and

design objects would capture most variation induced

by design methods because people or settings are not

controlled by the method (Royce, 1970; Cockburn &

Highsmith, 2001).

Step 2: Cluster the sequences. To measure the

dissimilarity between the activity sequences, we

computed the Levenshtein distance (a metric for

calculating the differences between two or more

sequences using insertion and deletion costs) between

the concatenated strings with the first three characters

of the series of elements in a sequence (Lindberg et al.,

2016). Assuming the cost for a single conversion is set

to 1, the total cost of the Levenshtein distance between

these sequences would be 2 (Abbott 1995). We

calculated the distances between every sequence pair,

i.e., the “pairwise distance,” to form a distance matrix.

Next, we clustered the design activities based on the

similarity scores using k-medoid algorithms and used

grounded theory to identify the designated themes of

design activity in identified clusters (Kaufman &

Rousseeuw, 1990; Studer, 2013). We chose k-medoids

algorithms because this technique is more robust to

noise and outliers than other clustering methods, such

as k-means. This gives an average silhouette width

(ASW) for each cluster based on the similarity. A value

of ASW of close to 1 indicates a high degree of

similarity between the sequences; a value of 0 indicates

that the sequences are highly dissimilar (see

Appendixes D and F for more details on the

clustering).

Table 3. Ostensive Dimensions for Method Comparison

Design methods Application Management Technical Personnel

Agile Agility, responsiveness Tacit communications Informal, simple designs Collocated, thriving

on chaos

Waterfall Stability, predictability Document-driven

communications

Formal, complex designs Distributed, thriving

on order

Journal of the Association for Information Systems

874

Step 3: Calculate method-induced variation from

silhouette width and ostensive correction. In

carrying out this task, we were inspired by Boehm and

Turner’s (2003) model dimensions to compare agile

and waterfall methods based on their ostensive aspects

(Boehm & Turner, 2003). This resonates with our

study goals and has a close parallel to the underlying

organizational routine concept. Like the analysis of

organizational routine literature, Boehm and Turner’s

analysis emphasizes two parts in devising methods:

one leading to stability and another creating flexibility.

They suggest that agile and waterfall methods are

introduced to create either agility or stability, and their

framework identifies four dimensions (see Table 3) on

which the ostensive aspects of agile and waterfall

method can be compared (Boehm & Turner, 2003).

This provides a means to analyze the level at which

studied performative routines align with those four

dimensions of method. Next, we briefly describe each

dimension as a baseline for comparing agile and

waterfall activities and discuss the extent to which they

align with respective ostensive dimensions.

It should be noted that according to Boehm and

Turner’s analysis, application refers to the application

of the design method to either increase stability or

instability, typically through higher degree of agility

and responsiveness or control. Management refers to

customer relations, project planning, control, or project

communications that occur in projects. Technical

refers to approaches to requirements, testing and

development, and their articulation in design methods.

Personnel refers to customer characteristics, developer

characteristics, and the culture around which design

activities are organized (Boehm & Turner 2003, p. 51-

52).

Using these dimensions, we coded all activities in the

agile and waterfall projects and assigned a rank to the

clusters based on how well the performative activities

matched with the ostensive specifications (see

Appendix G for more details about coding and

illustrative evidence.) For example, the “collective

code monitoring” cluster has activities that increase

agility by “keeping the developers on their toes”;

hence, we coded this cluster with a rank of 1 on the

application dimension and coded the other clusters

based on the decreased rate of agility derived from

qualitative data (see Appendix Table G1 for details on

the ranks of the clusters). Similarly, we ranked other

clusters on all four proposed dimensions according to

waterfall or agile. Then, we calculated a composite

rank, which in principle expresses how well the design

activities purport the ostensive goals of the method.

This allowed us to calculate an average for the overall

3 A correction factor is needed for understanding the real

effect of design method on the project activities from random

clustering of the sequences. If the correction factor is high, it

method-induced variation of the design method.

Because the silhouette width is still quite generic, the

clustering analysis may not validly reflect why some

sequences have been clustered. Hence, we introduced

a correction factor for providing a more realistic

method effect. A higher rank suggests that the

observed activities in the sequences followed the

ostensive principles more accurately for that

dimension, and, to this end, we assigned a correction

factor3 of 1 for high-influence clusters and 0.1 for low-

influence clusters. This corrected the average

silhouette width obtained in the prior step with the

correction factor per the formula below where i refers

to the number of the cluster and n refers to the total

number of clusters. The step introduced a corrected

ostensive alignment score, which principally evaluates

the effect of design method in shaping the observed

design activities.

𝑚𝑒𝑡ℎ𝑜𝑑 − 𝑖𝑛𝑑𝑢𝑐𝑒𝑑 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛

=
1

𝑛

∗ ∑(𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑠𝑖𝑙ℎ𝑜𝑢𝑒𝑡𝑡𝑒 𝑤𝑖𝑑𝑡ℎ)𝑖

𝑛

𝑖=1

∗ (𝑜𝑠𝑡𝑒𝑛𝑠𝑖𝑣𝑒 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛)𝑖

3.3.2 What Are the High-Level Differences

Between Agile and Waterfall Projects in

Terms of Their Ostensive Aspects?

To address this subquestion, we read the transcripts

multiple times to derive and capture the meaning and

nature of activities (refer to Appendix G for more

details about coding and illustrative evidence). We

used content analysis and related coding techniques to

detect observed differences in activities by using the

four dimensions of application, management,

technical, and personnel. This provided additional

evidence of actual method use and related differences

and triangulated the findings with computational

findings. This helped us identify how the two methods

actually differ in the associated design practice, i.e.,

how much it is being guided by the ostensive

dimension of the method (Stemler, 2001).

3.3.3 What is the Method-Induced Variation

in Ordering Activities Including Their

Level of Iteration in Agile and

Waterfall Methods?

Order variance measures the extent to which the

method influences the order of development activities

and, specifically, the extent to which activity patterns

repeat, or iterate, over time (Gaskin et al., 2012). For

indicates the clustering of sequences occurred due to the

presence of ostensive principles.

Design Variation in Agile and Waterfall Projects

875

calculating the level of repeated activities, we

computed the proportion of unique activities (the

activities that do not repeat in the overall sequence of

activities) and then determined the unique activity ratio

in relation to the overall project activity) (for more

details about order variance/sequential variety, see

Gaskin, 2012). For instance, for a set of activities in the

following sequence A-B-C-A-B-D, the % of unique

activities would be 33.3 (2/6 * 100), because there are

only two unique activities, C and D (as highlighted).

Based on this, we determined the repeated activities

percentage to be 66.6% (=100-33.3). Using this

measure, we computed the repeated activity

percentage distribution across the agile and waterfall

projects.

To detect order variance, we classified identified traces

of activities (identified in Step 1 of the first question)

and their sequences (i.e., computed observed

permutations) into three categories. These categories

helped us operationalize three facets of iteration in

development activity: (1) no iteration, (2) presence of

iteration (a sequence repeats itself in a straight

sequence), and (3) iteration within iteration (a repeated

sequence is included within a repeated sequence). We

analyzed the relationships between these different

states of iteration by creating Markov chains that

would model transitions and transition probabilities

between these states in each project and within similar

types of projects. To build the Markov chains, we

coded activities and their sequences into three

categories to identify three levels of iteration within

each project. We classified activities that did not iterate

as “nonrecurring” states and classified activities that

iterated into two types of states: simple recurring and

embedded recurring iterations. Simple recurring

iteration states involved activities that had a

probability of repeating throughout the development

process. We defined “embedded recurring” states as

repeated activities nested within recurring activities as

a special class of recurring state. Recent work on

Markov chains shows that first-order Markov chains

can have memory, use the concept of “partitions”

instead of states, and suggest this as an appropriate way

to model the Markov chains with memory. In other

words, instead of purely calling a state open or closed,

states can be recoded as partitions and can have more

states (in our case, three partitions: nonrecurring,

recurring, embedded recurring) capable of taking

memory into account (for more on this, see Lacorata,

Pasmanter, & Vulpiani, 2003).

To illustrate this coding, we present two scenarios of

requirement-gathering activities. The first involves

sequential steps of gathering requirements (like in

waterfall projects), and the second involves a string of

activities where gathering requirements occurs in

parallel with the design activity (like in agile projects,

see Table 4). In the first scenario, gathering

requirements happens sequentially through the

following activities: (A1) virgin data model creation,

(A2) first round of gathering requirements, (A3)

meeting to negotiate requirements, (A4) clarification

of requirements in email, (A5) updating use cases. In

this scenario, there is one iteration/repetition of a

sequence of activities (3, 4, and 5) twice. We code

these repeated activities as “recurring state (R)” (see

Table 4, Scenario 1). The first two events of (1) virgin

data model creation, and (2) first round of gathering

requirements do not repeat themselves and are coded

as a nonrecurring state (N).

In the second scenario, gathering requirements

happens concomitantly with writing test cases,

whereby two repeated activities (A6, writing test cases;

A7, testing the use cases) are squeezed between

activities A4 and A5 (see Table 4). In this case,

activities A6 and A7 repeat within the larger repeated

sequence (A3, A4, and A5), and this happens as part of

the iterated sequence in the first scenario. Iteration is

now embedded in a bigger iteration cycle, and this is

called embedded recurring state (E). Herein all

sequences of activities (A6, A7) are coded as

embedded the recurring state E. (For more details, see

Appendix D.) Next, we report our research findings.

Table 4. States of Iteration for Two Given Sequences of Activities

Scenario 1

Nonrecurring state (N) A1A2 A3A4A5 A3A4A5

Recurring state (R) A1A2 A3A4A5 A3A4A5

Scenario 2

Nonrecurring state (N) A1A2 A3A4A6A7A5 A3A4A6A7A5

Recurring state (R) A1A2 A3A4A6A7A5 A3A4A6A7A5

Embedded recurring state (E) A1A2 A3A4A6A7A5 A3A4A6A7A5

Journal of the Association for Information Systems

876

4 Findings

We address the subquestions outlined in the methods

section and then report design routine variation in

software processes across sampled methods to show

overall variation in detected activity sequences. We

analyze the method variation as induced by the method

specifications qualitatively and, finally, discuss the

effect of methods on observed activity-order variation.

4.1 At the Project Level, How Much

Does a Method Induce Variation in

Activities?

We leverage a novel computational technique

proposed in the method section that calculates method-

induced variation by taking into account ostensive and

performative aspects of design activities. Using this

procedure, we found that agile projects had an overall

method-induced variation of 0.42 of the activities. This

is slightly higher than that observed in the use of the

waterfall method, which had about 0.40 of variations

explained by the method. The reason for the high

degree of variation in agile projects can be associated

with higher conformance to ostensive aspects,

especially in terms of increasing agility in the process.

We tabulated the amount of method-induced variation

in the descending order in agile projects to highlight

the influence of the ostensive aspects on different types

of performative activities and their compositions (see

Table 5; see Appendix G for more detail). As can be

seen in Table 5, Clusters C1-C5 provide higher

method-induced variation and reduce the

dissimilarities in the types of activities performed at

the cluster level. Clusters C1-C5 contain several

families of iterative activities around coding,

monitoring, and testing, and the variations in these

clusters ranged from 0.8 to 0.37, indicating that a wide

range of activities was performed within the limits of

the ostensive guidelines. These activities were

performed frequently to improve the project’s agility.

This finding shows that agility and iteration are

important facets that reduce the differences across

design activities performed on a periodic basis. We

also found that activities in clusters C6-C10 were less

iterative and had a lesser degree of ostensive

specification. The difference often emerged because of

a high usage of the specific contextual IT artifact. The

activities’ similarity with the ostensive element in

these clusters ranged from 0.35 to 0.05.

We tabulated the amount of method-induced variation

in the descending order in the waterfall method

projects to identify and highlight the level of influence

of the ostensive specification on the performed

activities and their compositions (see Table 6).

Clusters C1-C5 with high similarity contained several

families of activities that center around planning,

testing, and meetings. The variations in these clusters

ranged from 0.97 to 0.40, indicating significant

uniform compositional variance and similarity with the

ostensive element. Most activities seek to increase

stability and predictability of the design process. We

found that the similarity of activities in Clusters C6-

C10 ranged from 0.35 to 0.09. These clusters had fewer

formal activities and contained activities such as

prototyping, design sketches, and undocumented

requirements. Such activities were not specified in the

ostensive element of the method. One reason for the

emergence of these types of behavior is associated with

changes in design routine variations created by fitness

and actor-related factors.

Table 5. Method-Induced Variation in Agile Methods

Cluster name Method-induced variation

C1 Code iteration .8

C2 Collective code-monitoring .71

C3 Test cycles .63

C4 Pair debugging .58

C5 Task delegation .37

C6 Code promotion .35

C7 Program testing .27

C8 Code inspection .25

C9 Test case generation .2

C10 Use case scenarios .05

 Average .42

Design Variation in Agile and Waterfall Projects

877

Table 6. Method-Induced Variation in Waterfall Methods

Cluster name Method-induced variation

C1 Planning through IT artifacts .97

C2 Testing code .61

C3 Meeting, testing, and releasing .50

C4 Test, fix, and release .44

C5 Status checking .40

C6 Prereviewing code .35

C7 Quality control .26

C8 Architecting and validating .19

C9 Use case-driven programming .15

C10 Prototyping .09

 Average .40

Overall, we found that design routines in both design

methods aligned relatively well with the ostensive

approach. This was specifically pronounced across

technical and application dimensions of the projects,

which generated the requisite speed in the agile

projects and sufficient control of the design target in

the waterfall projects.

4.2 What are the High-Level

Differences Between Agile and

Waterfall Projects in Terms of Their

Ostensive Aspects?

Here, we again address our second question, which

seeks to understand whether there are differences in the

respective impact of agile and waterfall methods

across projects. This will be evaluated in terms of each

method’s impact on its application purpose and the

management, technical, and personnel dimensions of

the project.

4.2.1 Application

Application refers to the application purpose of the

method to either increase artifact stability or instability

allowing a higher degree of responsiveness. According

to Boehm and Turner (2003), agile projects emphasize

a higher degree of agility and are therefore different

from waterfall projects, which seek stability and

predictability. Our qualitative coding of the agile and

waterfall interview data provides additional insights

and reveals the extent to which these purposes were

followed. Agile projects carried out multiple activities

that increased agility by being responsive to

continually changing requirements. For example, one

developer emphasized that he could change the code

on the fly and use tricks in the project environment to

increase its agility. He mentioned that he “could

change it right now and if someone’s using that

service, they’re going to see my change. We have

coding tricks to get around that, where you make a

copy of it and you’d work on the copy.”

In contrast, waterfall projects carried out more stable

activities. For example, designers used technical

inspections and prereview meetings to increase the

stability of the artifact and reduce the defect rate at the

end of each project stage. As the code went through

multiple screenings, the defects were reduced, but this

process consumed more time and reduced

responsiveness. One project manager noted:

We had a premeeting. That was probably

about a week in advance of that … It was

actually a technical inspection at that point

where defects were recorded, identified,

and recorded. I think the premeeting was to

try and minimize the amount of defects that

were generated from that, from our eyes

and the design team’s eyes.

Overall, agile projects were less predictable and were

prone to a higher proportion of trial-and-error and

high-risk design activities. However, we conclude that

both agile and waterfall methods aligned relatively

well in terms of ostensive principles in the application

purpose area.

4.2.2 Management

Management refers to how the method approaches

customer relations, project planning, control, and related

project communications (Boehm & Turner, 2003).

According to Boehm and Turner (2003), agile projects

emphasize a high degree of tacit knowledge and are

different from waterfall projects, which demand

extensive documentation for managing and dealing with

stakeholder concerns. Our coding of project data

Journal of the Association for Information Systems

878

provides insights into the extent to which these

management principles were followed, i.e., on the

detailed level of usage of documentation and related IT

artifacts. Agile projects in the formative stages relied

less on documents; the requirements were largely tacit

and informal and were typically held in the minds of

developers. In the later stages, the requirements were

managed with increased attention to the explicit

documentation, sometimes providing even more

documentation than required. One developer noted:

We concentrate on writing more in detail

requirements; it used to be just the one-pager

from the customer, and we don’t really have

a lot of, like, ID-related stuff inside.

Requirements in 1.8 are in detail, more

concrete, so everybody can look at that, most

of the people can look at that requirement

and understand what’s in it.

Waterfall projects faced anomalies in managing

documents. Even though the developers were expected

to produce extensive documentation, there were

sometimes deviations in this process. One offshore

developer noted that sometimes the changes in the

components were not tracked. When we asked about

related documentation, he said:

And then in other ones you have like

SharePoint to develop the components.

Should there be additional where you write

additional documentation? Or is there none

of that. Not typically at that level. So you

don’t update the documents like which you

would put into SharePoint? There’s nowhere

after this point where you update it? Yeah,

unfortunately. The code is the master. What’s

worse than no documentation? Bad

documentation.

This showcases that both agile and waterfall methods

typically had weaker alignment with the ostensive

elements in the management dimension but still sought

to align with expected ways of relating to project

stakeholders.

4.2.3 Technical

Technical or technical design refers to specific

approaches applied to requirements, testing, and

development and how they are articulated in the design

method (Boehm & Turner, 2003). According to Boehm

and Turner (2003), agile projects are more informal and

simpler compared to waterfall projects in this

dimension. Our analysis showed that agile projects were

less formal and engaged in many informal meetings that

led to greater productivity and faster code development.

The code constituted the primary artifact around which

the design iterations took place. This reduced the

generation of other (unnecessary) design artifacts. At the

same time, the requirement generation followed an

informal process. One project manager noted:

So, this is the Santa Claus process, right?

Who’s been naughty, who’s been nice.

Everyone puts in their wish list. Some are

valid, some are priorities, some are must-

haves. And that whole process of rooting

through, that is an interactive, coming

together and then dispositioning them and

tossing them, deferring them or going.

Waterfall projects tended to be more formal and carried

out many meetings and interactions with users that were

documented in formal protocols. For example, one

developer suggested:

So there’s a big portion from September to

December of all . . . There’s a whole

dedicated user team testing, so not the QC

team, but actual users, a whole of lot of them,

dedicated in testing and trying to break it.

This snippet showcases that waterfall projects were

generally more formal and facilitated repeated

interaction with users based on stated protocols.

4.2.4 Personnel

Personnel refers to customer characteristics, developer

characteristics, and the culture around which design

activities are organized in the method (Boehm &

Turner, 2003). Cockburn (2007) emphasizes that in

agile projects, it is important to have dedicated

personnel with higher cognitive skills and that

personnel with poor collaborative skills should be

avoided. Our analysis shows that agile projects did not

have a dedicated collocated customer (Cockburn,

2007). One developer mentioned, “the customers

didn’t understand what they wanted. That was the

major hang-up on that.” Agile projects often operate at

the edge of chaos because of the lack of a fixed set of

requirements. In contrast, waterfall projects operated

with customers who were collocated, and part of the

development took place in India. As a result, the

process was less chaotic. In our case, agile projects

were less aligned in the personnel dimension because

they did not have a dedicated collocated customer. At

the same time, the waterfall projects were more

organized and aligned well with the ostensive

personnel dimension of the method.

Overall, our analysis shows that both agile and

waterfall projects aligned well with ostensive aspects

in terms of the application and technical dimensions.

The activities of both types of projects had less

alignment in the management and personnel

dimensions. This was largely due to uncertainty

concerning how much to document and how to

organize and coordinate between project members.

Design Variation in Agile and Waterfall Projects

879

4.3 What Is the Method-Induced

Variation in Ordering Activities

Including Their Level of Iteration in

Agile and Waterfall Methods?

To answer this question, we tabulated the percentage

of distributions of the repeated activities in both agile

and waterfall projects. As expected, the tally shows

that agile projects contained a higher proportion of

repeated activities (see Figure 4). We therefore

conclude that, in general, agile projects were more

iterative—that is, they repeated the same patterns of

activities. Furthermore, LCM 1.8 project, the fourth

version release of LCM, was the latest project and

actually contained no singular, unique activities—in

other words, the proportion of unique activities

appeared to reduce over time. One reason for this is

that the later projects could eliminate slack from

implementation activities and reduced error rates.

Interestingly, we found that the waterfall projects were

also iterative. The proportion of repeated activities in

the waterfall projects ranged from 85% to 99.8%

(Figure 5), indicating that the waterfall projects also

had a tendency to significantly iterate over certain

design elements. PADB 1.4 and BOMFI projects were

the most iterative because of quality-related concerns

and the extensive iterations across use cases and design

options.

We also examined patterns of iterations across the

projects to determine the levels of nonrecurring,

recurring, or embedded recurring states in related

processes. We found that four projects had only simple

process structures—that is, they involved movements

between nonrepeating moves (N) to repeating moves

(R). Two of these projects followed waterfall

methodology, whereas all agile projects had such

simple iterative structures. Figure 5 shows that the

PADB 1.4 and BOMFI waterfall projects had only

simple structures. A common thread connecting these

projects was that they all experienced similar planning

environments, which resulted in the increased use of

extensive planning with project management tools to

reduce the need for complicated transitions and

iterations. Furthermore, these two projects also

displayed similarities in transitioning to an iterative

state (R) (Figure 5)

Two agile projects had simple iterative structures

(Figure 6). LCM 1.5-1.6 represented the first project

and thus had higher complexity because of insufficient

understanding of the initial requirements. Hence, the

probability of going from nonrecurring to

nonrecurring/recurring was equally split (50/50).

However, in LCM 1.8, the probability of transitioning

from nonrecurring to recurring was very low (0.06),

indicating lower levels of process complexity. Overall,

we notice that the probability of iterations in both the

agile and waterfall projects remained roughly the same

(0.98-0.99) across time, indicating that these methods

enable a similar proportion of iterations. This was

somewhat surprising in that agile processes are

generally viewed as iterating more than waterfall

processes. What was not surprising was that waterfall

projects ran several iterations because of later

challenges in tracing requirements and the need to

implement related design decisions.

Agile Waterfall

Figure 4. Distribution of Repeated Activties

0

20

40

60

80

100

%
 d

si
st

ri
b

u
ti

o
n

 o
f

re
p

e
a

te
d

 a
ct

iv
it

e
s

Projects

Repeated
activities

0
20
40
60
80
100

%
 d

is
tr

ib
u

ti
o

n
 o

f
re

p
e

a
te

d
 a

ct
iv

it
e

s

Projects

Repeated
activites

Journal of the Association for Information Systems

880

Waterfall projects

NN

RR

.91 .08

.990.009

NN

RR

1

.990.002

PADB 1.4 BOMFI

Agile projects

NN

RR

.5 .5

.980.01

NN

RR

.93 .06

.990.001

LCM (1.5-1.6) LCM 1.8

Figure 5. Simple Iterative Structures

NN

RR

EE

.83 .16

.910.04

.80

.03 .04

.16

NN

RR

EE

.8 .2

.980.004

.95

.025
.008

.025

BOM Search (Waterfall) LCM 1.7 (Agile)

Figure 6. Complex Iterative Structures

The projects that involved complex iterations (i.e.,

nested iterations) had a higher average probability of

iterations. When nested iterations were present, this

probability was 1.1 times higher in agile projects than

in waterfall projects (Figure 6). Agile LCM 1.7 had

more complex iterations due to the need for

coordinating activities across several functional groups

participating in the project (i.e., the business analyst

group and developer group). Therefore, LCM 1.7 had

an embedded iteration within the “requirements

gathering” iteration for prototyping the collected

requirements (Figure 6). The iteration was introduced

strategically to minimize the discovery of bugs in the

later phases, which could have resulted in a higher

iteration probability in the project as a whole.

Similarly, BOM Search waterfall project contained

some complex iterations because of the significant

overlap of development and testing activities in some

stages. Overall, these findings suggest that agile and

waterfall projects both iterate significantly but the

reasons for this are different in the case of highly

nested iterations.

5 Conclusions and Limitations

5.1 General Contributions

This study contributes to the large and well-established

body of research on design methods and their effects.

This work is unique in that it is carried out as a quasi-

natural experiment, which allowed us to tease out the

variation induced by the chosen method in design

processes. To accomplish this, we adopted a novel

theoretical lens of design processes as bundles of

routines and used the construct of design routine

variation as a conceptual means to detect how software

development activities unfold and how variations in

the activities can be explained by the chosen method.

Specifically, we examined how and to what extent

performative manifestations of agile and waterfall

methods differ and were able to attribute such observed

differences to the presence of ostensive elements in

these methods. We compared the profiles of design

activities with the espoused profiles of chosen methods

and compared the frequencies of repeated activities

and structures of iterations with the probabilities to

repeat the same set of activities between method

conditions. Our findings suggest that the effect of

Design Variation in Agile and Waterfall Projects

881

using agile or waterfall methods is around 40% of

performed design activities. The rest, about 60%, can

be accounted for by other sources, such as method

incompleteness, new or different fitness conditions,

designers’ skills and habits, and organizational noise.

Both agile and waterfall methods had a stronger

influence on the technical and application dimensions

of the method than on the management and personnel

dimensions. This suggests that the deviations from the

methods multiply when designers face complex social

or cognitive situations that are ambiguous, unclear, or

difficult to coordinate. Third, unsurprisingly, the agile

method involved more repetitive activities than the

waterfall method, though the difference was smaller

than expected. The probability of iterating in the agile

method was 1.1 times higher than in the waterfall

method when nested iterations were included. At the

same time, the general iterations between the two

methods remained the same when only simple

iterations were included. Together, these findings

advance our understanding of the effects of design

methods and show that such effects are significant but

probably less pronounced than often assumed in the

literature. We also show that agile and waterfall

processes actually mimic each other in many ways,

with respect to iterations, and demonstrate how unique

requirements are solved locally.

5.2 Contribution to Studies on Method

Impact

A central contribution of the study is to empirically

analyze differences in design routine variation between

agile and waterfall projects. By doing so, we

operationalize how to detect the effects of the ostensive

dimension of the method on its related process

enactment (Pentland, 2003). Prior research has already

shown that, in specific settings, the performative

dimension varies between agile and waterfall methods,

although none of the studies have carried out strict

comparisons (Mitchell & Seaman, 2009; Vidgen &

Wang, 2009). These studies have focused primarily on

qualitative, phenomenological differences, examining

variations across design activities less systematically.

One reason for this is that teasing out the influence of

the ostensive dimension of a design method during its

process enactment has been a challenging research task

because of the lack of extensive process data and

robust techniques to identify and capture such variance

(Pentland, 2003). This study addresses some of these

concerns. Our empirical results, though tentative and

directional, support the general argument that the

ostensive dimension of the method matters and indeed

creates differences in the enactment of a design

method. Furthermore, by developing measures of

method-induced variance across two dimensions

(composition and order) and using a detailed

computational approach, we develop a way to tease out

such variance. Our study provides a fine-grained

analysis of how software design processes are

orchestrated and shaped by design methods. Indeed,

our analysis shows that there are true differences in

how agile and waterfall methods influence

development processes.

Our study also suggests that the current understanding

of the effects of the ostensive dimension on the

performative dimension is heading in the right

direction: the effect of the method on performative

routine variance is significant. At the beginning of the

study, we expected the method effect to be more

pronounced with the use of waterfall methods.

However, we found that the different effects of the

methods were not that far off from each other. This

indicates that choosing any method matters to a certain

extent in that it reduces and directs the compositional

variance of the design activities. We also show that the

order variation was different between waterfall and

agile methods. We still cannot rule out the method

effects in other facets of design, such as changes in the

designer’s attitudes and behaviors of other actors (such

as users) because of the presence and reading of the

ostensive specification. This is left for future study.

A second contribution of this work highlights the

differences between agile and waterfall approaches in

the application, management, technical, and personnel

dimensions. This helps evaluate the extent to which the

method used faithfully follows its espoused design

principles. Our analysis suggests that both agile and

waterfall methods follow the official design principles

more thoroughly in application and technical

dimensions, i.e., in terms of how the method-induced

activities address the concern for agility or of formality

and stability (Conboy, 2009). Our analysis shows,

however, that designers often use coding tricks and

create more dynamic environments to increase the

agility of the processes. In our study, waterfall projects

were more stable because they involved extensive

quality and inspection tests that increased the stability

of designs as well as the level of formality of the

project activities.

We also found that agile and waterfall methods aligned

less in the management and personnel aspects. For

example, agile methods generally rely on informal

knowledge exchanges that assume little or no

documentation. In our study, this lack of

documentation led to unexpected problems. Therefore,

designers contextually modified the method over time

by incorporating ostensive elements to increase the

level of documentation. These findings suggest that in

situ agile practices are often retrofitted and altered to

support more explicit and formal method use. Even

though the use of documentation might impair agility,

such modified routines were often carried out to

improve the final quality of the software. These

findings illustrate that agile projects also showcase

situational method adaptation, i.e., the ability to

Journal of the Association for Information Systems

882

change and use project resources effectively and

economically (Conboy, 2009).

A third contribution of our study provides novel

empirical evidence for a well-established fact that the

agile method involves more iterations than the

waterfall method (Berente & Lyytinen, 2007). In

practice, the waterfall method also demonstrated

iterations. Designers carried out often repetitive

activities akin to an agile process. However, we

detected significant differences in the structures of

iterations between agile and waterfall projects. This

happened, in particular, when the iterations spanned

multiple project tasks and involved several groups of

project participants—that is, when iterations became

embedded in multiple iterative cycles calling for more

coordination. For example, when iterations were

embedded, the average probability for iteration in agile

and waterfall was 0.96 and 0.85 respectively. This

suggests that agile projects tend to be a bit more

iterative when there are multiple design groups, and

they will repeat the same type of activities. At the same

time, the average probability to iterate in agile and

waterfall was similar even in situations when there

were no iterations across groups and tasks. Our results

suggest that agile and waterfall processes both involve

iterations, although their frequency will vary according

to method. Future research needs to elicit such

differences by evaluating specific conditions that

provoke or pacify alternative types of iterations.

5.3 Contribution to Studies on Software

Processes

A considerable body of literature has addressed the

differences between agile and waterfall methods in

terms of cost, quality, and productivity (Lyytinen

1986; Lyytinen, 1987; Vidgen & Wang 2009). As

expected, previous comparative studies found that

agile developers spend less time in early stages

managing requirements and produce more lines of

code than their waterfall counterparts. Furthermore,

agile developers are better at estimating effort and

coming up with higher-quality products (Mitchell &

Seaman, 2009). However, most of these studies were

experimental and used students as study subjects,

which raises some concerns about their external

validity or real-world faithfulness. We need to question

the extent to which can we directly translate such

results to practice. Also, these studies did not use

qualitative sampling techniques to explicate how the

processes unfold contextually in real settings. In this

regard, our study specifically contributes to the process

side of software process research, which seeks to

understand the real effects of method on process

characteristics through fine-grained activity-level

comparisons. We illustrate how much of the ostensive

aspect of the methods are being followed in real-world

settings. Our findings support the notion that methods

are never fully followed and the designers need to be

empowered to reflect on the evolving work practices in

situ (Mathiassen and Stage 1990, Mathiassen and

Purao 2002).

Future research may benefit from ethnographic studies

that seek to understand the habits and skills of the agent

and fitness-induced variations. Recent literature on

open-source informalisms can provide a fruitful

avenue to access the agency and fitness-based

variations in agile and waterfall methods (Scacchi,

2002). Insight into the design rationale for the

activities, artifacts, and affordances would likely shed

light on the deeper issues around how design

performance is orchestrated to reach an envisioned

outcome (Conboy, Gleasure, & Cullina, 2015).

5.4 Contributions to Routine Research

Finally, we contribute to the routine literature by

extending the ideas of ostensive and performative

dimensions to reflect how design routine variations

occur because of the presence of method, agency,

fitness, and noise. Up to this point, only a few studies

have discussed the emergence of performative routine

variations, given the gulf between the ostensive and

performative dimensions (Rerup & Feldman, 2011).

The few exceptions are Turner and Rindova (2012),

Jarzabkowski, Lê, and Feldman (2012) and Bucher and

Langley (2016). These studies expose the

microdynamics of the routine change based on agency

and/or fitness-induced variation through concepts of

“truce” and “reflective talk” (Zbaracki & Bergen,

2010; Jarzabkowski et al., 2012; Turner & Rindova,

2012; Bucher & Langley, 2016; Dittrich, Guérard, &

Seidl, 2016). Our study complements these works by

capturing variations that happen due to specific

endogenous forces manifested in “iterations” (Patriotta

& Gruber, 2015). We also highlight the effects of

normative design methods, which have not been

carefully addressed in prior studies. Accordingly, we

observed design methods as the first source of

performative variation in that they convey complex

rule specifications that methods can use to exercise

differential effects on performance. As yet, the

research on routines has been silent about expanding

the framework of ostensive and performative

dimensions to study varying the effects of different

sources of variation (Glaser, 2017). Our study

complements the existing literature by demonstrating a

way of analyzing and articulating variations within

design routines and accounting for the strength of the

relationship between ostensive and performative

dimensions in the context of complex organizational

work processes that follow rules or guidelines.

Design Variation in Agile and Waterfall Projects

883

5.5 Implications for Practice

Our findings have practical value for software

development organizations. Managers currently tend

to be unaware of the extent to which and the

dimensions in which ostensive principles shape the

performance of process. For instance, project

managers are expected to follow a design method that

serves as a guiding template for providing timely

software release (D’Adderio, 2014). Our analysis

reveals that slippages from ostensive principles must

be expected. We conclude that ostensive principles

matter less than other aspects that influence projects.

Thus, organizations should be cautious in investing in

new methods and should adjust them only when

needed.

5.6 Limitations and Future Research

Our study has several limitations. First, our research

involved six projects in one firm. The sample remains

limited, and the study should be considered

exploratory. It is not necessarily generalizable across

all organizations and software development situations.

However, being the first study of its kind, it provides

some new pathways that IS researchers could use to

collaborate and seek additional insights about design

processes. Future studies might ponder the effects on

agency and evaluate how fitness in software

development environments is achieved. The

framework could be extended and generalized to

reveal specific interconnections and variations in

routines in different contexts (Dionysiou & Tsoukas,

2013). This study uses first-order Markov chains to

compute order variance. In this regard, our analysis

considers only the prior state to be important and

relevant. Even though the sequences in the study have

some memory, we do not apply higher-order Markov

chains, as do some other works (Lacorata et al., 2003).

In fact, some researchers suggest that this is not the

appropriate way to model the Markov chain process

with memory (for more details, see Lacorata et al.,

2003). Because there is no clear understanding about

how to model these processes for real-world settings,

our Markov chain analysis has limitations regarding

the estimation of the transition probabilities and how

well they apply to other software development settings.

However, because we are interested in comparing

software design processes, the effects should be treated

as illustrative of potential differences. Future research

should focus on expanding the study to better

understand the nuances of transitions and potential

ways to extend Markov chain analyses and related

design routine variations. In this regard, researchers

should ask targeted questions regarding the extent to

which actors and environments shape design situations

given the level of risk involved (Schmidt, Lyytinen, &

Mark Keil, 2001; Ramasubbu, Bharadwaj, & Tayi,

2015).

Acknowledgments

We are grateful for the openness and support of the

people at Beta Corporation and are especially grateful

to Dr. Alan Fisk for his continued support and

enthusiasm. We are grateful to our colleagues Nick

Berente and James Gaskin for their criticisms and

comments. We also thank the senior editor and

reviewers for constructive comments, which

significantly improved the manuscript and added

crispness to the argument. Finally, we acknowledge

support of this research from the National Science

Foundation through NSF Grant 0943157, Virtual

Organizations Research Program and NSF Grant OCI-

1121935, Virtual Organizations Research Program,

and also Science Foundation Ireland grant 13/RC/2094.

Journal of the Association for Information Systems

884

References

Abbott, A. (1990). A primer on sequence methods.

Organization Science, 1(4), 375-392.

Abbott, A. (1995). Sequence analysis: New methods for

old ideas. Annual Review of Sociology, 21(1),

93-113.

Abrahamsson, P., Salo, O., Ronkainen J., & Warsta, J.

(2002). Agile software development methods:

Review and analysis (VTT publication 478,

Espoo, Finland, 1-107).

Aldrich, H. E. & Pfeffer, J. (1976). Environments of

organizations. Annual Review of Sociology,2 (1),

79-105.

Baskerville, R., Travis, J., & Truex, D. P. (1992).

Systems without method: The impact of new

technologies on information systems

development projects. Proceedings of the IFIP

WG 8.2 Working Conference on the Impact of

Computer Supported Technologies on

Information Systems Development.

Beck, K., Beedle, M., van Bennekum, A., Cockburn, A.,

Cunningham, W., Fowler, M., Grenning, J.,

Highsmith, J., Hunt, A., & Jeffries, R. (2001).

Manifesto for agile software development. The

agile alliance: 2002-2004, www.agilemanifesto.

org.

Berente, N., & Lyytinen, K. (2007). What is being

iterated? Reflections on iteration in information

system engineering processes. In J. Krogstie, A.

L. Opdahl, & S. Brinkkemper. Conceptual

Modelling in Information Systems Engineering

(pp. 261-278.). Springer.

Bijker, W. E. (1997). Of bicycles, bakelites and bulbs:

Toward a theory of sociotechnical change. MIT

Press.

Boehm, B. (2002). Get ready for agile methods, with

care. Computer, 35(1), 64-69.

Boehm, B., & Turner, R. (2003). Balancing agility and

discipline: A guide for the perplexed, Addison-

Wesley.

Booch, G., Jacobson, I., & Rumbaugh, J. (1999). The

unified software development process. Addison

Wesley.

Bourdieu, P. (1990). The logic of practice. Stanford

University Press.

Bucher, S., & Langley, A. (2016). The interplay of

reflective and experimental spaces in

interrupting and reorienting routine dynamics.

Organization Science, 27(3), 594-613.

Ciborra, C., Migliarese, P., & Romano, P. (1984). A

methodological inquiry of organizational noise

in sociotechnical systems. Human Relations,

37(8), 565-588.

Cockburn, A. (2007). Agile software development: the

cooperative game, Addison-Wesley

Professional.

Cockburn, A., & Highsmith J. (2001). Agile software

development, the people factor. Computer,

34(11), 131-133.

Cohen, M. D., & Bacdayan, P. (1994). Organizational

routines are stored as procedural memory:

Evidence from a laboratory study. Organization

Science, 5(4), 554-568.

Conboy, K. (2009). Agility from first principles:

Reconstructing the concept of agility in

information systems development. Information

Systems Research, 20(3), 329-354.

Conboy, K., Gleasure, R. & Cullina E. (2015). Agile

design science research. Proceedings of the

International Conference on Design Science

Research in Information Systems.

D’Adderio, L. (2014). The replication dilemma

unravelled: How organizations enact multiple

goals in routine transfer. Organization Science,

25(5), 1325-1350.

Davis, A. M., Bersoff, E. H., & Comer, E. R. (1988). A

strategy for comparing alternative software

development life cycle models. IEEE

Transactions on Software Engineering, 14(10),

1453-1461.

Dionysiou, D. D., & Tsoukas, H. (2013). Understanding

the (re) creation of routines from within: A

symbolic interactionist perspective. Academy of

Management Review, 38(2), 181-205.

Dittrich, K., Guérard, S., & Seidl, D. (2016). Talking

about routines: the role of reflective talk in

routine change. Organization Science, 27(3),

678-697.

Downey, H. K., & Slocum, J. W. (1975). Uncertainty:

Measures, research, and sources of variation.

Academy of Management Journal, 18(3), 562-

578.

Feldman, M. S., & Pentland, B. T. (2003).

Reconceptualizing organizational routines as a

source of flexibility and change. Administrative

Science Quarterly, 48(1), 94-121.

Felin, T., Foss, N. J., Heimeriks, K. H., & Madsen, T. L.

(2012). Microfoundations of routines and

capabilities: Individuals, processes, and

structure. Journal of Management Studies, 49(8),

1351-1374.

Feller, J., & Fitzgerald B. (2000). A framework analysis

of the open source software development

Design Variation in Agile and Waterfall Projects

885

paradigm. Proceedings of the International

Conference on Information Systems.

Fitzgerald, B. (1996). Formalized systems development

methodologies: A critical perspective.

Information Systems Journal, 6(1), 3-23.

Fitzgerald, B. (2000). Systems development

methodologies: The problem of tenses.

Information Technology & People, 13(3), 174-

185.

Gaskin, J., Berente, N., Lyytinen, K., & Yoo, Y. (2014).

Toward generalizable sociomaterial inquiry: A

computational approach for zooming in and out

of sociomaterial routines. MIS Quarterly, 38(3),

849-871.

Gaskin, J., Lyytinen, K. J., Yoo, Y., & Pentland, B.

(2012). The effects of digital intensity on

combinations of sequential and configural

process variety. Proceedings of the International

Conference on Information Systems.

Giddens, A. (1984). The constitution of society:

Introduction of the theory of structuration.

University of California Press.

Gilks, W. R., Richardson, S., & Spiegelhalter, D. J.

(1996). Markov chain Monte Carlo in practice.

Chapman & Hall/CRC.

Glaser, V. L. (2017). Design performances: How

organizations inscribe artifacts to change

routines. Academy of Management Journal,

60(6), 2126-2154.

Glass, R. L. (1991). Software conflict: Essays on the art

and science of software engineering, Yourdon.

Gordon, V., & Bieman, J. (1993). Reported effects of

rapid prototyping on industrial software quality.

Software Quality Journal, 2(2), 93-108.

Hærem, T., Pentland, B. & Miller, K. (2015). Task

complexity: Extending a core concept. Academy

of Management Review, 40(3), 446-460.

Hirschheim, R. (2007). A comparison of five alternative

approaches to information systems development.

Australasian Journal of Information Systems,

5(1), 3-28.

Hirschheim, R. A., Klein, H. K., & Lyytinen, K. (1995).

Information systems development and data

modeling: Conceptual and philosophical

foundations. Cambridge University Press.

Jarzabkowski, P. A., Lê, J. K., & Feldman, M. S. (2012).

Toward a theory of coordinating: Creating

coordinating mechanisms in practice.

Organization Science, 23(4), 907-927.

Johnson, R. B., Onwuegbuzie, A. J., & Turner, L. A.

(2007). Toward a definition of mixed methods

research. Journal of Mixed Methods Research,

1(2), 112-133.

Kaufman, L., & Rousseeuw, P. J. (1990). Finding

groups in data: An introduction to cluster

analysis. Wiley.

Kumar, K., & Welke, R. J. (1992). Methodology

engineering R: A proposal for situation-specific

methodology construction. Wiley.

Lacorata, G., Pasmanter, R. A., & Vulpiani, A. (2003).

Markov chain approach to a process with long-

time memory. Journal of Physical

Oceanography, 33(1), 293-298.

Laplante, P. A., & Neill, C. J. (2004). The demise of the

waterfall model is imminent and other urban

myths. ACM Queue, 1(10), 10-15.

Latour, B. (1986). The powers of association. In J. Law

(Ed.), Power action and belief: A new sociology

of knowledge (pp. 264-280). Routledge Kegan &

Paul.

Leonardi, P. M. (2011). When flexible routines meet

flexible technologies: Affordance, constraint,

and the imbrication of human and material

agencies. MIS Quarterly, 35(1), 147-167.

Levinthal, D., & Rerup, C. (2006). Crossing an apparent

chasm: Bridging mindful and less-mindful

perspectives on organizational learning.

Organization Science, 17(4), 502-513.

Lindberg, A., Berente, N., Gaskin, J., & Lyytinen K.

(2016). Coordinating interdependencies in

online communities: A study of an open source

software project. Information Systems Research,

27(4), 751-772.

Lindvall, M., Basili, V., Boehm, B., Costa, P., Dangle,

K., Shull, F., Tesoriero, R., Williams, L., &

Zelkowitz, M. (2002). Empirical findings in

agile methods. In D. Wells and L. Williams

(Eds.), Extreme programming and agile

methods: XP/Agile Universe 2002 (pp. 197-207).

Springer.

Lyytinen, K. (1986). Information systems development

as social action: Framework and critical

implications (Doctoral dissertation, University

of Jyvaskyla, Finland).

Lyytinen K., (1987). A taxonomic perspective of

information systems development: Theoretical

constructs and recommendations. In R. Boland

and R. Hirschheim (Eds.), Critical issues in

information systems (pp. 3-41). Wiley.

Markus, M. L., & Silver, M. S. (2008). A Foundation for

the study of IT effects: A new look at DeSanctis

and Poole’s concepts of structural features and

Journal of the Association for Information Systems

886

spirit. Journal of the Association for Information

Systems, 9(10), 609-632.

Mathiassen, L., & Purao, S. (2002). Educating reflective

systems developers. Information Systems

Journal, 12(2), 81-102.

Mathiassen, L., & Stage, J. (1990). The principle of

limited reduction in software design.

Information Technology & People, 6(2-3), 171-

185.

Mitchell, S. M., & Seaman, C. B. (2009). A comparison

of software cost, duration, and quality for

waterfall vs. iterative and incremental

development: A systematic review. Proceedings

of the 3rd International Symposium on Empirical

Software Engineering and Measurement.

Patriotta, G., & Gruber, D. A. (2015). Newsmaking and

sensemaking: Navigating temporal transitions

between planned and unexpected events.

Organization Science, 26(6), 1574-1592.

Pentland, B. T. (2003). Sequential variety in work

processes. Organization Science, 14(5), 528-

540.

Pentland, B. T., & Feldman, M. S. (2005).

Organizational routines as a unit of analysis.

Industrial and Corporate Change, 14(5), 793-

815.

Petersen, K., Wohlin, C., & Baca, D. (2009). The

waterfall model in large-scale development.

Product-focused software process improvement.

In F. Bomarius et al. (Eds.): PROFES 2009,

LNBIP 32 (pp. 386-400). Springer.

Ramasubbu, N., Bharadwaj, A., & Tayi, G. K. (2015).

Software process diversity: Conceptualization,

measurement, and analysis of impact on project

performance. MIS Quarterly, 39(4), 787-807.

Rerup, C., & Feldman, M. S. (2011). Routines as a

source of change in organizational schemata:

The role of trial-and-error learning. Academy of

Management Journal, 54(3), 577-610.

Roy, D. F. (1959). Banana time: Job satisfaction and

informal interaction. Human Organization,

18(4), 158-168.

Royce, W. W. (1970). Managing the development of

large software systems. Proceedings of IEEE

WESCON.

Russo, N. L., Wynekoop, J. L. & Walz, D. B (1995).

The use and adaptation of system development

methodologies. In M. Khosrowpour (Ed.),

Managing information and communications in a

changing global environment (p. 162). Idea

Group Publishing.

Scacchi, W. (2002). Understanding the requirements for

developing open source software systems. IEE

Proceedings-Software, 149(1), 24-39.

Schmidt, R., Lyytinen, K., & Mark Keil, P. C. (2001).

Identifying software project risks: An

international Delphi study. Journal of

Management Information Systems, 17(4), 5-36.

Schwaber, K. (1995). Scrum development process.

Citeseer.

Shadish, W., Cook, T. & Campbell, D. (2002).

Experimental and quasi-experimental designs

for generalized causal inference. Houghton

Mifflin.

Shoval, N., & Isaacson, M. (2007). Sequence alignment

as a method for human activity analysis in space

and time. Annals of the Association of American

Geographers, 97(2), 282-297.

Smolander K., Tahvanainen V., and Lyytinen K.: How

to combine methods and tools in practice- a field

study. In B. Steinholtz, A. Sölvberg, & L.

Bergman (Eds.), Advanced information systems

engineering (pp. 195-214). Springer.

Sommerville, I. (1996). Software process models. ACM

Computing Surveys, 28(1), 269-271.

Stemler, S. (2001). An overview of content analysis.

Practical Assessment, Research & Evaluation,

7(17), 137-146.

Studer, M. (2013). WeightedCluster library manual: A

practical guide to creating typologies of

trajectories in the social sciences with R,

http://archive-ouverte.unige.ch/unige:78576.

Suchman, L. A. (1987). Plans and situated actions: The

problem of human-machine communication,

Cambridge University Press.

Turner, S. F., & Rindova, V. (2012). A balancing act:

How organizations pursue consistency in routine

functioning in the face of ongoing change.

Organization Science, 23(1), 24-46.

Vidgen, R., & Wang, X. (2009). Coevolving systems

and the organization of agile software

development. Information Systems Research,

20(3), 355-376.

Yin, R. K. (2017). Case study research and

applications: Design and methods. SAGE.

Zbaracki, M. J., & Bergen M. (2010). When truces

collapse: A longitudinal study of price-

adjustment routines. Organization Science,

21(5), 955-972.

Design Variation in Agile and Waterfall Projects

887

Appendix A: Data Description

Table A1. Description of Waterfall Projects (BOM)

Name of the project Project description

BOM Search The Bill of Material (BOM) search project followed a traditional waterfall structure as dictated by

Beta’s life cycle development methodology that is founded on object-oriented data modeling, use

cases, and derivation of a software design architecture using object-oriented design. The project was

initiated in the first quarter of 2009 to enhance search in the BOM database and it lasted for about two

years. It was relatively large in size (over 20 person-years) and involved 24 people working in two

locations (United States and India). This BOM search project followed traditional phases of the

waterfall methodology that involved gathering requirements, creating designs, coding and debugging,

and testing the product sequentially with gate decisions in between (Davis, Bersoff, & Comer, 1988).

The project also involved iterations within development and testing phases (Booch, Jacobson, &

Rumbaugh, 1999). Overall, the BOM project followed the sequential phases as dictated by the

waterfall methodology with partial overlaps.

Part Address Database

(PADB) 1.4

PADB 1.4 is a continuity project to the PADB 1.2 project and was carried out in 2011 and 2012. With

the growing requirements and scope, PADB 1.4 was kicked off to trace out the information that is

embedded in a part number for detecting the type of parts used in the automobiles. This project used

a phased approach inspired by waterfall principles for carrying out phases like inception, elaboration,

transformation, transition with checkpoints in between stages. The interface that was built in this

process was good functionally. However, schedule slippages occurred due to more development time

and collaboration efforts. This project was distributed in the United States and India with 15 people

in the project.

BOMFI

Bill of Material Foundation Integration (BOMFI) project was carried out in 2011 and 2012 to add

additional databases and integrate them to the Bill of Material search database. Because the

functionality was already in place, this project used waterfall principles to develop the product

sequentially. Due to the smaller development effort required, this project contained 6 people and

required around 12 person-years of overall effort. The project was carried out in the United States,

Europe, and India.

Table A2. Description of Agile Projects (LCM)

Name of the project Project description

LCM 1.5-1.6 This project addressed how the BOM database deals with engineering specification changes. The

project has now been running for a few years and the software team creates a new release every three

months with patches in between. We specifically investigated the design of the 1.5 and 1.6 releases

referred to as “lightweight change management” or LCM. The 1.5 release began in September 2009

and went live with the release of 1.6 in January 2010. The development team chose to use an

amalgamated Agile process for developing this application that was not strictly based on any

particular method but was similar to the sprint phase of Scrum containing requirements, design,

development, and testing. The room formation was adopted from the Team Room concept of Extreme

Programming. The software progress and deadlines are reassessed daily, and changes are made as

necessary. Thus, everyone involved is always knowledgeable about the status of the application and

the deadlines.

LCM 1.7 LCM 1.7 was another version release of LCM carried out in 2010-2011. The project was carried out

with five people distributed in the United States, Europe, and India. This project was implemented to

change the back-end databases that integrate with the search for part-related information, namely,

BOM. This was challenging, as the rapid changes in the agile back-end system caused struggles in

the administrative areas in terms of coping with the change.

LCM 1.8 LCM 1.8 was the next version release of 1.7 and was carried out in a similar manner to that of LCM

1.7, though the scope of the project evolved through the backlogs and user stories that were originally

created in the previsions releases. The project was carried out with five people distributed in the

United States, Europe, and India.

Journal of the Association for Information Systems

888

Appendix B: Interview Protocol (Sample Questions)

1. Please begin by giving me a short history of your own career and how you came to be working with your present

organization.

2. Please describe your current project, how it is organized, and what types of tools and artifacts you use or deploy?

How much of this work is distributed in time and space? What are its main deliverables?

3. We are interested in various forms of information technologies that you use in your project. List all the main tools

(both digital and nondigital) that you use for your design project. Tell me their main functions and how you use

those functions to accomplish which goals.

a. Can you tell us what one or two most important collaborative digital information technologies that your

team has adopted recently?

b. How did you come to adopt these tools?

c. How are these tools currently being used in your projects and for which tasks?

4. We are interested in studying if and how the work practices and information technology use of your organization

have changed based on your adoption of the tools you mentioned above.

a. How has the nature of tasks in your project changed?

b. How has the nature of collaboration in your project changed due to the adoption of new digital tools?

Please give us specific examples of changes.

5. Have your design and development of these application platforms triggered the exploration of other digital or

nondigital tools? Which ones?

6. Has your use of the digital tools affected the behaviors of other firms/stakeholders participating in your projects

in any way?

7. How do you share, store, and coordinate various information related to your design project? How do you use

digital tools in the process?

8. What were the main barriers, if any, in adopting these tools among different members on your project team at

different sites involved?

a. What were the main benefits for each group, individual, and tasks?

b. Were there differences in the ways in which each group or individual had to work?

9. We are also interested in how these collaborative technologies relate to nondigital forms of collaboration.

a. What has been the relationship between the use of digital and nondigital collaboration during this

project? What is the proportion of each type of engagement?

b. How has this relationship changed over the life of the projects?

10. How did your project members respond to the use of these digital tools?

a. How did it compare to their “standard” or “traditional” way of working?

b. How did they have to change the way they worked because of these tools?

11. How has the use of these tools affected your work and project management in the dimensions of cost, risks,

quality, and work organization?

12. Next, we are going to analyze your current design processes and evaluate how digital tools are embedded in each

step and phase of the task. Describe in chronological sequence a set of design tasks that you have carried out in

this project since its start (can you check details from your calendar, email, activity log, etc.).

For each activity, please answer the following:

1. What were the tasks—what were their precedents, successors?

2. Was this part of a larger activity, and what was the purpose of the task?

3. What was your role in this task?

4. What were the deliverables and related design objects

5. Who was involved in this task and in what role (individual, meeting, etc.)? Where was the task located?

6. What tools were used?

7. How were those tools used?

8. How long did it take (duration)?

Design Variation in Agile and Waterfall Projects

889

Appendix C: Descriptive Models of Agile and Waterfall Projects

LCM 1.5-1.6 LCM 1.7 LCM 1.8

Notes: The first visual was developed without iterations and visually appears to contain more activities. LCM 1.5-1.6 had several massive

iterations and resulted in the figure above. The later models were developed with the concept of iteration, which tremendously reduced the

sketching of the process workflows.

Figure C1. Process Models of LCM (Agile Projects)

BOM Search BOMFI PADB 1.4

Notes: The first visual on BOM Search project also had iterations but had less iteration than LCM 1.5-1.6. The later waterfall models were

developed with the concept of iteration as discussed above, which tremendously reduced the sketching of the process workflows.

Figure C2. Process Models of BOM (Waterfall Projects)

Journal of the Association for Information Systems

890

Appendix D: Data Analysis Procedures

The data corpus had rich process descriptions and contained detailed data about the influence of methods, developers’

expertise, and unexpected project conditions. Overall, the study was an embedded mixed-method study that used

coding, content analysis, sequence analysis, and descriptive statistics as complementary techniques to detect and

illustrate the design routine variation and its sources. The mixed-method design followed “complementarity” in using

research methods. We sought elaboration, enhancement, illustration, and clarification of the results from one method

with results from the other method (Johnson, Onwuegbuzie, & Turner, 2007, p 116) and expansion, and sought to

expand the breadth and range of inquiry by using different methods for different inquiry questions (Johnson et al.,

2007, p 116) to strengthen our analysis. After validating the process models, we used excel and R scripts to generate

sequences that depict the actual design process. A typical sequence in the software process sequence contains seven

elements: actor configuration, activity type, location, affordance type, tool type, data flow, and design object types (see

Appendix E for full details about taxonomy) (Gaskin et al., 2014).

Method-induced variation is caused due to sequential nature of design activity or due to the usage and interplay of IT

artifacts in design activity (Beck et al., 2001; Boehm, 2002; Cockburn, 2007). To analyze method-induced variation,

we chose to analyze structural (sequential) and activity composition variation to capture the overall impact of methods

on design performances. To this end, we carried out a structural analysis of the order of activities using Markov chains

and state transition tables. This helped us understand the scope, frequency, and structure of iterations in agile and

waterfall processes. One assumption behind the first-order Markov chain analysis is that it assumes that any given

sequence of states or activities obey a Markov property—that is, the occurrence of any given event is only dependent

on the immediately preceding event (Gilks, Richardson, & Spiegelhalter, 1996). Though not always reachable in

software design, approximations based on first-order Markov models help detect structural differences in processes

and their regularities. In our case, we used Markov chains to help identify distinct states of iteration and hence

differentiate distinct states of iteration within agile and waterfall processes (Pentland, 2003). We then used sequence

analysis to analyze the extent of variation in the composition of activities. At the same time, we relied on grounded

theory and text mining techniques to identify and attribute the sources of such variation to methods.

To build the Markov chains, we coded the process activities and their sequences into three categories to operationalize

three aspects of iteration. We classified activities that did not iterate as “nonrecurring” states. Those activities that had

some probability of iterating (repeating) were classified into two types of “recurring” states: simple recurring and

embedded recurring. Simple recurring states (hereafter “recurring states”) involve activities that have some probability

greater than 0 for repeating at some point throughout the development process. We further define “embedded

recurring” states as subactivities nested within recurring activities as a special class of recurring state.

To clarify the coding, we elicited two scenarios where gathering requirements took place. The first involved sequential

requirements gathering (i.e., waterfall), and the second involved a process in which requirements gathering paralleled

the design activity (i.e., agile, see Table D1). In the first scenario, requirements gathering happened sequentially

following the activities (A1) virgin data model creation, (A2) first round of gathering requirements, (A3) meeting to

negotiate requirements, (A4) clarification of the requirements in e-mails, (A5) updating use cases. In this scenario,

there was an iteration, i.e., a repetition of a set of events (3, 4, and 5) activities twice. We coded these repeating

activities as “recurring state (R)” (see Table 2, Scenario 1). The first two events of (1) virgin data model creation, and

(2) the first round of gathering requirements did not repeat themselves and were thus coded as a “nonrecurring state

(N).”

Table D1. States of Iteration for Two Given Sequences of Activities

Scenario 1

Nonrecurring state (N) A1A2 A3A4A5 A3A4A5

Recurring state (R) A1A2 A3A4A5 A3A4A5

Scenario 2

Nonrecurring state (N) A1A2 A3A4A6A7A5 A3A4A6A7A5

Recurring state (R) A1A2 A3A4A6A7A5 A3A4A6A7A5

Embedded recurring state (E) A1A2 A3A4A6A7A5 A3A4A6A7A5

Next, we describe the second scenario in which requirements gathering happened together with writing test cases. In

this scenario, two new repeated activities (A6- writing test cases, A7- testing the use cases) were squeezed between

Activities A4 and A5 (see Table 3). In this case, Activities A6 and A7 repeated within the larger repeated sequence

(A3, A4, A5) in relation to the iterated sequence described in the first scenario. Hence, iteration here is embedded in a

larger iteration cycle and it is thus called an “embedded recurring state (E).” In this scenario, Activities A6 and A7

Design Variation in Agile and Waterfall Projects

891

were coded as an embedded recurring state, i.e., (E). (See Table 3, Scenario 2). We also show how transitions move

from one state into another state in a specific set of activities (see Table D3).

Table D2. State Transitions

Input states Output states

Nonrecurring Recurring
Embedded

recurring

Nonrecurring 1(Ex: A1-A2) 1(Ex: A2-A3) 0

Recurring 0 1 (Ex: A3-A4) 1(Ex: A3-A6)

Embedded recurring 0 1 (Ex: A7-A5) 1(Ex: A6-A7)

Notes: 0 indicates no possibility of transition input states to output states; 1 indicates the possibility of transition

input states to output states

Next, to analyze activity variations, we divided the sequence data set into two data sets: BOM for waterfall projects

and LCM for agile projects. The first data set contained sequences of three waterfall projects, which included BOM

Search, PADB 1.4, and BOMI projects. The second data set included LCM 1.5-1.6, 1.7, and 1.8 projects. Overall, the

two data sets were roughly comparable, as they contained about 1,482 and 1,603 observations of activities in waterfall

and agile projects, cumulatively.

To analyze the method-induced variation through ostensive rules, we selected a subset of the elements of the overall

activity model and, for each activity, used information about its activity type and participating design objects. These

two object elements from the activity model were selected because they tapped into the nature of design activity and

identified involved design objects and their roles. We believe that this captures most of the variation induced by design

methods (Royce, 1970; Cockburn & Highsmith 2001). Consider the following routine sequences A and B carried out

in a waterfall project for (A) “gathering requirements,” and (B) for “status meetings.”

A: Generate/Specification/Specification/Prototype

B: Choose/Specification/Specification/Specification

For measuring the dissimilarity between these sequences, we computed the Levenshtein distance 4 between the

concatenated strings containing the first three characters of the series of elements in a sequence. Assuming the cost for

single conversion is set to 1, the total cost of Levenshtein distance between these sequences is 2 (Abbott, 1990). We

calculated the distances between every sequence pair, called “pairwise distance,” to form a distance matrix. We then

used k-medoids algorithm to partition the data sets into groups based on the value of pairwise distance scores between

the sequences. We chose k-medoids algorithm because this technique is more robust to noise and outliers than other

methods such as k-means (Kaufman and Rousseeuw 1990). For determining the number of clusters, we used the

optimum average silhouette width (ASW), which seeks to increase the homogeneity of each cluster and ensures better

validity of the identified clusters. Typically silhouette width ranges from -1 to 1 and ASW ranges from 0 to 1. Kaufman

and Rousseeuw (1990) suggest that ASW > 0.71 for the identification of strong structures in the groups of data, and

that silhouette width values are closer or nearer to 1 for well-classified observations. Based on these considerations,

we extracted the clusters and silhouette width information for each observation. Further, we used grounded theory to

systematically code activities in each cluster into respective key activity themes.

4 Levenshtein distance is a metric that is used for calculating the differences between two or more sequences using insertion and

deletion costs. Andrew Abbott (1990) popularized these concepts in social sciences with optimal matching algorithms that compute

distance scores iteratively.

Journal of the Association for Information Systems

892

Appendix E: Taxonomy for Encoding Process Sequences

Table E1. State Transitions

Design component Items Description

Activity type

refers to the purpose of

the design activity.

Generate
Action-oriented planning and creativity-driven tasks such as

brainstorming, coming up with plans, or producing something as a design

Transfer Transferring information or objects between people or locations

Choose Picking a correct or preferred option or answer. Coming to consensus

Negotiate Resolving policy and payoff conflicts

Execute
Performing or executing a plan—producing an object according to a plan

or a design

Validate Verifying quality and consistency

Actor configuration

refers to the number

and grouping of the

actors involved in the

activity.

One individual Single individual

One group A group of individuals with a single functional purpose

Many individuals More than one individual, each with a separate functional purpose

Many groups More than one group, each with a separate functional purpose

Individuals and groups
A mix of both individuals and groups, each with a separate functional

purpose

Tool materiality

refers to the material

makeup of the tool

being used for a

particular design task.

Physical

The material nature of the functional aspects of the tool is physical, rather

than digital. For example, the functional aspect of paper (ability to

represent information) is physical

Digital

The material nature of the functional aspects of the tool is digital, rather

than physical. For example, a word processing document (ability to

represent information) is digital

Tool affordance

refers to “the

possibilities for goal

oriented action afforded

by technical objects to a

specified user group

understood as relations

between technical

objects and users and

understood as

potentially necessary

(but not necessary and

sufficient) conditions

for ‘appropriation

moves’ (IT uses) and

the consequences of IT

use” (Markus & Silver,

2008, p. 622).

Representation
Functionality to enable the user to define, describe or change a definition

or description of an object, relationship or process

Analysis
Functionality that enables the user to explore, simulate, or evaluate

alternate representations or models of objects, relationships or processes

Transformation
Functionality that executes a significant planning or design task, thereby

replacing or substituting for a human designer/planner

Control

Functionality that enables the user to plan for and enforce rules, policies

or priorities that will govern or restrict the activities of team members

during the planning or design process

Cooperative

Functionality that enables the user to exchange information with another

individual(s) for the purpose of influencing (affecting) the concept, process

or product of the planning/design team

Support

Functionality and associated policy or procedures that determine the

environment in which production and coordination technology will be

applied to the planning and design process

Infrastructure
Functionality standards that enable portability of skills, knowledge,

procedures, or methods across planning or design processes

Store Functionality that allows information to be housed within a device

Activity location

refers to where the

design activity takes

place.

Collocated
Actors are located in close proximity to each other at headquarters during

the design activity

Distributed Actors are distributed during the design process

Remote collocated
Actors, though located in close proximity to each other, are not at

headquarters during the design activity

Remote distributed Actors are distributed and not at headquarters during the design activity

Design object type

refers to the purpose of

the design object being

used as an input, being

updated, or resulting as

an output of a design

activity.

Specification
The design object is instructions for design product parameters and

constraints

Design

The design object is a physical or digital prototype of part or the entirety

of the intended eventual design product. This design object is used for

further analysis and representation

Implementation
The design object is actually used to complete, in part or whole, the

intended eventual design product

Process planning The design object is instructions for future design activities

Tool-design object

connection

Output
The data flow when the design object did not exist prior to the task, but

was created during the task

Input The data flow existed prior to the task, but did not change during the task

Update The data flow existed prior to the task and did change
Notes: See Gaskin et al. (2014) Appendix A for more details about the taxonomy.

Design Variation in Agile and Waterfall Projects

893

Appendix F: Clustering in Method Solution and Examples

Table F1a. Silhouette Plot Clustering Solutions in Agile Projects

dddds

Table F1b. Silhouette Plot Clustering Solutions in Waterfall Projects

Silhouette width si

R
o
u

ti
n
e
s

0.0 0.2 0.4 0.6 0.8 1.0

Silhouette plot of Agile routines

Average silhouette width : 0.76

n = 1603 10 clusters Cj

j : nj | aveiÎCj si

1 : 304 | 0.67

2 : 120 | 0.71

3 : 85 | 0.51
4 : 30 | 0.54
5 : 59 | 0.56

6 : 260 | 0.70

7 : 110 | 0.62

8 : 235 | 0.83

9 : 200 | 1.00

10 : 200 | 1.00

Silhouette width si

R
o
u

ti
n
e
s

0.0 0.2 0.4 0.6 0.8 1.0

Silhouette plot of Waterfall routines

Average silhouette width : 0.8

n = 1482 10 clusters Cj

j : nj | aveiÎCj si

1 : 92 | 0.97

2 : 147 | 0.51

3 : 462 | 0.83

4 : 106 | 0.93

5 : 103 | 0.94

6 : 88 | 0.87

7 : 98 | 0.44

8 : 54 | 0.68
9 : 59 | 0.37

10 : 273 | 1.00

Notes:

Here n refers to the total number of observations, j

refers to the serial number of the cluster, nj refers to
size of the cluster and si is the silhouette width of the

cluster. Below are the names of the clusters for 1-10 in

the picture on the left.

Cluster 1: Program testing

Cluster 2: Collective code monitoring

Cluster 3: Use case scenarios
Cluster 4: Code promotion

Cluster 5: Code inspection

Cluster 6: Test cycles
Cluster 7: Task delegation

Cluster 8: Pair debugging
Cluster 9: Code iteration

Cluster 10: Test case generation

Notes:

Here n refers to the total number of observations, j
refers to the serial number of the cluster, nj refers to

size of the cluster and si is the silhouette width of the

cluster. Below are the names of the clusters for 1-10 in

the picture on the left.

Cluster 1: Planning through IT artifacts

Cluster 2: Use-case driven programming
Cluster 3: Meeting, testing, and releasing

Cluster 4: Prototyping

Cluster 5: Architecting and validating
Cluster 6: Test, fix and release

Cluster 7: Pre-reviewing code

Cluster 8: Testing code
Cluster 9: Quality control

Cluster 10: Status checking

Journal of the Association for Information Systems

894

Table F1. Examples of Activities in Each Cluster in LCM (Agile Methods)

Cluster no. Name of the cluster Size Examples

1 Program testing 304 Use case validation, bug fixing

2 Collective code-monitoring 120 Coding, 10 AM (status) meeting

3 Use case scenarios 85 Test case writing, 4 PM (show and tell) meeting

4 Code promotion 30 9 AM status meeting, promoting code

5 Code inspection 59 Test case writing, QC testing

6 Test cycles 260 Status meeting, validate prototype

7 Task delegation 110 Morning meeting, afternoon meeting

8 Pair debugging 235 Small team meeting

9 Code iteration 200 Coding

10 Test case generation 200 Test case writing

Table F2. Examples of Activities in Each Cluster in BOM (Waterfall Methods)

Cluster no. Name of the cluster Size Examples

1 Planning through IT artifacts 92 Roundtable meetings, developing project plan

2 Use case driven programming 147 Writing user stories, developing components

3 Meeting, testing, and releasing 462 Daily development standups, weekly status meeting

4 Prototyping 106 Generate raw data file/model

5 Architecting and validating 103 Validate the model, developing implementation model

6 Test, fix, and release 88 Clone environment development, Prod 2 launch

7 Prereviewing code 98 QC testing, premeeting, technical inspection

8 Testing code 54 User team testing, review by lead

9 Quality control 59 Clarification in emails communications, fix the defects

10 Status checking 273 Daily status meeting

Design Variation in Agile and Waterfall Projects

895

Appendix G: Findings

To assess the performative variation of BOM and LCM projects, we computed clustering solutions to partition activity

data into meaningful clusters. We used optimal average silhouette width (ASW) to partition data. This method

maximizes the intercluster distances and minimizes the intracluster distance and can hence be considered a relatively

robust solution than other competing clustering techniques, such as point bisreal correlation, Hubert’s gamma, etc.

(Studer 2013). To illustrate our clustering solutions, we plot average silhouette widths for different values of k (where

k represents the number of clusters) (see Figures G3, G4). We obtained an optimum ASW of 0.8 and 0.76 in BOM and

LCM projects at k = 10. Typically, ASW > 0.71 indicates an excellent split and indicates a high degree of homogeneity

(Kaufman & Rousseeuw, 1990). It also indicates that a strong structure is found in the clustering solution.

Figure G1. Agile Clustering Solutions Figure G2. Waterfall Clustering Solutions

We ranked the clusters based on the ostensive aspects in terms of the application, technical, management, and personnel

dimensions. See Tables G1 and G4 to find the ostensive correction of the cluster.

Table G1. Ranking of the Clusters Based on Dimensions of Ostensive Aspects

Cluster name

Application

(agility and

responsiveness)

Management

(document

driven, tacit)

Technical

(informal vs.

formal, simple

vs. complex)

Personnel

(collocation vs.

distributed,

thriving on

chaos vs. order).

Overall rank

1. Program testing 8 7 5 5 7

2. Collective code-

monitoring

1 3 2 6
1

3. Use case scenarios 9 8 9 10 10

4. Code promotion 7 4 10 1 6

5. Code inspection 4 10 8 9 8

6. Test cycles 2 5 3 3 2

7. Task delegation 5 1 4 7 5

8. Pair debugging 6 2 6 2 4

9. Code iteration 3 6 1 4 3

10. Test case

generation

10 9 7 8
9

Journal of the Association for Information Systems

896

Table G2. Illustrative Quotations of the Agile Clustering Activities

Cluster name Examples Illustrative quotations

1. Program testing Use case validation, bug

fixing

Instructors also used, for the big launch—for 1.0—where we had actual use

cases and we had a dedicated—with them we have a dedicated QC person

who tried to get as much knowledge as they can for that release. And then

they’ll create use cases for each.

No, there was definitely like a lull period until users started using it and

then there was sort of an onslaught of production bugs that came up.

2. Collective code-

monitoring

Coding, 10 AM (status)

meeting

That’s one thing I should’ve mentioned earlier. 10:00 status, no matter

what. Around the table. We also go through that task director. “Okay, these

defects are still open,” or “Are you working on these?” Because what they

do it is they bid them to what release these defects are going to. So usually

we know we are going to the next release, so we kind of keep going, “Okay,

this is for the next release, this is for the next release, are you still making

it?” Keeps us on our toes.

Oh, the way Teamworks works is, you work on the code is this environment

and it’s live right as you’re changing it. Yeah. It’s interesting about

Teamworks. Yeah. I could change it right now and if someone’s using that

service, they’re going to see my change. We have coding tricks to get

around that where you make a copy of it and you’d work on the copy. And

when you’re ready, you’d put it in the live version. We do stuff like that.

3. Use-case

scenarios

Test case writing, 4 PM

(show and tell) meeting

Yes. By the time we hit December, they were writing their test cases.

Because we have to get all that code bundled up and put in their testing

environment. Exactly. Exactly. That’s exactly how it works. And then what

period of time until it passed all the test cases? Um, let me see here. By the

end, let’s say before the break, that last week, there were only a few defects

left.

4. Code promotion 9 AM status meeting,

promoting code

So, Charlene goes in, and we did this every day for I think a week. We’d go

in there, create a change, do this, and then we’d just kind of run an end-to-

end test just to see if it went successful from the point at which the customer

makes a change to the point at which you actually get an e-mail that it’s

been committed. So, we did that for a week. That was part of our daily

status. “Oh, there’s a bug. I see it. Here, let’s fix it, try again. Oh, here’s a

bug. Let’s work on that and we’ll fix it tomorrow.” So at certain points

we’d stop, “Okay, let’s see what we’ve got to do. Everyone go back and

work on it. See if we can get it to work tomorrow.” So, we’d go back and

see if we could make those changes. And it probably took a good week to

week and ½ to get a whole end-to-end test successful, where you could see

the whole process stepping away. And the final complete was, “The email is

sent. BOM changes are complete.” Yay!

5. Code inspection Test case writing, QC

testing

Yeah. So, the formal QC happened I guess, maybe a little past the first week

of December. We had dedicated the QC person to be launched … No, no.

They’re … cause they’re just no room. They’re in the next team room. So

they’re very close. They just walk over. They were also in those 11:00s as

well. So they could get, have some knowledge what they’re supposed to do.

So they really know this stuff inside and out and by that point, has the QC

person written all the test cases and everything? Yes. By the time we hit

December, they were writing they’re test cases. So their test cases are

written and you think it’s integrated and good? And you give it to them and

they do all their test cases and they’re letting you know?

No, they were all still engaged and some of us were like, many of us were

doing the testing but there were still some bug fixes and they were minor,

but they didn’t stop the process. Or, they were just changes to the coaches

and stuff like—to the screens. So, we were kind of doing both. We were

doing system integration testing as well as “Well, let’s fix the screen to say

this.” So, we were doing the clean-up work as well as the system and the

end testing.

6. Test cycles Status meeting, validate

prototype

So, from the PowerPoint, he starts mocking up some … not mocking up. He

starts building some artifacts that are going to handle the changes

correctly. And from that, he can show the users, “Here’s the change

Design Variation in Agile and Waterfall Projects

897

process. So, what we’re going to do is cut it here and split it off here and do

this and do that.”

He also created some tables, which would house the changes. What we’re

doing is we take a change object and from that, we look into what pieces

are important. In this case, it was cost. As an example, the customer said,

“I don’t want any cost changes going through for this vehicle line.” So, he

puts together a data model that can support that change. He puts together

some screens that can support it. And then showed that back to Dave. And

then from that.

7. Task delegation Morning meeting,

afternoon meeting

We had two days. We had a morning meeting and an afternoon meeting as

well. So, there were two kinds or different types of meetings? So, your

morning one would be issues and your afternoon one would be show and

tell kind of? Yes, for the most part, but you do a mix of everything. Whoever

had something to talk about, basically. I think our group was at least eight

to ten people by the end of it. So, everyone had their own piece of code—

their own section of it. So, whoever had problems—whoever had something

to show.

8. Pair debugging Small team meeting And, it was under his guidance that the subteams met daily by phone.

Charlene is in England. And proceeded to chew on the problem and break

it down into smaller and smaller components that we were able to start

building some artifacts to implement bits and pieces of it and push some

sample data through and larger pieces of real data in sub-sections to see if

the process was working.

9. Code Iteration Coding “Okay, by Friday, let’s have our code ready. So, there’s also a process of

submitting your code, getting it approved. And all of the code is bundled in

what we call modules. So, every piece of code in the module has to be ready

in order for the code to be moved to the upper environment.

10. Test case

generation

Test case writing Yes. By the time we hit December, they were writing their test cases.

Because we have to get all that code bundled up and put in their testing

environment.

Table G3: Ranking the Clusters Based on Dimensions of Ostensive Aspects

Cluster name

Application

(agility and

responsiveness)

Management

(document

driven, tacit)

Technical

(informal vs.

formal, simple

vs. complex)

Personnel

(collocation vs.

distributed,

thriving on

chaos vs. order).

Overall rank

1. Planning through

IT artifacts

3 1 3 1
1

2. Use case driven

programming

5 10 2 9
8

3. Meeting, testing,

and releasing

6 5 6 2
5

4. Prototyping 10 8 9 10 10

5. Architecting and

validating

9 9 4 7
9

6. Test, fix, and

release

3 7 5 8
6

7. Prereviewing code 1 2 10 5 3

8. Testing code 4 4 1 4 2

9. Quality control 2 3 8 6 4

10. Status checking 7 6 7 3 7

Journal of the Association for Information Systems

898

Table G4: Illustrative Quotations of Waterfall Clustering Activities

Cluster name Examples Illustrative quotations

1. Planning through

IT artifacts

Roundtable meetings, developing

project plan
A lot of it was we had just a roundtable project and we walked

through pretty much code.

Microsoft Project, and we also used a tool called Clarity, and those

project plans are loaded into Clarity, which produces a scorecard

that management can recognize, and value and such.

2. Use case-driven

programming

Writing user stories, development

of the components
And when you had those user stories, then the idea was that you

would write them for each use case a different implementation on a

different platform in Java. Yeah. So that was through a SharePoint

and then it wrote down all these user stories. There was a lot of

project management with this.

And then in other ones you have like SharePoint to develop the

components. Should there be additional where you write additional

documentation? Or is there none of that. Not typically at that level.

3. Meeting, testing,

and releasing

Daily development standups,

weekly status meeting
So the daily status meeting is done strictly with the development

team and the testing, depending on the phase of the project, and the

weekly status meeting is being done between me and my leads, and

then another weekly meeting where we have a video call of the

product backlog with the customer, and that’s a weekly meeting.

And then we can invite the customer or any other related customer

to these weekly meetings when they choose later the business, we’ll

call them. So, the audience could vary, depending on the

necessary…

4. Prototyping Generate raw data file/model Yeah, because the data relationships fundamentally were the ones

we instituted with the U-BOM strategy, but what happened was,

over a period of time they kept adding more and more attributes to

AV-BOM that were not in the original U-BOM model. So there was

a lot of catch-up on the attribute side to be done, understanding

what had been done ‘cause obviously at that point you’re coming

from a physical database and trying to work your way back through

to you know logically what’s there, conceptually what’s there, and

then how do we really want to represent that in the U-BOM world?

5. Architecting and

validating

Validate the model, developing

implementation model
Right. So what’s driving behind the back of this, is as we have gone

global and as we’re bringing in the European development

activities, the vehicles, there are some capabilities and

functionalities that are needed in the European space that we

haven’t addressed, and so we’re launching the software on vehicle

programs and having some pretty significant problems with

implementation.

6. Test, fix, and

release

Clone environment development,

Prod 2 launch
So after that first three months we, like I said, we got a clone

environment of our existing development environment. All the code

got imported there and we started developing from there.

What does that mean, “practice launch”? So that strategy of

launching, we get into the Prod II environment. We’d start from

scratch with nothing and have a whole strategy of getting the DVAs

involved loading data and then loading code. You’d have to do loads

on the BOM-F side, so it’s their launch strategy. So I think they took

three days each.

7. Prereviewing

code

QC testing, premeeting, technical

inspection
There’s also another quality inspection, I guess you’d call it, but

that you’d say “do the design documents match the analytical

documents,” right? So there’s like defects in that.

8. Testing code User team testing, review by lead So there’s a big portion from September to December of all…

There’s a whole dedicated user team testing, so not the QC team,

but actual users, a whole of lot of them, dedicated in testing and

trying to break it.

Design Variation in Agile and Waterfall Projects

899

9. Quality control Clarification in emails

communications, fix the defects
Yes. Firstly, I send an e-mail because they need to acknowledge it

right away that this is the amount of discrepancy we found between

the original use case and the design today. And then I’m actually

updating my test cases based on this document. So this is my final

version today. So, in case, tomorrow, if I’m logging in a defect or if

I’m saying it didn’t work the way you intend to, I reflect it in this

document. Not to the one which we did before. So that was my

clarification to them.

10. Status checking Daily status meeting So, I understand. So these latter types of meetings which you discuss

more operational coordination and knowledge sharing within the

project, whereas you have these bigger meetings with the clients like

accepting the scope and other things, and then the other one was

that now we are done with things, the inception phase, we can move

to the next phase.

Journal of the Association for Information Systems

900

About the Authors

Babu Veeresh Thummadi is a research fellow at Lero, the Science Foundation Ireland Research Centre for Software

in University of Limerick located in Limerick, Ireland. He obtained his PhD from Case Western Reserve University.

His main research interests lie at the intersection of software development, organizational routines, and open source.

Kalle Lyytinen (PhD, computer science, University of Jyväskylä; Dr. h.c. Umeå University, Copenhagen Business

school, Lappeenranta University of Technology) is a Distinguished University Professor and Iris S. Wolstein Professor

of Management Design at Case Western Reserve University, and a Distinguished Visiting Professor at Aalto

University, Finland. He is among the top five IS scholars in terms of his h-index (87); he is the LEO Award recipient

(2013), AIS Fellow (2004), and the former chair of IFIP WG 8.2 “Information Systems and Organizations” and Lorge

Parnas Fellow. He has published ca. 400 refereed articles and edited or written over 30 books or special issues. He

conducts research on digital innovation and transformation, design work, requirements in large systems, and the

emergence of digital infrastructures.

Copyright © 2020 by the Association for Information Systems. Permission to make digital or hard copies of all or part

of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for

profit or commercial advantage and that copies bear this notice and full citation on the first page. Copyright for

components of this work owned by others than the Association for Information Systems must be honored. Abstracting

with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists requires prior

specific permission and/or fee. Request permission to publish from: AIS Administrative Office, P.O. Box 2712 Atlanta,

GA, 30301-2712 Attn: Reprints, or via email from publications@aisnet.org.

