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Abstract 

Semantic heterogeneity in XBRL precludes the full automation of the business reporting pipeline, a 

key motivation for the SEC’s XBRL mandate. To mitigate this problem, several approaches 

leveraging Semantic Web technologies have emerged. While some approaches are promising, their 

mapping accuracy in resolving semantic heterogeneity must be improved to realize the promised 

benefits of XBRL. Considering this limitation and following the design science research 

methodology (DSRM), we develop a novel framework, XBRL indexing-based mapping (X-IM), 

which takes advantage of the representational model of representation theory to map heterogeneous 

XBRL elements across diverse XBRL filings. The application of representation theory to the design 

process informs the use of XBRL label linkbases as a repository of regularities constitutive of the 

relationships between financial item names and the concepts they describe along a set of equivalent 

financial terms of interest to investors. The instantiated design artifact is thoroughly evaluated using 

standard information retrieval metrics. Our experiments show that X-IM significantly outperforms 

existing methods. 

Keywords: XBRL Element, Ontology Mapping, Representation Theory, Theory of Ontological 

Clarity 
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1 Introduction 

In 2009, following a voluntary filing period, the SEC 

finalized its rule on interactive data to improve 

financial reporting, mandating the use of eXtensible 

business reporting language (XBRL) by all public 

companies in the United States for annual, quarterly 

and other reports (SEC, 2009). In preparation for and 

as part of the evaluation of this mandate, the SEC, 

XBRL US (the body contracted by the SEC to 

implement XBRL in the US jurisdiction) and the 

Financial Accounting Standards Board (FASB) 

developed the list of XBRL tags (i.e., XBRL elements) 

that would be used to classify and define the semantics 

of financial information (primarily financial statement 

line items) in accordance with SEC regulations and US 

generally accepted accounting principles (US GAAP) 

(SEC, 2009). This annually updated “list” of XBRL 

tags is known as the US GAAP Financial Reporting 

Taxonomy (UGT). Companies are expected to draw 

from the UGT when creating financial reports in 

XBRL. However, the SEC notes: 

Occasionally, because filers have 

considerable flexibility in how financial 

information is reported under US reporting 

standards, it is possible that a company may 

wish to use a non-standard financial 

statement line item that is not included in 
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the standard list of tags. In this situation, a 

company will create a company-specific 

element, called an extension. (SEC, 2009) 

A recent study examined 121 XBRL format financial 

statements developed based on the 2009 version of the 

UGT (Zhu & Wu, 2011). Using these statements, the 

study computes an interoperability metric for each of 

7,260 pairs of XBRL tags extracted from the 

documents. The authors note that “a set of data 

instances is [interoperable] if the instances use the 

same set of data elements defined in a data standard” 

such that interoperability between two XBRL filings 

measures the degree of overlap in their use of UGT 

tags. The study reports that the average interoperability 

between two XBRL filings for the period investigated 

is 29.52% and falls to 17.35% when three XBRL 

filings are compared. The interoperability problem 

between XBRL filings suggests the presence of 

semantic heterogeneity. Semantic heterogeneity exists 

in the presence of “differences in the meaning and use 

of data that make it difficult to identify the various 

relationships between similar or related objects in 

different components” (Hammer & McLeod, 1993). 

The “components” in this context are individual XBRL 

filings. The difficulty in identifying relationships of 

equivalence between XBRL tags used in different 

filings can thus be characterized as semantic 

heterogeneity. The issue of semantic heterogeneity 

across XBRL filings in the US jurisdiction is well 

documented (Chowdhuri et al., 2014; Etudo & Yoon, 

2015; Etudo, Yoon, & Liu, 2017; Zhu & Wu, 2014). 

Its effects are palpable. For instance, in 2013, CFO 

magazine published an article reporting on a comment 

letter sent by Rep. Darrell Issa to the SEC chair 

remarking that the SEC does not make use of the 

XBRL filings it collects. It instead reviews filings 

manually and purchases licenses for commercial 

databases such as Yahoo! Finance and Compustat 

(Hoffelder, 2013). More recently, in 2017, as the SEC 

proposed a new rule with respect to Inline XBRL, 

companies have commented that the existing standard 

is still far too problematic to justify additional rule 

making. Although 74% of XBRL financial statements 

contain custom tags (extensions), tagging remains a 

very error-prone process and downstream consumers 

of financial statements do not rely on the standard to 

collect financial data (Ernst & Young LLP, 2017). We 

note that the presence of semantic heterogeneity across 

XBRL filings precludes its automated consumption, 

especially given the need to compare companies’ 

performance data along a set of financial concepts and 

measures. 

The automated resolution of semantic heterogeneity 

across XBRL filings in the US jurisdiction is thus the 

focus of this research. Several studies have emerged 

proposing a diverse range of solutions. Unsurprisingly, 

many efforts rely on ontology mapping, a common 

approach to resolving semantic heterogeneity. Several 

researchers have proposed methods that “ontologize” 

XBRL by representing the semantics of financial 

reporting concepts unambiguously in an ontology 

language (Bao et al., 2010; Declerck & Krieger, 2006; 

Raggett, 2009; Recio-García, Quijano, & Díaz-Agudo, 

2013; Spies, 2010). Such approaches often fall short 

because they focus on translating individual filings 

into description logics and formal semantics. The 

resulting representations still retain the heterogeneous 

tags and no mapping strategy is proposed to resolve 

this heterogeneity across filings. Some approaches do, 

however, provide mapping algorithms to link such 

ontologies (Chowdhuri et al., 2014; Etudo & Yoon, 

2015) with so-called upper-level ontologies that define 

financial reporting concepts independent of any given 

financial report. While these approaches perform 

relatively well, there is much room for improvement 

where mapping accuracy is concerned. In addition to 

the suboptimal accuracy of these algorithms, their 

designs often lack explicit theoretical insight and do 

not contribute to generalizable knowledge in terms of 

the semantic interoperability of data standards. 

Since XBRL cannot realize its intended benefits in the 

face of semantic heterogeneity, the research issues 

highlighted in the previous paragraph motivate the 

following research question: How may a fully 

automatic algorithm be designed to accurately map 

XBRL tags to financial concepts defined in an upper-

level ontology? We answer this question by providing 

an indexing-based classifier that relies on a 

theoretically informed feature space for its 

classification task. The proposed approach ontologizes 

XBRL filings and abstracts financial concepts into an 

upper-level ontology. The upper-level ontology stores 

a collection of equivalence relationships between the 

abstracted financial concepts and XBRL tags for 

financial line items. We show how the theory of 

ontological clarity (Wand & Weber, 1995), also known 

as the representation model of representation theory, at 

least partially explains why US XBRL financial 

statements do not interoperate even in the face of a 

unifying taxonomy or grammar (i.e., the US GAAP 

taxonomy). Our work contributes to representation 

theory by showing how correcting ontological 

deficiencies in a grammar lead to more interoperable 

scripts generated from that grammar, which also 

extends the theory into the space of semantic 

interoperability. 

We follow a design science research methodology 

(Peffers et al., 2007) that structures the resolution of 

the above question through articulating a process that 

moves through problem identification, specification of 

objectives, exposition of a design strategy, 

demonstration and evaluation, and, finally, discussion 

of implications (communication). XBRL in the US 

reporting jurisdiction cannot realize its intended 
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benefits in its current form (indeed it is disliked by 

filers and disregarded by downstream consumers of 

financial information). The information systems 

literature has recognized this failure and has offered 

solutions enabling the automated downstream 

consumption of financial reports published in XBRL 

format for real-world financial decision-making. Our 

objective is to build on these solutions by designing a 

precise and automated technique for resolving 

semantic heterogeneity in these filings. Our design 

represents a novel classification scheme that defines 

relationships of equivalence between terminologically 

disparate but semantically equivalent XBRL tags. We 

contribute to the theoretical understanding of semantic 

interoperability in data standards by linking 

interoperability with ontological clarity and show how 

a design that directly addresses the ontological clarity 

of XBRL will also improve its interoperability. We 

evaluate our efforts using standard classification 

evaluation metrics and, by adopting an 

“experimentation, observation and performance 

testing” philosophy (Nunamaker et al., 1990, p. 89), 

demonstrate a statistically significant and meaningful, 

improvement over previous attempts. At the end of this 

paper, we present the implications of our work to 

theory, research, and domain practice. 

2 The XBRL Framework 

Corporate regulators around the world, including the 

United States SEC, have adopted the XML-based 

XBRL framework for tagged financial data. The 

framework is composed of XBRL taxonomies and 

XBRL instance documents. Providing a collection of 

“tags” for financial concepts in a financial statement, 

XBRL taxonomies consist of an XML schema (or 

taxonomy schema) and a set of associated linkbases. A 

taxonomy schema describes and classifies the XBRL 

elements (tags) such that each XBRL element is 

uniquely defined by an XML element’s syntax 

declaration. For example, us-gaap_Assets and us-

gaap_AccountsPayableCurrent are XBRL 

elements designed to tag the financial concepts of total 

assets and accounts payable, respectively. Extended 

links in an XBRL taxonomy are organized into 

linkbases and provide multidirectional links between 

two or more XML snippets. Notice that the taxonomy 

document provided for an individual XBRL filing 

includes a subset of the US GAAP taxonomy as well 

as extension elements created by the filer. There are 

five types of extended links in XBRL taxonomies: 

calculation, definition, presentation, reference, and 

label links. A calculation linkbase defines a set of 

calculation relationships between XBRL elements, and 

a definition linkbase asserts relationships such as 

general-special or requires-element between pairs of 

XBRL elements. A presentation linkbase defines how 

XBRL elements are rendered for human viewing with 

respect to other XBRL elements. A reference linkbase 

describes relationships between XBRL elements and 

references to authoritative statements in the published 

document that give meaning to the elements. A label 

linkbase amalgamates human-readable text (label 

terms) with XBRL elements using special identifiers 

(i.e., @xlink:label) (Luna-Reyes et al., 2005). While 

XBRL taxonomies provide metadata regarding XBRL 

elements, XBRL instance documents assert facts 

(quantities) about those elements (e.g., net income = 

$55,000,000). In Table 1, we define some important 

XBRL related terms. Further details can be found in 

Chowdhuri et al. (2014) and Engel et al. (2013). 

3 Literature Review  

Our review of extant work consists of two parts. The 

first part reviews semantic integration in the literature, 

and the second part reviews prior work on XBRL 

interoperability. We highlight the novelty of our design 

artifact within the semantic interoperability space, in 

general, and the XBRL interoperability space, in 

particular, by exploiting gaps in the literature. 

Table 1. Terms, Synonyms and Definitions 

Term Synonym(s) Definition 

XBRL element XBRL Tag; US GAAP taxonomy 

element; US GAAP taxonomy 

tag 

An XML element defined in a standard XBRL taxonomy to be used in 

the annotation (tagging) of XBRL-based financial reports/statements 

by any firms; this element is defined in the UGT. 

XBRL 

extension 

element 

Extension element A custom XML element defined in a certain firm’s XBRL taxonomy 

that is used in the annotation (tagging) of their XBRL-based financial 

reports/statements; at the time of their use in a filing, this element is 

not defined in the UGT. 

Financial 

concept 

Investor term Widely recognized financial measure, relevant to statutorily mandated 

financial disclosures, and instantiated with a usually numeric value. 
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3.1 Semantic Interoperability 

Semantic interoperability is primarily concerned with 

discovering ways to assert relationships of equivalence 

between data points from disparate sources (Heiler, 

1995). Semantic interoperability is critical to 

applications and use cases that “need to query across 

[multiple] autonomous and heterogeneous data 

sources” (Halevy, Ordille, & Rajaraman, 2006, p. 9). 

The problem of XBRL interoperability is a special case 

of the problem of semantic interoperability. Multi-

stakeholder efforts to provide a unified standard 

through which information from heterogeneous 

sources can be disseminated naturally require 

mappings from these disparate information sources 

onto a unified taxonomy or shared upper-level 

ontology. Since the introduction of the Semantic Web 

(Berners-Lee, Hendler, & Lassila, 2001), there has 

been a growing need for the design of systems that 

provide semantic interoperability. In response to this 

need, a wide range of approaches have been proposed 

to discover mappings between various applications. 

Consistent themes across the approaches are the 

presence of a meta-database or ontology that captures 

discovered mappings and a matching algorithm that 

exploits the available information in order to discover 

those mappings. 

The semantic interoperability literature can be 

categorized into a bipartite framework: (1) data model 

development, and (2) semi/fully automatic semantic 

data integration. The approaches to data model 

development have primarily focused on detailing data 

standards in varied domains, such as e-health (Ure et 

al., 2009), emergency response management (Chen et 

al., 2008), internet of things (IoT) (Alaya et al., 2015), 

manufacturing systems ontology (Lin, Harding, & 

Shahbaz, 2004), pharmaceutical drug discovery 

(Williams et al., 2012), web services interoperability 

(Nagarajan, Verma, Sheth, Miller, & Lathem, 2006), 

and too many others to list here. The data model 

development alone does not provide interoperability 

between heterogeneous data sources. For instance, the 

US GAAP taxonomy is a data model for financial 

statement interoperability. However, financial 

statements created using the UGT do not automatically 

interoperate. Given a data model intended to promote 

interoperability between a set of heterogeneous 

systems, such as the IoT-O ontology proposed in Alaya 

et al. (2015), previously unseen IoT devices plugged 

into a network will each expose a different set of 

attributes and methods that must be mapped to IoT-O 

constructs. This mapping is not addressed in the data 

model development literature. 

 
1 Also considered in Thiéblin et al., 2018 are visualization 

approaches, but these are not relevant to our work. 

On the other hand, the semi/fully automatic semantic 

data integration literature directly addresses the 

mapping problem. In a recent survey of this literature, 

Thiéblin et al. (2018) use a framework that defines a 

bi-axial characterization of extant approaches—

outputs and process.1 Outputs are further subdivided to 

account for the nature of the output mappings that an 

approach provides. A semantic integration approach 

can output its mappings as logical relations (the 

approach maps two constructs by asserting a logical 

correspondence [mapping] between them—e.g., 

finding necessary and sufficient conditions for 

equivalence at the schema level), transformation 

functions (applicable only in certain domains where 

semantic integration involves identifying a necessary 

calculation), or blocks (an instance-level mapping 

output that asserts relationships of equivalence 

between groups of instances in the to-be-merged data 

sources). With respect to the process (i.e., the how), 

Thiéblin et al. (2018) identify the five categories used 

in the literature to generate equivalences across data 

sources: (1) Atomic pattern-based approaches work 

best with expressive data sources (such as OWL 2 DL), 

as they define exact rules based on the semantics of the 

to-be-merged data sources. (2) Composite pattern-

based approaches find relations of equivalence by 

iteratively constructing compound matching rules. For 

instance, Parundekar, Knoblock, and Ambite (2012) 

match attribute pairs (an attribute pair is a relation with 

two arguments) in one ontology with attribute pairs in 

another ontology by iteratively compiling a union of 

acceptable values for the arguments using instance-

level data. (3) Path-based approaches begin with 

simple mappings between to-be-merged data sources 

that are enriched into more complex mappings by 

exhaustively searching along the paths generated by 

the simple mappings. For instance, some studies obtain 

simple mappings by mining query logs for the to-be-

integrated data sources at the schema level before 

discovering complex mappings at the instance level 

(Dou, Qin, & Lependu, 2010; Qin, Dou, & LePendu, 

2007). (4) Tree-based approaches (e.g., Etudo et al., 

2017) focus on the structural similarity between two 

to-be-merged data sources. This is distinct from the use 

of tree-based algorithms for classification. Tree-based 

approaches are the least common in the literature. 

Finally, (5) no-structure-based approaches do not 

depend on any of the above structures to discover 

correspondences. For example, the work by Hu et al., 

(2012) uses inductive logic programming to identify 

complex alignments. 

An important distinction between our work and 

previous studies in the semantic integration literature 

concerned with automated data integration is that prior 
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solutions do not address the unique problems posed by 

the XBRL context. First, these approaches tend to be 

general, that is, they are not standard specific (they 

provide good foundations for approaches such as ours) 

but may require significant refinement and 

modification. Second, these solutions attempt data 

integration in contexts exclusive of data standards that 

are used to create scripts or instances that do not 

interoperate. The existence of a standard rescopes the 

semantic interoperability problem and brings to the fore 

a different set of signifiers/semantics/features/models 

required to correct deficiencies that impair 

interoperability in both the underlying standard 

(taxonomy) and the instances generated from it. Third, 

these approaches do not contribute to general theories. 

We present a novel linkage between the representation 

model of representation theory and the semantic 

interoperability that offers four broad propositions (two 

of which we explicitly test). Each proposition argues 

that one of the four possible ontological deficiencies of 

a grammar will lead to scripts generated from that 

grammar that do not interoperate. We believe that this 

theoretical formulation is sufficiently general to apply to 

contexts besides XBRL. 

3.2 XBRL Interoperability 

We organize extant design science publications 

germane to the interoperability problem in XBRL 

using the information systems design theory (ISDT) 

framework (Gregor & Jones, 2007). We focus on the 

five components of the framework: purpose and scope, 

constructs, principles of form and function, 

justificatory knowledge, and principles of 

implementation. Our analysis maps each of these 

components to a dimension useful for characterizing 

approaches to XBRL interoperability. Purpose and 

scope capture the completeness of a study’s approach 

toward an interoperability solution. Constructs 

enumerate the kernel-theoretical components deployed 

in the solution-specific IT artifacts or subartifacts. 

Principles of form and function describe how these 

constructs are mobilized toward the purpose and scope. 

Justificatory knowledge identifies the discipline-

specific knowledge area used and principles of 

implementation relate to the instantiation and 

evaluation of the various artifacts. We review related 

work along these five components and present them in 

Table 2. 

With respect to principles of implementation, we are 

most concerned with automaticity. It stands to reason 

that the ideal outcome in the implementation of any IT 

design is a fully automatic artifact, such that no 

substantive human intervention is required in its 

operation. Of the available approaches to 

interoperability in the literature, implementation tends 

to either be absent (not discussed), manual or 

semiautomatic. There are some exceptions where fully 

automatic approaches have been successfully 

evaluated (Etudo & Yoon, 2015; Etudo et al., 2017), 

both of which leverage related methods. An approach 

proposed by Yaghoobirafi and Nazemi (2019) is fully 

automatic and well evaluated; however, it is incapable 

of mapping more than two XBRL instance documents 

simultaneously. In addition, it is based on the IFRS 

taxonomy and not on the UGT. The literature thus 

lacks a healthy variety of fully automatic approaches 

to XBRL interoperability across multiple instance 

documents. As we show in the evaluation of our 

artifact, there is significant room for improvement over 

the state of the art in this space. 

Semantic Web technologies are the dominant 

justificatory knowledge source in XBRL 

interoperability research. This paper relies on similar 

justificatory knowledge. Ontology modeling lends 

itself naturally to this problem space, as ontologies 

have traditionally been used to define explicit 

relationships of equivalence between disparately 

represented but semantically identical concepts. There 

is a robust literature on ontology integration (Wache et 

al., 2001) that has provided initial motivation for 

researchers seeking to define solutions to XBRL 

interoperability. Of the papers in this review, the 

largest share of justificatory knowledge concerns 

ontology modeling (Bao et al., 2010; Declerck & 

Krieger, 2006; Livieri, Zappatore, & Bochicchio, 

2014; Luna-Reyes et al., 2005; O’Riain, Curry, & 

Harth, 2012; Radzimski et al., 2014; Spies, 2010). 

Scholars have also attempted to use justificatory 

knowledge from natural language processing and 

information retrieval to define XBRL interoperability 

artifacts and have combined these approaches in 

practice with ontology modeling to create fully 

automatic implementations: e.g., (Etudo et al., 2017). 

Table 2 shows that the state of the art lies with fully 

automatic methods employing a mix of heuristics and 

machine learning to decipher relationships of 

equivalence between terminologically heterogeneous 

but semantically equivalent XBRL elements contained 

in the calculation linkbases across multiple XBRL 

instance documents (Etudo & Yoon, 2015; Etudo et al., 

2017). However, these methods do not consider the 

natural language aspects of XBRL filings intended for 

human presentation and consumption, leaving much 

unleveraged information. Further, the precision and 

recall of these methods leave significant room for 

improvement. To fill this gap, we propose, instantiate, 

and evaluate a design artifact, X-IM that leverages 

human-readable label terms and structural 

(designative) features of US 10-K XBRL filings to 

map UGT and extension elements to an investor’s 

ontology, a taxonomy of financial concepts commonly 

used in investment decision-making.
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Table 2. Summary of Related Work 

Paper Purpose and scope Constructs 
Principles of form 

and function 

Justificatory 

knowledge 

Principles of 

implementation 

Bao et al. (2010) 
One-to-one mapping 

of XBRL elements 
OWL 2 DL, XBRL 

Creating shared 

ontology for XBRL 

specification 

Ontology 

modeling 
Unclear 

Radzimski et al. 

(2014) 

Mapping of XBRL 

elements to well-

defined concepts 

and linked open data 

SPARQL, RDF, 

Sesame, LOD, 

XBRL, Silk 

Semantic 

representation of 

XBRL, links to 

LOD 

Ontology 

modeling 
Unclear 

Wunner, 

Buitelaar, & 

O’Riain (2010) 

Directly addresses 

XBRL 

interoperability 

Part-of-speech 

tagging (POS), NLP, 

RDFS 

Heuristics and 

machine learning 
IR and NLP Semiautomatic 

Chowdhuri et al. 

(2014) 

Directly addresses 

XBRL 

interoperability 

RDF, XBRL, 

ReDeFer, SWRL, 

SPARQL 

Heuristics and 

machine learning 

IR and 

lexical 

processing 

Semiautomatic 

Zhu & Madnick 

(2007) 

Directly addresses 

XBRL 

interoperability 

Context interchange 

framework (COIN), 

XBRL 

Heuristics and 

machine learning 
IR and NLP Semiautomatic 

Declerck & 

Krieger (2006) 
One-to-one mapping 

of XBRL elements 

XBRL, PDF, text 

mining, OWL, 

XML, description 

logic (DL), 

RDF/RDFS 

Creating shared 

ontology for XBRL 

specification 

Ontology 

modeling 
Manual 

García & Gil 

(2009) 

Mapping of XBRL 

elements to well-

defined concepts 

and linked open data 

RDF, XML 

semantics reuse 

methodology, OWL, 

ontology, Semantic 

Web, WoD 

Creating shared 

ontology for XBRL 

specification 

Ontology 

modeling 
Semiautomatic 

Livieri et al. 

(2014)  

One-to-one mapping 

of XBRL elements 

(KPIs), ontology, 

XML, basic 

competency 

questions (BCQs), 

complex competency 

questions (CCQs), 

XBRL, OWL, W3C 

time ontology 

Creating shared 

ontology for XBRL 

specification 

Ontology 

modeling 

Unclear, likely 

manual 

O’Riain et al. 

(2012)  

Mapping of XBRL 

elements to well-

defined concepts 

and linked open data 

 
Semantic 

representation of 

XBRL 

Ontology 

modeling 

Unclear, likely 

manual 

Debreceny et al. 

(2011)  

Directly addresses 

XBRL 

interoperability 

 Heuristic-based 

approach 

Practitioner-

in-use 
Manual 

Spies (2010) 
One-to-one mapping 

of XBRL elements 

OWL, XBRL, UML, 

common warehouse 

metamodel (CWM), 

ontology definition 

metamodel (ODM) 

Creating shared 

ontology for XBRL 

specification 

Ontology 

modeling 
Unclear 

Etudo & Yoon 

(2015) 

Directly addresses 

XBRL 

interoperability 

RDF, XBRL, 

SPARQL 

Heuristics and 

machine learning 

IR and 

lexical 

processing 

Automatic 

Etudo et al. 

(2017)  

Directly addresses 

XBRL 

interoperability 

RDF, XBRL, 

SPARQL  

Heuristics and 

machine learning 

Channel 

theory 
Automatic 

Yaghoobirafi and 

Nazemi (2019) 

Directly addresses 

XBRL 

interoperability 

Bipartite graph 
Ant colony 

optimization 

Collective 

optimization 
Automatic 



Journal of the Association for Information Systems 

 

977 

4 Theoretical Background 

We concur with the literature’s characterization of the 

lack of interoperability across XBRL filings in the US 

jurisdiction as a semantic interoperability problem. 

Any large scale, distributed information system must 

be able to seamlessly exchange data between its 

components. This exchange must be based on agreed-

upon protocols, grammars, taxonomies, and so forth 

(Heiler, 1995). As we mentioned in the literature 

review, semantic interoperability in such distributed 

sociotechnical systems requires that all parties have a 

shared understanding of the meaning of the data that 

flow between the parties (Heiler, 1995). 

Unfortunately, the semantic integration literature does 

not provide a generalizable framework for 

understanding the basis of meaning-making in 

distributed systems. Here, we argue that the theory of 

ontological clarity, also known as the representational 

model (RM) of representation theory (RT) (Burton-

Jones et al., 2017), can proffer a structured 

understanding of the meaning-making that undergirds 

distributed sociotechnical systems. The representation 

model of RT offers useful insights that allow us to link 

its constructs with semantic interoperability and, in 

turn, provides theoretical support for our design 

artifact. 

Representation theory accepts that information 

systems constitute representations of real-world 

phenomena (Burton-Jones et al., 2017). The primary 

focus of RT is “the extent to which the deep structure 

of an information system provides and remains a 

faithful representation of the focal real-world 

phenomena” (Wand & Weber, 1995, p. 206). In 

examining their notion of faithful representations of 

focal real-world phenomena, Wand and Weber (1995) 

proposed three distinct but related models under the 

RT umbrella: the representation model (also known as 

the theory of ontological clarity), the state-tracking 

model, and the good decomposition model. Each 

model provides conditions necessary (but not 

sufficient) to ensure that an information system is and 

remains a faithful representation of real-world 

phenomena in spite of changes within its own 

components and changes in its environment. Our work 

extends their ideas into the domain of semantic 

interoperability. The state tracking model expands 

upon the proposition that an information system 

providing a good representation of its focal real-world 

phenomena must faithfully track changes in its focal 

real-world phenomena over time (Wand & Weber, 

1995). The good decomposition model proposes a set 

of necessary conditions related to the decompositions 

of the focal real-world phenomena embodied by the 

information system (Wand & Weber, 1989). When 

met, the necessary conditions of the good 

decomposition model indicate that the information 

system is better capable of conveying the meaning of 

the focal real-world phenomena (Burton-Jones et al., 

2017). In our assessment, neither state tracking nor 

good decomposition models are particularly relevant to 

the interoperability of XBRL-based financial 

statements. We focus instead on the representation 

model. The main thrust of our argument is that, with 

respect to data standards, in general, and the US 

implementation of XBRL for financial reporting, in 

particular, ontologically clear information systems 

produce semantically interoperable scripts. 

 

*Relevant to UGT 

Figure 1. Ontological Clarity and Semantic Interoperability Model 
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The theory of ontological clarity is concerned with the 

symbols that make up the scripts generated by a model 

(a data standard in our case). These symbols are drawn 

from a grammar that must be able to generate construct 

instances to represent real-world objects completely 

and clearly (Burton-Jones et al., 2017). The theory 

defines four ways in which a grammar can fall short of 

ontological clarity: (1) construct deficit, (2) construct 

excess, (3) construct redundancy, and (4) construct 

overload, as shown in Figure 1. Construct deficit 

indicates that the standard is missing constructs 

necessary to represent a real-world construct. 

Construct excess may arise if the grammar/standard 

contains constructs that do not map to any real-world 

construct. Construct redundancy is caused by two or 

more constructs that map onto the same real-world 

construct. This is also called construct identity fallacy 

(Larsen & Bong, 2016). Construct overload indicates 

that the representation contains constructs that map to 

multiple real-world constructs. We argue here that the 

presence of any of these four defects in a data standard 

will cause scripts generated by that standard to be non-

interoperable. As a corollary, we also argue that 

remedying any of these defects will improve the 

interoperability of scripts generated by the faulty 

standard. In the following paragraphs, we provide our 

assessments of the UGT with respect to the four 

defects. To do this, we draw upon the accounts of 

practitioners, the existing literature, and our own 

experience with XBRL in the US financial reporting 

jurisdiction. 

The generation of XBRL instance documents using the 

US GAAP taxonomy can be thought of as an ordered 

set of four tasks: (1) mapping, (2) extensions, (3) 

tagging, and (4) creating and validating (Bartley, Al-

Chen, & Taylor, 2010). Our interpretation of the 

representation model of representation theory as well 

as the conclusions drawn in Zhu & Wu (2014) strongly 

suggest that the source of the XBRL interoperability 

problems lies in the mapping phase of XBRL 

preparation. The mapping process is increasingly 

performed by specialists within the firm 

(recommended by Bartley et al., 2010) or outsourced 

to specialized firms. The mapping function identifies 

and matches each financial concept in a firm’s 

financial statement to a corresponding XBRL element 

in the US GAAP taxonomy. Extensions are another 

major source of errors. As we’ve discussed previously, 

the XBRL standard permits the creation of 

nonstandard XBRL elements to accommodate what 

preparers of financial statements believe to be 

idiosyncratic reporting situations. XBRL is a complex 

standard that implements the extensibility of XML 

technologies to produce rich metadata-enhanced 

representations. While the UGT elements already 

include XML markup and code to represent the 

relevant metadata, the extension process must specify 

the metadata from scratch, causing tagging and 

creation/validation processes to inadvertently 

introduce errors. 

Given the empirical reality of XBRL implementation 

in the US financial reporting jurisdiction and the 

centrality of the US GAAP taxonomy to the 

functioning of the standard, we argue that poor 

interoperability in XBRL is, at least in part, explained 

by representation theory, in general, and its theory of 

ontological clarity, in particular. In the seminal 

formulations of the theory of ontological clarity (Wand 

& Weber, 1993), information systems are decomposed 

into scripts and grammars for the generation of those 

scripts. This breakdown can be applied to XBRL in an 

obvious way—the grammar is the UGT and the scripts 

generated from the UGT are the XBRL instance 

documents (individual filings expressed in XBRL and 

drawing from the grammar). The IS literature has 

examined a number of implications regarding the 

misspecification of a grammar; however, to our 

knowledge, semantic interoperability has never been 

explained as the result of ontologically unclear 

grammars. 

Few studies examine the relationship between a 

grammar’s compliance across the four requirements 

and the semantic interoperability of the scripts 

generated by that grammar. While this study does not 

seek to directly fill that gap, we show that, at least in 

the case XBRL, the interoperability does appear to be 

a function of the ontological clarity of the UGT and 

that an IT artifact developed to address the ontological 

clarity of the grammar using the scripts generated by 

same also enables the interoperation of those scripts. In 

the next sections, we show that a lack of ontological 

clarity in the UGT, specifically construct deficit and 

construct redundancy, leads to the generation of scripts 

(XBRL instances) that do not interoperate. We assess 

that construct excess and construct overload do not 

exist in the UGT. We subsequently formulate 

hypotheses that formalize our assertion that addressing 

ontological clarity with respect to XBRL and the UGT 

would improve the interoperability of XBRL instance 

documents. 

4.1 Construct Deficit  

In XBRL, construct deficit is intentionally built into 

the UGT standard in order to support the creation of 

new custom constructs (XBRL extension elements) 

that are specific to each filer’s unique needs: “The 

higher the proportion of custom tags in a set of 

financial statements, the lower the comparability with 

other financial statements” (Henry et al., 2018). Recent 

studies continue to report high usage of these 

extensions among filers. Whereas a sample of 2010 

filings showed that 12% of XBRL tags were custom 

extensions (Debreceny et al., 2011), a sample of 2015 

filings showed that, on average, 7.3% of a company’s 

XBRL tags are custom (Henry et al., 2018). The use of 
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extensions is so important that the SEC regularly 

releases figures on their use in firm disclosures. 

Our approach is to explicitly define an “investor’s 

ontology” that establishes financial concepts that are 

important to downstream consumers of financial 

information. Our investor’s ontology thus explicitly 

defines the ontology onto which XBRL elements map. 

The incorporation of an investor’s ontology directly 

addresses the built-in construct deficit of the UGT. 

4.2 Construct Redundancy 

In our assessment, it is improbable that construct 

redundancy objectively exists in the UGT. However, in 

its interpretation by filers (firms generating scrips using 

the grammar), the UGT subjectively displays signs of 

construct redundancy. For a given accounting concept 

(ontological construct), two filers interpreting the 

grammar (the UGT) may come to different conclusions 

about the element in the UGT that faithfully denotes the 

accounting concept. For example, for a given real-world 

financial concept C (e.g., net income), different XBRL 

terms t1, t2, …, tn from the standard may be used to 

denote the concept C by various filers f1, f2, …, fn. The 

multiple choices to interpret the same concept C leads to 

construct redundancy. That is, construct redundancy in 

this setting manifests in nonobvious mappings from an 

ontological construct to an XBRL element. We looked 

to practitioner accounts of their experiences with XBRL 

filing and found that the sheer scale of the UGT means 

that in determining the appropriate XBRL element for a 

financial concept, filers are often faced with several 

choices for the same financial concept. 2  Further 

evidence of this can be found by efforts undertaken by 

the SEC to manage the complexity of the UGT.3 Figure 

2 shows that the two different XBRL elements (us-

gaap_ProfitLoss and us-gaap_NetIncomeLoss) may be 

used to quantify the financial concept of net income. 

Preparers of XBRL financial statements look to the 

grammar’s metadata to determine the appropriateness of 

an XBRL element to the financial concept they wish to 

report and tag. In particular, preparers leverage the label 

information (human-readable text) used to describe an 

XBRL element. Different firms may use different label 

terms, resulting in a list of label terms for an XBRL 

element, as shown in Figure 2, but we intuit that these 

terms will be lexically close. We argue here that label 

information is therefore a useful signifier of the meaning 

of an XBRL element and that even disparate XBRL 

elements used to communicate the same financial 

concept will have similar labels. Indeed, lexical 

closeness has been shown to be a powerful conveyer of 

shared meaning (Gefen & Larsen, 2017). 

Representation theory has been criticized as being built 

on an ontology that was never intended to model the 

objects of human perception (Allen & March, 2006). 

Rather, Bunge’s ontology, upon which RT is built, is a 

conceptualization of the material world that is 

independent of human interpretation. This fact, Allen 

and March argue, precludes the application of Bunge’s 

ontology to the conceptual realm of conceptual 

modeling. This exclusion, we note, encompasses the 

application of RT herein. While it is indisputable that 

Bunge’s ontology explicitly excludes the conceptual 

world, it does so as a means of simplifying the task at 

hand. In their descriptions of how Bunge-Wand-Weber 

ontology leads to inappropriate proscriptions regarding 

conceptual world models, a clear theme emerges: the 

conceptual world is more complex to model than the 

physical world (i.e., the world existing independently 

of human interpretation) with the consequence that RT, 

based on Bunge’s ontology, cannot possibly capture 

the richness of the conceptual world. 

 

Figure 2: XBRL Elements Aligned by X-IM based on the Label Terms from Various Firms 

 
2 https://sfmagazine.com/wp-content/uploads/ 

sfarchive/2013/07/XBRL-An-IMA-Member-Shares-His-

XBRL-Filing-Experience.pdf 

3 https://haslam.utk.edu/sites/default/files/files/SECs_Increa

singly_Sophisticated_Use_of_XBRL_Tagged_Data.pdf  
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However, this critique falls short in three key areas. 

First, a conceptual model is always a simplification of 

reality. If an ontology of the physical world can be 

projected into a useful approximation of the conceptual 

world, its foundation is supported. Second, if this 

useful approximation passes the muster of multiple 

attempts at empirical refutation (the work by Allen & 

March, 2006, is not an empirical refutation) and there 

exist multiple streams of evidence consistent with its 

propositions, RT remains useful and relevant. Finally, 

as noted in Burton-Jones et al, Allen and March (2006) 

offer no meaningful alternative formulation beyond 

RT for the evaluation of conceptual grammars. In this 

paper, we sought out representation theory because its 

constructs and propositions heighten our 

understanding of our focal phenomenon. Our work is a 

single instance of evidence that is consistent with the 

propositions of the representation model of 

representation theory. The constructs we examine are 

both enlightening and valid with respect to our focal 

phenomenon. 

In applying representation theory to the XBRL case, 

we generate two sets of design principles that are 

generalizable beyond the current application. First, as 

regards construct redundancy, even in situations where 

the grammar is not redundant, it may generate scripts 

that suffer from construct redundancy or complexity in 

the grammar. Metadata from a grammar can be 

leveraged by automated agents to detect 

terminologically distinct but semantically equivalent 

uses of grammar constructs in scripts. Second, 

regarding construct deficit, grammars may be 

intentionally sparse and extensible. Extensions to such 

grammars generate scripts that do not interoperate. 

Such scripts may be made interoperable by the 

automated generation of ontologies/taxonomies that 

progressively augment the deficient grammar. 

4.3 Hypotheses 

Informed by the representation model of representation 

theory, our proposed design artifact, X-IM, addresses 

construct deficit and construct redundancy using the 

investor’s ontology and XBRL label terms, 

respectively. The investor’s ontology encapsulates a 

set of widely used equivalent financial terms of interest 

to investors and the designative information relevant to 

their respective financial concepts: e.g., short-term 

marketable securities, short marketable securities, and 

short-term investments. For the index ontology, the 

web crawler designed for X-IM automatically extracts 

XBRL elements (e.g., us-gaap_NetIncomeLoss), their 

label terms (e.g., net income), and their corresponding 

designative information (e.g., balance type and period 

type) from the SEC’s website. The extracted 

information is represented in the index ontology. X-IM 

aligns each financial concept represented in the 

investor’s ontology with its corresponding XBRL 

elements using label terms that are encapsulated in the 

index ontology. X-IM can be viewed as the framework 

for an ontology alignment between the investor’s 

ontology and the index ontology to achieve XBRL 

interoperability. Figure 2 shows the high-level view of 

our proposed framework, X-IM, in terms of a financial 

concept, XBRL elements, and label terms used by 

various firms. The next section has a detailed 

description of X-IM. 

Utilizing the investor’s ontology as the means to 

address construct deficit, we formulate the following 

hypotheses: 

H1a: X-IM with an investor’s ontology (incorporating 

investor’s standard terms and designative 

information) will outperform X-IM without an 

investor’s ontology in terms of overall precision. 

H1b: X-IM with an investor’s ontology will 

outperform X-IM without an investor’s ontology 

in terms of overall recall. 

H1c: X-IM with an investor’s ontology will 

outperform X-IM without an investor’s ontology 

in terms of overall F-measure. 

Additionally, we propose the use of label terms in the 

resolution of construct redundancy and thus formulate 

the following hypothesis: 

H2a: X-IM employing label information will 

outperform an approach employing no label 

information for ontology mapping in terms of 

overall precision. 

H2b: X-IM employing label information will 

outperform an approach employing no label 

information for ontology mapping in terms of 

overall recall. 

H2c: X-IM employing label information will 

outperform an approach employing no label 

information for ontology mapping in terms of 

overall F-measure. 

5 Framework Design: X-IM System 

for XBRL Ontologies Mapping 

5.1 System Architecture 

The system architecture for our proposed artifact, X-

IM framework, is shown in Figure 3. X-IM consists of 

three components: the EDGAR web crawler, the IOnto 

generator, and the IBC learner. The EDGAR web 

crawler accesses the SEC’s electronic data-gathering, 

analysis, and retrieval (EDGAR) website and 

automatically extracts XBRL elements (e.g., us-

gaap_AccountsPayableCurrent), their label terms 

(e.g., “Accounts payable”), as well as their 

corresponding designative information (e.g., balance 

type and period type) from EDGAR’s interactive 
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financial statements. The balance type classifies a 

financial concept as duration or instant, whereas the 

period type categorizes it as debit or credit. The IOnto 

generator generates the indexing ontology (IOnto) by 

integrating XBRL elements, their corresponding label 

terms, as well as their associated designative 

information. The IBC learner leverages IOnto and the 

investor’s ontology to align heterogeneous XBRL 

elements (e.g., mapping between us-

gaap_AccountsPayableCurrent and us-

gaap_AccountsPayableTradeCurrent), capturing the 

mapping results in the derived ontology, X-Onto. 

Following are detailed descriptions of each 

component.

 

Figure 3. System Architecture of XBRL Indexing-Based Mapping (X-IM) Framework 

5.2 The EDGAR Web Crawler 

EDGAR collects, validates, and indexes individual 

XBRL filings. It provides public access to corporate 

financial information parsed from these XBRL filings, 

and, in particular, SEC forms 10-K and 10-Q. Our 

EDGAR web crawler (EWC) automatically collects, 

parses, and integrates the label terms, their 

corresponding XBRL elements, and the designative 

information from the 10-K interactive financial 

statements of the listed companies. 

 
4 https://www.sec.gov/edgar/searchedgar/companysearch. 

html 

Figure 4 presents EWC’s automatic information 

retrieval method. First, EWC, powered by a browser 

automation tool, locates the EDGAR interactive 

financial statements of a company by entering its ticker 

symbol (AAPL for Apple) in the EDGAR search 

portal, 4  as shown in Figure 5. Please note that the 

screenshots are manually obtained and shown here to 

clearly illustrate the multiple steps that our EWC 

automatically goes through in retrieving the 

information. Second, it retrieves the 10-K interactive 

filings of the company (see Figure 6). We use annual 

financial reports (10-K) as a test case in our approach 

to XBRL interoperability; annual reports contain a 
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richer collection of XBRL elements than quarterly 

reports (10-Q). Third, EWC identifies a specific 

financial statement, such as consolidated balance 

sheets or statements of cash flows. The left panel in 

Figure 7 shows a collection of interactive financial 

statements available on EDGAR, whereas the right 

panel presents the line items of the consolidated 

balance sheets for the period of September 24, 2011 to 

September 29, 2012 for Apple Inc. Figure 7 shows 

many line items for “Current assets” as well as for 

“Shareholders’ equity.” Note that we point out only the 

first three line items of “Current assets.” In an 

interactive financial statement, each line item is the 

label term used to quantify the financial concept and is 

automatically read from Apple Inc.’s XBRL filing.

 

Note: * CompanyList = a list of companies in the training dataset 

Figure 4. Web Crawler Method 

 

Figure 5. Screenshot of EDGAR’s Company Search Portal 

 

Figure 6. A List of Apple’s 10-K Interactive Financial Documents 
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Figure 7. A Collection of Interactive Financial Statements available on EDGAR (right)  

and Contents of Consolidated Balance Sheets (left) 

 

Figure 8. XBRL Label Links 
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Among the five different linkbases introduced earlier, 

this study leverages the label linkbases that link 

human-readable text (label terms) with XBRL 

elements using specific tags (i.e., @xlink:label) (Luna-

Reyes et al., 2005). An exemplary label link in Figure 

8 illustrates that Apple Inc. uses a readable label term 

“Accounts payable” for an XBRL element, “us-

gaap_AccountsPayableCurrent.” The labels given in a 

company’s label linkbase are parsed by EDGAR to 

provide human-readable label terms in EDGAR 

interactive financial statements (SEC, 2010). 

Additionally, each label term in an EDGAR interactive 

financial statement is rendered in hypertext so that a 

link is maintained with its corresponding XBRL 

element and designative information, such as balance 

type and period type, as shown in Figure 9. This 

designative information, which creates discrete 

categories for XBRL elements, assists X-IM in 

annotating and interpreting XBRL elements. Lastly, 

EWC iteratively retrieves each label term of interest to 

the investors, its corresponding XBRL element, as well 

as designative information one at a time. The top 

portion of Figure 9 presents the XBRL element, 

balance type and period type for the label term, 

“Accounts payable,” whereas the bottom portion 

shows the information extracted by our EDGAR web 

crawler. 

5.3 The IOnto Generator 

The IOnto generator amalgamates XBRL elements, 

label terms, and designative information to construct 

the indexing ontology (IOnto). IOnto is an ontological 

representation of the indexing correlation between 

XBRL elements and label terms in which XBRL 

elements are depicted as indices, and label terms as 

references and interpretations of the associated XBRL 

elements. There is a precedent for an indexing 

ontology approach to the resolution of semantic 

heterogeneity (Doan et al., 2002; Kaza & Chen, 2008). 

In our approach, an ontology provides an effective 

means to represent indexed relationships, especially 

when relationships are sparsely distributed—not all 

XBRL elements have the same number of label terms. 

Further, an ontological representation enables us to 

annotate the designative information that structures our 

XBRL elements, facilitating ontology mapping. 

We illustrate our IOnto generation algorithm for use on 

information extracted by EWC in Figure 10. Each 

XBRL element is a class in IOnto. If a company comi 

uses a specific XBRL element CXBRLj in its financial 

statements, the IOntoGeneration method adds a new 

individual indik to the ontology class CXBRLj. For the 

individual indik, we specify its data attributes 

(hasBalanceType and hasPeriodType) and object 

attributes (hasLabelTerm and comUseConcept). In this 

manner, we are indexing label terms for a corpus on 

their corresponding XBRL elements

 

Figure 9. XBRL Element and Designative Information for Label Term, “Accounts payable” 
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Figure 10. IOnto Generation Method 

 

Figure 11. Graphical Representation of an IOnto Segment 

Figure 11 graphically depicts a segment of IOnto 

leveraging label linkbases and designative 

information. The IOnto becomes the input to our IBC 

Learner that conducts ontology mapping. One benefit 

of generating IOnto is to avoid frequently accessing 

complex XBRL filing ontologies (recording label 

information and other numeric information, such as the 

annual or quarterly value of a statement item) to 

retrieve label information when the IBC learner is 

invoked. In this way, IOnto improves system 

efficiency. Another benefit that IOnto brings to our 

design is portability. It enables IOnto and the IBC 

learner to be transplanted in other XBRL ontology 

mapping environments (e.g., FinCEM in Etudo et al., 

2017) without rebuilding the whole set of XBRL 

ontologies. Further, IOnto, which leverages label links 

in the XBRL label linkbases of various firms and 

builds up the indexing relationship between each 

XBRL element and its correspondent label terms, 

provides two major utilities to the IBC learner: (1) 

organizing the correspondence between an XBRL 

element and the label terms as its features in a vector 

form, and (2) enabling the IBC learner (discussed 

below) to classify XBRL elements into its target 

investor’s term through calculating the similarity of an 

investor’s term and its feature vector. 
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Figure 12. A Segment of Investor’s Ontology 

 

Figure 13. Conceptual Representation of Indexing-Based Classification 
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5.4 The IBC Learner 

The IBC learner, with the assistance of IOnto, aligns 

all heterogeneous XBRL elements for each investor’s 

term in the investor’s ontology. As defined earlier, the 

investor’s ontology encapsulates a set of widely used 

financial terms of interest to investors and their 

designative information. As different investors may 

use different terms according to their preferences and 

individual histories, our investor’s ontology represents 

a set of the equivalent investor’s terms that are 

extensively used in accounting and finance for each 

financial concept (Kieso, Weygandt, & Warfield, 

2013). For example, some investors may use short-

term marketable securities, but others may choose 

short marketable securities or short-term investments. 

Our investor’s ontology denotes the equivalence 

among these three terms, as shown in Figure 12. See 

Appendix Table A1 for investor’s terms encapsulated 

in the ontology. 

Leveraging XBRL elements and their label terms in 

IOnto, the IBC learner conducts indexing-based 

classifications to map all heterogeneous XBRL 

elements that different companies use for each 

investor’s term in the investor’s ontology. The core of 

the IBC learner is our novel indexing-based classifier 

that functions across a set of XBRL elements, each 

coupled with its feature vector of correspondent label 

terms from various companies. We compute the 

semantic similarity between each investor’s term and a 

vector of label terms indexed by an XBRL element. 

Prior studies have used lexicon-based and/or structure-

based XBRL ontology mappings at the pairwise level. 

Although they have achieved relatively high accuracy 

and made notable contributions to the XBRL 

interoperability, our careful analysis reveals that a pair-

wise mapping method has limitations. For example, it 

fails to map the XBRL element “ProfitLoss” to the 

investor’s term “Net Income” because of a low lexicon 

similarity between them. In order to overcome this 

limitation, informed by IOnto integrating XBRL 

elements with their corresponding label terms along 

their designative information, we perform a vector-

wise similarity calculation between a set of label terms 

and an investor’s term rather than a pair-wise similarity 

measure. Incorporating the indexing relationships 

between XBRL elements and their corresponding label 

terms in IOnto, the task of mapping heterogeneous 

XBRL elements to a target investor’s term can be 

conceptualized as a classification problem, as follows: 

Let 𝑌 =  {𝑦1, 𝑦2, 𝑦3 …  𝑦m } be the set of targets. Let 

𝑋 =  {𝑥1, 𝑥2, 𝑥3 …  𝑥n }  be the set of items to be 

classified. Let f be the classification function, which maps 

an item x with its target y. If a target element y has multiple 

mapping items {Xj, 𝑋k …  𝑋r}, we can say Xj, 𝑋k …  𝑋r 

have the same classification target y. Likewise, in the 

context of XBRL, given 𝐼𝑛𝑣𝑒𝑠𝑡𝑜𝑟_𝑡𝑒𝑟𝑚𝑠 =
 {Investorterm1, Investorterm2 ... Investortermm }  as 

the target set and 𝑋𝐵𝑅𝐿_𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 =
 {XBRLelement1, XBRLelement2 ... XBRLelementn} 

as the item set, we can find the mapping function between 

Investor_terms and XBRLelements, as shown in Figure 13: 

Investortermi = 𝑓(XBRLelementj) . A given 

Investortermi may find several corresponding XBRL 

elements {XBRLelementj, XBRLelementk … 

XBRLelementr} through 𝑓 , where XBRLelementj, 

XBRLelementk … XBRLelementr are equivalent to each 

other. For example, given an investor’s term “Net Income” 

as the target, we can find multiple XBRL elements 

mapping to it through 𝑓,  such as NetIncomeLoss, 

NetIncomeLossAvailableToCommonStockholders

Basic, and ProfitLoss. 

Figure 14 presents the logic of our indexing-based 

classification (IBC) method in detail. IBC Learner 

starts the classification process by invoking the 

MappingXBRLElement method, incorporating two 

crucial inputs: a set I of investor’s terms of interest and 

IOnto. For each XBRL element (x) in IOnto, the IBC 

Learner uses the GetTargetCategory method to find its 

target investor’s term.To find the target investor’s term 

for a specific XBRL element x, our method traverses 

the set I and calculates the similarity between a XBRL 

element x and each investor’s term i. The similarity 

between x and i can be determined based on Formula 

(1), which aggregates the similarity between i and each 

label term l used for x. The similarity between i and a 

label term l can be achieved through Formula (3), 

which calculates the Jaccard similarity of the two 

terms, and then (2) amplifies the Jaccard similarity 

signal by converting the range of [0, 1] to the scale of 

[0, ∞]. 

Similarity (x, i) = ∑ 𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (𝑙n, 𝑖)
𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑙𝑎𝑏𝑒𝑙 𝑡𝑒𝑟𝑚 𝑣𝑒𝑐𝑡𝑜𝑟 𝑓𝑜𝑟 𝑋𝐵𝑅𝐿 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑥
𝑛=1  (1) 

𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (𝑙, 𝑖) = 
𝐽𝑎𝑐𝑐𝑎𝑟𝑑𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑙, 𝑖)

1 − 𝐽𝑎𝑐𝑐𝑎𝑟𝑑𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑙, 𝑖)
   (2) 

𝐽𝑎𝑐𝑐𝑎𝑟𝑑𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (𝑙, 𝑖) =（
|𝑙 ∩ 𝑖|

|𝑙 ∪  𝑖|
） 

(3) 
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Figure 15 shows the function of amplifying the Jaccard 

similarity signal. Before concluding that an XBRL 

element x is the candidate concept mapping to the 

investor’s term i, the similarity score must exceed a 

certain threshold. As recognized by Etudo et al. (2017), 

which explored the effect of the varying thresholds, a 

proper threshold to filter out the noise may, in the 

operation phase, impact the precision and recall ratios. 

We conduct experiments to carefully examine the 

threshold effect on the precision and recall ratios. 

After getting the classification target for each XBRL 

element, the IBC learner uses the 

FindMappingCandidates method to group the XBRL 

elements along with their target investor’s terms. The 

XBRL elements and their target, i, are fetched into the 

same group as the mapping candidates for I: {xm, i}, 

{xn, i}, … {xk, i}. To filter out any invalid candidates, 

the IBC learner uses the FiterFalseCandidates 

method, which compares the designative information 

of the candidate with that of the investor’s term. Those 

XBRL elements with disparate designative 

information are excluded from the final mapping list. 

The above indexing-based classification function is 

trained with the annual financial reports of a small 

number of firms listed in the S&P 100 and rigorously 

tested with the financial reports over multiple years 

from a larger number of firms. The evaluation section 

presents the results of our performance analysis in 

detail.

 

 

Figure 14. Logics of Indexing-Based Classification (IBC) Method 
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Figure 15. Function for Signal Amplification 

5.5 Implementation Details 

We employ several technologies to instantiate our 

artifact, X-IM. To bypass the anticrawler mechanism 

of the EDGAR interactive website, we use Selenium 

Python binding, which provides the interface to access 

all utilities of Selenium WebDriver. Selenium 

WebDriver enables our crawler to mimic the human 

behavior of visiting a website and collecting web 

pages. 

XPath and regular expression are employed to locate 

and extract the exact information within the financial 

statements on web pages. In developing an instance of 

IOnto, we use a JAVA and JENA framework that 

provides an API for reading, writing, and processing 

ontologies. The IBC learner is implemented with 

Python 2.7, conducting similarity calculation and 

comparison. Finally, we use Protégé 5.17 in examining 

the RDF ontologies. 

6 Evaluation and Discussion 

6.1 Evaluation Method and Frame of 

Reference 

We evaluate our artifact using the formal ontology 

evaluation method proposed in (Yu, Thom, & Tam, 

2009). This method has been shown to be useful for 

evaluating ontology-driven applications (Etudo et al., 

2017; Narock, Yoon, & March, 2014). Another reason 

for using the formal evaluation method is that it is the 

method employed to evaluate prior artifacts designed 

to achieve XBRL interoperability (Etudo et al., 2017). 

The formal ontology evaluation method is grounded in 

the experimental approach. The derived ontology (DO) 

to be evaluated represents a set of concepts DOc, a set 

of instances DOi, and a set of relationships DOr 

between those concepts and instances: DO = {DOc, 

DOi, DOr}. The target ontology (TO) encapsulates the 

set of concepts TOc, the set of instances TOi and the 

set of relationships TOr between those concepts: TO = 

{TOc, TOi, TOr}. In keeping with established 

methodology (Yu et al., 2009), this study presents the 

precision and recall metrics, evaluating the 

performance of our derived ontology, DO, with respect 

to the target ontology, TO. 

The precision measure describes the extent to which all 

retrieved are relevant, whereas the recall describes the 

proportion of relevant that have been retrieved over all 

relevant. In the context of X-IM evaluation, the 

precision ratio measures the extent to which retrieved 

XBRL elements are correct, and the recall ratio depicts 

the extent to which XBRL elements claimed to be 

equivalent to a financial concept are retrieved through 

our methods. The F-measure, a weighted harmonic 

mean of precision and recall, is defined as the 

following (Powers, 2011): 

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2 ∗（
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
） 

Suppose the correct XBRL elements of Net Income for 

five companies are NetIncomeLoss, ProfitLoss, 

NetIncomeLoss, ProfitLoss, and NetIncomeLoss, and 

the actual XBRL elements retrieved by a design 

artifact for those five firms are NetIncomeLoss, Null, 

NetIncomeLoss, Null, and NetIncomeLoss, 

respectively. A precision ratio is 100%, since three out 

of three retrieved XBRL elements are correct, whereas 

a recall ratio is 60%, because three out of five relevant 

XBRL elements are retrieved. Using the three 

measures, we assess the automatic mapping capability 

of X-IM. Performance along these metrics indicates 

the extent to which X-IM resolves the heterogeneity in 

XBRL elements to achieve XBRL interoperability. 

This study used the annual financial reports (10-K) of 

the 92 firms listed in the S&P 100 for the two fiscal 

years ending in 2011 and 2012; eight were ruled out 

because they did not have XBRL filings in either 2011 

and 2012. S&P 100 companies cover a variety of 

industries, introducing variation to the collection of 

tags in their XBRL filings. 



X-IM Framework to Overcome Semantic Heterogeneity  

 

990 

Table 3: Specific Financial Concepts Included in Evaluation 

Financial concepts in frame of reference 

FinCEM X-IM 

Cash from operations* FinCEM + 

Common stock Stakeholders’ equity* 

Long-term debt  Accounts payable 

Net income* Accounts receivable* 

Total assets Deferred tax assets* 

Total current assets* Short-term marketable securities* 

Total current liabilities Cost of goods sold* 

Total liabilities Interest payments* 

Total revenues* Operating income* 

  Inventory* 

Note: *denote that the item in investor’s ontology has multiple terms 

 

 

Notes: The conversation between adjusted similarity and original similarity: 

𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (𝑙, 𝑖) = 
𝐽𝑎𝑐𝑐𝑎𝑟𝑑𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑙, 𝑖)

1 − 𝐽𝑎𝑐𝑐𝑎𝑟𝑑𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑙, 𝑖)
 

Figure 16. Threshold Effects on F-Measures 

Prior work draws upon three financial indicators 

(profitability, financial leverage/liquidity, and 

operating efficiency) as a realistic basis for evaluating 

the mapping capability of their proposed systems. 

These three indicators rely on the nine financial 

concepts resolved by FinCEM (Etudo et al., 2017), 

which is, to our best knowledge, the state of the art in 

XBRL interoperability. Our research follows this 

convention but provides a more comprehensive list of 

18 extensively used financial concepts (Table 3). We 

conducted a series of experiments to test our 

hypotheses along these 18 financial concepts. 

6.2 Experiment 1: Sensitivity Analysis of 

Threshold 

The IBC learner will not be able to retrieve the value 

for a particular financial concept from a firm’s XBRL 

instance document when the XBRL element used in 

the film’s filing does not match any of the equivalent 

terms in X-Onto. To conclude that an XBRL element 

used by a company is the concept mapping to the 

investor’s term, the similarity score between the XBRL 

element and the investor’s term must exceed a certain 

threshold. A proper threshold assists the IBC learner in 
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filtering out noises, thereby impacting the precision 

and recall ratios. If a threshold is very small (e.g., 

toward 0), the learner may map an XBRL element with 

an investor’s term even when there is little similarity 

between them, resulting in a low precision ratio. 

Meanwhile, if the threshold is too large (e.g., toward 

∞), the algorithm may not identify the mapping 

relationship even though the similarity score between 

an XBRL element and an investor’s term is high, 

yielding a low recall ratio. Therefore, prior to 

experimentally testing our hypotheses, we conducted a 

sensitivity analysis of the threshold to examine the 

trade-off between precision and recall in achieving the 

best overall performance (F-measure). 

We started with the threshold of 0.1 (adjusted 

similarity) with 0.1 increments and calculated the 

precision, recall, and F-measure scores for each 

threshold. Figure 16 shows that different thresholds 

result in significantly different precision and recall 

ratios. Taking into account that the F-measures assess 

the overall performance, the threshold of 1.2 resulted 

in the highest performance score. Thus, we chose 1.2 

(in adjusted similarity) as the threshold for X-IM 

implementation for our experiments. 

6.3 Experiment 2: Effect of Investor’s 

Ontology 

To test hypotheses H1a, H1b and H1c, we conducted a 

Wilcoxon signed-ranks test, which is a non-parametric 

hypothesis test comparing two matched samples to 

assess whether there is a mean difference (Gibbons & 

Chakraborti, 2011). It can be used as an alternative to 

the paired sample t-test, especially when the 

population cannot be assumed to be normally 

distributed (e.g., when the sample size of an 

experiment is relatively small). In our experiment, the 

Wilcoxon signed-ranks test statistically compared the 

means of two related variables (e.g., X-IM precision 

with investor’s ontology and X-IM precision without 

investor’s ontology) along 18 financial concepts to 

determine whether the experimental intervention 

resulted in a significant difference in their means. The 

experimental intervention was the presence or absence 

of the investor’s ontology. In this experiment, the two 

instances of X-IM were trained using XBRL format 

10-K annual reports for 10 randomly selected firms for 

the fiscal year 2011 (FY 2011)—one instance with the 

investor’s ontology and the other without it. We used 

XBRL format 10-K annual reports for all 92 firms in 

FY 2012 for comparing the performance of X-IM with 

and without the investor’s ontology. 

In Table 4 and Table 5, the mean precision of X-IM for 

18 financial concepts increased from 0.962 to 0.998 

when employing the investor’s ontology. However, the 

increase is not statistically significant (Z = 1.604, p = 

0.151); thus, we cannot reject the null hypothesis in 

H1a. A possible explanation for this is that X-IM is 

already quite precise (0.962) even without the 

investor’s ontology. The F-measure and recall of X-IM 

with the investor’s ontology are both significantly 

larger than those of X-IM without the investor’s 

ontology at a significance level of 0.01 (recall: Z = 

2.934, p = 0.003; F: Z = 2.934, p = 0.003), supporting 

H1b and H1c. The results bolster our arguments that 

by incorporating designative information and 

investor’s standard terms, the investor’s ontology 

enables X-IM to recall more relevant terms and to raise 

its overall performance (F-measure). 

6.4 Experiment 3: Comparative 

Performance Analyses 

To test hypotheses H2a, H2b and H2c, we evaluated 

the performance of X-IM in comparison with the state 

of the art in XBRL interoperability, FinCEM (Etudo et 

al., 2017). We used a randomly selected sample of 

S&P 100 firms. In order to test the generalizability of 

our proposed solution over multiple years, we chose a 

training data set limited to 2011 XBRL filings. The 

resultant training set consisted of the 2011 XBRL 

filings of 10 randomly selected firms. X-IM was 

trained using XBRL-based 10-K annual reports for 10 

firms for the fiscal year 2011 (FY 2011). To 

demonstrate how drawing on rich natural language 

information in label linkbases can improve the 

performance of an XBRL element mapping system, we 

use XBRL format 10-K annual reports for 82 firms in 

FY2011 and for all 92 firms in FY 2012 to conduct a 

comparative performance analysis of X-IM vs. 

FinCEM. 

Table 6 shows the results of our comparative 

performance analysis of X-IM vs. FinCEM. X-IM 

outperformed FinCEM for both fiscal year 2011 and 

2012 in terms of the overall precision, recall, and F-

measure. Particularly noteworthy is that X-IM 

achieved outstanding performance in terms of its 

precision; the overall precision ratios of all 18 XBRL 

elements are 99% for both 2011 and 2012. The results 

support our proposition that both label terms and 

designative information (period type, balance type, 

etc.) enable X-IM to interpret and map the 

heterogeneous XBRL elements over and above the 

state of the art. High precision is especially desirable 

in the context of financial information retrieval for 

business decision-making. 

To experimentally test the hypotheses H2a, H2b, and 

H2c, we conducted another Wilcoxon signed-ranks 

test, examining the significance of the mean difference 

between two sets of observations (X-IM vs. FinCEM). 

We tested 36 observations for all 18 financial concepts 

in the combined data set of year 2011 and 2012. Table 

7 presents the descriptive statistics of our test. As 

shown in the table, the experiment results reveal that 

X-IM provides better overall performance than 

FinCEM in terms of precision (0.998 compared with 
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0.878), recall (0.896 compared with 0.752), and F-

measure (0.937 compared with 0.796). As shown in 

Table 8, the mean difference of precision is statistically 

significant (mean = 0.119, Z = 2.519, p = 0.012) at the 

significance level of 0.05, thus corroborating H2a. 

Despite the noticeable increase in the overall recall 

ratio by X-IM, the mean difference of recall (mean = 

0.143, Z = 1.606, p = 0.108) is not statistically 

significant at the significance level of 0.05, leaving 

H2b unsupported. However, the Wilcoxon test results 

show that the mean difference of the F-measure is 

statistically significant at the significance level of 0.05 

(mean = 0.141, Z = 2.013, p = 0.044), supporting H2c. 

The test results clearly demonstrate that our method 

informed by the representation model of representation 

theory considerably improves the overall XBRL 

mapping performance by significantly increasing 

precision and the F-measure. A plausible explanation 

is that the natural language information in label 

linkbases (employed in X-IM) is more discriminative 

with respect to the designation of a financial concept 

Table 4. Descriptive Statistics 

Measurement Investor’s ontology N Mean SD 

Precision with 18 0.998 0.009 

without 18 0.962 0.106 

Recall with  18 0.869 0.111 

without 18 0.699 0.252 

F with 18 0.923 0.070 

without 18 0.779 0.202 

Table 5. Wilcoxon Signed-Ranks Test for Equality of Means 

Measurement 

(without vs. with) 

Differences Z p-value 

 
Mean SD 

Precision  0.036 0.100 1.604 0.109 

Recall  0.171 0.227 2.934 0.003** 

F  0.143 0.183 2.934 0.003** 

Table 6. Evaluation Results of X-IM and FinCEM (FY 2011 and 2012) 

Fiscal year 2011 2012 

Design X-IM FinCEM X-IM FinCEM 

Measurement P R F P R F P R F P R F 

Stakeholders’ equity  1.00 1.00 1.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 0.54 0.70 

Accounts payable  1.00 0.85 0.92 0.92 0.84 0.87 1.00 0.81 0.90 0.92 0.94 0.93 

Account receivable 1.00 0.90 0.95 1.00 0.90 0.95 1.00 0.80 0.89 1.00 0.96 0.98 

Current assets 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Total liabilities 1.00 1.00 1.00 0.89 1.00 0.94 1.00 0.97 0.98 0.89 1.00 0.94 

Total current liabilities 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99 1.00 1.00 1.00 

Deferred tax assets 1.00 0.96 0.98 0.00 0.00 0.00 1.00 0.86 0.92 0.00 0.00 0.00 

Common stock 1.00 0.96 0.98 1.00 0.98 0.99 1.00 0.86 0.93 1.00 0.99 0.99 

Short-term marketable 

securities 1.00 1.00 1.00 1.00 0.47 0.63 1.00 0.83 0.91 1.00 0.38 0.55 

Inventory  1.00 1.00 1.00 1.00 0.92 0.96 1.00 0.97 0.99 1.00 0.91 0.95 

Total assets 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Cost of goods sold 1.00 0.79 0.88 1.00 0.72 0.84 1.00 0.84 0.91 1.00 0.86 0.92 

Interest payment 1.00 1.00 1.00 0.00 0.00 0.00 1.00 0.87 0.93 1.00 0.86 0.92 

Operating income 1.00 0.42 0.59 1.00 0.42 0.59 1.00 0.59 0.74 1.00 0.68 0.81 

Net income 1.00 0.97 0.99 1.00 0.57 0.72 1.00 0.88 0.94 1.00 0.58 0.73 

Cash generated by 

operating activities 1.00 0.93 0.96 1.00 1.00 1.00 1.00 0.81 0.89 1.00 1.00 1.00 

Long-term debt 0.96 0.99 0.97 1.00 1.00 1.00 0.96 0.69 0.80 1.00 1.00 1.00 

Total revenues 1.00 0.82 0.90 1.00 0.78 0.88 1.00 0.88 0.89 1.00 0.78 0.88 

Overall 0.998 0.922 0.951 0.823 0.700 0.743 0.998 0.869 0.923 0.934 0.804 0.850 

Notes: P = precision, R = recall, F = F-measure 
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Table 7. Comparisons on Descriptive Statistics of X-IM and FinCEM 

Measurement  Model Mean N SD 

Precision X-IM 0.998 36 0.092 

FinCEM 0.878 36 0.316 

Recall X-IM 0.896 36 0.129 

FinCEM 0.752 36 0.327 

F X-IM 0. 937 36 0.085 

FinCEM 0.796 36 0.311 

Note: Observations from all 18 terms in fiscal year 2011 and 2012 

Table 8. Wilcoxon Signed-Ranks Test for Equality of Means 

Measurement 

(X-IM vs. FinCEM) 

Differences Z p-value 

Mean SD 

Precision 0.119 0.317 2.519 0.012* 

Recall  0.143 0.342 1.606 0.108 

F  0.141 0.323 2.013 0.044* 

Table 9. F-Measure with Training Sizes of 10, 20, and 40 Companies 

Concept F-Measure 

40  20  10 

Stakeholders’ equity  1.00 1.00 1.00 

Accounts payable  0.91 0.90 0.90 

Account receivable 0.92 0.92 0.89 

Current assets 1.00 1.00 1.00 

Total liabilities 0.97 0.97 0.98 

Total current liabilities 0.99 0.99 0.99 

Deferred tax assets 0.91 0.91 0.92 

Common stock 0.98 0.93 0.93 

Short-term marketable securities 0.85 0.85 0.91 

Inventory  0.99 0.99 0.99 

Total assets 1.00 1.00 1.00 

Cost of goods sold 1.00 1.00 0.91 

Interest payment 0.94 0.94 0.93 

Operating income 0.74 0.74 0.74 

Net income 0.94 0.94 0.94 

Cash generated by operating activities 0.89 0.89 0.89 

Long-term debt 0.78 0.78 0.80 

Total revenues 0.89 0.89 0.89 

Average F-measure 0.928 0.924 0.923 

6.5 Experiment 4: Effect of Training 

Data Sizes 

To compare our artifact with the state of the art, 

FinCEM, this study trains X-IM by using label 

linkbases from 10 randomly selected companies in the 

S&P100. However, incorporating more label terms 

from more companies may assist X-IM in improving 

the performance of interpreting XBRL elements and 

mapping them. Therefore, this study takes a further 

step to examine and analyze the effect of training data 

sizes on the X-IM performance. In this experiment, we 

generated three training corpora, each of varying size. 

Using 2011 label linkbases from randomly selected 

S&P100 companies, we generated a 10-company 

sample, a 20-company sample, and a 40-company 

sample for training. For this experiment, we used 2012 

label linkbases for testing. The values of the F-measure 

regarding each training set are listed in Table 9. 

The results show that the overall F-measure does not 

improve when the training set expands from 10 to 20 

companies. We only observed a slight increase of 

0.542% from 0.923 to 0.928 when the training set was 

expanded to 40 companies. However, as the training 

set expanded, the computational time cost increased 

dramatically (up to 51.74%), from 117.9s to 140.7s and 

then to178.9s. We conclude that a training corpus of 10 

firms is efficient and effective for our purposes. 
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7 Conclusion and Discussion 

This study makes significant contributions toward true 

XBRL interoperability. As implemented in the US 

reporting jurisdiction, XBRL filings suffer from 

terminological ambiguity across firms’ filings. The 

interoperability problem critically precludes full 

automaticity in the business reporting pipeline. 

Downstream consumers of financial reports still do not 

have open source options for automated cross-firm 

comparisons of financial data. The information 

symmetry promise of XBRL, therefore, has not been 

fulfilled. We believe that the work presented in this 

paper offers a viable, practical solution to this problem. 

We contribute to theory by presenting a tangible 

information technology artifact that instantiates the 

representation model of representation theory and 

demonstrate that by reducing construct deficit and 

construct redundancy in the taxonomy of a data 

standard, instances generated by the standard become 

more interoperable. Our work also constitutes one of 

several kernel theories for reducing construct deficit 

and construct redundancy toward more interoperable 

representations. Specifically, we argue and decisively 

illustrate that there is rich semantic information 

encoded within label linkbases. This information is 

capable of providing mappings between disparately 

termed but semantically identical XBRL elements 

using an upper-level (investor’s) ontology. 

The SEC’s XBRL mandate has not fared well in 

practice. While upstream entities in the financial 

reporting pipeline participate in XBRL report 

production by mandate, downstream consumers of 

financial reports have choices. We indicated that the 

SEC itself is not a downstream consumer of XBRL 

data and that data quality issues underscored by the 

semantic heterogeneity problem are clearly at fault. 

Solutions such as those proposed here are critical for 

the continued survival of the mandate. To be sure, 

upstream participants incur significant costs as a result 

of the mandate, whereas there is little or no evidence 

that downstream consumers actually use the standard. 

Yet the potential to democratize the availability of 

structured is undeniable (currently users have to pay 

for expensive databases, which thus favors 

institutional investors). As such, systems such as X-IM 

may prove critical in yielding downstream value from 

the mandate, thus justifying its tenability going 

forward. As the source for X-IM is open, we hope to 

contribute to openly available software that leverages 

openly available data (XBRL filings) to provide 

structured financial data to noninstitutional and 

institutional consumers. 

One potential limitation of our research is the fact that 

some financial concepts are not represented in 

financial reports. For those concepts, it may be 

possible to access them by making certain calculations. 

Therefore, a future research direction would be the 

augmentation of the artifact with further inference 

ability to calculate the absent financial concepts in a 

specific report. While the X-IM system employs label 

linkbases, our method could be further augmented with 

topic analysis of applicable definitions of XBRL 

elements from various accounting education resources, 

which would be another promising area for future 

development. Another future research avenue would 

be the construction of a multilevel learner that 

leverages the information in both label linkbases and 

calculation linkbases. 

Finally, we acknowledge the potential of our design 

and approach to other semantic integration research. 

The applicability of our method in the artifact goes 

beyond the XBRL interoperability problem and 

proposes an alternative solution to existing ontology-

based semantic integration approaches. The efficacy 

and efficiency of our proposed approach rely on one 

core condition—that there exists sufficient parallel 

nominal information with respect to one concept. 

When this core condition is met, our proposed methods 

offer domains efficacy and efficiency.
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Appendix A 

Table A1. References of Equivalent Investor’s Terms Appearing in Investor’s Ontology                               

Based on Kieso et al., 2013 

Financial concept Balance|period Equivalent investor’s terms 

Stakeholders’ equity  Credit|instant 

Stockholders’ equity (p.89) 

Total stockholders’ equity (p.106) 

Total shareholders’ equity (p.250) 

Accounts payable  Credit|instant Accounts payable (p.96, p.250) 

Accounts receivable Debit|instant 
Accounts receivable (p.351) 

Receivables (p.15) 

Current assets Debit|instant Total current assets (p.116, p.416) 

Total liabilities Credit|instant Total liabilities (p.110) 

Total current liabilities Credit|instant Total current liabilities (p.116) 

Deferred tax assets Debit|instant 
Deferred tax assets (p.283, p.1125) 

Deferred income taxes (p.416) 

Common stock Credit|instant Common stock (p.89, p.109) 

Short-term marketable securities Debit|instant 

Short-term marketable securities (p.571) 

Marketable securities (p.272) 

Short-term investments (p.219) 

Inventory  Debit|instant 

Inventory (p.416) 

Finished products (p.200) 

Finished goods (p.250) 

Total assets Debit|instant Total assets (p.110) 

Cost of goods sold Debit|duration 

Cost of goods sold (p.115) 

Cost of sales (p.210) 

Cost of products sold (p.249) 

Interest payment Debit|duration 
Interest payment (p.320) 

Interest expense (p.106, p.139) 

Operating income Credit|duration 

Operating income (p.170) 

Operating profit (p.152) 

Operating earnings (p.166) 

Income from operations (p.178) 

Net income Credit|duration 

Net income (loss) (p.276) 

Net income from continuing operations (p.151) 

Net earnings (p.249) 

Net income (p.178, p.110) 

Cash generated by operating activities NA|duration 
Net cash provided by operating activities (p.246, p.234) 

Net cash flow from operating activities (p.585, p.1351) 

Long-term debt Credit|instant Long-term debt (p.214, p.216) 

Total revenues Credit|duration 
Revenues (p.109) 

Net sales (p.167) 
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Appendix B 

Table B1. Example of Similarity Calculations: Financial Concept, XBRL Elements,                                     

and a Vector of Label Terms Used by Various Firms 

Financial concept Net income 

 

XBRL element  
us-gaap_profitloss us-gaap_netincomeloss 

0.0++ 0.667++ 

Label terms 

used by various 

firms 

Net income/(loss), 0.333* 

Net income including noncontrolling interest, 

0.4* 

Net earnings, 0.333* 

Net income before allocation to noncontrolling 

interests, 0.286* 

Net income including noncontrolling interest, 

0.4* 

Net income (loss), 0.667* 

Net earnings (loss), 0.25* 

Net income, 1.0* 

Consolidated net income, 0.667* 

Net earnings including noncontrolling interests, 

0.167* 

Profit of consolidated and affiliated companies, 

0.0* 

Net income from consolidated operations, 0.4* 

Net income including noncontrolling interests, 

0.4* 

Net income/(loss) attributable to Ford Motor 

Company, 0.125* 

Net earnings, 0.333* 

Net earnings common stockholders, 0.2* 

Net income, 1.0* 

Net earnings (loss), 0.25* 

Wells Fargo net income, 0.5* 

Net income (loss), 0.667* 

Net income attributable to common shareowners, 

0.333* 

0.408** 0.379** 

Notes: 

++ A Jaccard similarity between the financial concept and the XBRL element 

* A Jaccard similarity between the financial concept and the label term 

** An average of Jaccard similarities between the financial concept and a vector of label terms  
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