

ISSN 1536-9323

Journal of the Association for Information Systems (2020) 21(4), 1045-1071

doi: 10.17705/1jais.00628

RESEARCH ARTICLE

1045

Performance Outcomes of Test-Driven Development:

An Experimental Investigation

Vikram S. Bhadauria1, RadhaKanta Mahapatra2, Sridhar P. Nerur3
1Texas A&M University Texarkana, USA, vbhadauria@tamut.edu

2University of Texas Arlington, USA, mahapatra@uta.edu
3University of Texas Arlington, USA, snerur@uta.edu

Abstract

Despite the growing popularity of test-driven development (TDD), there is no empirical confirmation

of the benefits that this contemporary practice confers on its users. Prior research findings on its

efficacy have largely been inconclusive. We conducted a laboratory experiment to assess the impact

of TDD on software quality and task satisfaction. Additionally, we investigated the productivity

aspect of TDD as compared to the traditional test-last method of software development. Results

indicate that software quality and task satisfaction are significantly improved when TDD is used.

Despite the additional requirements of testing, TDD is not more resource intensive than the test-last

method. We also examined TDD’s impact on learning post hoc and discuss the implications of our

findings and directions for future research.

Keywords: Test-Driven Development, Software Quality, Developer Satisfaction, Learning,

Experimental Design

Sandeep Purao was the accepting senior editor. This research article was submitted on March 25, 2017, and

underwent two revisions.

1 Introduction

Ever since the agile manifesto was articulated (Beck et

al., 2001), there has been a proliferation of development

methods (e.g., Scrum and Extreme Programming) and

their attendant practices aimed at enhancing the quality

of software while satisfying the constraints of time and

cost. Arguably, the most celebrated of these “best”

practices is test-driven or test-first development, which

advocates continuous cycles of test-code-refactor rather

than the traditional, 1 linear approach of testing after

performing analysis, design, and implementation. Not

only does test-driven development (TDD) alter the

workflow of development activities that were dominant

1 The traditional test-last approach to software development

has been variously referred to as test-last, test after coding,

and traditional/classical approach in the extant literature on

for several decades, but it also forces developers to

continually adapt their design strategies and the code that

follows. An integral part of TDD is rapid feedback on the

system being developed, which provides an opportunity

to frequently inquire into what works and what doesn’t,

and to evolve appropriate designs based on this

reflection.

TDD’s emphasis on evolving test cases prior to coding is

a significant departure from erstwhile approaches to

software development. It must be noted that upfront

testing is not simply a reordering of the phases of

development but rather a design strategy (see Janzen &

Saiedian, 2006) that reduces the time between thought

and action, thereby fostering a climate for reflective

software development. In our manuscript, we use the terms

traditional and test-last interchangeably.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/351021724?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:vbhadauria@tamut.edu
mailto:mahapatra@uta.edu
mailto:snerur@uta.edu

Performance Outcomes of Test-Driven Development

1046

practice (Schon, 1983). The test-code-refactor-test cycle

provides immediate feedback on actions, is more

conducive to opportunistic designs, and facilitates

continual framing and reframing of the problem and its

attendant solution. As the primary cornerstones of the

TDD practice, immediate feedback and the capability to

redesign rapidly not only engage developers but also

enhance their satisfaction (see Tripp &

Riemenschneider, 2014).

Empirical studies on the efficacy of test-driven

development (TDD) abound (Rafique & Misic, 2013;

Wilkerson, Nunamaker, & Mercer, 2012; Madeyski,

2005; Erdogmus, Morisio, & Torchiano, 2005).

However, the findings are inconsistent, perhaps because

of the varied methods used to study the effects of TDD.

For the most part, these studies have focused on the

outcomes of TDD, such as external solution quality

measured in terms of defect reduction, rather than on the

internal processes that this approach facilitates. In order

to fill this void, our research uses an experimental study

to investigate whether TDD does indeed outperform the

traditional approach of software development or not. We

measure the performance outcomes of the technique in

terms of the quality of the code produced and task

satisfaction achieved by the software developer.

Specifically, our paper addresses the following twin

research questions:

1. Does TDD outperform the test-last approach to

software development in terms of the quality of

the software produced?

2. Do software developers engaged in TDD

experience higher levels of satisfaction than those

who use the test-last approach?

In addition to addressing the above research questions,

we also explore the effect of TDD on learning outcomes

and assess its impact on productivity. Our study makes

several contributions to the extant literature on TDD.

First, it employs rigorous means (i.e., randomized

experimental design with adequate sample) to clarify the

relationship between TDD and the quality of software

produced. This is particularly useful because prior

studies have been largely inconclusive in this regard.

Second, while past empirical works have looked at the

effect of TDD on quality and productivity, scant attention

has been paid to the satisfaction that developers might

derive from the use of a test-code-refactor-test cycle of

software development. Our study fills this gap by

investigating the impact of TDD on the satisfaction of the

developer with a programming task. Studying developer

satisfaction is critical as it influences job satisfaction,

lowers job-related stress, and promotes retention in a

profession that is plagued by employee burnout and high

turnover rates. Third, researchers have bemoaned the fact

that there is a dearth of studies on the learning effects of

software development approaches (Avgar, Tambe, &

Hitt, 2018; Singh, Tan, & Youn, 2011; Wastell, 1999).

With this void in mind, additional analysis was

performed to understand the relative impact of TDD (vis-

à-vis the test-last approach) on learning outcomes. Thus,

although not measured longitudinally, we provide some

insight into what are generally regarded as aspects of

learning (Gemino, 1999). Finally, this study also

contributes to our understanding of the effect of TDD on

productivity, something that is not entirely clear from

prior studies on TDD.

The remainder of the paper is organized as follows. The

next section reviews the literature that provides the

conceptual foundation of our study. This is followed by

a discussion of our model and the hypotheses associated

with it. In the subsequent section, the methodology used

to test our hypotheses is presented. Next, we present our

results. Following this, we include two additional

analyses as a post hoc investigation—one assessing

developer productivity and the other exploring learning

outcomes of using the TDD approach. We then present

the results and the implications of the findings for

research and practice. Finally, the paper concludes with

a discussion of the limitations of our research and

directions for future research.

2 Background Literature

This section provides a brief description of TDD, which

contrasts it with the traditional test-last approach to

software development, and offers a review of the

empirical research on TDD and its impact on software

quality and productivity. We also discuss developer

satisfaction and Kolb’s experiential learning model,

which provides the foundation for additional analysis.

2.1 Test-Last and Test-Driven

Development

The waterfall model and its variants have guided software

development for many decades. In this model, software

development proceeds in a linear sequence, starting with

planning, analysis, design and coding, followed by testing

(Pressman, 2005). There is an implicit assumption that

requirements are unvarying and that the development

process, including the problems that may arise, can be

anticipated ahead of time. With this approach, a separate

quality assurance or testing group is given the

responsibility to test and ensure that the quality of the

software produced meets expectations. This approach to

software development is called the traditional or test-last

approach.

Figure 1a provides an overview of the application

development process in the traditional/test-last approach.

The planning stage, which is carried out at the

organizational level, is not shown here. After receiving

the written description for an application, developers in

the test-last approach first perform analysis and design to

determine the classes, their methods, and the interactions

among them to fulfill the stated requirements.

Journal of the Association for Information Systems

1047

Figure 1a. Test-Last Method of Software Development

Figure 1b. TDD Process

After conceptualizing and finalizing their design, they

implement their solution, followed by testing to ensure

that the code works as anticipated. Should errors be

reported during testing, the developers typically return

to their code to fix the problems rather than questioning

the efficacy of their designs. This practice of not

questioning design assumptions and not using insights

from testing to opportunistically improvise makes the

test-last approach different from the test-driven

development method described next (Bhat & Nagappan,

2006; Aniche & Gerosa, 2015).

The agile software development (ASD) methodology

(Beck et al., 2001; Cockburn & Highsmith, 2001; Nerur,

Mahapatra, & Mangalaraj,, 2005) evolved with the

intention of overcoming the limitations of the traditional

software development method. Central to ASD is an

iterative, incremental approach that is largely consistent

with the notion of the evolutionary delivery model

enunciated by Gilb (Gilb 1989; Larman & Basili, 2003).

Many practices such as pair programming, test-driven

development (TDD), and continuous code integration

have evolved within this framework. Among these,

TDD represents a significant departure from erstwhile

software development practices because it positions

testing as the precursor to coding rather than the other

way around. In contrast to the traditional method

described earlier, TDD uses cycles of test-design-code-

refactor to develop software. Figure 1b shows a typical

cycle of the TDD process. Specifically, developers

produce progressively useful software by continually

iterating through the following steps (Beck, 2002):

Analysis Design Code Test

Add more

test cases

Yes No

Yes

No

Add a test case

Does it
pass?

Design and code

Run the test suite

Modify code & redesign

Need
to re-
factor?

Clean up the code & tests

Performance Outcomes of Test-Driven Development

1048

1. Adding a test case that not only reflects a

requirement from the perspective of a user, but

also incorporates the acceptance criteria for that

requirement.

2. Writing code to ensure that the test “passes.”

3. Refactoring the code to eliminate redundancies

and to improve the quality of software being

developed while ascertaining that these

endeavors don’t “break” the code and cause it to

fail.

It can be readily appreciated that Step 2 itself proceeds

in an iterative manner, as developers repeatedly

reformulate their design strategies based on immediate

feedback they receive from the code when it fails. It

must also be noted that prior to Step 2, the required

functionality to make the test pass does not exist.

Furthermore, Steps 2 and 3 occur repeatedly until the

refactored code (i.e., code that has been modified

and/or refined) satisfies the test requirements.

The promotion of testing ahead of coding purportedly

has serious implications for design (Janzen & Saiedian,

2006). The primary objective of TDD is “clean code

that works” (Ron Jeffries, as cited by Beck, 2002).

Automated tests drive software development, ensuring

that additions to the growing codebase are made only

when tests “fail.” The tests reflect a design strategy that

is immediately implemented and evaluated, and the

feedback that the developer gets from repeatedly

carrying out this process is invaluable for developing

“clean code.” Beck (2002, pp. ix) makes the following

observation about TDD: “You must design

organically, with running code providing feedback

between decisions.” These cycles of design-code-

refactor lead to reflective action, affording the benefits

of opportunistic and improved designs that can result

in fewer defects and better software quality. Thus,

TDD fosters a climate that is conducive to enhancing

developer satisfaction.

As discussed earlier, coding and testing have

traditionally been distinct and sequential phases in the

software development process. The primary purpose of

testing in the test-last approach is to detect errors in the

code, whereas TDD strives to anticipate and prevent

defects through confirmatory testing of requirements

reflected in the test cases (Shalloway, Beaver, & Trott,

2009; Ambler & Lines, 2012). In the latter, developers

have to iteratively evolve “executable specifications”

in the form of test cases, create “good enough” models

and then code, and, finally, confirm their design

through testing the program (Ambler & Lines, 2012).

Thus, TDD is not merely a testing method that focuses

on reducing errors and rework, but an approach that

facilitates better designs.

2.2 Software Quality and Productivity

Several researchers have examined the impact of TDD

practice on software quality. Lui and Chan (2004) found

that TDD greatly improves the software development

process by enabling objective task estimation and

progress tracking through rapid feedback. The test suite

created early on in the development process provided an

early alert system and made it easier for developers to

take corrective action when they deviated from their

goals. Overall, this resulted in a superior quality of

software as the end result. A meta-analysis investigated

the impact of TDD on external code quality and

productivity and found marginal improvement in quality

and little to no change in productivity (Rafique & Misic,

2013). Wilkerson et al. (2012) did a quasi-experiment to

compare TDD with code inspection. Using a 2x2

factorial design, they compared four conditions: code

inspection alone, TDD alone, both, and none. They

found code inspection to be more effective in reducing

defects. Another study found that developers using TDD

produced code of higher quality that passed 18% more

functional tests than code developed using the

traditional approach (George & Williams, 2004). This

increase in quality, however, was associated with a

slight reduction in productivity. Software developed

using TDD has also been found to have lower

computational complexity and higher test volume and

coverage, as compared to that developed using the

traditional approach (Janzen & Saiedian, 2006). Crispin

(2006) also reports a reduction in the defect rate of as

much as 62% in projects that used TDD. Muller and

Hagner (2002), on the other hand, did not find any

change in quality or productivity; however, they found

the resultant code to be better suited for reuse.

TDD has also been studied in an industrial setting. In

two case studies conducted at Microsoft, Bhat and

Nagappan (2006) found that the TDD approach reduced

the number of defects per KLOC (thousand lines of

code) by nearly four times, while the effort required

went up by only 15%. Test coverage increased by 88%,

thus significantly enhancing software quality. The

results from different studies on TDD are summarized

in Table 1 and show that the research findings regarding

the impact of TDD on software quality and productivity

are inconclusive: almost half show quality

improvement, whereas the other half found no change

or a drop in quality. There are several plausible reasons

for the inconclusive findings in this body of literature.

First, some of the studies used small sample sizes, which

might have resulted in low statistical power. Second,

several studies used self-reported data, which can

potentially lead to weak control and may thus affect

outcomes. To overcome these limitations and to shed

light on this phenomenon, we employed a robust

experimental design that uses randomization and an

adequate sample size.

Journal of the Association for Information Systems

1049

Table 1. Summary of Empirical Research on Test-Driven Development

Study
Impact of test-driven development

S/W quality Productivity Setting / method Sample size Benchmark

Bhat & Nagappan, 2006
Improvement by a

factor of 2
-15% to -35%

Industry (case

study)

Team 1 = 6

Teams 2 = 5-8
Non-TDD projects

Canfora et al., 2006 Inconclusive -65%

Industry

(experiment: 2

tasks, each 5 hours

long)

28
Test after coding

group (TAC)

Edwards, 2004 +45% -90%
Academic (year

long experiment)

59 students first

traditional, then next

year TDD

The same students

did both. TL was

control.

Erdogmus et al., 2005 No difference

+22% (though not

statistically

significant)

Academic

(experiment: take

home task)

TF= 11

TL = 13

TL was the control

group

Fucci et al., 2017

Granularity and

uniformity influence

S/W quality.

Sequencing and

refactoring as other

independent

variables.

Granularity and

uniformity

influence

productivity.

Regression model is

significant.

Industry

workshops (3 tasks

at 2 places,

multiple runs)

Company A: 17

Company B: 22

(Collected 82 data

points from 39

participants)

No control group

George & Williams,

2004
+18%

-16% (minor

correlation reported

statistically)

Industry

(structured

experiments)

TDD: 6 pairs;

TL: 6 pairs;

Total = 24

TL was the control

group

Janzen & Saiedian, 2006 +16% +57%

Academic

(experiment: take

home project)

3 teams of 3-4

students each,

total = 10

TL was the control

group

Madeyski, 2010

No statistically

significant

improvement

Not reported

Academic

(experiment: take

home assignment)

TF = 10; TL = 9,

total = 19.
TL group

Madeyski, 2005* -38% N/A
Academic

(experiment)

TF: 28,

classic approach: 28,

total = 56

Classic TL approach

was used as

benchmark

Muller & Hagner, 2002 No difference

No difference, but

TDD was more

efficient in

implementation

phase

Academic

(experiment)

TDD: 10,

traditional: 9;

total 19

Traditional was the

control group

Pancur & Ciglaric,

2011*
No difference No difference

Academic

(experiment: first

part take home

assignment, then

final exam)

Part 1 (home

assignment 5

weeks): TDD =14,

ITL = 9;

Part2 (final exam 4

hrs): TDD=14,

ITL = 18

ITL was used as

control group.

Different number of

stories to different

groups.

Rafique & Misic, 2013 A little improvement
Little to no

difference
Both (metastudy)

Meta analysis of 27

studies
Not applicable

Wilkerson et al., 2012

TDD results in

inferior quality

compared to code

inspection

Code inspection is

more expensive

than TDD

Academic

7 (neither), 9 (TDD),

6 (code inspection),

7 (both), total = 29

TDD compared with

code inspection

Notes: Acronyms used: ITL = iterative test-last approach, TAC = test after coding, and TL = test-last, TF = test-first, TDD = test-driven

development. All terms other than TDD were used in papers to refer to the traditional approach of code development
*Pancur & Ciglaric (2011) and Madeyski (2005) used individuals and pairs, we have only included samples on individuals to maintain comparison

equivalence

Performance Outcomes of Test-Driven Development

1050

2.3 Developer Satisfaction

Software development is a cognitively challenging

task and developers are known to experience burnout

caused by job stress (Sonnentag, Broadbeck, & Stolte,

1994). Furthermore, given the shortage of talent in the

software industry and the high turnover that the

industry experiences, it is difficult for organizations to

retain competent developers (Westlund & Hannnon,

2008). The key to mitigating turnover and enhancing

organizational commitment is to ensure that

developers are satisfied with their jobs, which is likely

to occur if they derive satisfaction from engaging tasks

that are both challenging and motivating (Locke &

Latham, 1990). While satisfaction as a consequence of

job characteristics has been extensively studied

(Melnik & Maurer, 2006; Morris & Venkatesh, 2010;

Tripp, Riemenschneider, & Thatcher, 2016), there is a

dearth of empirical studies in information systems (IS)

that examine individual satisfaction at the task level.

Notable exceptions are the studies on pair development

by Balijepally et al. (2009) and Mangalaraj et al.

(2014). Our study extends this stream of research by

investigating the impact of TDD on developer task

satisfaction. In the context of our study, developer

satisfaction is defined as the affective response of the

programmer to the overall task of software

development. In other words, our study assesses how

developers feel about the tasks in which they engage.

2.4 TDD and Kolb’s Experiential

Learning Model

In a knowledge-driven economy, the long-term

viability of an organization depends on its ability to

learn, adapt, sense, and anticipate threats and

opportunities in the marketplace. Practices such as

TDD implicitly subscribe to the view that design

evolves through discourse rather than being an a priori

commitment to a given end. An important consequence

of this perspective is that there is almost immediate

feedback that either affirms or disconfirms the

effectiveness of the design alternatives being

considered. Such an approach not only helps detect and

fix design and programming errors early in the

development process but also provides an environment

in which developers can collectively engage, learn, and

grow because they immediately observe the results of

their design choices and understand the efficacy of

their actions. Given the imperative for organizations to

evolve epistemically, it is critical to investigate the

potential of contemporary software development

practices such as TDD for conferring learning

capabilities on knowledge workers engaged in

cognitively demanding tasks.

Constant testing, which entails a continually evolving

software because developers get rapid feedback from

creating and running test cases, provides a mechanism

for experiential learning through heightened developer

involvement. Experiential learning is a useful

synthesizing approach for building not only technical

skills but also business dexterity to solve complex

problems (Cameron & Purao, 2010). Kolb’s

experiential learning theory (ELT) (Kolb, 1976)

provides an appropriate theoretical foundation for

understanding TDD’s impact on learning. According

to ELT, learning occurs as a consequence of a

continuous circular loop that has four distinct stages:

concrete experience, reflective observation, abstract

conceptualization, and active experimentation (Kolb,

1976) (see Figure 2).

Concrete experience concerns a new experience

encountered by a learner in a specific situation. It could

also involve a reinterpretation of an existing

experience. Reflective observation entails the

sensemaking stage during which the new experience is

compared with existing understanding, with particular

emphasis on the inconsistencies between the two. The

abstract conceptualization stage is a creative stage that

builds upon the previous two stages to envisage a novel

solution. The novel solution could be an entirely new

idea or a modification of an existing abstract concept.

During the active experimentation stage, the solution

developed in the previous stage is applied to a real-

world scenario. The active experimentation stage then

generates input for a new concrete experience stage.

The four stages of Kolb’s ELT, namely, concrete

experience, reflective observation, abstract

conceptualization, and active experimentation are

reflected to a large extent in the iterative process

advocated by TDD. Developers using the TDD

approach have to: (1) continually evolve designs to

solve complex and often novel problems, (2) test their

designs immediately by coding their design solutions,

(3) repeatedly use feedback and reflection to

reconceptualize their design strategies and test the

efficacy of these strategies by implementing solutions,

and (4) streamline and improve the quality of the

software. Recognition and correction of errors based

on immediate feedback provide an opportunity for

learning and reflection (Argyris & Schon, 1978).

These cyclical steps in TDD are conducive to Schon’s

notion of “reflection-in-practice” (Schon, 1983), thus

providing a climate for learning as the software is

progressively elaborated.

From the perspective of Kolb’s ELT, learning is said

to occur when the learner oscillates between the roles

of an involved actor and a detached observer as he or

she moves from specific instances to abstract

generalizations. The learning cycle continues when

these generalizations guide the decisions and actions

toward specific tasks. The TDD technique forces such

oscillation of roles at the cognitive level of the

developer. Thus, much like ELT, TDD follows a

cyclical process of development in which developers

Journal of the Association for Information Systems

1051

continually play the dual roles of coder/tester as they

develop code, receive feedback, reflect on their

actions, and improve the quality of the software

system. Learning, based on active experimentation

guided by rapid feedback, is therefore an integral part

of the TDD process.

3 Research Model

Our research model is presented in Figure 3. We

compare TDD with the test-last approach using two

dependent variables: software quality and task

satisfaction of the developer. The goal of our study is

to evaluate TDD as a software development approach

with a focus on overall quality, including program

design. While it is possible to compare TDD with other

approaches such as test-last, coding with inspection

(e.g., Fagan’s approach as outlined in Wilkerson et al.,

2012), and other variations, we chose to evaluate the

performance of TDD vis-à-vis the test-last approach to

make our findings comparable with much of what has

been empirically tested previously. One of the reasons

for not comparing it with Fagan’s approach was to

avoid introducing another source of variability into the

study in the form of code reviewers and their abilities.

Furthermore, the code review process has many

variations in terms of team size and inspection method

(Porter et al., 1997), which can also pose a challenge

in developing a baseline to be used as a benchmark.

Figure 2. Experiential Learning Model (Adapted from Kolb, 1976)

Figure 3. Research Model

Concrete
Experience

Reflective
Observation

Abstract
Conceptualization

Active
Experimentation

Test-Last
Approach

Test-Driven
Development

Software Quality

Task Satisfaction

Performance Outcomes of Test-Driven Development

1052

Software quality is one of the main dependent variables

used in prior empirical studies. However, software

quality has not been measured consistently across all

studies. A few have used the number of defects as a

measure of quality (Bhat & Nagappan 2006; Edwards,

2004) and others have assessed functional correctness

(Fucci et al., 2017; George & Williams, 2004) or

acceptance testing (Pancur & Ciglaric 2011; Maydeski

2010, 2005; Erdogmus, Morisio, & Torchiano, 2005).

While some studies view TDD as a defect-reduction

technique, we take the more expanded view of TDD as

a design strategy that can lead to superior program

design. As Janzen and Saiedian (2006, p. 44) rightly

note, “test-driven development focuses on how TDD

leads analysis, design, and programming decisions.”

This view has also been endorsed by Wilkerson et al.

(2012).

In addition to measuring software quality, our study

distinguishes itself from prior research by assessing the

influence of TDD on task satisfaction. In a field where

developers are increasingly prone to burn-out, it is

desirable to adopt approaches that can increase

satisfaction at work, leading to greater engagement and

commitment while reducing turnover intentions

(Armstrong, Brooks, & Riemenschneider, 2015; Moore,

2000). Given this imperative, our study assesses the

impact that TDD has on task satisfaction. We also

measured learning outcomes and time to completion to

assess learning and productivity, respectively; these

analyses are presented in Section 7.

4 Hypotheses

In TDD, the processes of designing and coding are

intertwined and code is developed in iterative cycles.

Such incremental code development enables software

developers to focus on one aspect of design (and its

resultant code) at a time. Unit testing helps the

developer to quickly identify not just errors in the code

but also flaws in conceptualization and design (Beck,

1999; Dustin, 2002). It can therefore be argued that

TDD enables developers to catch errors early in the

development process, thus making it easier to identify

the source of the problem. Repeated cycles of design-

code-reflect-refactor ensure that working software gets

tested frequently and is continually improved (Rafique

& Misic, 2013). Furthermore, the TDD approach—

often in combination with continuous integration—

uses repeated testing and ensures complete test

coverage, thus precluding new additions to the code

from breaking the existing functionality.

Scott Ambler, a well-known methodologist,

recommends TDD as a strategy for developing code

that embodies good design and is easy to maintain

(Ambler & Lines, 2012). He regards it as a critical

practice that enhances the quality of code. Continual

cycles of problem framing, code evolution, and

problem reframing based on progressive insights lead

to a reflective practice that yields better solutions (e.g.,

Schon, 1983).

In summary, the main distinction between TDD and

the test-last approach is that the former requires the

upfront development of test cases and use of the code-

test-refactor cycle to successively develop and refine

the code. On the other hand, a developer following the

test-last approach may use a few iterations to modify

the code in order to remove defects and meet stated

requirements, but the overall software design is seldom

refined based on the insight gained from testing.

Refactoring, a practice that improves the quality of

code and makes it more maintainable (see Ambler &

Lines, 2012), is not an integral part of the test-last

approach. In contrast, TDD is a design approach that

repeatedly confirms that requirements embodied in test

cases are satisfied because developers evolve code in

test-code-refactor cycles (Shalloway et al., 2009;

Ambler & Lines, 2012). Developers benefit from

immediate feedback on the implementation of design

choices, giving them an opportunity to improvise and

refine their thinking in order to produce high-quality

code.

In light of the preceding discussions, we hypothesize:

H1: While working on a programming task,

programmers using TDD will produce software

of higher quality than those using the test-last

method of software development.

Locke and Latham (1990) use goal theory to assert that

individuals working on a task experience satisfaction

when they are successful in accomplishing task-related

goals, and we argue that this can help improve the

understanding of the influence of TDD on developer

satisfaction. As has been argued in the literature, TDD

is a design philosophy driven by test cases that embody

functional requirements as well as user acceptance

criteria (Crispin, 2006; Janzen & Saiedian, 2006). What

distinguishes TDD from the test-last approach is that

developers using TDD continually set achievable goals

through test cases and write code that satisfies those

tests. TDD facilitates the fulfillment of incremental

goals as the project unfolds. In other words, developers

using TDD repeatedly frame and reframe the problem

through the articulation of small, clear goals in the form

of test cases with well-defined acceptance criteria that

they endeavor to satisfy through coding. The tangible

fulfillment of each test case enables developers to

confirm that their performance, in terms of the

predefined goals, is successful, thereby leading to

greater task satisfaction.

The theoretical underpinnings of self-determination

theory (SDT) by Deci and Ryan (2000) lend further

credence to the positive association between TDD and

satisfaction. According to SDT, intrinsic motivation and

its attendant benefits, such as well-being and

Journal of the Association for Information Systems

1053

satisfaction, accrue when fundamental needs like

autonomy, competence, and relatedness are fulfilled

(Ilardi et al., 1993). While autonomy and relatedness

may not be pertinent to our research context,

competence is certainly a factor in promoting

satisfaction among TDD subjects. It may be argued that

TDD facilitates reflective practice (see Schon, 1983)

because developers receive immediate feedback on the

results of their design choices. Repeated feedback

engendered by an inherently iterative process enables

TDD developers to continually improvise and expand

their capabilities, thus leading to greater confidence in

their outcomes (i.e., competence). This should generate

higher levels of motivation, which, in turn, should lead

to greater satisfaction. This reasoning resonates with

Buchan, Li, and MacDonell’s (2011) finding that TDD

users not only perceived improved quality of code and

higher levels of productivity, but also experienced

increased motivation and satisfaction.

Unlike TDD, the test-last approach neither facilitates the

incremental attainment of goals nor does it provide

repeated feedback on design alternatives. Furthermore,

the linear sequence of activities, from analysis to design

to coding to testing, does not give subjects using the

traditional approach an opportunity to progressively

refine their design in light of errors they uncover during

testing. Given this backdrop, we expect TDD to result in

greater overall task satisfaction when compared with the

test-last approach. Therefore, we hypothesize:

H2: While working on a programming task, overall task

satisfaction of programmers using TDD is higher

than the overall task satisfaction of those using the

test-last method of software development.

5 Research Methodology

5.1 Experimental Design

We conducted a controlled laboratory experiment to

validate the research model because it allows better

control over potentially confounding extraneous factors,

thus leading to precise measurements of the variables.

The experiment involved two programming tasks—a

warm-up task followed by the main task. The warm-up

task required the participants to create an application for

a movie rental business and the main task consisted of

developing an application for a bookstore. Detailed task

descriptions are provided in Appendices A and B.

Undergraduate and graduate students majoring in

information systems or computer science participated in

the experiment. Each participant was randomly assigned

to one of the two groups. Participants in one group

developed the solution using the traditional test-last

method of software development, while participants in

the other group used TDD for the same purpose.

Randomization of the assignment was performed to

ensure that the study was not influenced by any potential

bias. Power analysis suggests a group size of 42 per

condition for a large population effect size at a 0.05

significance level (Cohen, 1992).

Students participating in the experiment were already

familiar with the traditional software development

process but were not knowledgeable about TDD. In

order to familiarize all students with the TDD approach,

a tutorial session was offered by one of the authors.

Following this session, the students completed an

assignment on using JUnit test cases to verify that they

had adequate knowledge and skills. Thereafter, they

were allowed to participate in the experiment.

A total of 88 students participated in the experiment.

Participation was completely voluntary. To encourage

participation, extra credit was given to the students by

their respective instructors. The students who chose

not to participate in the experiment were allowed to

complete an alternate assignment of equal credit. The

experiment was conducted following a script that

included informed consent and debriefing. Results

from four participants were excluded from data

analysis for various reasons. One person fell sick

during the experiment and could not finish the main

task. Three others did not completely respond to the

questionnaire used for data collection. Thus, the final

data analysis included responses from 84 subjects. The

mean age of the participants was 26.06 years with a

standard deviation of 5. Demographic details about the

participants are shown in Table 2.

5.2 Experimental Setting and Procedure

Prior to the main experiment, we conducted a pilot test

using four subjects to clarify the experimental protocol.

Two of the participants used TDD, while the other two

followed the traditional method of software

development. Minor changes were made to the protocol

based on the feedback received from the pilot study.

During the main experiment, participants were

supervised to ensure that no socializing occurred. Based

on the observations from the pilot test, the participants

were allowed up to 30 minutes for the warm-up task and

up to two hours to complete the main task. Laptop

computers with Eclipse IDE (integrated development

environment) were provided to all participants. JUnit

test cases were enabled only in machines that were used

by the participants using TDD. Internet access was

disabled to prevent subjects from searching for solutions

online. However, participants did have access to the

JAVA API provided by Eclipse. Subjects in the control

group were specifically instructed to use the test-last

approach, whereas those in the treatment group were

told to use TDD. The latter were informed that the JUnit

test suite was already installed within the Eclipse

environment on their computers. The control group did

not have access to the JUnit test suite. All subjects were

instructed to submit working code that met the stated

requirements.

Performance Outcomes of Test-Driven Development

1054

Table 2. Demographic Details of Participants

Demographic variable Number of subjects Percentage

Gender

 Male

 Female

62

22

73.8%

26.2%

Education

 Undergraduate

 Graduate

49

35

58.3%

41.7%

Programming experience

 <1year

 1 year-2 years

 2 years-3 years

 > 3 years

46

22

 9

 7

54.7%

26.2%

10.7%

8.3%

Java experience

 < 1year

 1 year-2 years

 2 years-3 years

 > 3 years

56

19

 3

 6

66.7%

22.6%

3.6%

7.1%

5.3 Dependent Variables

Software quality and task satisfaction were used as the

dependent variables in the main model. Learning

outcomes and time taken to complete the main task

were also measured and used for additional analyses

presented in Section 7.

We assessed software quality based on quality of code

developed during the main task and developed a rubric

(see Appendix D) to guide code quality assessment.

Consistent with our objective to evaluate quality

holistically, we considered high-level abstractions

(e.g., classes required for the solution) and appropriate

methods for each class. We also evaluated syntactic

correctness and the quality of design elements such as

interfaces, maintainability, and functionality. Thus,

our assessment rubric goes beyond counting defects.

This is consistent with the evaluation procedure

followed by Balijepally et al. (2009). Furthermore, it

resonates with the assessment approach used in Purao,

Storey, and Han (2003) that penalizes missing items or

incorrect designs and rewards good extensions to the

basic design. As indicated by the rubric in Appendix

D, the solutions were evaluated on a scale of 0 to 125

and assessments were based on the correctness of

object-oriented design, implementation of the user

interface and appropriate methods, and conformance

of the solution to stated requirements. Points were

added for good design decisions and deducted for poor

design choices, thus ensuring proper assessment of

software quality. We trained two information systems

doctoral students who were not related to the study as

raters and provided them with the detailed rubric in

order to facilitate consistency in evaluating the

solutions. The scores assigned by the two graders were

checked for internal consistency using the Pearson

correlation coefficient, which was found to be 0.791.

We measured overall task satisfaction using a

prevalidated instrument reported in Balijepally et al.

(2009). Participants were asked to report their overall

experience in performing the main programming task

using a 7-point Likert scale with responses ranging

from very dissatisfied to very satisfied, very displeased

to very pleased, very frustrated to very contented, and

absolutely terrible to absolutely delighted. The

satisfaction instrument is presented in Appendix C5.

6 Analysis and Results

The comparison between programmers using the test-

last method of software development and those using

TDD was designed to reveal important and significant

differences between the two methods. MANOVA and

ANOVA were used for identifying these differences

between the two groups.

6.1 Factor Analysis

Cronbach’s alpha is an indicator of internal

consistency and homogeneity of a measured variable

(Kerlinger, 1986) and values over 0.7 are considered

adequate for assuming reliability (Nunnally, 1978).

The four items used to measure overall task

satisfaction were checked for internal consistency, and

Cronbach’s alpha was found to be 0.956. Table 3

shows the mean values, standard deviations, and the

correlation matrix for the items used for this perceptual

Journal of the Association for Information Systems

1055

measure. Exploratory factor analysis was performed

using principal component analysis. All four items

were found to load onto a single factor. Table 4 shows

the factor loadings found as a result of using principal

component analysis, along with Eigen value and

variance explained. Since high factor loadings were

found, a composite score for overall task satisfaction

was used. The item scores were summated and then

averaged to compute the composite score, which was

used in the subsequent analysis.

6.2 Assumption Check

Before proceeding with the statistical analysis, we

performed checks for assumption violation. In

ANOVA, three assumptions must be met in order to

sustain statistical significance in substantiating

hypothesized claims. These are constancy of error

variance, independence of error terms, and normality

of error terms (Kutner et al., 2005). The F-test is

considered to be fairly robust against violations of

equal error variance in a fixed ANOVA model if the

factor-level sample sizes are approximately equal or

not significantly different (Kutner et al, 2005). Since,

in this study, sample sizes across the comparison were

equal, departure from equal variance does not

represent a threat to generalization. Upon checking for

violations of normality, minor violations were found in

some cases and transformations were applied as a

remedy. Exponential transformation, with an exponent

value of 2.5 alleviated the problem of normality

violation. Upon examining the residual plots, no

violation of the independence of error terms was

found.

MANOVA provides a measure against inflated Type 1

errors; hence, testing for its significance before

proceeding with ANOVA analyses is recommended

(Hair et al., 2006). Once the significance of the

MANOVA test is established, ANOVA tests

subsequently follow to determine which of the

dependent variables are significant. Therefore, we used

MANOVA analysis using all dependent variables to

compare the performance of the two groups. The

results summarized in Table 5 show that the

MANOVA model was significant. We then performed

one-way ANOVA testing and present the results in

Table 6.

Hypothesis 1 predicted that software quality scores

would be higher for those who used TDD than for

those who used the test-last method of software

development. Based on the analysis presented in Table

6, the performance of programmers using TDD was

found to be significantly higher than that of

programmers using the test-last method of software

development. On average, participants using TDD

scored 93.73 while those using the test-last method

scored 76.06 on the software quality measure. The

ANOVA test resulted in an F-value of 13.55 with a p-

value of 0.00 (significant at 0.01).

Hypothesis 2 predicted that participants using TDD

would score higher in terms of task satisfaction

compared to those using the test-last method. On

average, software developers using TDD scored 5.64,

whereas those using the test-last method scored 4.72.

The difference between the two scores was found to be

statistically significant and the ANOVA test resulted

in an F-value of 7.85 with a p-value of 0.003

(significant at 0.01). The results of hypothesis testing

are summarized in Table 7.

Table 3. Correlation Matrix: Satisfaction

 Mean SD Item 1 Item 2 Item 3 Item 4

Item 1 5.50 1.506 1.0

Item 2 5.48 1.558 0.885 1.0

Item 3 5.36 1.695 0.873 0.779 1.0

Item 4 5.29 1.492 0.853 0.833 0.889 1.0

Table 4. Factor Loadings – Satisfaction

Questionnaire item Factor loadings Communality estimate

Item 1 0.958 0.917

Item 2 0.927 0.859

Item 3 0.939 0.882

Item 4 0.948 0.899

Eigen value 3.557

Variance explained 88.91%

Performance Outcomes of Test-Driven Development

1056

Table 5. MANOVA Results

Statistical test Value F value

Degrees of freedom Sig.

p-value Between group Within group

Pillai’s trace 0.197 3.829 5 78 0.004*

Wilk’s lambda 0.803 3.829 5 78 0.004*

Hotelling-Lawley trace 0.245 3.829 5 78 0.004*

Roy’s largest root 0.245 3.829 5 78 0.004*

Note: *significant at p = 0.05

Table 6. ANOVA Results

Dependent measure

Test-driven

development
Test-last method

F value
Sig.

p-value
Mean SD Mean SD

Software quality 93.73 17.40 76.06 25.78 13.55 0.000*

Overall task satisfaction 5.64 1.31 4.72 1.68 7.85 0.003*

Note: *significant at p = 0.05

Table 7. Results of Hypothesis Testing

Hypothesis Finding

H1: While working on a programming task, programmers using TDD will produce

software of higher quality than those using the test-last method of software

development.

Supported

(p < 0.01)

H2: While working on a programming task, overall task satisfaction of programmers

using TDD is higher than the overall task satisfaction of those using the test-last

method of software development.

Supported

(p < 0.01)

7 Additional Data Analysis

Our study clearly demonstrates the efficacy of TDD in

terms of software quality and task satisfaction.

However, some questions still remain. For instance,

prior studies have been inconclusive regarding the

effect of TDD on productivity. The question that

presents itself is whether higher software quality and

task satisfaction come at the expense of productivity.

In addition, given similarities between TDD and

Kolb’s experiential learning model (1976), it seems

reasonable to expect that those engaged in TDD will

experience greater learning outcomes. In this section,

we inquire into these two questions:

1. How does TDD influence productivity?

2. Does TDD facilitate learning?

7.1 TDD and Productivity

7.1.1 As mentioned above, prior studies (see Table 1)

have found that the productivity of TDD varies

widely vis-à-vis the test-last method. There are

several plausible reasons for this, including lack of

control, small sample sizes, and other

measurement issues. In our study, we measured the

time taken to complete the main task as a surrogate

for productivity but did not develop hypotheses

related to productivity because we lacked

theoretical justification to support such an

argument.

7.1.2 We conducted ANCOVA (Neter et al., 1996) to

compare the effects of the two groups (TDD and

test-last) on quality using time as a covariate and

found the two to be significantly different (p-value

= 0.001). The result is presented in Figure 4, which

shows software quality and time to completion for

all observations with Qual_TDD and Qual_TLast,

Journal of the Association for Information Systems

1057

indicating TDD and test-last experimental

conditions, respectively. The trend lines for the

two conditions are also plotted. The result clearly

demonstrates that, for a given completion time

(productivity level), TDD results in higher quality

compared to the test-last development method. We

further examined the data and found that among

participants scoring more than 80 points (out of a

maximum of 125) on software quality, those who

used TDD far outnumbered those who used the

test-last method (35, or 83.3%, vs. 20, or 47.6%).

Thus, TDD appears to result in higher code quality

without loss of productivity.

7.2 TDD and its Impact on Learning

Outcomes

In this section, we present our analysis of the impact of

TDD on learning outcomes. Following Gemino

(1999), we assessed learning outcomes at three

levels—verbatim recall, comprehension, and problem

solving. Verbatim recall refers to the ability of the

programmer to recall key words or key concepts

learned while working on a programming task.

Comprehension is the ability to understand key

attributes—namely, classes, objects, methods, and

their relationships. Finally, the capacity to apply the

knowledge gained while working on a programming

task to a new scenario is indicative of the problem

solving ability of the programmer.

As discussed earlier, the cycle of code development

used in TDD has similarities with Kolb’s experiential

learning model. This creates the potential for learning

to occur when a developer engages in TDD. Thus, we

hypothesize that TDD will result in higher levels of

verbatim recall, comprehension, and problem solving

ability.

HLa: While working on a programming task,

programmers using TDD will demonstrate

higher levels of verbatim recall than those

using the test-last method of software

development.

HLb: While working on a programming task,

programmers using TDD will achieve higher

levels of comprehension than those using the

test-last method of software development.

HLc: While working on a programming task,

programmers using TDD will acquire superior

problem solving ability than those using the

test-last method of software development.

Learning was measured through a questionnaire that

participants filled out following completion of the

main task. The items in the questionnaire were

developed based on prior literature (Mayer, 1989;

Gemino, 1999). The questionnaires for all the

experimental conditions are given in Appendix C.

Three types of tests were used to measure learning—a

cloze test, comprehension test, and a problem solving

test. The ability to recall verbatim was measured using

the cloze test (Mayer, 1989). In our study, we

operationalized this by providing subjects with the

original problem description with several keywords

missing (see Appendix C2) and asking the subjects to

fill in the blanks based purely on memory. Following

Gemino (1999), the comprehension test consisted of

questions designed to evaluate the subject’s

understanding of the main programming task.

Figure 4. Relationship Between Software Quality and Time for Task Completion

0

20

40

60

80

100

120

0 50 100 150

Q
u

al
it

y

Time

Relationship Between Quality and Time for TDD and
Test-Last Development

Qual_TDD

Qual_TLast

Linear (Qual_TDD)

Linear (Qual_TLast)

Performance Outcomes of Test-Driven Development

1058

Table 8. ANOVA Results: Learning

Dependent measure

Test-driven

development
Test-last method

F value
Sig.

p-value
Mean SD Mean SD

Verbatim recall 7.71 1.70 7.26 1.87 1.342 0.125

Comprehension 6.60 1.49 6.02 1.44 3.175 0.038*

Problem solving 8.33 2.02 8.52 1.53 0.237 0.314

Note: significant at p = 0.05

Comprehension was measured by items in the

questionnaire that required the subject to identify

objects, attributes of objects, and relationships among

objects found in the main programming task (see

Appendix C3). In order to assess the ability of subjects

to apply their learning and comprehension to a new

setting, we followed guidelines provided by Mayer

(1989). Specifically, subjects were presented with a

scenario that was different from the main

programming task but offered opportunities to reuse

lessons learned while performing the main task. Their

responses to the questions (see Appendix C4) were

used to evaluate their problem solving abilities when

presented with an analogous situation.

Our approach to measuring learning outcomes is

consistent with the extant literature (see, for example,

Bostrom, Olfman, & Sein, 1990; Santhanam,

Sasidharan, & Webster, 2008; Yi & Davis, 2003).

Santhanam et al. (2008) assessed the effect of a self-

regulated learning strategy using an experiment and

measured learning outcomes using multiple-choice

and fill-in-the-blank questions following the

experiment. Bostrom et al. (1990) investigated training

effectiveness with comprehension as a dependent

variable. Comprehension was assessed using a

multiple item quiz about the functions and features of

the target software. Li, Santhanam, and Carswell

(2009) assessed problem solving ability using

questions about a new scenario.

The learning measures were included in the

MANOVA reported in Table 5. We ran ANOVA to

test the learning hypotheses and the results are shown

in Table 8. On average, participants using TDD scored

7.71 on verbatim recall whereas those using the

traditional method scored 7.26. The ANOVA test

resulted in an F-value of 1.342 with a p-value of 0.125,

which was not significant at 0.05. On average,

participants using TDD scored 6.60 on the

comprehension test, whereas those using the

traditional method scored 6.02. The difference was

statistically significant with an F-value of 3.175 and a

p-value of 0.038 (significant at 0.05). Participants

using the traditional method of software development

scored 8.52 while those using TDD scored 8.33 on the

problem solving test. Thus, HLa and HLc are not

supported, but HLb is supported.

Our results show that TDD leads to a higher level of

problem comprehension compared to the test-last

development process. While our findings are

interesting, learning is inherently a phenomenon that

occurs over a long period of time and is hard to capture

in a snapshot study. Developers learn over the entire

length of time they spend working on projects when,

for example, they solve problems that invariably occur

in any software development endeavor. Thus, our

findings must be interpreted appropriately and a future

longitudinal study should be performed to reconfirm

the impact of TDD on learning outcomes.

8 Discussion

Our study demonstrates that the TDD approach results

in enhanced software quality when compared with the

test-last approach and that this gain in software quality

occurs without any loss of productivity. Furthermore,

we found that subjects who used TDD were more

satisfied than those who adopted the test-last approach.

These findings are consistent with our hypotheses

derived from a review of the extant literature. The

superior software quality generated by TDD users may

be attributed to the fact that it is not just a different

testing practice but a design strategy that facilitates

improvisation, because design ideas embodied in the

test cases are continually refined as the code unfolds.

While these findings are interesting, it must be kept in

mind that the subjects in our experiment had limited

programming experience, and, therefore, the results of

our study are likely more applicable to entry-level

developers.

As discussed above, TDD’s cycle of software

development is reminiscent of Kolb’s experiential

learning model. Given the similarities between TDD

and Kolb’s model, another plausible reason for the

improved software quality of TDD users vis-à-vis

subjects in the test-last condition is the greater

opportunity for learning deriving from failed tests,

adapting, and making necessary changes. The

applicability of this finding to other domains such as

product innovation is supported by a similar

Journal of the Association for Information Systems

1059

observation by Eisenhardt and Tabrizi (1995) that

“iterations and testing would rapidly build

understanding and create multiple options” (p. 104);

they showed that an experiential strategy using

repeated iterations with frequent testing and

improvisation leads to faster product innovation. We

believe that demonstrating/affirming such empirical

regularity across disciplines and/or multiple domains

is an important step toward building robust theories.

The increased satisfaction of TDD subjects may be

attributed to the continual attainment of milestones and

incremental goals during the course of the

development process. Furthermore, the upfront and

iterative articulation of test cases and acceptance

criteria clarifies and/or reaffirms subjects’

understanding of the requirements before proceeding

to write the code. Another plausible reason for the

increased satisfaction of TDD subjects vis-à-vis test-

last participants is the immediate feedback that the

former receive regarding their actions. As discussed

before, self-determination theory (Deci & Ryan, 1985)

proposes that intrinsic motivation and its attendant

benefits are likely to ensue when fundamental

psychological needs such as autonomy, competence

(influenced by immediate and frequent feedback), and

relatedness are satisfied.

We also explored the impact of TDD on learning

outcomes measured at three levels: verbatim recall,

comprehension, and problem solving ability. Our

findings are intriguing: Subjects using TDD

demonstrated higher levels of problem comprehension

compared to those using the traditional approach to

software development, but no statistically significant

difference was found between the performance of the

two groups on verbatim recall and problem solving

ability. A plausible reason for the lack of superior

performance of the TDD group in verbatim recall may

be attributed to the sophistication of the contemporary

IDE (integrated development environment) Eclipse

that we used in our experiment. Research has shown

that a tool or model that helps manage factual data

about a problem domain disincentivizes remembering

facts about the problem, thus leading to lower ability

to recall facts from memory (Mayer, 1989). The lack

of performance difference regarding problem solving

ability may be attributed to a limitation of our

experimental design. Specifically, the transfer of

problem solving skills from one task to another is best

assessed by judging performance of the subjects in a

follow-up task. However, we could not use a follow-

up task in our study because of the time limit imposed

by our experimental setup. Instead, we measured

transfer of problem solving skills through a

questionnaire. We believe that this approach of

measuring skill transfer may have contributed to the

confounding result. This issue could be further

explored in a future study by using an appropriate

research design.

9 Implications for Practice and

Research

This study makes significant contributions to the

practice of software development. Our research

demonstrates that TDD not only enables developers to

produce code of a higher quality but also helps them

achieve higher task satisfaction. Higher quality code

translates to fewer defects, less rework, and increased

satisfaction of end users with the resulting information

system. Organizations invest great monetary resources

in software development, maintenance, and evolution.

Minimizing defects and reducing maintenance related

to rework can yield significant savings. Our study

validates that TDD results in higher levels of

satisfaction with the overall software development

experience, as compared to the test-last method. In an

industry where developers are under considerable

stress deriving from changes and innovations in

methods (Chilton, Hardgrave, & Armstrong, 2010),

TDD appears to be an innovation that actually

enhances task satisfaction. Higher satisfaction among

developers can lead to higher morale and reduced

turnover. Given these benefits, the widespread

adoption of TDD for software development may be a

fruitful strategy for organizations.

From a research perspective, our study makes a

significant contribution to the information systems

development literature. IS practitioners often lead the

field in developing new techniques and methodologies

based on their experience. Academics play a critical

role in assessing the efficacy of such new practices

through rigorous research. While there have been

several studies that have assessed the efficacy of TDD,

the results are inconclusive. Our research uses a

rigorously designed and executed laboratory

experiment to shed light on this phenomenon and to

create a benchmark to investigate TDD and its

variations. Another contribution of our study is the

understanding of the impact of TDD on task

satisfaction. Developer satisfaction based on software

development tasks is an important but underexplored

area of research that holds significant promise to

identify avenues for enhancing job satisfaction,

reducing burnout, and improving employee

retention—all critical for improving the working

condition and emotional well-being of the software

development community. Finally, the investigation of

learning as an outcome of a software development

process is an important but unexplored area of

research. Enhancing learning at the individual level

can be beneficial in the long run in terms of improved

quality of work leading to fewer defects. Though

tentative, our preliminary findings on the impact of

TDD on learning outcomes can serve as a catalyst to

Performance Outcomes of Test-Driven Development

1060

spawn more research efforts focusing on improving the

understanding of how learning occurs at the individual

and group levels in software development.

10 Limitations and Future

Research

The use of student subjects in our study raises some

concern about the external validity and generalizability

of the results. While students may not be adequate

proxies for experienced software developers, they are

good surrogates for entry-level developers (Balijepally

et al., 2009), and student subjects have been widely

used in experimental research involving software

development (see, for example, Burton-Jones & Meso,

2006; Khatri et al., 2006; and Balijepally et al., 2009).

Indeed, it has been argued that the similarities between

students and practitioners engaged in processes

consistent with organizational phenomena outweigh

the differences between them (Locke, 1986).

Nevertheless, we acknowledge this as a limitation of

our study, and future studies should replicate this

research using practitioners as subjects.

In a similar vein, the limited programming experience

of our subjects may also affect the generalizability of

our findings. We recommend that future empirical

studies use experienced developers as subjects to

confirm the validity of our results. Furthermore, our

assessment of learning outcomes, though consistent

with the extant literature, may be considered somewhat

tentative. It could be argued that learning is best

assessed through longitudinal studies. Thus, this

remains an open research question for further

validation using alternate theoretical framing and

research designs. We used a single task to evaluate our

research model. It may be worthwhile to study the

efficacy of TDD under conditions of varying task

complexity. Introducing different levels of task

complexity may help tease out differences in the way

that subjects learn. It may also be useful to examine the

interplay between the dynamics of task complexity and

the learning styles of individuals. Our study

demonstrates that TDD leads to a higher quality of

software and increased satisfaction among developers

in terms of the coding process. Future studies should

examine the possible process variables that may

account for these relationships.

11 Conclusion

TDD offers a novel approach to software development.

Research on the efficacy of TDD has been found to be

inconclusive; some studies show a gain in performance

whereas others find no change or even a decrease in

performance vis-à-vis the traditional approach to

software development. We conducted a laboratory

experiment to compare the efficacy of TDD with that

of the test-last approach and found that TDD not only

leads to the development of higher-quality software

but also results in greater levels of satisfaction with the

development task among software developers.

Through a post hoc assessment, we studied the impact

of TDD on productivity and learning. The findings of

this study have important implications for practice and

research, and the influence of software development

processes on learning is an unexplored area that holds

significant promise given the current emphasis on

creating learning organizations.

Acknowledgments

The authors thank Dr. Mark Eakin of the University of

Texas at Arlington for his help with the analysis of the

productivity data reported in Figure 4.

Journal of the Association for Information Systems

1061

References

Ambler, S., & Lines, M. (2012). Disciplined agile

delivery: A practitioner’s guide to agile

software delivery in the enterprise. IBM Press.

Aniche, M., & Gerosa, M. A. (2015). Does test-driven

development improve class design? A

qualitative study on developers’ perceptions.

Journal of Brazilian Computer Society, 21(15),

1-11.

Argyris, C., & Schon, D. A. (1978). Organizational

learning: A theory of action perspective.

Addison-Wesley, MA.

Armstrong D. J., Brooks N. G., & Riemenschneider,

C. K. (2015). Exhaustion from information

system career experience: Implications for turn-

away intention. MIS Quarterly, 39(3), 713-727.

Avgar A., Tambe P., & Hitt, L. M. (2018). Built to

learn: how work practices affect employee

learning during healthcare information

technology implementation. MIS Quarterly,

42(2), 645-659.

Balijepally V., Mahapatra R., Nerur S., & Price, K.

(2009). Are two heads better than one for

software development? The productivity

paradox of pair programming. MIS Quarterly,

33(1), 91-118.

Beck, K. (1999). Extreme Programming explained:

Embrace change. Addison-Wesley.

Beck, K., Beedle, M., van Bennekum, A., Cockburn,

A., Cunningham, W., Fowler, M., Grenning, J.,

Highsmith, J., Hunt, A., Jeffries, R., Kern, J.,

Marick, B., Martin, R. C., Mellor, S., Schwaber,

K., Sutherland, J., & Thomas, D.

(2001). Manifesto for Agile Software

Development. agilemanifesto.org

Beck, K. (2002). Test-driven development: by

example. Addison-Wesley.

Bhat, T., & Nagappan, N. (2006). Evaluating the

efficacy of test-driven development: industrial

case studies. Proceedings of International

Symposium on Empirical Software

Engineering.

Bostrom, R., Olfman, L., & Sein, M. (1990). The

importance of learning style in end-user

training, MIS Quarterly, 14(1), 101-119.

Buchan, J., Li, L., & MacDonell, S. G. (2011). Causal

factors, benefits and challenges of test-driven

development: Practitioners perceptions.

Proceedings of the 18th Asia-Pacific Software

Engineering Conference.

Burton-Jones, A., & Meso, P. N. (2006).

Conceptualizing systems for understanding: an

empirical test of decomposition principles in

object-oriented analysis. Information Systems

Research, 17(1) 38-60.

Cameron, B. H., & Purao, S. (2010). Enterprise

integration: An experiential learning model.

Information Systems Education Journal, 8(38)

1-13.

Canfora, A. (2006). Evaluating advantages of TDD: A

controlled experiment with professionals,

Proceedings of the International Symposium on

Empirical Software Engineering.

Chilton, M. A., Hardgrave, B. C., & Armstrong, D. J.

(2010). Performance and strain levels of IT

workers engaged in rapidly changing

environments: A person-job fit

perspective. Database for Advances in

Information Systems, 41(1) 8-35.

Cockburn, A., & Highsmith, J. (2001). Agile software

development: The people factor. Computer,

34(11), 131-133.

Cohen, J. (1992). A power primer. Psychological

Bulletin, 112(1), 155-159.

Crispin, L. (2006). Driving software quality: how test-

driven development impacts software quality.

IEEE Software, 23(6), 70-71.

Deci, E. L., & Ryan, R. M. (2000). The “what” and

“why” of goal pursuits: Human needs and the

self-determination of behavior. Psychological

Inquiry, 11, 227-268.

Deci, E. L., & Ryan, R. M. (1985). Intrinsic motivation

and self-determination in human

behavior. Plenum.

Dustin, E. (2002). Effective software testing: 50 ways

to improve your software testing. Addison-

Wesley.

Edwards, S. (2004). Using software testing to move

students from trial-and-error to reflection-in-

action. ACM SIGSCE Bulletin, 26-30.

Eisenhardt, K. M., & Tabrizi, B. N. (1995).

Accelerating adaptive processes: Product

innovation in the global computer industry.

Administrative Science Quarterly, 40(1), 84-

110.

Erdogmus, H., Morisio, M., & Torchiano, M. (2005).

On the effectiveness of the test-first approach to

programming. IEEE Transactions on Software

Engineering, 31(3) 226-237.

Fucci, D., Erdogmus, H., Turhan, B., Oivio, M.,

Juristo, N. (2017). A dissection of the test-

driven development process: Does it really

Performance Outcomes of Test-Driven Development

1062

matter to test-first or test-last? IEEE

Transactions on Software Engineering, 43(7),

597-614.

Gemino, A. C. (1999). Empirical comparison of

systems analysis modeling techniques

(Unpublished doctoral dissertaion, University

of British Columbia, Canada)

George, B., & Williams, L. (2004). A structured

experiment of test-driven development,

Information & Software Technology, 46(5),

337-342.

Gilb T. (1989). Principles of software engineering

management. Addison Wesley/Longman.

Hair, J. H., Black, W. C., Babin, B. J., Anderson, R. E.,

& Tatham, R. L. (2006). Multivariate data

analysis. Prentice Hall / Pearson Education

Ilardi, B. C., Leone, D., Kasser, T., & Ryan, R. M.

(1993) Employee and supervisor ratings of

motivation: Main effects and discrepancies

associated with job satisfaction and adjustment

in a factory setting. Journal of Applied

Psychology, 23(21), 1789-1805.

Janzen, D. S., & Saiedian, H. (2006). On the influence

of test-driven development on software design.

Proceedings of 19th Conference on Software

Engineering Education and Training.

Kerlinger, F. N. (1986), Foundations of behavioral

research. Holt, Rinehart, & Winston.

Khatri, V., Vessey, I., Ramesh, V., Clay, P., Park, S.-

J. (2006). Understanding conceptual schemas:

exploring the role of application and is domain

knowledge. Information Systems Research,

17(1), 81-99.

Kolb, D. A. (1976). Management and the Learning

Process. California Management Review,

18(3), 21-31.

Kutner, M. H., Nachtsheim, C. J., Neter, J., & Li, W.

(2005). Applied linear statistical models (5th

ed.). McGraw Hill.

Larman C., & Basili, V. (2003). Iterative and

incremental development: A brief history.

Computer, 36(6), 47-56.

Locke, E. A. (1986). Generalizing from laboratory to

field settings. Lexington Books

Locke, E. A., & Latham, G. P. (1990). Work

motivation and satisfaction: Light at the end of

the tunnel. American Psychological Society,

1(4), 240-246.

Li, P., Santhanam, R., & Carswell, C. M. (2009).

Effects of animations in learning: A cognitive

fit perspective. Decision Sciences Journal of

Innovative Education, 7(2), 377-410

Lui, K. M., & Chan, C. C. (2004). Test driven

development and software process

improvement in China: Extreme programming

and agile processes in software engineering

(pp. 219-222). Springer

Madeyski, L. (2010). The impact of test-first

programming on branch coverage and mutation

score indicator of unit tests: An experiment.

Information and Software Technology, 52(2),

169-184.

Madeyski, L. (2005). Preliminary analysis of the

effects of pair programming and test-driven

development on the external code quality. In K.

Zelinski & T. Szmuc (Eds.), Software

engineering: Evolution and emerging

technologies (1st ed., pp. 113-123). IOS Press

Mangalaraj, G., Nerur, S., Mahapatra, R. K., & Price,

K. H. (2014). Distributed cognition in software

development: an experimental investigation of

the role of design patterns and collaboration.

MIS Quarterly, 38(1), 249-274.

Mayer, R. E. (1989). Models for understanding.

Review of Educational Research, 59(1), 43-64.

Melnik, G., & Maurer, F. (2006). Comparative

analysis of job satisfaction in agile and non-

agile software development teams., In P.

Abrahamsson, M. Marchesi, & G. Succi (Eds.),

Extreme Programming and Agile Processes in

Software Engineering (pp. 32-42). Springer.

Moore, J. E. (2000). One road to exhaustion: An

examination of work exhaustion in technology

professionals. MIS Quarterly, 24(1), 141-168.

Morris, M. G., & Venkatesh, V. (2010). Job

characteristics and job satisfaction:

Understanding the role of enterprise resource

planning system implementation. MIS

Quarterly, 34(1), 143-161.

Muller, M. M., & Hagner, O. (2002). Experiment

about test-first programming. IEEE

Proceedings: Software, 149(5), 131-136.

Neter, J., Kutner, M. H., Nachtsheim, C. J., &

Wasserman, W. (1996). Applied Linear

Statistical Models (4th ed.), WCB McGraw-

Hill.

Nerur S., Mahapatra, R. K., & Mangalaraj, G. (2005).

Challenges in migrating to the agile

methodologies. Communications of the ACM,

48(5), 73-78.

Nunnally, J. C. (1978). Psychometric theory. McGraw-

Hill

Journal of the Association for Information Systems

1063

Pancur, M., & Ciglaric, M. (2011). Impact of test-

driven development on productivity, code, and

tests: A controlled experiment. Information and

Software Technology, 53(6), 557-573.

Porter, A. A., Siy, H. P., Toman, C. A., & Votta, L. G.

(1997). An experiment to assess the cost-

benefits of code inspections in large scale

software development. IEEE Transactions on

Software Engineering, 23(6), 329-346.

Purao, S., Storey, V., & Han, T. (2003). Improving

analysis pattern reuse in conceptual design:

augmenting automated processes with

supervised learning. Information Systems

Research, 14(3) 269-290.

Pressman, R. S. (2005). Software engineering: A

practitioner’s approach (6th ed.). McGraw-

Hill.

Rafique, Y., & Misic, V. B. (2013). The effects of test-

driven development on external quality and

productivity: A meta-analysis. IEEE

Transactions on Software Engineering, 39(6),

835-856.

Schon, D. A. (1983). The reflective practitioner: How

professionals think in action. Basic Books.

Shalloway, A., Beaver, G., & Trott, J. R. (2009). Lean-

agile software development: achieving

enterprise agility. Addison-Wesley.

Santhanam, R., Sasidharan, S., & Webster, J. (2008).

Using self-regulatory learning to enhance e-

learning-based information technology

training. Information Systems Research, 19(1)

26-47.

Singh, P. V., Tan, Y., & Youn, N. (2011). A hidden

Markov model of developer learning dynamics

in open source software projects. Information

Systems Research, 22(4) 790-807.

Sonnentag, S., Broadbeck, T. H., & Stolte, W. (1994).

Stressor-burnout relationship in software

development teams. Journal of Occupational

and Organizational Psychology, 67, 327-341.

Tripp, J. F., & Riemenschneider, C. K. (2014).

Towards an understanding of job satisfaction

on agile teams: Agile development as work

redesign. Proceedings of the 47th Hawaii

International Conference on System Sciences.

Tripp, J. F., Riemenschneider, C. K., & Thatcher, J.

(2016). Job Satisfaction in agile development

teams: Agile development as work redesign.

Journal of the Association for Information

Systems, 17(4) 267-307.

Wastell, D. (1999). Learning dysfunctions in

information systems development: Overcoming

the social defenses with traditional objects. MIS

Quarterly, 23(4), 581-600.

Westlund, S. G., & Hannon, J. C. (2008). Retaining

talent: Assessing job satisfaction facets most

significantly related to software developer

turnover intentions. Journal of Information

Technology Management, 19(4), 1-15.

Wilkerson, J., Nunamaker, J. F., & Mercer, R. (2012).

Comparing the defect reduction benefits of

code inspection and test-driven development.

IEEE Transactions on Software Engineering,

38(3), 547-560.

Yi, M. Y., & Davis, F. D. (2003). Developing and

validating an observational learning model of

computer software training and skill

acquisition, Information Systems Research,

14(2), 146-169.

Performance Outcomes of Test-Driven Development

1064

Appendix A: Warm-Up Task

For participants using the traditional method of software development:

A movie rental business owner has hired you as a software consultant and wants you to develop an application for him.

The application should allow a way to create a list of movies. It should also allow for the addition of movies to the list.

The order of the movie list is not important. The application should display the total number of movies listed at a time.

You should get the output displayed on the monitor (command prompt).

A sample output would be:

No. of movies currently available: 5

Note: For participants using TDD: The same task was given with the following instruction inserted before the task

description:

“You have to use TDD and write relevant unit test cases in developing the following application.”

Journal of the Association for Information Systems

1065

Appendix B: Main Task

For participants using the traditional method of software development:

The owner of a bookstore wants to keep records of the books in stock on the computer. The owner wants the application

that would enable him to identify the books that are available in the store. You are required to develop an application

that can be used to keep records of the books in stock.

There can be many different ways of identifying a book. The most direct way to identify a book is by its name.

However, it might lead to a situation where two books may have the same name. Therefore, a book should also be

described by a unique identifier number. The unique identifier number for the book should be an assigned integer.

The bookstore owner also wants the names of the author(s) to be available along with the name and unique identifier

number of a book. A book could be written by one or more than one author. The name of an author consists of the first

name and the last name. Since two authors may have the same name, an author should also be identified by a unique

identifier number in addition to his or her name. The application should be so developed that it contains details about

the authors; it should have the functionality to add author(s) to an existing book record.

In your application, you should have appropriate methods that will enable the user to get names and unique identifier

numbers of books as well as the names and unique identifier numbers of the corresponding authors of these books. A

book may have one or more than one author. The application should accommodate any number of authors for a book.

Your application should be able to display on console (at the command prompt) the information about the books and

authors, a sample output of which is as shown below.

Book ID: 1234986

Book Name: Gravitational Relativity

Author1 ID: 653

Author1 Name: Issac Newton

Author2 ID: 474

Author2 Name: Albert Einstein

Note: For participants using TDD: The same task was given with the following instruction inserted before the task

description:

“You have to use TDD and write relevant unit test cases in developing the following application.”

Performance Outcomes of Test-Driven Development

1066

Appendix C: Questionnaire

11.1 Appendix C1: Demographic Questions

For individual participants using the traditional method of software development:

1. Please circle your gender:

Male

Female

2. Please indicate your age on your last birthday ___________________

3. Highest educational level (including currently pursuing degree):

a) High school b) Technical school or community college

c) Undergraduate degree d) Graduate degree

e) Doctoral Degree f) Other: _______________________

4. Indicate number of years of your programming experience in any programming language?

a) 0-1 b) 1-2 c) 2-3

c) 3-4 d) 4-5 e) more than 5

5. Indicate number of years of your programming experience in object-oriented languages?

a) 0-1 b) 1-2 c) 2-3

c) 3-4 d) 4-5 e) more than 5

6. What would you consider to be your level of experience in object-oriented programming?

a) No experience b) Novice

c) Intermediate d) Expert

7. What object-orient programming languages are you familiar with?

a) C++ b) C# c) Java

d) Small Talk e) Objective-C f) Eiffel

g) Python h) VB.NET i) Other ____________

8. How comfortable are you with the IDE “Eclipse”?

a) Very comfortable b) Comfortable

c) Not much comfortable d) Not at all comfortable

For individual participants using TDD only:

9. What would you consider to be your level of experience in TDD?

a) No experience b) Novice

c) Intermediate d) Expert

11.2 Appendix C2: Verbatim Recall

Section A

Please fill in the blanks based on the description given in the main task:

The owner of a bookstore wants to keep records of the books in stock. The owner wants an application that would

enable him to _________ the books that are available in the store by their ____________. Additionally, a book should

be described by a/an ________________that should be an assigned _______. A book could be written by one or more

than one author. The ______ of an author consists of the _________ and _________ names. But, that might lead to a

Journal of the Association for Information Systems

1067

situation where two authors may have _____ names. So the author should also be identified by a / an ____________

as well. The application should be so developed that it contains details about the authors, it should have the

functionality to _______ the author or authors to the existing book records.

11.3 Appendix C3: Comprehension

Section B

Answer the following questions based on the description given in the main task.

1. Which fields (variables and references) are used in book class?

a. Book name

b. Book ID

c. Publisher

d. Both a and b

2. A Book object is identified by:

a. Book Name

b. Unique identifier number

c. Both a and b

d. Either a or b.

3. How many authors can be added to a book?

a. One

b. Two

c. As many as needed

4. Can Book object be added to an author?

a. Yes.

b. No.

c. Insufficient Information

5. An author is identified by:

a. Author name

b. Author ID number

c. Both a and b

d. Either a or b

6. Can we list all the books written by an author without going through the entire collection of books?

a. Yes

b. No

c. Insufficient information

Performance Outcomes of Test-Driven Development

1068

7. Two authors who have the same name may be identified by:

a. First, middle, last name together

b. Unique identifier number

c. A randomly generated numeric value

8. When checking for the availability of a specific book, it is best to search by:

a. Name

b. Unique identifier number

c. Publisher

d. All of the above

9. If you want to store the publisher information in your application, which is a more appropriate place to store the

information?

a. Book class

b. Author class

c. Publisher class

10. The application that you developed for the scenario is similar to which of the following:

a. Customers opening an account in bank

b. Students registering for classes in student information system

c. Customer receiving invoices

11.4 Appendix C4: Problem Solving

Section C

Please read the following scenario and answer the questions that follow:

A major international conference is to be organized in six months. The organizers of this conference have announced

a call for papers. Many researchers are expected to submit their papers for publication in the conference journal. You

are required to develop an application that can be used to keep records of the papers that are submitted to the

conference. The organizers want to easily identify the submitted papers. The submitted paper can be identified by its

title, but since two papers could have the same title, you should also identify the submitted paper using a unique

identifier number. Your application should use an integer value for the unique identifier number.

Since the organizers wish to maintain the standard of the papers that are published in their conference journal, quality

of the submitted work needs to be judged. For this purpose, the organizers have requested researchers to serve as

reviewers. However, those who choose to volunteer as reviewers will not be allowed to submit their own papers. The

submitted papers will be reviewed by the reviewers before being accepted for publication in the conference journal.

For the review process, the organizers should be able to assign each paper to the reviewers. Hence, a paper should have

details about the reviewers. The papers could be reviewed by one or more reviewers and the conference organizers

should be able to add the name or names of the reviewer or reviewers to a submitted paper. The name of a reviewer

consists of first and last names. There could be a scenario of two reviewers with the same name, so in addition to the

name, the reviewer should also be identified by a unique identifier number. The application should have the

functionality to add the reviewer or reviewers to the existing records of the submitted papers.

Journal of the Association for Information Systems

1069

1. As compared to the main task, a paper is analogous to:

a. Book

b. Author

c. Publisher

2. As compared to the main task, the organizer is analogous to:

a. Author

b. Owner

c. Publisher

3. As compared to the main task, the reviewer is analogous to:

a. Author

b. Publisher

c. Owner

4. You will resolve the issue of two reviewers with the same name by:

a. first, middle, and last name together

b. a randomly generated numeric value

c. Unique identifier number

5. Will ArrayList of authors will be similar to ArrayList of:

a. Papers

b. Reviewers

c. Organizers

11.5 Appendix C5: Task Satisfaction

Section D:

Please answer the following questions based on your experiences:

How do you feel about your overall experience of working on the programming task today?

Very Dissatisfied 1 2 3 4 5 6 7 Very Satisfied

Very Displeased 1 2 3 4 5 6 7 Very Pleased

Very Frustrated 1 2 3 4 5 6 7 Very Contented

Absolutely Terrible 1 2 3 4 5 6 7 Absolutely Delighted

Performance Outcomes of Test-Driven Development

1070

Appendix D: Software Quality Rubric

S. No. Description Points

1. Book class evaluation:

 a. Variable declaration:

name should be string, ID number should be string or int, ArrayLists used

Deduct points for wrong variable types, syntax, use of arrays instead of ArrayLists

6

(4)

 b. Constructor: using a proper constructor (not default)

Deduct points for return type, incorrect parameters, wrong assignment

8

(6)

 c. Gettor methods: for book name, book number

Deduct points for return type, incorrect parameters, wrong assignment

6

(3)

 d. addAuthor method (author object should be passed as a parameter)

Deduct points for wrong parameter, invalid return type, lack of functionality, syntax errors.

10

(10)

 e. getAuthor method (ArrayList of Authors should be iterated through and author object read one

by one)

Deduct points for wrong implementation of loop, invalid return type, lack of functionality,

syntax errors.

15

(12)

2. Author class evaluation:

 a. Variable declaration: First and last name should be String, author ID number can be String or

int

Deduct points for each wrong variable type

6

(3)

 b. Constructor: using a proper constructor (not default)

Deduct points for return type, incorrect parameters, wrong assignment

10

(6)

 c. Gettor methods: for author name, author number

Deduct points for return type, incorrect parameters, wrong assignment

6

(3)

3. Display class with main method

 a. Creating book objects passing correct parameters (at least one Book object) 5

 b. Creating author objects passing correct parameters (at least two Author objects) 5

 c. Adding at least two author objects to book objects by calling addAuthor method 6

 d. Getting information from ArrayList() of Authors using getAuthorList() method 6

 e. Creating display at command prompt 5

 f. If program compiles correctly displaying required information without any error 5

4. Going beyond requirements

 a. Maintainability considerations, appropriate indentation, comments, etc. 5

 b. Using settor methods 5

 c. Creation of user interface using JOptions pane 6

 d. Creating additional class and/or methods to provide enhanced functionality 8

 Total max points possible 125

Journal of the Association for Information Systems

1071

About the Authors

Vikram S. Bhadauria is an assistant professor of MIS at Texas A&M University in Texarkana, Texas. He received

his PhD in information systems from the University of Texas at Arlington. His current research includes software

development methodologies, environmental sustainability, security, blockchain, IoT, and self-driving technology

adoption. His research publications appear in Journal of Database Management, Computers in Human Behavior,

Industrial Management & Data Systems, International Journal of Productivity and Quality Management, Management

Research Review, Supply Chain Management: An International Journal, and other journals. He has also presented

papers at several international conferences.

RadhaKanta Mahapatra is a professor of information systems and chair of the ISOM Department at the University

of Texas at Arlington. He holds a bachelor’s degree in electrical engineering from the National Institute of Technology,

Rourkela, India, a PGDM (MBA) from the Indian Institute of Management, Ahmedabad, India, and a PhD in

information systems from Texas A&M University. His research interests include healthcare information systems,

IT4D, agile software development and project management, data warehousing and business intelligence, and data

quality. His research publications have appeared in MIS Quarterly, Communications of the ACM, Decision Support

Systems, Information & Management, European Journal of Information Systems, and other journals. He is passionate

about improving the conditions of marginalized populations around the world through the use of information

technologies.

Sridhar Nerur is the Goolsby-Virginia and Paul Dorman Endowed Chair in Leadership and professor of information

systems at the University of Texas at Arlington (UTA). He is also the chair of the Graduate Studies Committee on

Business Analytics at UTA. His research has been published in premier journals/magazines such as MIS Quarterly,

Strategic Management Journal, Communications of the ACM, European Journal of Information Systems, Information

& Management, IEEE Software, and Journal of International Business Studies. He has served on the editorial boards

of the European Journal of Information Systems and the Journal of Association for Information Systems. His research

and teaching interests include social networks, machine learning/AI/deep learning, text analytics, neuroeconomics, and

agile software development.

Copyright © 2020 by the Association for Information Systems. Permission to make digital or hard copies of all or part

of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for

profit or commercial advantage and that copies bear this notice and full citation on the first page. Copyright for

components of this work owned by others than the Association for Information Systems must be honored. Abstracting

with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists requires prior

specific permission and/or fee. Request permission to publish from: AIS Administrative Office, P.O. Box 2712 Atlanta,

GA, 30301-2712 Attn: Reprints, or via email from publications@aisnet.org.

