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GTP cyclohydrolase 1, encoded by the GCH1 gene, is an essential enzyme for dopamine production in nigrostriatal cells. Loss-

of-function mutations in GCH1 result in severe reduction of dopamine synthesis in nigrostriatal cells and are the most common

cause of DOPA-responsive dystonia, a rare disease that classically presents in childhood with generalized dystonia and a

dramatic long-lasting response to levodopa. We describe clinical, genetic and nigrostriatal dopaminergic imaging ([123I]N-!-

fluoropropyl-2b-carbomethoxy-3b-(4-iodophenyl) tropane single photon computed tomography) findings of four unrelated pedi-

grees with DOPA-responsive dystonia in which pathogenic GCH1 variants were identified in family members with adult-onset

parkinsonism. Dopamine transporter imaging was abnormal in all parkinsonian patients, indicating Parkinson’s disease-like

nigrostriatal dopaminergic denervation. We subsequently explored the possibility that pathogenic GCH1 variants could contrib-

ute to the risk of developing Parkinson’s disease, even in the absence of a family history for DOPA-responsive dystonia. The

frequency of GCH1 variants was evaluated in whole-exome sequencing data of 1318 cases with Parkinson’s disease and 5935

control subjects. Combining cases and controls, we identified a total of 11 different heterozygous GCH1 variants, all at low

frequency. This list includes four pathogenic variants previously associated with DOPA-responsive dystonia (Q110X, V204I,

K224R and M230I) and seven of undetermined clinical relevance (Q110E, T112A, A120S, D134G, I154V, R198Q and G217V).

The frequency of GCH1 variants was significantly higher (Fisher’s exact test P-value 0.0001) in cases (10/1318 = 0.75%) than in

controls (6/5935 = 0.1%; odds ratio 7.5; 95% confidence interval 2.4–25.3). Our results show that rare GCH1 variants are

associated with an increased risk for Parkinson’s disease. These findings expand the clinical and biological relevance of GTP

cycloydrolase 1 deficiency, suggesting that it not only leads to biochemical striatal dopamine depletion and DOPA-responsive

dystonia, but also predisposes to nigrostriatal cell loss. Further insight into GCH1-associated pathogenetic mechanisms will

shed light on the role of dopamine metabolism in nigral degeneration and Parkinson’s disease.

Keywords: GCH1; DOPA-responsive-dystonia; Parkinson’s disease; dopamine; exome sequencing

Abbreviations: BH4 = tetrahydrobiopterin; DAT = dopamine-transporter; 123I-FP-CIT = [123I]N-!-fluoropropyl-2b-carbomethoxy-
3b-(4-iodophenyl) tropane; SPECT = single photon computed tomography

Introduction
Parkinson’s disease is a common neurodegenerative disease mainly

characterized by severe loss of dopaminergic neurons in the sub-

stantia nigra pars compacta and by the formation of �-synuclein

positive aggregates (Lees et al., 2009). Nigral neuron degener-

ation and consequent decrease in dopaminergic striatal innervation

result in classic Parkinson’s disease motor symptoms. Symptomatic

treatment with levodopa or dopamine agonists is effective in alle-

viating these symptoms, although, along with disease progression,

levodopa-induced motor complications (e.g. dyskinesias, wearing-

off, on-off fluctuations) may appear.

In recent years several Mendelian loci have been unequivocally

linked to hereditary forms of Parkinson’s disease (Houlden and

Singleton, 2012) and genome-wide association studies have suc-

ceeded in identifying many common, low risk variants (Plagnol

et al., 2011).

The GCH1 gene (14q22.1-q22.2; OMIM 600225) encodes GTP

cyclohydrolase 1, the enzyme controlling the first and rate-limiting

step of the biosynthesis of tetrahydrobiopterin (BH4), the essential

cofactor for the activity of tyrosine hydroxylase, and for dopamine

production in nigrostriatal cells (Kurian et al., 2011). Mutations in

GCH1 are the most common cause of DOPA-responsive dystonia

(DYT5; OMIM#128230) (Clot et al., 2009), a rare movement dis-

order that presents typically in childhood with lower limb dystonia

and subsequent generalization (Nygaard, 1993b). The hallmark of

the disease is an excellent and sustained response to small doses of

levodopa, generally without the occurrence of motor fluctuations

(Trender-Gerhard et al., 2009). Reduction of CSF levels of pterins,

dopamine and serotonin metabolites (Assmann et al., 2003), or an

abnormal phenylalanine-loading test (Bandmann et al., 2003) are

supportive findings in the diagnosis of DOPA-responsive dystonia.

Inheritance is usually autosomal dominant with incomplete pene-

trance (Furukawa et al., 1998), though recessive cases have been

described (Opladen et al., 2011). Dominant GCH1 mutations

result in a significant reduction of GCH1 activity through a dom-

inant negative effect of the mutant protein on the normal enzyme

(Hwu et al., 2000).
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Neuropathological examination in a limited number of cases with

DOPA-responsive dystonia, revealed marked reduction of melanin

pigment and dopamine content in nigrostriatal neurons, but no evi-

dence of nigral cell loss or degeneration (Furukawa et al., 1999).

Parkinsonian features are frequently detected in patients with

DOPA-responsive dystonia (Tassin et al., 2000) and family studies

have shown that carriers of GCH1 mutations may develop adult-

onset parkinsonism in the absence of dystonia (Nygaard et al.,

1990). Based on previous studies, the prevailing hypothesis was

that parkinsonism represented an atypical, age-specific, presenta-

tion of DOPA-responsive dystonia without nigral degeneration

(Nygaard and Wooten, 1998).

The aim of this study was to further explore the relationship

between GCH1 mutations and parkinsonism and consider whether

adult GCH1 mutation carriers are at increased risk of developing

neurodegenerative Parkinson’s disease.

We first describe the clinical, genetic and nigrostriatal dopamin-

ergic imaging findings of DOPA-responsive dystonia pedigrees

in which pathogenic GCH1 variants were identified in family mem-

bers with adult-onset parkinsonism. We subsequently explore

the hypothesis that GCH1 variants might be associated with an

increased risk for Parkinson’s disease, even without a family history

for DOPA-responsive dystonia, through examination of whole-

exome sequencing data from a large cohort of cases and controls.

Materials and methods

Family study

Pedigrees

The clinical and demographic features of the pedigrees with GCH1

mutations involved in this study are described in the ‘Results’ section.

DOPA-responsive dystonia pedigrees were included in the study,

where family members affected with adult-onset parkinsonism were

available for clinical and genetic examination and in whom dopamin-

ergic studies had been performed. Local ethics committees approved

the study and informed consent for genetic testing was obtained in all

cases.

Genetic analysis

Genomic DNA was extracted from peripheral blood leucocytes using

standard procedures. Probands were screened for GCH1 mutations

(NCBI transcript NM_000161.2) by standard bi-directional Sanger

sequencing of all six coding exons and exon-intron boundaries

(primer sequences available on request). Dosage analysis for GCH1

exonic deletions and duplications was performed by multiplex liga-

tion-dependent probe amplification (MLPA, MRC).

Dopamine transporter imaging studies

Dopaminergic striatal innervation was evaluated as dopamine reuptake

transporter (DAT) density by means of single photon computed

tomography (SPECT) and [123I]N-!-fluoropropyl-2b-carbomethoxy-

3b-(4-iodophenyl) tropane (123I-FP-CIT). SPECT data acquisition and

reconstruction has been described in detail elsewhere (Isaias et al.,

2010). To obtain comparable measurements among different centres,
123I-FP-CIT binding values for the caudate nucleus and putamen were

calculated by means of the basal ganglia matching tool (Nobili et al.,

2013).

Whole-exome sequencing study

Participants and study design

The study initially involved 1337 unrelated subjects with Parkinson’s

disease and 1764 control subjects of European origin or North

American of European descent that underwent whole-exome sequen-

cing. Cases, originating mainly from the USA, UK, Holland and France,

were recruited by the International Parkinson Disease Genomics

Consortium (IPDGC), an international collaboration to understand

the genetics of Parkinson’s disease.

A further 190 cases with Parkinson’s disease were recruited through

a community-based epidemiological study of Parkinson’s disease in

Estonia (University of Tartu, Estonia). Cases with Parkinson’s disease

were clinically diagnosed according to the UK Parkinson’s Disease

Society Brain Bank (UKPDSBB) criteria (Hughes et al., 1992).

Control samples were collected by the UCL-exomes, a consortium of

researchers within University College London (London, UK) designed

to share raw read level data from multiple exome sequencing projects.

Control subjects had no diagnosis of Parkinson’s disease, DOPA-

responsive dystonia or any other movement disorder. Whole-exome

sequencing data from an additional 4300 North American individuals

of European descent were analysed from the publicly available NHLBI

Exome Sequencing Project Exome Variant Server (EVS) database

(http://evs.gs.washington.edu/EVS/).

Procedures

Paired-end sequence reads (TruSeq chemistry sequenced on the

Illumina HiSeq 2000) were aligned with Burrows-Wheeler Aligner

(for IPDGC) and novoalign (for UCL-exomes) against the reference

human genome (UCSC hg19). Duplicate read removal, format conver-

sion, and indexing were performed with Picard (http://picard.source

forge.net/). The Genome Analysis Toolkit was used to recalibrate base

quality scores, perform local realignments around possible indels,

and to call and filter the variants. ANNOVAR software was used to

annotate the variants (Wang et al., 2010).

Pathogenicity of the identified missense variants was predicted using

the following bioinformatics tools: HumVar-trained PolyPhen-2 model

(http://genetics.bwh.harvard.edu/pph2/), SIFT (http://sift.jcvi.org/),

LRT (s.wustl.edu/jflab/lrt_query.html) and MutationTaster (http://

www.mutationtaster.org/). Evolutionary conservation of the mutated

amino acids was evaluated using ClustalW2 (http://www.ebi.ac.uk/

Tools/msa/clustalw2/).

Statistical analysis

Frequencies of coding and splice-site GCH1 variants in cases and con-

trols were compared by means of Fisher’s exact (statistical significance

set at P-value5 0.05 using a two-tailed test) and odds ratios (OR)

and 95% confidence intervals (CI) were calculated. Analyses were

performed using the statistical analysis program R (http://www.r-pro

ject.org/).

Results

Family study

Family A

The proband (Case III-1, Fig. 1A) is a British 18-year-old male who

had a difficult caesarean birth, with perinatal distress and subse-

quent developmental delay. At 18 months he developed inward
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turning of his feet with walking difficulties and frequent falls. He

was diagnosed clinically with DOPA-responsive dystonia at the

age of 3 years and administration of levodopa (300 mg/day)

markedly improved his symptoms. [123I]FP-CIT SPECT, performed

at age 17, was normal (data not shown).

The proband’s father (Case II-1), who was initially thought

to have cerebral palsy due to a birth injury, was subsequently

diagnosed, at the age of 42, with DOPA-responsive dystonia.

The proband’s grandfather (Case I-1) is a 65 year-old male with

a 6-year history of progressive asymmetric rest tremor in the right

upper limb. Examination showed signs of typical Parkinson’s dis-

ease with hypomimia, unilateral rest tremor and asymmetric bra-

dykinesia. He did not present signs of dystonia. 123I-FP-CIT SPECT

showed bilateral reduced tracer uptake more marked on the left

(Fig. 1A), consistent with nigrostriatal dopaminergic denervation.

He responded well to levodopa therapy (300 mg/day).

GCH1 analysis revealed a heterozygous splice site mutation

(c.343 + 5G4C) in the three affected individuals. We previously

detected c.343 + 5G4C in a recessive pedigree, carried by the

unaffected mother of two very severely affected children who

also inherited the K224R mutation from their unaffected

father (Bandmann et al., 1996b; Trender-Gerhard et al., 2009).

However the c.343 + 5G4C mutation has not been previously

described in DOPA-responsive dystonia dominant pedigrees,

making its pathogenicity uncertain. Complimentary DNA analysis

showed aberrant splicing resulting in a premature stop codon

and retention of intron 1 in a proportion of mutant transcripts,

confirming the loss-of-function effect of the variant. See

Supplementary material for details of the RNA analysis.

Family B

The proband (Case III-1; see Fig. 1B) is a 12-year-old right-handed

female of German origin with DOPA-responsive dystonia, with an

onset at age 11, with writing and foot dystonia. Her mother (Case

II-1) presented at age 39 with progressive loss of dexterity and

slowness in her right arm and dystonic posturing of the right foot.

Examination showed an asymmetric rigid-akinetic parkinsonian

syndrome without tremor and severe right foot fixed dystonia.

Levodopa therapy resulted in marked improvement of both dys-

tonic and parkinsonian symptoms. 123I-FP-CIT SPECT revealed an

asymmetric bilateral reduced tracer uptake, more marked in the

left striatum. There was sustained response to levodopa therapy

although there was an increase in dose requirement (up to

800 mg/day). Levodopa-induced dyskinesias developed 6 years

after initiation of levodopa. Examination of the proband’s

66-year-old grandmother (Case I-1) revealed oromandibular

Figure 1 Pedigrees and 123I-FP-CIT SPECT scan images of the four families with GCH1 mutations involved in this study. Subject I-2 of

Family D was reported to be affected by a movement disorder (hand tremor) but was not available for clinical or genetic assessment.

P = Parkinson’s disease; D = DOPA-responsive dystonia.
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dyskinesias and upper limb dystonic features. She declined a trial

of levodopa. Her 123I-FP-CIT SPECT displayed border-line reduced

DAT values in both putamens.

GCH1 screening in this family revealed two variants:

c.68C4T;p.P23L (carried by Cases III-1 and II-1) and

c.312C4A;p.F104L (carried by Cases II-1 and I-1). There were no

GCH1 exonic rearrangements. F104L is absent in public control data

sets and has been previously reported in association with DOPA-

responsive dystonia (Clot et al., 2009). P23L (rs41298432) is a

benign polymorphism present in population controls at a frequency

of 1–2% (Jarman et al., 1997; Hauf et al., 2000).

To confirm GCH1 deficiency, phenylalanine-loading test

(100 mg/kg) was performed in Cases I-I and II-I and showed

pathologically elevated phenylalanine/tyrosine ratios in both

(Supplementary Fig. 2). CSF analysis, performed in Case III-I, dis-

played low levels of BH4 (13 nmol/l; 18–53 nmol/l) and neopterin

(6 nmol/l; 10–31 nmol/l), consistent with GCH1 deficiency. Given

the benign nature of P23L, we hypothesize that the GCH1

deficiency confirmed in this patient may be the result of an—as

yet—unidentified non-coding causative mutation.

Family C

The proband (Case II-1, Fig. 1C) is a German 41-year-old female,

affected by DOPA-responsive dystonia, who presented at age

4 years with bilateral foot inversion on walking. Her father

(Case I-1) is a 67-year old male with a 1-year history of typical

Parkinson’s disease with left hand rest tremor, bilateral rigidity

and bradykinesia and mild gait difficulties. There was no dystonia.
123I-FP-CIT SPECT examination revealed asymmetrically reduced

DAT-density in the striatum. Rasagiline and pramipexole were

started with good response. The mother (Case I-2), aged 62

years, had a normal neurological examination.

The proband was compound heterozygous for two GCH1 mis-

sense variants, c.610G4A;p.V204I, inherited from the asymptom-

atic mother, and the novel variant c.722G4A;p.R241Q, which

was paternally inherited. R241Q is absent in public control data

sets, is predicted deleterious by all in silico prediction tools and

involves an amino acid residue conserved down to invertebrate

species. Furthermore a pathogenic mutation at the same residue

has already been reported (Bandmann et al., 1998).

CSF analysis in the parkinsonian case supported a pathogenic

effect of the R241Q mutation on GCH1 activity: pterin analysis

revealed low BH4 (8 nmol/l; 18–53), but normal neopterin

(24 nmol/l; 10–31); neurotransmitter analysis showed low homo-

vanillic acid (95 nmol/l; 115–455) and 5-hydroxyindolacetic acid

(59 nmol/l; 61–204), which are metabolites of dopamine and sero-

tonin, respectively.

Family D

The proband is an Italian 58-year-old female (Case II-1, Fig. 1D),

who developed progressive tremor and clumsiness in the right arm

at age 44 years. Clinical examination showed typical Parkinson’s

disease with hypomimia, hypophonia and asymmetrical bradykine-

sia and rigidity. Action dystonic tremor (right4 left), poor postural

reflexes and slow gait were also evident and there was a sustained

response to levodopa. The dose was gradually increased up to

400 mg/day, after which rotigotine 4 mg/day was added.

Dyskinesias and wearing-off symptoms developed 6 years after

levodopa initiation. 123I-FP-CIT SPECT revealed asymmetrically

reduced DAT binding values in the striatum.

Her sister (Case II-2; Fig. 1D), aged 60, had a childhood onset

of mild walking difficulties. At age 55, she developed exercise-

induced left foot dystonia and dystonic tremor in both arms. She

had no bradykinesia or other parkinsonian signs. Low-dose levo-

dopa (100 mg alternate days) was started with excellent symptom

control. 123I-FP-CIT SPECT was normal. Their father was reported

to have a tremulous condition, but was not available for clinical or

genetic examination. GCH1 sequencing revealed that both sisters

were heterozygous for the previously reported pathogenic muta-

tion c.626 + 1G4C (Garavaglia et al., 2004).

The main clinical features of the GCH1 mutation carriers with

adult-onset parkinsonism and abnormal 123I-FP-CIT SPECT ima-

ging are summarized in Table 1. Their clinical features fully met

the UKPDSBB criteria for definite Parkinson’s disease diagnosis.

None of these cases presented significant diurnal fluctuations,

worsening of symptoms in the evening or substantial sleep benefit,

features often recognized in cases with DOPA-responsive dystonia

(Kurian et al., 2011). DAT binding values are reported in

Supplementary Table 1.

Whole-exome sequencing study
We hypothesized that pathogenic variants in GCH1 could be

found in subjects with Parkinson’s disease without a family history

for DOPA-responsive dystonia. To investigate this we examined

whole-exome sequencing data of a large cohort of patients pre-

dominantly affected by early-onset or familial Parkinson’s disease

and controls. After quality control checks (removal of gender mis-

matches, duplicate, related and non-Caucasian samples, samples

with low call rate or excess of heterozygosity), 1318 cases with

Parkinson’s disease and 1635 controls remained. Additional control

data (n = 4300) were obtained from the publically available Exome

Variant Server (EVS) data set.

In total 1318 cases and 5935 controls were analysed for the

presence of GCH1 coding (including small insertions/deletions,

missense and stop-gain changes) or splice-site variants (� 5

base pairs from the coding exons). The mean age of subjects

with Parkinson’s disease was 55.7 � 13.9 years (range 17–101;

data available for 970 cases) and the mean age at onset was

46.7 � 13.8 years (range 6–98; data available for 1194 cases).

Four hundred and twenty-three of 1194 (35.4%) were early-

onset cases (age at onset440 years) and �630 were familial

cases (positive family history for Parkinson’s disease in a first or

second-degree relative).

Coverage of the six GCH1 coding exons (NCBI transcript

NM_000161.2) was comparable in the three data sets (IPDGC,

UCL-ex and EVS; Supplementary Table 2). No common variants (fre-

quency 41%) were identified. The benign polymorphisms P23L

(rs41298432) and P69L (rs56127440), detected at similar frequen-

cies in cases and controls, were not included in the analysis.

The main results of GCH1 analysis are summarized in Table 2.

Combining cases and controls, 11 unique heterozygous GCH1

variants (10 missense and one stop-gain mutation) were identified
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in 16 individuals. Six variants were found only in cases with

Parkinson’s disease (Q110X, Q110E, A120S, D134G, G217V and

M230I), three in controls alone (T112A, I154V and R198Q) and

two were detected in both groups (V204I, K224R). The frequency

of GCH1 variants was significantly higher in cases with Parkinson’s

disease (10/1318; 0.75%) than in individual (UCL-ex controls

1/1635; 0.06%; P = 0.003; OR 12.4 95% CI 1.7–541.1; EVS

database 5/4300; 0.11%; P = 0.0004; OR 6.5, 95% CI 2.0–

24.5) and combined data sets of controls (6/5935; 0.1%;

P = 0.0001; OR 7.5, 95% CI 2.4–25.3).

All carriers of variants in GCH1 were negative for pathogenic

mutations in the known genes associated with Mendelian forms of

parkinsonism (SNCA, LRRK2, VPS35, PARK2, PARK7, PINK1,

ATP13A2, PLA2G6 and FBXO7). The presence of copy number

variants in the SNCA, PARK2, PARK7, and PINK1 genes was

excluded by MLPA in all cases.

One case was heterozygous for the GBA mutation E326K. This

is a relatively common variant (�1–2% Caucasians) that was

recently shown to be associated with a modest but significant

increase in the disease risk (Duran et al., 2013). The main features

of the 10 cases with Parkinson’s disease with pathogenic or pos-

sibly pathogenic GCH1 variants are listed in Table 3.

The age at onset of GCH1-mutated cases was 43.2 � 13.4

years (range 17–61). Seven had a positive family history of

Parkinson’s disease. DNA of other family members was available

for only one case and we showed segregation of the same GCH1

mutation (Q110X) in the affected sister of the index case. All cases

exhibited a variable combination of asymmetrical bradykinesia, ri-

gidity, rest and postural tremor, walking difficulties, postural in-

stability and excellent response to dopaminergic treatment,

consistent with a clinical diagnosis of Parkinson’s disease.

The two subjects with the youngest age at onset of symptoms

(Cases 4 and 9, who developed symptoms at age 32 and 17,

respectively) presented with dystonic features in the lower

limbs at onset, a well recognized characteristic of young-onset

Parkinson’s disease cases (Bozi and Bhatia, 2003). Case 5 de-

veloped lower limb dystonia in off periods over the course of

the disease. The remainder did not present with any symptoms

or signs of dystonia.

Detailed information about treatment was available for eight

cases: the two cases (Cases 1 and 7) with the shortest disease

duration (45 years) were treated only with a dopamine-agonist,

whereas the other cases were taking a combination of levodopa

and other anti-parkinsonian drugs. Mean disease duration was

17.6 � 15.4 years (range 4–56). Cases with longer disease dur-

ation displayed a more severe clinical picture with some degree of

postural instability (Hoehn and Yahr score53), indicating disease

progression in spite of the dopaminergic treatment.

In those patients taking levodopa and for whom follow-up in-

formation was available (n = 7), all developed clinically relevant

motor complications of chronic levodopa treatment, including

wearing off, motor fluctuations and dyskinesias. Dyskinesias in

Case 4 were so disabling that he required treatment with deep

brain stimulation of the subthalamic nuclei at age 60.

Most cases exhibited some of the typical non-motor features

often recognized in Parkinson’s disease (Lees et al., 2009), such

as cognitive difficulties (Case 5), hyposmia (Cases 3–6 and 10)

constipation (Cases 4 and 10), urinary problems (Cases 5, 6 and

9), fatigue (Cases 2 and 5) and sleep disturbances (Cases 4–6

and 10).

Discussion

Family study
We report here four unrelated DOPA-responsive dystonia pedi-

grees in which loss-of-function GCH1 mutations (two splice-site

mutations and two missense mutations, confirmed to be patho-

genic by metabolic or CSF studies) were found in individuals,

asymptomatic for DOPA-responsive dystonia during childhood,

who developed adult-onset parkinsonism. They all met the

UKPDSBB clinical criteria for a definite diagnosis of Parkinson’s

disease and had imaging evidence of a Parkinson’s disease-like

nigrostriatal dopaminergic denervation.

A parkinsonian syndrome in the absence of dystonia has been

reported in adults who are first-degree relatives of children with

DOPA-responsive dystonia. In a series of 21 families, Nygaard

showed that 7/50 (14%) individuals older than 40 years had par-

kinsonism (Nygaard, 1993a) and Hagenah et al. (2005) reported

that 8/23 (34.7%) patients of their series had a positive family

history for Parkinson’s disease. GCH1 mutations have also been

shown to segregate in pedigrees with multiple individuals affected

by isolated parkinsonism (Irie et al., 2011).

Our study provides evidence that in most of the cases the par-

kinsonian phenotype in adult GCH1 mutation carriers is likely due

to nigrostriatal degeneration, rather than being simply part of the

phenotypic spectrum of metabolic GCH1-related striatal dopamine

deficiency. This is consistent with other previous isolated reports of

adult-onset parkinsonism in GCH1 mutation carriers with abnor-

mal nigrostriatal imaging (features summarized in Table 1) (Kikuchi

et al., 2004; Hjermind et al., 2006; Eggers et al., 2012; Ceravolo

et al., 2013).

Our imaging findings are, however, in apparent contrast to a

previous report by Nygaard et al. (1992). The authors described a

large DOPA-responsive dystonia pedigree, in which three subjects

had a late-onset benign parkinsonism, two of which had normal

nigrostriatal dopaminergic function determined by means of
18F-fluorodopa PET.

Compensatory mechanisms at the presynaptic level (e.g.

increased dopamine-intake and dopamine-decarboxylation activ-

ity) may result in relatively higher striatal 18F-fluorodopa uptake

in the initial phase of Parkinson’s disease, underestimating the

degree of nigral cell decrease (Nandhagopal et al., 2011). DAT

values are therefore a more precise indicator of dopaminergic

innervation loss (Ito et al., 1999). We speculate that GCH1-

parkinsonian cases with normal 18F-fluorodopa-PET scan could

have upregulated compensatory dopaminergic activity at the

presynaptic level, possibly masking the presence of striatal

denervation.

In agreement with our findings, Gibb and Lees reported in 1991

a case that presented with juvenile-onset parkinsonism and dys-

tonia with good response to levodopa (commenced at the age of

30) and occurrence of disabling dyskinesias after 1 year of

GCH1 mutations in Parkinson’s disease Brain 2014: 137; 2480–2492 | 2487
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treatment. The patient died at 39 years and pathological examin-

ation showed a striking combination of low melanin content in

nigral neurons and devastating neuronal loss with reactive gliosis.

Furthermore, Lewy bodies were found in surviving nigral cells and

in the locus coeruleus (Gibb et al., 1991). This case was subse-

quently demonstrated to be carrier of a heterozygous mutation in

GCH1 (c.276delC) (Segawa et al., 2004).

Whole-exome sequencing study
We subsequently showed, in a large cohort of patients with

Parkinson’s disease without family history of DOPA-responsive

dystonia, that rare GCH1 coding variants are associated with

Parkinson’s disease and increase the disease risk by 7-fold on

average.

Among the GCH1 variants identified by exome sequencing, two

(Q110X and K224R) have been shown to cause GCH1 deficiency

and DOPA-responsive dystonia in dominant pedigrees (Leuzzi

et al., 2002; Saunders-Pullman et al., 2004) and two (V204I

and M230I) have been reported in heterozygous sporadic or in

recessive cases with DOPA-responsive dystonia (Segawa et al.,

2004; Trender-Gerhard et al., 2009; Opladen et al., 2011).

It was not possible to functionally investigate (e.g. phenylalan-

ine-loading test or CSF analysis) the other heterozygous variants

identified in this study, therefore their effect on GCH1 activity

remains undetermined. However, three of the four novel variants

(A120S, D134G and G217V) detected in cases with Parkinson’s

disease were located at amino acid positions that are fully con-

served through species down to invertebrates and were predicted

to be pathogenic by all in silico prediction tools, whereas this was

not the case for any of the novel mutations present in controls.

Nevertheless, the limitations of prediction tools in reliably distin-

guishing benign from pathogenic missense changes are well

known and therefore we did not exclude any variant from the

association test based on predictions scores, possibly underestimat-

ing the effect size of GCH1 pathogenic variants.

Previous studies investigating the contribution of rare coding

GCH1 variants in small cohorts of cases with Parkinson’s disease

have reported negative results although these were insufficiently

powered to draw conclusions (Bandmann et al., 1996a; Hertz

et al., 2006; Cobb et al., 2009). An as-yet unpublished meta-

analysis of existing genome-wide association study data has, how-

ever, identified GCH1 as a common low-risk locus (Singleton, per-

sonal communication), consistent with the hypothesis of a causal

role for GCH1 in Parkinson’s disease.

The mechanism whereby GCH1 mutations could predispose to

nigral cell degeneration is uncertain. Biochemical evidence of

GCH1 deficiency and reduced dopamine production has been re-

ported in asymptomatic carriers of GCH1 mutations (Takahashi

et al., 1994; Furukawa et al., 2002). We speculate that GCH1

deficiency and the consequent chronic dopamine deficiency

could directly predispose to nigral cell death. This would suggest

that normal levels of dopamine exert a protective role on the

survival of nigral neurons. There is increasing evidence that levo-

dopa is not toxic to nigral neurons as was previously thought

(Parkkinen et al., 2011). Furthermore, activation of dopamine re-

ceptors may have a strong anti-apoptotic effect and increase

survival of dopaminergic neurons (Nair et al., 2003; Vaarmann

et al., 2013). In animal models, levodopa has been shown to

promote recovery of nigrostriatal denervation (Datla et al., 2001).

Another possibility is that GCH1 mutation carriers who do not

develop symptoms of DOPA-responsive dystonia in childhood may

have compensatory mechanisms that allow for normal nigrostriatal

dopaminergic transmission. The maintenance of these mechanisms

may increase nigral cell vulnerability to ageing or other environ-

mental and genetic factors, favouring degeneration.

It is also possible that the reduced striatal basal dopamine levels

found in GCH1 mutation carriers may simply lower the threshold

of nigral cell loss before parkinsonian symptoms are exhibited.

Lastly, we cannot exclude that other yet unrecognized cellular

pathways, not related to dopamine synthesis, may be disrupted

by GCH1 and BH4 deficiency. However, the observation that no

DOPA-responsive dystonia cases, treated with levodopa since

childhood, have been shown to develop nigral cell loss (Snow

et al., 1993; Turjanski et al., 1993; Jeon et al., 1998), supports

the notion that levodopa may indeed have a role in reducing the

risk of degeneration.

Limitations of the study
First, dopamine transporter imaging was not available for the cases

with Parkinson’s disease with GCH1 variants identified in the

exome sequencing study. It remains a possibility therefore that

some of these cases (in particular Case 9, who presented at age

17, with lower limb dystonia and parkinsonism) may represent

DOPA-responsive dystonia cases with a parkinsonian phenotype,

which may have been misdiagnosed as Parkinson’s disease.

However, removal of the aforementioned case from the statistical

analysis did not change substantially the significance of the associ-

ation (P = 0.0003). Furthermore, most of the patients for whom

clinical follow-up data were available showed a progressive disease

course with increasing levodopa requirements, emergence of motor

complications due to chronic treatment with levodopa and presence

of classic non-motor features of Parkinson’s disease, strongly sup-

porting nigrostriatal cell loss as the underlying pathology.

Although dyskinesias have been rarely described also in DOPA-

responsive dystonia cases, these are significantly different from the

ones generally observed in Parkinson’s disease. Indeed they tend

to appear at the beginning of the treatment and subside after

dose reduction without reoccurring with subsequent slow dose

increase (Furukawa et al., 2004; Lee et al., 2013). Second, we

could not determine at the individual level the effect on pterin and

dopamine metabolism of the GCH1 variants detected in the

exome sequencing study. Reduced penetrance of GCH1 patho-

genic variants for the DOPA-responsive dystonia phenotype is a

well-established feature. Nevertheless it has been repeatedly re-

ported, through analysis of brain tissue (Furukawa et al., 2002),

CSF (Takahashi et al., 1994) and urine (Leuzzi et al., 2013), that

even completely asymptomatic carriers of GCH1 mutations have

abnormal metabolism of biopterins and dopamine, although to a

lesser extent than DOPA-responsive dystonia cases. This indicates

the existence of a metabolic endophenotype, which we speculate

could be the pathogenic mechanism underlying the increased risk

for Parkinson’s disease.
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Third, we evaluated a cohort enriched with early-onset and fa-

milial Parkinson’s disease cases. Thus the frequency of detected

GCH1 variants may not reflect the frequency in late-onset spor-

adic cases. Finally, we did not assess our samples for the presence

of GCH1 copy number variants, possibly underestimating the fre-

quency of GCH1 mutations.

Conclusion
We provide evidence that rare GCH1 coding variants should be

considered as a risk factor for Parkinson’s disease. This is derived

both from imaging evidence of striatal dopaminergic denervation

in GCH1 pathogenic variant carriers with a clinical diagnosis of

definite Parkinson’s disease (in DOPA-responsive dystonia pedi-

grees) and from exome sequencing data that show a significant

association between GCH1 coding variants and an increased risk

for the disease.

These findings expand the clinical and biological relevance of

GCH1 deficiency, suggesting a role not only in biochemical dopa-

mine depletion and DOPA-responsive dystonia, but also in nigros-

triatal degeneration. The question as to how the same variants

known to cause a Mendelian disease may also exist as risk alleles

in Parkinson’s disease may be explained by the well-known

reduced penetrance of GCH1 pathogenic variants. Whether add-

itional genetic or epigenetic factors play a role in determining the

clinical phenotype of GCH1 variant carriers should be addressed

by future studies. A better understanding of the relationship

between GCH1 deficiency and Parkinson’s disease will shed light

on the role of dopamine metabolism on nigral neuron survival,

with potential therapeutic implications for patients.
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