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Abstract: In recent years three-dimensional (3D) super-resolution fluo-
rescence imaging by single-molecule localization (localization microscopy)
has gained considerable interest because of its simple implementation and
high optical resolution. Astigmatic and biplane imaging are experimentally
simple methods to engineer a 3D-specific point spread function (PSF), but
existing evaluation methods have proven problematic in practical applica-
tion. Here we introduce the use of cubic B-splines to model the relationship
of axial position and PSF width in the above mentioned approaches and
compare the performance with existing methods. We show that cubic
B-splines are the first method that can combine precision, accuracy and
simplicity.
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1. Introduction

Since the introduction of localization microscopy methods such as photoactivated local-
ization microscopy (PALM) [1, 2], fluorescence photoactivation localization microscopy
(FPALM) [3], stochastic optical reconstruction microscopy (STORM) [4,5] and direct STORM
(dSTORM) [6, 7], several techniques have been developed to enable precise 3D localization of
single emitters. Most commonly, 3D information is obtained by imaging the lateral plane and
inferring the axial coordinate from the lateral width of the point spread function (PSF). Unfor-
tunately, the natural PSF of a wide-field microscope yields little axial information due to two
reasons: It is axially symmetric, and the PSF is insensitive to axial changes close to the focus.
For both reasons, the PSF has to be modified to contain axial information. With a modified PSF,
resolutions of 15–20 nm laterally and 40–80 nm axially are achieved [8,9] (values expressed as
full width at half maximum (FWHM)). Using interferometric PALM, axial resolutions of the
order of 1–10 nm can be achieved, even though with restrictions to smaller axial ranges [10,11].

Three methods have been used to engineer the PSF to be more responsive to axial variations:
Lobe splitting, biplane imaging and astigmatic imaging. For lobe splitting approaches like the
double-helix PSF [12] and phase ramp imaging localization microscopy (PRILM) [13], a PSF
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is split into two lobes whose relative position encodes the axial position. This method, however,
is limited to very sparse signals because the algorithms used require well separated emitters for
accurate 3D localization.

For the biplane approach [9], the emission beam is split equally and projected onto two
cameras or two distinct areas of one camera chip. The focal planes in each path are calibrated
to be a few hundred nanometers apart, and recorded simultaneously. In this way, two sections
of the PSF with known axial offsets are provided. The second plane both breaks the symmetry
of the PSF and ensures that at least one of the planes images an unfocused signal.

The astigmatic approach [8,14] inserts a cylindrical lens into the optical detection path, which
leads to slightly different focal planes in the x and y directions resulting in elliptically shaped
PSFs whose ellipticity changes with respect to z.

Biplane and astigmatic 3D imaging have the distinct advantage over other PSF engineer-
ing approaches, that the Gaussian approximation to the PSF (Eq. (1)) holds for a considerable
axial range. Existing 2D evaluation programs and their extensive theory [15–18] can be used.
If the Gaussian approximation is dropped, model-free approaches [13, 19] with considerable
computational cost and complexity must be used. For single-molecule localization of organic
fluorophores, the Gaussian approximation has been used with good results in 3D [8]. Com-
putationally, biplane 3D and astigmatic 3D are very similar, because in biplane 3D the width
of the two round spots in both planes takes the role of the two widths of the elliptical spot
in astigmatic 3D. The PSF width of astigmatic data tends to be harder to model because of
the additional lens. Therefore, we investigate only astigmatic 3D in this article, but expect all
conclusions to be applicable also to biplane 3D.
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Using the Gaussian approximation, the lateral PSF widths σx and σy encode the axial position
z. We know of three algorithms to decode z: Sigma-difference look-up, quadratic approximation
and quartic approximation. Henriques et al. [20] estimated σx and σy from a calibration data set
with known axial positions, and created a lookup table for z indexed by σx−σy. The z position
of an unknown fluorophore was determined by fitting its PSF with a Gaussian with free widths,
and then looking up the observed σx−σy in the table.

Holtzer et al. [21] used a physically derived model, assuming that the PSF broadening is
parabolic. Equation (2) resembles this model, with σ0,(x,y) giving the standard deviation of the
PSF in the planes of sharpest x and y, z0,(x,y) giving the focal point for each plane, and a(x,y)
being an optics-dependent parameter. The expressions for σx and σy can be inserted into the
PSF, and the z position becomes a regular parameter of G and can be fitted like the other
parameters.

In practice, the quadratic model does not fit well to typical data and thus Huang et al. [8]
extended the model with terms up to the fourth order, arguing that those are needed to account
for the imperfection of optics (Eq. (3)). ∆σi,(x,y) represents the effective focus depth for the
polynomial term (cf. [22]). Since the parabolic model is a special case of the quartic model
with ∆σi,(x,y) = ∞ for all i 6= 2, we refer to both models as the polynomial model.
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From a computational point of view, all three approaches attempt an approximation of the
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functional relationship between z and σx,y from noisy calibration data. The sigma-difference
method only partially achieves that goal, because it models σx−σy instead of the individual
σ components and cannot be used to replace the σ terms in the PSF with functions of z. This
forces the researcher to fit σx and σy individually and afterwards apply the sigma-difference
algorithm. The additional and unphysical degree of freedom in the model has been shown in
2D to cause a loss in precision [23]. The quadratic and quartic methods, on the other hand,
use polynomial functions for the approximation, which are bad approximators because all their
parameters are global. Small errors in the calibration data perturb the entire approximated func-
tion. Such errors are common at the limit of the calibration interval, where the PSF is smeared
out over many pixels and measurements of σ are highly uncertain.

Cubic basis splines [24] (cubic B-splines) are a well-established approximation technique.
It avoids these problems and is computationally simpler than polynomial fitting. In this article,
we use our rapid, accurate program implementing direct stochastic optical reconstruction mi-
croscopy (rapidSTORM) [25] software to evaluate and compare the fitting performances of the
above mentioned techniques and will show that the evaluation with cubic B-splines performs
equally well or better concerning localization precision.

2. Methods and instrumentation

2.1. Optical setup

Fig. 1. Schematic view of the microscope setups used in our experiments. The laser is
focused on the back focal plane of a high NA objective to achieve epi-fluorescence illumi-
nation. The fluorescence signal passes the 45◦ dichroic, is imaged on the EMCCD camera
by lenses L1 and L2 (setup 1) or directly imaged on a sCMOS camera (setup 2). The PSF
is shaped by a cylindrical lens (CL).

The presented data was acquired on two similar setups which are schematically depicted
in Fig. 1. For setup 1, the laser light of a CUBE 640 nm 100 mW (Coherent, USA) enters
the IX71 (Olympus, Japan) inverted microscope via the back entrance and is reflected by a
quad band dichroic mirror (FF410-504-582-669-Di01, Semrock, USA) to a 60× NA = 1.45
oil-immersion objective (PLAPON 60XOTIRFM, Olympus, Japan). It is thereby focused by a
two-lens-system on the back focal plane of the objective in order to obtain wide-field illumi-
nation. The fluorescence signal passes the dichroic mirror and is imaged by lenses L1 (f = 80
mm, Qioptic, USA) and L2 (f = 200 mm, Qioptic, USA) on an EMCCD (DU-897 (16 µm p.
pixel), Andor, UK) with mounted fluorescence emission filter (ET700/75, Chroma, USA). A
cylindrical lens CL with focal length f = 10 m (SCX-25.4-5000.0-C, CVI Melles Griot, USA)
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is placed in a section of the detection path where fluorescence light is parallel and causes dis-
tinct focal planes for x- and y-direction (FPx and FPy). We chose the long focal length to best
fit to the other components of the optical system.

Setup 2 is built around a Zeiss Axio Observer.D1 (Carl Zeiss Microscopy, Germany)
equipped with a 63× NA = 1.15 water-immersion objective (LD C-Apochromat 63x/1.15 W
Corr M27, Carl Zeiss Microscopy, Germany). Since the detection consists of a sCMOS cam-
era (Neo 5.5 (6.5 µm p. pixel), Andor , UK) with smaller pixels than on an EMCCD chip, no
further magnification is needed in order to obtain a final pixel-size of about 100 nm/px and the
fluorescence is directly imaged by the tube-lens onto the chip. A f = 100 mm cylindrical lens
(LJ1567RM-A, Thorlabs, USA), placed ∼25 mm in front of the camera front plate, introduces
astigmatism (cf. [19]). In this position the fluorescence light is convergent and the amount of
astigmatic distortion can be tuned by the distance between the lens and the (undistorted) focal
plane.

2.2. Theoretical background for cubic B-spline evaluation
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Fig. 2. Construction of a cubic B-spline. The black crosses represent data points that are to
be interpolated. The rainbow-colored functions at the bottom of the diagram are unscaled
instances of the cubic B-spline basis functions si,4(x) (i = 0,1, . . . ,11) with the n = 9 knots
indicated by black circles. Evaluation of Eq. (6) leads to amplitude factors for each basis
function, and their sum is the interpolation represented by the red curve.

Cubic B-splines are computed by dividing the data into segments between knots (black cir-
cles in Fig. 2) and recursively constructing a basis function over each segment [24]. Each basis
function si covers four intervals. The cubic B-spline S is the weighted sum of all basis functions
si with weights ci (Eq. (4)). Rewriting the basis functions in matrix form (Eq. (5)) with its trans-
posed XT and inverse X−1, a least-squares fit (Eq. (6)) extracts the weights from the calibration
data set of measured width σi at known z positions zi. For a more detailed description, please
refer to the rapidSTORM manual [22].
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S(z) = ∑
i

si(z)ci (4)

X ji = si(z j) (5)

~c =
(
XT ·X

)−1 ·XT ·~σ (6)

2.3. Measurement procedure

In order to record a reference sample we used an objective z piezo scanner (PIfoc, Physik Instru-
mente, Germany) and 100 nm TetraSpeck fluorescent microspheres (T-7279, life technologies,
USA) sparsely dispersed either on a cover slip or in a hydrogel-layer with a refractive index
of about 1.34 (Matrigel, BD Biosciences, USA). The setup was chosen to closely match the
calibration sample to later experiments, i.e., having the specimen close to the cover slip or
in aqueous environment. Measurements using oil immersion far away from the cover slip are
prone to aberrations. Thus for deep volume imaging the use of water immersion is advantageous
and we consider these two configurations the most reasonable. The specimen is scanned over
several micrometers by applying a triangular voltage to the piezo. The fluorescence is imaged
by an EMCCD or sCMOS camera.

With the measured data we computed a ground truth z position for each frame by choosing
z0 = 0 so that σx(z0) = σy(z0) and computing the true z position for further frames from the
piezo parameters. The calibration bead’s image was localized in each frame with the standard
rapidSTORM fitting procedure [23], i.e., fitting a Gaussian PSF model with free PSF width
parameters to the data using Levenberg-Marquardt least squares fitting. We used rapidSTORM
version 3.3.

The fitting procedure yields z, σx and σy values for each bead image. The points make up
two data sets, one with σx as a function of z and one with σy as a function of z. We then used
different functional approximations of the data points to gain smooth, continuous functions
describing the data points. In the following, we will refer to the set of fitted pairs of z to σx and
σy as “sigma plot”, and to its functional approximation as “sigma curve”.

2.3.1. Polynomial method

For the polynomial method, we cut an axial region that could be approximated with a sigma
curve with positive curvature, and removed inconsistent points, i.e., outliers that obviously do
not resemble the true PSF. Since Eq. (3) can be expanded to a polynomial of fourth order, we
used linear least-squares fitting of the squared PSF widths to determine its coefficients. The
linear least-squares fit gives five parameters bi for a normalized polynomial around the arbi-
trarily chosen origin of the z coordinates. We determined the parameter z0 first by determining
the global minimum of the fitted polynomial via the roots of the derivative. Afterwards, we
subtracted z0 from all z coordinates, fitted a normalized polynomial again, and used simple pa-

rameter matching and algebra to compute ∆σi = b
− 1

i
i and σ0 = b0. Since we chose the global

minimum for z0, the linear term b1 was always 0.
If the sigma plot and sigma curve were obviously deviating, we varied the choice of the axial

region. The fitted parameter values were used as input parameters to rapidSTORM’s polynomial
PSF model.

2.3.2. Nelder-Mead optimization of the polynomial parameters

For optimizing the result of the polynomial method with Nelder-Mead optimization, we
used the GNU Scientific Library [26] implementation of the Nelder-Mead simplex method
[27]. The objective function was the squared distance between the piezo-determined and the
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rapidSTORM-fitted z coordinates for all beads in a 1.5 µm wide axial section centered on the
equifocal z coordinate. We chose the initial simplex size relative to the obtained parameter
values, with a factor between 10% and 50%.

When the objective function failed to improve, or we were unsatisfied with the obtained
accuracy, we varied the simplex size factor or recombined the parameters gained from differ-
ent runs. When this also failed, we used the polynomial method on smaller axial regions and
used them as inputs for the Nelder-Mead optimization on larger regions. Finally, we chose the
parameter set with the best value for the objective function.

2.3.3. Sigma-difference method

We applied the sigma difference method [20] by computing σx−σy. We smoothed the points in
the sigma plot with a Gaussian low-pass filter of 50 nm width. Then, we cut out the axial section
around the equifocal point where the values were monotonous. Afterwards, we looked up the
nearest value of σx−σy in the smoothed sigma plot for every point in the unsmoothed sigma
plot, with linear interpolation, and used the smoothed point’s z coordinate as the localized z
coordinate.

2.3.4. Cubic B-spline method

For the cubic B-spline method, we cut out a suitable axial region as described for the polyno-
mial model. We interpolated the PSF widths with a cubic basis spline with ten knots using the
GNU Scientific Library implementation [26] instead of a polynomial model. We stored the knot
coordinates (z and σ ) in a data file. When fitting unknown data, we recovered the spline from
the data file using a rapidSTORM-internal implementation of splines following McKinley and
Levine [28]. Since a cubic B-spline is a smooth analytic function, we substituted σx and σy in
the PSF by the spline functions and used the z coordinate as a PSF input parameter.

2.4. Comparison with the Nikon N-STORM

Nikon offers 3D super-resolution imaging with their N-STORM setup using a built in auto-
calibration routine (NIS-Elements 4.10 software with N-STORM plugin). The main optical
components are an EMCCD (DU-897 (16 µm p. pixel), Andor, UK) and a 100× NA = 1.49 oil-
immersion objective (Apo TIRF 100X 1.49 Oil, Nikon, Japan). We were interested in the perfor-
mance of that black-box routine, which supposedly follows the polynomial method, and wanted
to compare it with rapidSTORM. Therefore we took calibration data with the N-STORM, ran
the autocalibration and also fed the data to the cubic B-spline-algorithm. In order to rearrange
the N-STORM data to a format that rapidSTORM can interpret, we used the custom software
“N-Storm to RapidStorm converter v. 0.4”, kindly provided by S. Malkusch. Again we com-
puted the offset between known and fitted z position. We assumed that the N-STORM routine
first takes twenty one frames at the initial plane, then jumps to z = −800 nm, and performs
a z ramp with 10 nm / frame up to z = +800 nm. Finally, the piezo jumps back to the initial
position for another twenty frames.

2.5. Quantifying computational robustness

The computational robustness measures the likelihood of erroneous application of a 3D method.
Since the computational robustness is not absolutely quantifiable, we ranked the critical steps,
i.e., steps with error sources, of all methods and took the sum of the ranks as a complexity
score.

All employed methods start their calibration with a sigma sample, i.e., a calibration data set
that gives σx and σy for known z positions. We therefore ignore the common critical steps in
the procedure that obtains the sigma sample.
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3. Results

3.1. Axial localization performance

Cubic B-splines accurately model z-σ relationships for both water- and oil-immersed objec-
tives (Fig. 3). Real measurements, especially on oil objectives with TetraSpecks near the phase
boundary, commonly show asymmetric and irregular behavior that is hard to model with poly-
nomial models. We found that computing cubic B-splines on different axial ranges resulted in
very similar splines, while variations of the z-range could radically impact polynomial param-
eters.

The axial re-localization performance of the different width determination methods for the
Gaussian PSF is shown in Fig. 4. The less bright Sample 2 showed photon counts comparable
to single switching events of organic fluorophores. It has an overall lower localization precision
due to a poor signal-to-noise ratio. The apparent higher variation in precision and accuracy is
due to a lower axial sampling density, i.e., fewer localizations are averaged for each interval.

The polynomial method shows high precision, i.e., a low axial FWHM of the localization
distribution, and overall reasonable accuracy, i.e., a close agreement of the true and the aver-

 400

 600

 800

 1000

 1200

 1400

-900 -450  0  450  900

PS
F 

FW
H

M
 [n

m
]

z position [nm]

(a)

Sigma plot in x
Sigma plot in y
Polynomial fit

Cubic B-spline

-900 -450  0  450  900

z position [nm]

(b)

Fig. 3. Typical sigma plots as obtained with (a) oil-immersion objectives or (b) water-
immersion objectives. (a) shows localizations of a single TetraSpeck, and (b) shows a su-
perposition of 27 TetraSpecks. Sample 1 and 2 in Fig. 4 were evaluated with the splines
shown in (a) and (b), respectively. Note the strong axial asymmetry in (a), which originates
from the different diffractive indices of oil and water at the glass-specimen-interface. Both
samples show the typical oscillation behavior of the polynomial fits around the better-fitting
cubic B-splines.
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Sample 1 Sample 2
Method RMSD R(1) RMSD R(1)
Standard Polynomial q 32.6 0.30 35.6 0.48
Optimized Polynomial q 30.5 0.18 34.8 0.44
Sigma-difference q 38.1 0.03 42.0 0.65
Cubic B-spline q 25.8 0.09 29.7 0.25

Fig. 4. Axial localization performance. The figure shows data for two samples. The PSF
snapshots (top of figure) were taken from the data presented and correspond to the z-
position indicated on the abscissa. Sample 1 is a bright microsphere imaged with oil im-
mersion, and Sample 2 is an emitter with fluorophore-like photon yield in water immersion.
In Sample 1, the same bead was used for calibration and testing. In Sample 2, one bead was
calibrated, and a different bead from the same acquisition tested. In each subplot, the fitted
z position was plotted against the z ground-truth extracted from the piezo movement, and
data within 100 nm intervals was averaged. The table shows the root mean square deviation
(RMSD) of points and ground truth, and the autocorrelation of the deviation at a lag time
of one frame (R(1)). Highly autocorrelated deviations indicate systematic errors, i.e., a low
accuracy.
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age measured z position. However, we found the calibration process for Sample 1 to be highly
fragile. Initially, we chose to include an additional 100 nm of data points on the left, steeper
slope. The inclusion triggered strong oscillations in the fitted polynomial and prevented accu-
rate localization. While the oscillations are counterintuitive for a functional approximation of a
smooth curve, they are a known shortcoming of polynomial approximations [24].

The fit accuracy was improved slightly by optimizing the polynomial model parameters with
the Nelder-Mead algorithm. However, computing time on the scale of hours was consumed due
to the repetitive re-fitting of the whole calibration stack with slightly modified parameter values,
and several manual interventions were necessary. We suspect that the complex z-σ relationship
of Sample 1 can not be accurately represented by a polynomial.

The sigma-difference method reached considerably better accuracy. At the same time, pre-
cision suffers noticeably because of the overparameterization of the fit problem with two free
parameters (σx and σy) for one physical degree of freedom (z). This overparameterization is
known to cause lateral localization imprecision [23] and we reason that the same effect applies
to axial localization.

The cubic B-spline approach combines both the precision of the polynomial model and the
accuracy of the sigma-difference lookup table. In our view, the precision stems from the explicit
modeling of the z coordinate in the PSF model, like in the polynomial model. The accuracy is
due to the model-free description of the z-σ relationship, like in the sigma-difference method.
Furthermore, the cubic B-spline routine proves to be easy and robust in use. Therefore, it is
ideally suited also for non-experts with relatively little knowledge about 3D fitting.

3.2. Complexity

Figure 5 shows the complexity sources we identified in the 3D inference methods. Since a
high complexity precludes the practical application of a method in the lab, complexity is a fun-
damental benchmark. As discussed before, choosing the fit range for the polynomial method
proved surprisingly critical, and too large and too small choices of the axial fit region were
within 200 nm. We reason that because all polynomial parameters are influenced by all points
in the fit region, too large fit regions put undue weight on the unreliable points far away from the
focus. On oil objectives, we saw asymmetric z-σ relationships, and we had to choose asymmet-
ric fit regions. The polynomial method often failed to fit the steeper side, most likely because
more points were available on the gentler slope. For too small fit regions, the higher-order terms
showed very high uncertainties, and extrapolation behavior was poor.

3.3. Comparison with a commercially available setup

For better classification of our results we performed 3D localization experiments on a Nikon
N-STORM system, a commercially available 3D localization microscope. We have no a priori
knowledge about the software algorithms used for 3D localization and wanted to assess the
performance of this out-of-the-box setup compared to the rapidSTORM cubic B-spline inter-
polation. We were especially interested in whether our routine proves to be an easy to use and
robust method to check the output of Nikon’s highly automated approach.

In order to resemble realistic conditions, we did not try to tweak the calibration data acqui-
sition and only took a not too dense region of TetraSpeck fluorescent microspheres deposited
on a cover slip. We did not account actively for drift and did not apply filters for multi-bead
conglomerates as for comparability we must assume that those were as well not filtered and
accounted for by the N-STORM algorithm.

As depicted in Fig. 6, the z-localizations resulting from a rapidSTORM re-localization job
as used throughout this work show a nice plateau around the focal plane. In this axial range
of about 1 µm, the cubic B-spline accurately found the correct positions, while NIS-Elements,
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Method Parameter Reasoning Score
Nelder-Mead Initial simplex No heuristic, manual intervention

needed, long feedback time
5

Polynomial Fit region Too large and too small fit region
can be within +- 200 nm

4

cubic B-spline Fit region Accidentally included bad points
have only local influence

1

cubic B-spline Number of knots 1 knot per 150 nm worked for all
our measurements

1

Sigma-difference Smoothing factor Factor depends on rate of σ change
and method is robust to errors
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Fig. 5. Comparison of complexity and axial localization error for the 3D inference meth-
ods. The complexity is given comparatively in arbitrary units, determined from a difficulty
ranking of the steps in each procedure. We judged user-visible complexity as steps that have
a high likelihood of error or require manual intervention. The values were chosen on a rela-
tive scale according to our experience with the methods’ application during the preparation
of this article. The axial localization error, given as the RMSD of localizations from the z
ground truth, characterizes the precision achievable with the method. The cubic B-spline
method combines the good precision of the polynomial method with the simpleness of the
sigma difference calibration.
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Fig. 6. Difference between the fitted z-coordinate and the known z-position of the objective-
piezo. The calibration measurement was obtained with a Nikon N-STORM and calibrated
according to the Nikon routine (red squares). For comparison, we calibrated the same meas-
urement with the fit algorithm of rapidSTORM and cubic B-spline interpolation (gray dots).
For both evaluations, the standard deviation is indicated by the respective red and gray re-
gions. We suppose, that the data acquisition was corrupted by sample drift and multi-bead
conglomerates. Thus we assume that the mean real zero-plane is around z = -50 nm (solid
black line, coined “apparent zero” in the plot).

despite showing a small plateau around z = 0 nm, seems to be failing to find the correct coor-
dinates. The localization precision obtained by rapidSTORM appears also slightly higher than
that of the Nikon software.

We reason that indeed our method is able to compete with commercially available algo-
rithms and, more importantly, is capable of helping the user to assess the calibration. Using
rapidSTORM’s open-source cubic B-spline calibration, experimentalists can now evaluate the
performance of their setup prior to running a real experiment.

4. Conclusion

We have described and tested a cubic B-spline approach for determining the relationship be-
tween the axial emitter position and the PSF width in the Gaussian PSF model. The cubic
B-spline approach achieved both high precision and high accuracy by combining the strengths
of two approaches: It incorporates the axial emitter position as a true fit parameter, like the
highly precise polynomial width model [8, 21], and does not require an a priori model of
the widths, like the highly accurate sigma-difference algorithm used in QuickPALM [20].
Calibration for the cubic B-spline algorithm is trivial and well-understood, and a free and
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open reference implementation is available with the rapidSTORM software on our website
at http://super-resolution.de.
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