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Traumatic brain injury (TBI) is a major cause of mortality and morbidity worldwide.
Despite improvements in acute intensive care, there are currently no specific therapies
to ameliorate the effects of TBI. Successful therapeutic strategies for TBI should target
multiple pathophysiologic mechanisms that occur at different stages of brain injury. The
kallikrein–kinin system is a promising therapeutic target for TBI as it mediates key
pathologic events of traumatic brain damage, such as edema formation, inflammation,
and thrombosis. Selective and specific kinin receptor antagonists and inhibitors of plasma
kallikrein and coagulation factor XII have been developed, and have already shown
therapeutic efficacy in animal models of stroke and TBI. However, conflicting preclinical
evaluation, as well as limited and inconclusive data from clinical trials in TBI, suggests that
caution should be taken before transferring observations made in animals to humans. This
review summarizes current evidence on the pathologic significance of the kallikrein–kinin
system during TBI in animal models and, where available, the experimental findings are
compared with human data.
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INTRODUCTION
Traumatic brain injury (TBI) accounts for one-third of all injury-
related deaths. An estimated 1.74 million TBIs occur annually
in the United States (Faul et al., 2010; Ma et al., 2014). About
43% of people discharged with TBI after acute hospitalization,
develop TBI-related long-term disability. Moreover, individuals
with a history of TBI are more likely to receive welfare or disability
payments and to develop neurologic disorders that are disabling
in their own right (Ma et al., 2014)— for example, Alzheimer’s
disease (Fleminger et al., 2003). The incidence of TBI is partic-
ularly high in younger age groups, with motor vehicle accidents
being the leading cause (Asemota et al., 2013). The direct costs
of TBI have been estimated at $13.1 billion per year (in 2013)
in the United States (Ma et al., 2014); additionally, $64.7 billion
per year are lost through missed work and lost productivity, and
total medical costs range from $63.4 to $79.1 billion per year (Ma
et al., 2014). The significant economic impact of TBI is at variance
with the lack of therapies available to ameliorate the effects
of TBI.

To better understand the pathobiology of TBI and to evaluate
potential therapeutic approaches, various animal models have
been developed to mimic certain components of clinical TBI.
Closed-head weight-drop models—with a weight that falls onto
the exposed skull—probably mimic most closely clinical TBI
cases. Depending on the experimental settings, the impact of the
weight results in largely focal or diffuse brain injury. In controlled
cortical impact models an impact onto the dura, inflicted by
a pneumatic pistol, predominantly results in focal brain injury.
For fluid percussion models it is inconsistently reported to what
extend the brain injury is diffuse or focal. Here, tissue damage

is induced by a fluid pulse onto the intact dura through a
craniotomy. A solely focal brain injury can be achieved by cold
lesion models, which commonly utilize a cold rod that is exposed
to the dura or skull (for a comprehensive review, see Albert-
Weissenberger and Sirén, 2010). Despite promising results from
these experimental TBI models, more than 30 phase III trials
of TBI in humans have failed to generate favorable results in
terms of developing potential therapeutic strategies (Doppenberg
et al., 2004; Maas et al., 2010). In part, these failures likely
reflect the heterogeneity of TBI (e.g., severity and location of
the injury—focal vs. diffuse injury). Therefore, future therapeutic
approaches are more likely to succeed if they target diverse patho-
physiologic mechanisms. As the kallikrein–kinin system links
edema formation, inflammation, and thrombosis (Costa-Neto
et al., 2008; Langhauser et al., 2012), it seems to be a promising
target.

In this review, current available evidence on the pathologic
significance of the kallikrein–kinin system during TBI is sum-
marized. Findings from experimental models are compared with
human data, where available.

THE KALLIKREIN–KININ SYSTEM
Kinins play key roles in regulating vascular permeability and
inflammatory processes following tissue injury (Leeb-Lundberg
et al., 2005). They are released either by the tissue or the plasma.
In the tissue, kallikrein is activated by proteases and it releases
a kinin called kallidin from the inactive precursors, the kinino-
gens. Plasma kallikrein is released from prekallikrein by activated
factor XII (FXII) and reciprocally activates FXII (Revak et al.,
1978). Subsequently, plasma kallikrein releases bradykinin from
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FIGURE 1 | The plasma kallikrein–kinin system is linked to thrombosis, fibrinolysis, and the renin–angiotensin system. Abbreviations: AT, angiotensin;
B1R, kinin receptor B1; B2R, kinin receptor B2; FXII, factor XII; FXIIa, activated factor XII.

the kininogens. Kallidin and bradykinin mediate their effects via
kinin receptor B2. Both kallidin and bradykinin are converted by
the action of kininase I-type carboxypeptidases into des-Arg9-
bradykinin and des-Arg10-kallidin, respectively, which specifi-
cally bind to kinin receptor B1 (Figure 1).

Interestingly, the plasma kallikrein–kinin system is linked to
thrombosis, fibrinolysis, and the renin–angiotensin system: FXII
has an essential role in thrombosis (Renné et al., 2012), and mice
selectively depleted of plasma kallikrein or FXII are protected
from pathogenic thrombus formation without increased risk of
bleeding (Revenko et al., 2011). Plasma kallikrein (and, to a lesser
extent, activated FXII) converts plasminogen to plasmin, linking
the kallikrein–kinin system to fibrinolysis (Colman, 1969). In
addition, bradykinin is mainly inactivated by kininase II (also
known as angiotensin converting enzyme (ACE)), an enzyme that
also degrades angiotensin I into angiotensin II (Bernstein et al.,
2011; Figure 1).

ROLE OF THE KININ RECEPTORS IN TRAUMATIC BRAIN
INJURY
All essential components of the kallikrein–kinin system are
present in the rodent and human brain (Kariya et al., 1985;
Kizuki et al., 1994; Ongali et al., 2003; Trabold et al., 2010).
Moreover, it has been reported that their expression is induced
after brain injury but the expression pattern varies depending on
the brain injury model used (Ongali et al., 2006; Raslan et al.,
2010; Trabold et al., 2010; Albert-Weissenberger et al., 2012). In
a controlled cortical impact model, bradykinin concentrations
in the brain were significantly increased at 2 h post-injury, and
then subsequently declined (Trabold et al., 2010). Kinin receptor
B1 transcripts peaked at 6 h post-injury and remained elevated
until day 2, whereas kinin receptor B2 was constitutively expressed
at lower levels (Trabold et al., 2010). In a cold lesion model, a
strong but transient mRNA expression of kinin receptor B1 was
observed in the first 12 h after injury, whereas the enhanced
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mRNA expression of kinin receptor B2 was more sustained,
lasting up to 48 h (Raslan et al., 2010). In our hand, a closed-head
weight-drop trauma in mice resulting in a mixed brain injury
pattern (focal and diffuse brain injury) caused a slight increase
of kinin receptor mRNA levels one week after injury induction
(Albert-Weissenberger et al., 2012).

Kinins mediate their physiologic effects via kinin receptors
B1 and B2. Support for a pathologic role of kinin receptors
in TBI was obtained through the use of genetically engineered
mice that lack either kinin receptor B1 or kinin receptor B2.
After controlled cortical impact, kinin receptor B2-deficient mice,
but not kinin receptor B1-deficient mice, had less brain edema,
smaller lesion volumes, and a better functional outcome as
compared with wild-type mice (Trabold et al., 2010). Another
study also reported that the kinin receptor B2 mediates detri-
mental effects after TBI in mice (Hellal et al., 2003). On the
contrary, findings from our group point out that kinin receptor
B1 plays an important role in the pathophysiology of TBI (Raslan
et al., 2010). Kinin receptor B1-deficient mice subjected to cold
lesion displayed smaller lesion volumes, less blood–brain barrier
disruption, and less inflammation in the injured brain area,
whereas kinin receptor B2-deficient mice were fully susceptible
to brain trauma. Supporting these results, application of the
kinin receptor B1-inhibitor R-715 reduced lesion size even in
a therapeutic setting (administered 1 h after injury induction),
whereas application of the kinin receptor B2-inhibitor Hoe140
(Icatibant) had no significant effect on lesion volume in wild-
type mice (Raslan et al., 2010). Importantly, application of the
kinin receptor B2-inhibitor Hoe140 in kinin receptor B1-deficient
mice had no additive benefit on the reduction in brain lesion
size. However, Hoe140 treatment has been shown to result in a
moderate reduction in brain lesion size after cold lesion in rats
and mice (by 19% and 14%, respectively) (Görlach et al., 2001).
We recently reported that kinin receptor B1 deficiency in mice is
associated with diminished functional deficits and a reduction in
axonal injury, astrogliosis, and neuronal apoptosis after a weight-
drop-induced brain trauma (Albert-Weissenberger et al., 2012).
Inhibition of kinin receptor B1 in wild-type mice by the specific
kinin receptor B1-blocker R-715, starting from 1 h after trauma,
confirmed these results. By contrast, deficiency of kinin receptor
B2 was ineffective in this trauma model (Albert-Weissenberger
et al., 2012).

Kinin receptor inhibitors, other than the kinin receptor B1-
inhibitor R-715 and the kinin receptor B2-inhibitor Hoe140, have
also been tested in experimental and clinical settings of TBI. Treat-
ment with the kinin receptor B2-antagonist LF 18-1505T resulted
in reduced brain edema and improved neurologic outcome in a
closed-head trauma model in rats (Ivashkova et al., 2006). In rats
subjected to closed-head trauma, a continuous infusion of the
nonpeptide kinin receptor B2-inhibitor LF 16-0687 (Anatibant),
from 1 h to 24 h after injury, resulted in diminished brain edema
formation on day 1 and less neurologic deficits on day 1, day
3, and day 7 (Pruneau et al., 1999). Administered as a single
dose 1 h after trauma, LF 16-0687 was able to reduce brain
swelling and to improve the recovery of neurologic function
following closed-head trauma in rats (Kaplanski et al., 2002).
Similar results were obtained after controlled cortical impact or

cold lesion (Schulz et al., 2000; Stover et al., 2000; Zweckberger
and Plesnila, 2009). It was suggested that stabilization of the
blood–brain barrier and mitigation of inflammatory processes
are the underlying mechanisms. However, it remains questionable
whether LF 16-0687 is effective within a clinically relevant time
window (Plesnila et al., 2001). LF 16-0687 was investigated in a
phase I clinical study (Marmarou et al., 2005) in patients with
severe TBI. In this trial, patients with TBI and Glasgow Coma
Scale <8 received LF 16-0687 as a single subcutaneous injection
within 8–12 h after TBI, and Marmarou et al. concluded that
LF 16-0687 provides a potential therapeutic approach to treating
cerebral edema following brain damage, as the compound was
well tolerated. A phase II trial using LF 16-0687 in TBI patients
with a Glasgow Coma Scale score of ≤12 was unable to recruit
a sufficient number of patients (Shakur et al., 2009). Moreover,
results from this trial were disappointing in that there was a
non-significant trend towards worse outcomes in the LF 16-0687
treatment group.

Bradycor (Deltibant, CP-0127), a peptide compound kinin
receptor B2-antagonist, was tested in a pilot, single-blinded clin-
ical pilot study in 20 patients with focal head injury. Results
indicated that CP-0127 treatment diminished the pathologic
rise of intracranial pressure (Narotam et al., 1998). A phase II
trial in severely brain injured patients reported a slight trend
towards a better outcome in the CP-0127 treatment group
(Marmarou et al., 1999). However, a Cochrane analysis concluded
that those clinical trials do not provide reliable evidence that
kinin receptor B2-antagonists are effective in improving outcome
after TBI (Ker and Blackhall, 2008). Reports on the clinical use
of kinin receptor B1-inhibitors in patients with TBI are not yet
available.

ROLE OF THE KALLIKREINS AND FACTOR XII IN TRAUMATIC
BRAIN INJURY
In 1978, it was reported that patients with severe trauma have
increased protease activity in the cerebrospinal fluid, the activity
of which could be inhibited by aprotinin treatment. In rabbits
subjected to cold injury, aprotinin treatment resulted in reduced
brain edema formation (Unterberg et al., 1986). Aprotinin is
known to inhibit several serine proteases, including plasma
kallikrein, and a reduced protease activity has been associated
with a lower mortality rate (Auer et al., 1979).

There are promising results from recent studies suggesting
a therapeutic potential for the serine protease inhibitor C1-
inhibitor. C1-inhibitor is an endogenous regulator with various
physiologic functions (Singer and Jones, 2011), including the
inhibition of activated FXII and plasma kallikrein. Application
of C1-inhibitor has proven to be beneficial in ischemic stroke
(Heydenreich et al., 2012). Similarly, in mice subjected to con-
trolled cortical impact, C1-inhibitor treatment at 10 min (Longhi
et al., 2008) or 1 h (Longhi et al., 2009) after injury resulted
in less pronounced functional deficits and smaller brain lesions
compared with control mice.

ROLE OF THE KININASE II IN TRAUMATIC BRAIN INJURY
Indirect support for a pathologic role of kinins in TBI was
obtained through inhibition of kininase II, an enzyme that
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hydrolyzes proteins such as bradykinin, substance P, and
angiotensin I. Inhibition of kininase II results in downregulation
of angiotensin II production. Moreover, it has been reported that
kininase II inhibition potentiates the physiologic effects of kinins
and all kinin-related peptides are subject to less hydrolyzation.
Using the kininase II inhibitor Captopril, Harford-Wright et al.
(2010) showed, in a diffuse TBI model, that inhibition of kininase
II results in increased “dark cell changes” and in exacerbated
motor function deficits. However, they did not consider the effects
of kininase II inhibition on the kallikrein–kinin system; instead,
the authors conclude that kininase II inhibitors worsen outcome
following TBI, presumably because they impair the degrada-
tion of substance P—as shown by the increase in substance P
immunoreactivity. However, the fact that bradykinin potentiates
the release of substance P should also be noted (for a review,
see Geppetti, 1993). Interestingly, a kininase II polymorphism in
humans influences the neuropsychologic subacute performance
of patients with moderate or severe TBI (Ariza et al., 2006).

PERSPECTIVE
There is accumulating evidence that the kallikrein–kinin system is
critically involved in various brain diseases (e.g., stroke, multiple
sclerosis, Alzheimer’s disease, epilepsy, depression) and its modu-
lation might be a promising strategy to combat these diseases. The
reported effects of specific components of the kallikrein–kinin
system, however, are often inconsistent.

The paucity of therapies for brain trauma has resulted in a
pressing clinical demand for new treatment options. The find-
ings summarized in this review indicate that modulation of the
components of the kallikrein–kinin system, which links edema
formation, inflammation, and thrombosis, might be a promising
strategy to combat TBI. Another tempting approach might be
inhibition of the starting point of the kallikrein–kinin system, e.g.,
by the C1-inhibitor.
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