
A Splicing Mutation in the Novel Mitochondrial Protein
DNAJC11 Causes Motor Neuron Pathology Associated
with Cristae Disorganization, and Lymphoid
Abnormalities in Mice
Fotis Ioakeimidis1,2, Christine Ott3, Vera Kozjak-Pavlovic3, Foteini Violitzi1,2, Vagelis Rinotas1,2,

Eleni Makrinou2, Elias Eliopoulos1, Costas Fasseas4, George Kollias2, Eleni Douni1,2*

1 Department of Biotechnology, Agricultural University of Athens, Athens, Greece, 2 Division of Immunology, Biomedical Sciences Research Center ‘‘Alexander Fleming’’,

Vari, Greece, 3 Department of Microbiology, Biocenter, University of Würzburg, Würzburg, Germany, 4 Department of Crop Science, Agricultural University of Athens,

Athens, Greece

Abstract

Mitochondrial structure and function is emerging as a major contributor to neuromuscular disease, highlighting the need
for the complete elucidation of the underlying molecular and pathophysiological mechanisms. Following a forward genetics
approach with N-ethyl-N-nitrosourea (ENU)-mediated random mutagenesis, we identified a novel mouse model of
autosomal recessive neuromuscular disease caused by a splice-site hypomorphic mutation in a novel gene of unknown
function, DnaJC11. Recent findings have demonstrated that DNAJC11 protein co-immunoprecipitates with proteins of the
mitochondrial contact site (MICOS) complex involved in the formation of mitochondrial cristae and cristae junctions.
Homozygous mutant mice developed locomotion defects, muscle weakness, spasticity, limb tremor, leucopenia, thymic and
splenic hypoplasia, general wasting and early lethality. Neuropathological analysis showed severe vacuolation of the motor
neurons in the spinal cord, originating from dilatations of the endoplasmic reticulum and notably from mitochondria that
had lost their proper inner membrane organization. The causal role of the identified mutation in DnaJC11 was verified in
rescue experiments by overexpressing the human ortholog. The full length 63 kDa isoform of human DNAJC11 was shown
to localize in the periphery of the mitochondrial outer membrane whereas putative additional isoforms displayed
differential submitochondrial localization. Moreover, we showed that DNAJC11 is assembled in a high molecular weight
complex, similarly to mitofilin and that downregulation of mitofilin or SAM50 affected the levels of DNAJC11 in HeLa cells.
Our findings provide the first mouse mutant for a putative MICOS protein and establish a link between DNAJC11 and
neuromuscular diseases.
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Introduction

Mitochondria are highly dynamic organelles that have a central

role in a plethora of cellular functions like oxidative phosphory-

lation (OXPHOS), calcium buffering, apoptosis, metabolism and

reactive oxygen species generation among others. OXPHOS is the

most essential mitochondrial function resulting in the synthesis of

ATP. High energy demanding tissues like the central nervous

system (CNS) and muscle are sensitive to mitochondrial dysfunc-

tion and this explains why mitochondrial diseases very commonly

manifest with neuromuscular symptoms [1]. Moreover, many

classic neurological diseases are characterized by changes in

mitochondrial function, dynamics and morphology [2,3,4]. The

term mitochondrial disease is generally ascribed to genetic diseases

caused by defects in OXPHOS [5]. Recently, more and more

neuromuscular diseases that are not directly linked with OX-

PHOS deficiency are considered mitochondrial diseases because

of involvement of other mitochondrial processes like mitochondrial

fusion/fission and mitochondrial protein importation [6]. Even

though many mitochondrial diseases are multisystemic, the

neuromuscular manifestations are usually the most prominent

ones. Mitochondrial diseases remain incurable due to the rarity of

these diseases and the lack of animal models [7]. Apart from the

diseases caused directly by mitochondrial dysfunction, the central

role of mitochondrial function is emerging as a converging point in

many neuromuscular/neurodegenerative diseases [2] displaying

impairment of mitochondrial function, dynamics and structure.

Mitochondrial ultrastructural abnormalities have been observed in

patients with Alzheimer’s disease, Parkinson’s disease and

Amyotrophic Lateral Sclerosis (ALS) [8,9]. Mitochondrial dys-

function is now well documented in ALS [10] although it remains
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under investigation whether mitochondrial dysfunction is a

necessary step in neurodegeneration.

Mitochondria have a characteristic structure as they are

surrounded by two membranes: the outer mitochondrial mem-

brane (OM) and the inner mitochondrial membrane (IM) defining

the intermembrane space (IMS). The IM is further subdivided into

the inner boundary membrane (IBM), which is adjacent to the

OM, and the cristae membranes (CMs) that protrude into the

matrix space [8,11]. The structures that connect the IBM to the

CMs have been termed cristae junctions (CJs) and have been

found to be generally similar between mitochondria of different

tissues [11]. Of the approximately 1300 identified mitochondrial

proteins only 13 are synthesized inside the mitochondrion [12].

The rest are encoded by nuclear genes and have to be imported

from the cytosol through a specialized and highly sophisticated

protein machinery of the OM (TOM and SAM complexes), the

IM (TIM complexes) and the IMS (MIA complex) depending on

the targeting of each protein [12]. Mitochondrial proteins involved

in mitochondrial fusion or protein translocation are preferentially

located in the IBM and OM, whereas proteins involved in

OXPHOS are enriched in the cristae membrane. In contrast to

the textbook view of mitochondrial cristae structure, these

membrane formations are extremely heterogeneous and dynamic

according to the cellular environment as it has been revealed

through electron tomography [13].

Recently, significant advances have been made in identifying

the proteins involved in the biogenesis or maintenance of CMs and

CJs. Three independent groups working in yeast identified a

protein complex, essential for normal CM morphology that has

been given the names of MICOS, MITOS or MINOS [14,15,16].

At the same time a homologous complex in human cells was also

identified and was termed as Mitochondrial Intermembrane space

Bridging (MIB) complex [17]. We will refer to these complexes

collectively as MICOS (MItochondrial COntact Site complex).

Central components of this complex have been determined to be

mitofilin/Fcj1 and MINOS1/Mio10. Knocking down of these

proteins almost completely abolishes CJs and alters CMs

organization [18,19]. Another member of the MICOS complex,

essential for CMs normal morphology and present both in yeast

and human cells is ChChd3/Aim13 [20]. A large number of

MICOS members interactor proteins have been identified in yeast

and mammalian mitochondria. These include SAM, TOM and

MIA complex members, CHCHD6, DNAJC11, UGO1, OPA1,

HSPA9, DISC1 and APOOL [16,19,21,22,23]. Of these,

DNAJC11 has an unknown mitochondrial localization and

function.

Using a forward genetics approach with random chemical

mutagenesis in the mouse we identified a novel autosomal

recessive phenotype with distinct neurological and lymphoid

symptoms. Neuropathological characterization showed severe

vacuolation in the motor neurons of the spinal cord associated

with severely disrupted mitochondria and abnormal cristae

structure. This phenotype is caused by a splicing point mutation

within the DnaJC11 gene, which encodes a ubiquitously expressed

mitochondrial protein that possibly interacts with the MICOS

complex. The aim of this study was to characterize the phenotype

displayed by the mutant mice as well as to identify and

characterize the causal mutation in order to define the underlying

molecular mechanism that results in disease pathogenesis.

Results

Generation and Clinical Characterization of spastic Mice
Following chemical mutagenesis with intraperitoneal adminis-

tration of N-ethyl-N-nitrosourea (ENU) in G0 male mice [24], a

novel recessive neuromuscular phenotype was identified in G3

progeny characterized by abnormal hind limb posture, abnormal

locomotion, muscle weakness, hind limb clutching when mice are

suspended by the tail, spasticity, limb tremor, growth retardation,

progressive cachexia and premature death (Figure 1, and Video

S1). This is an autosomal recessive mendelian trait with full

penetrance that affects both sexes equally. Because of the marked

neurological symptoms, this phenotype was designated as spastic
(spc). Heterozygous mice (spc/+) did not differ from their wild-type

(WT) littermates.

Spc/spc mice were indistinguishable from their WT littermates

at birth. First symptoms manifested approximately at the tenth day

after birth with abnormal hind limb posture and locomotion

defect. From the second week, spc/spc mice stopped gaining

weight (Figure 1A) and by the fifth week after birth all the spc/spc
mice had died (Figure 1B). Upon identification of spc mice,

mashed wet food pellets were added inside the cage, so the

observed cachexia and growth retardation was not due to

difficulties in accessing food. Death was probably associated with

breathing and moving difficulties as well as general wasting.

Muscle weakness was progressive and started at the hind limbs

continuing with the fore ones, judging by the loss of the limb

extension reflex (Figure 1C-E).

Spc/spc mice Developed Motor Neuron Pathology in the
Spinal Cord

The motor defects observed in spc/spc mice prompted us to

investigate for motor neuron pathology. Because of the severity of

the symptoms in the hind limbs, we firstly examined cross sections

of the lumbar segment of the spinal cord from 4 weeks old spc/spc
mice. Motor neurons in the anterior horn of WT littermates were

properly maintained with obvious Nissl substance, nuclei and

nucleoli (Figure 2Aa-b), whereas these cells in the spc/spc mice

appeared completely vacuolated (Figure 2Ad-e). These vacuoles

were mainly confined in the cell bodies of motor neurons but also

extended to dendrites (Figure 2Ae). They were roughly circular

and of various sizes and appeared either opaque (Figure 2Ad) or

transparent (Figure 2Ae), usually filling the whole body of the

neuron. No such vacuoles were observed in the neuropil, the white

matter, the dorsal horn neurons or in glial cells of the spinal cord.

Nuclei and nucleoli of motor neurons appeared normal (Fig-

ure 2A). The same analysis was performed for various regions of

the brain. Again, cell structure in the WT mice was well

maintained and no vacuolation was observed (Figure 2Ac). In

the spc/spc mice though, vacuolation was present mainly in the

medulla (Figure 2Af), which was affected to a lesser extent

compared to the spinal cord with regard to the number of affected

neurons and the number of vacuoles in the affected neurons.

To gain insight into the nature of the motor neuron vacuoles,

transmission electron microscopy was performed in the ventral

horn of lumbar spinal cord. Our results showed that the vacuoles

observed in the motor neurons of spc/spc mice (Figure 2A) were of

dual origin; either mitochondria that had abnormal cristae

structure (Figure 2Ba-e) or the endoplasmic reticulum (ER)

(Figure 2Bf). In spc/spc mice, many mitochondria were at various

stages of mitochondrial cristae degeneration (Figure 2Bb), while

others were identified as vacuoles bound by double membrane but

completely devoid of internal membranes that could represent the

most advanced stage of cristae disorganization (Figure 2Bc).

DnaJC11 and Motor Neuron Pathology in Mice
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Occasionally, abnormal cristae organization resembling concen-

tric cristae were also observed (Figures 2Bd-e and S1). Moreover,

all vacuolated mitochondria appeared roughly round, without the

characteristic elongated morphology. In completely vacuolated

motor neurons, no mitochondria with recognizable internal

structure and shape could be observed. In contrast, mitochondria

in the bodies of WT control motor neurons had normal

appearance and structure, with the characteristic elongated shape

and preserved cristae (Figure 2Bg). The abnormal mitochondria

were located in the bodies of motor neurons but not in dendrites

and synapses (Figure 2Bh). Synaptic mitochondria, identified by

the presence of synaptic vesicles, had the same structure as the WT

ones (Figure 2Bi). Single membrane bound vacuoles that seemed

to originate from dilatations of the cisternae of the ER were also

observed frequently (Figure 2Bf).

Lymphoid and Blood Abnormalities in spc/spc Mice
Apart from the neuromuscular phenotype, spc/spc mice

developed severe thymic and splenic hypoplasia that started 10

days after birth (Figure 3) showing massive degeneration. At the

moribund stage, the thymi of spc/spc mice were markedly

hypoplastic and had approximately 20% of the WT littermate

weight (Figure 3A). Hematoxylin/eosin staining of spc/spc thymi

revealed loss of organ architecture with great reduction of darkly

stained cortical area and an increase of medulla area that had lost

its characteristic patchy appearance (Figure 3B). Flow cytometric

analysis of thymi revealed not only decreased cellularity (Fig-

ure 3C) but also a significant reduction of the percentage of

CD4+CD8+ double positive cells and an approximately four fold

increase in the percentage of CD4+ and CD8+ single positive cells

in spc/spc mice (Figure 3D). The percentage of CD4-CD8- double

negative (DN) subpopulation was slightly but statistically signifi-

cantly increased (3,65% in spc/spc compared to 1,98% in controls)

in spc/spc mice. Analysis of thymi for CD25 and CD44 markers, in

order to analyze the DN subpopulations, revealed a significant

increase in the percentages of DN1 (CD25+CD44-) subpopulation

in spc/spc mice (Figure 3E).

Spc/spc mice also developed severe splenic hypoplasia (Fig-

ure 3F-G). Flow cytometric analysis of spleens revealed two fold

increase in the percentages of CD4+ and CD8+ single positive cells

in spc/spc mice (Figure 3H). B220+ B cell percentage was reduced

by 14% in spc/spc mice (42% compared to 56% of WT

littermates), whereas myeloid cell percentages, identified as being

positive for CD11b, did not differ between spc/spc mice and WT

littermates (Figure 3H). Absolute cell numbers for all cell

populations studied in the spleen and thymus were much lower

in the spc/spc mice due to the severe hypoplasia (Figure 3C, G).

To better characterize the spc phenotype we also performed

peripheral blood hematological analysis (Figure 3I and Table 1).

Blood counts revealed profound leucopenia in spc/spc mice (two-

fold decrease), involving both lymphocytes and granulocytes,

whereas the number of red blood cells in spc/spc mice was found to

be slightly increased (Figure 3I). Clinical chemistry analysis

(Table 2) showed a four fold increase in enzymes aspartate

transaminase (AST) and creatine phosphokinase (CPK) in spc/spc
mice, indicating possible muscle damage. Lactate dehydrogenase

(LDH) was also found statistically significantly elevated in spc/spc
mice.

In order to investigate whether the lymphoid aspect of the spc
phenotype is involved in the motor deficiencies, RAG-2 (recom-

bination activating gene) knockout mice were crossed with the

spc/+ mice to obtain spc/spc mice lacking RAG-2 gene. RAG-2
gene is necessary for immunoglobulin and T-cell receptor genes

rearrangements, so RAG-2 deficient mice lack mature B and T-

cells and are immunodeficient [26]. In the double mutant mice,

clinical symptoms of the spc phenotype were unchanged (n = 5,

Figure 1. Clinical characterization of the spastic phenotype. (A) Body weight curves of spastic (spc/spc) mice and sex matched control (+/+ or
spc/+) littermates (n = 21 per group). (B) Kaplan–Meier survival curve of spc/spc mice and control (+/+ or spc/+) littermates (n = 38 per group). (C) Grip
strength measurements of spc/spc mice and control (+/+ or spc/+), sex matched, littermates. Grip strength values were normalized with body weight
to account for the reduced body size of spc/spc mice (n = 16). (D) Abnormal hind limb posture of spc/spc mice. (E) Loss of hind limb extension reflex
when spc/spc mice are suspended by the tail. Mice shown are females and 3 weeks old littermates.
doi:10.1371/journal.pone.0104237.g001

DnaJC11 and Motor Neuron Pathology in Mice
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unpublished data) suggesting that the lymphoid and motor aspects

of the spc phenotype are two distinct sets of symptoms.

Identification of the Causal Mutation for the spc
Phenotype in DnaJC11

To map the causal mutation, linkage analysis of 64 F2 mice (37

affected and 27 controls) was performed using a set of 83

polymorphic markers (SSLPs and SNPs) that spanned the whole

genome except the sex chromosomes, considering that the trait

was inherited in a recessive autosomal manner. Statistical analysis

gave a logarithm of odds score of 31,1 for distal chromosome 4qE2

(Figure 4A). Another 842 meioses were analyzed for fine mapping

in order to reduce the number of candidate genes, ending up with

a genetic region of 2 Mbp between SNPs rs3665061 and

rs32610416 (Table S1). This region, according to UCSC genome

Figure 2. Neuronal vacuolation and abnormal mitochondria in the CNS of spc/spc mice. (A) Representative toluidine blue stained resin
sections of motor neurons in the lumbar segment of the spinal cord (a,b,d,e) and neurons in the medulla (c,f) from WT littermates (a-c) and spc/spc
mice (d-f). Lumbar, (n = 5 in three different experiments), medulla (n = 3 in two different experiments). Scalebar, 20 mm. Arrows indicate vacuoles and
asterisks glial cells. (B) Representative electron micrographs of motor neuron cell bodies (a-g) and terminal axons (h-i) in the region of the ventral
horn of the spinal cord from spc/spc (a-f and h) and WT control mice (g and i). (a), low power magnification of a vacuolated motor neuron. (b-g), high
power magnification in the cell bodies of motor neurons. (b-e) mitochondria with disrupted cristae (arrows) or others with abnormally stacked or
concentric membranes (asterisks) can be identified. Arrows in c indicate double membrane bound vacuoles completely electron transparent, devoid
of cristae. (f), single membrane bound vacuoles (arrows) possibly originating from the ER. (g), a normal WT mitochondrion (arrow). (h-i), synaptic
mitochondria (arrows) in terminal axons identified by the presence of prosynaptic vesicles. WT (n = 2), spc/spc (n = 4). Scalebars: a, 2 mm; b, d-e,
100 nm, c, f-i, 200 nm.
doi:10.1371/journal.pone.0104237.g002
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browser, contained 25 genes. Upon PCR analysis of the various

cDNA fragments corresponding to these genes, additional splicing

products were identified for the DnaJ (Hsp40) homologue,

subfamily C, member 11 (DnaJC11) gene (EN-

SMUSG00000039768) in the mutant samples with distinct pattern

in different tissues (Figure 4B). The primer pair that was used

amplified products extending from exon 11 to the stop codon in

exon 16 (Figure S2). The expected 735 bp long PCR product was

also detected in the mutant samples (Figure 4B). Sequencing of the

most abundant of these additional splicing products in the brain

from spc/spc mice revealed a 109 bp long intronic insertion

corresponding to a genomic region between exons 14 and 15.

Sequencing of this intron and its splicing junctions at the DNA

level revealed an intronic T.A transition (Figure 4C) that

generated a splice acceptor site leading to the incorporation of

the 109 bp intronic sequence (exon X) into the mature transcript

(Figure 4D). This insertion changed the reading frame and was

predicted to result in the replacement of the 51 C-terminal amino

acids of the protein by 43 different ones (Figure S3). This novel

mutated DNAJC11 protein product is predicted to have a

molecular mass of 62 kDa, only 1 kDa less than the WT protein.

This frame shift, however, is also predicted to generate a novel

termination codon, which is located 107 nucleotides apart from

the next exon-exon junction (Figure S2). According to the ‘‘50

nucleotide rule’’ this premature termination codon is predicted to

Figure 3. Lymphoid and blood abnormalities in spc mice. (A) Representative thymi dissected from spc/spc and WT (+/+) littermate mice at 4
weeks of age. Scalebar, 5mm. (B) Representative H/E stained thymic sections from spc/spc and +/+ littermate mice (n = 4). Scalebar, 400 mm. (C) Total
thymus cellularity in spc/spc mice and control littermates, (n = 14 per group). (D) Percentage of thymic subpopulations in spc/spc mice and control
littermates as determined by flow cytometry after staining of thymocytes with antibodies against CD4 and CD8. Data represent means 6 SE from four
independent experiments, (n = 13 per group). (E) Percentages of CD4-CD8- double negative (DN) subpopulations as determined by flow cytometry
after staining of thymocytes with antibodies against CD25 and CD44, in spc/spc and control littermates, (n = 6 per group). (F) Representative spleens
dissected from spc/spc and +/+ littermate mice at 4 weeks of age. Scalebar, 5 mm. (G) Total spleen cellularity of spc/spc mice and control littermates,
(n = 14 per group). (H) Percentage of splenic subpopulations in spc/spc mice and control littermates as determined by flow cytometry using
antibodies against CD4, CD8, B220 (B cells), Gr1 and CD11b (Myeloid). Data represent means 6 SE from four independent experiments, (n = 10 per
group). (I) Peripheral blood counts of spc/spc mice and control littermates, (n = 7 per group). Controls presented in bar graphs are healthy littermates
(+/+ and +/spc).
doi:10.1371/journal.pone.0104237.g003
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render this mutant transcript subject to non-sense mediated decay

[27].

DNAJC11 is a member of the J protein family also known as the

Heat Shock Protein 40 (HSP40) family of co-chaperones. This

family is defined by the presence of a highly conserved J domain

and, based on the presence or absence of other known protein

motifs, it is further subdivided into three classes (I, II and III or A,

B and C) [28]. HSP40s are generally known to regulate HSP70-

mediated ATP hydrolysis through their J domain, acting as co-

chaperones, but their functional role is extremely diverse [28].

DNAJC11 does not have an assigned function yet. Multiple

sequence alignment showed that it is a very highly conserved J

protein in vertebrates (Figure S4) and invertebrates [29]. It has

been reported to co-immunoprecipitate along with a number of

Table 1. Total Blood Counts in spc/spc mice.

Peripheral blood Controls Spc/spc

WBCs (103/mm3) 7.98661.018 3.35760.7668 **

Lymphocytes (x103 cells/ml) 2.57160.4617 1.37160.2909 *

Lymphocytes (%) 31.2962.296 41.7163.053 *

Granulocytes (x103 cells/ml) 4.92960.5528 1.74360.4151 ***

Granulocytes (%) 62.5762.750 51.7162.868 *

RBCs (106/mm3) 7.15060.2552 7.96360.1466 *

Hemoglobin (g/dl) 11.6460.3169 11.6660.3330

Hematocrit (%) 36.3161.019 35.1961.068

RDW (%) 22.2461.579 21.5761.399

MCV (fl) 50.9361.040 44.2361.338 **

MCH (pg) 16.3460.2562 14.6460.3835

MCHC (g/dl) 32.0960.2824 33.1660.3484 *

Platelets (103/mm3) 475.1658.07 382.9644.26

PCT (%) 0.349960.04953 0.266160.04272

MPV (mm3) 7.31460.3985 6.70060.4282

PDW (mm3) 8.31461.168 8.40061.200

MXD 0.485760.07377 0.242960.08411 p = 0.051

MXD % 6.14360.8845 6.57161.192

WBCs: White blood cells, RBCs: Red blood cells, RDW: Red cell distribution width MCV: Mean corpuscular volume, MCH: Mean corpuscular hemoglobin, MCHC: Mean
corpuscular hemoglobin concentration, PCT: Plateletcrit, MPV: Mean platelet volume, PDW: Platelet distribution width, MXD: Mixed cell count. Data are expressed as
mean 6 SE, (n = 7 per group). Control mice (+/+ and spc/+) were sex matched littermates. Student’s t test was performed for statistical analysis. *p,0.05; **p,0.01;
***p,0.001.
doi:10.1371/journal.pone.0104237.t001

Table 2. Clinical chemistry in spc/spc mice.

Peripheral blood Controls Spc/spc

ALP 454.06104.0 283.5666.75

ALT 40.8064.017 117.6657.17

AST 90.20610.27 364.0656.00 **

LDH 391.6661.81 642.5656.03 *

CPK (U/L) 208.0656.32 857.26139.9 ***

Urea (mg/dl) 122.0681.39 81.67623.51

Cholesterol (mg/dL) 98.43617.52 61.0066.831

Glucose (mg/dL) 263.0658.13 241.3679.90

Total Protein 4.42960.2055 3.70060.1366 *

Creatinine (U/L) 0.584060.06562 0.617560.1006

Lactic Acid (mg/dL) 55.1366.983 60.8566.462

Amylase (U/L) 12786170.9 25296619.6 p = 0.06

Lipase (U/L) 81.00621.40 52.33617.50

ALP: Alkaline Phosphatase, ALT: Alanine Aminotransferase, AST: Aspartate Aminotransferase, LDH: Lactate Dehydrogenase, CPK: Creatine Phosphokinase. Data are
expressed as mean 6 SE. Male spc/spc mice and male control (+/+ and spc/+) littermates were used. Amylase (n = 8). LDH, CPK, Urea, Cholesterol, Total Protein and Lactic
Acid (n = 7). ALP, Lipase (n = 6). ALT, AST, Creatinine (n = 5). Glucose (n = 3). Student’s t test was performed for statistical analysis. *p,0.05; **p,0.01; ***p,0.001.
doi:10.1371/journal.pone.0104237.t002
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mitochondrial proteins in human heart mitochondria and human

HEK293 cells [19,23]. Moreover, Pagliarini et al. detected mouse

DNAJC11 (muDNAJC11) at high levels in mitochondria from all

tissues examined using mass spectrometry [30]. According to

Ensembl database the muDnaJC11 gene is predicted to encode

three protein isoforms of 63, 45 and 15 kDa (Figure S5). However,

only the 63 kDa isoform is predicted to be affected at the protein

level by the identified mutation (Figure S5).

In order to identify structural domains in muDNAJC11 we

performed a bioinformatics analysis. Using the 63 kDa isoform

sequence we found that the J domain is located at the N-terminus

of the protein, between amino acid residues 14 and 79, and that

there is also a Domain of Unknown Function (DUF3395) at the C-

terminus of the protein, between amino acid residues 410 and 549

(Figure 4E). A coiled coil region was predicted to be located

between residues 425 and 443 with 99% probability. Further in
silico investigation, using homology molecular modelling, defined

a reliable model for the N-terminal muDNAJC11 domain (Figure

S6) and using protein secondary structure prediction techniques a

suitable model was fitted for the DUF3395 domain (Figures S7-

S8). Structurally, this domain resembles the only structurally

known C-terminal domain of the protein HSP40/MAS5/YDJ1

from Saccharomyces cerevisae (PDB code 1NLT) [31]. Such b-

barrel domains are known to be involved in protein-protein

Figure 4. Mapping, identification and representation of the spc mutation. (A) Through genome-wide linkage analysis the causal mutation
was mapped on distal chromosome 4. (B) Representative RT-PCR analysis on cDNAs from the indicated tissues of spc/spc and WT (+/+) littermate mice
using a primer pair specific for the 39- terminal coding region of DnaJC11 transcript. Numbers indicate base pair lengths of DNA marker. Single and
double asterisk indicate the 735 bp WT and 844 bp mutant PRC products that were sequenced, respectively. A Gluceraldehyde 3-phosphate
dehydrogenase (GAPDH) primer pair was used as a control for cDNA synthesis. Same results were observed in three more mice. (C) DNA sequencing
of the DnaJC11 gene in a WT control (+/+) and spc/spc littermate revealed an intronic T-to-A point mutation (asterisk). (D) Genomic organization of
the DnaJC11 gene within exons 14-16 and indicated splicing sites for the WT (upper) and the spc (lower) transcript. The T-to-A mutation is indicated
with a red asterisk and it generates a splice acceptor AG site which results in the incorporation of an 109 bp intronic region (exon X) into the mature
transcript. The insertion introduces a premature stop codon (red underlining). Green highlighted is the physiological WT stop codon. Black line, splice
donor sites; Grey lines, splice acceptor sites. (E) Primary structure of the 63 kDa muDNAJC11 protein. J denotes the J domain, regions in blue and red
represent the DUF3395 domain and the predicted coiled coil region, respectively. Numbers denote amino acid residues. Red asterisk denotes the site
of the mutation at the protein level and the red arrow the stretch of the protein that is predicted to be mutated due to the frameshift.
doi:10.1371/journal.pone.0104237.g004
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associations to form multimers [32]. In the predicted frameshifted

mutant protein the C-terminal domain bears no resemblance with

the WT one and thus probably lacks the protein-protein

association properties.

Genetic Confirmation of the DnaJC11 Mutation
To confirm that the intronic point mutation identified in the

muDnaJC11 gene was indeed causal of the phenotype developed

in the spc/spc (DnaJC11spc/spc) mice, genetic rescue experiments

were performed by generating transgenic mice (TghuDnaJC11)

that carry the whole genomic region of human DnaJC11
(huDnaJC11) and crossing them into the DnaJC11spc/spc back-

ground. As the human and mouse 63 kDa DNAJC11 proteins

share 97% identity and 99% homology, they are expected to

perform redundant functions. An approximately 120 kb genomic

fragment containing the whole huDnaJC11 gene was isolated

from a bacterial artificial chromosome (BAC) clone (Figure 5A)

and was used for pronuclear microinjections. The BAC fragment

that was used contained also part of the Thap3 gene but all the 59-

region of this gene up to the base encoding the first 89 amino acids

of the respective protein was excluded. Thus, no protein from this

gene is expected to be produced. Upon microinjections, seven

transgenic founders were obtained, all of which were fertile and

appeared healthy, exhibiting no obvious neurological symptoms.

Out of the seven founders, three (TgF843, TgF867 and TgF869)

were chosen to establish transgenic lines in order to use them in

rescue experiments. Copy number determination by quantitative

real-time PCR (qPCR) using a primer pair common for the

human and mouse DnaJC11 showed that all three transgenic lines

carried one or two transgene copies (Figure 5B). qPCR for

TgF869 line, which carried 2 copies of the transgene, verified a 2

to 6 fold increase of DnaJC11 transcript levels depending on the

tissue (Figure S9A). huDNAJC11 overexpression was also verified

in Western blot analyses for many tissues (Figure S9B). Crossing

each of the three transgenic lines into the DnaJC11spc/spc

background completely rescued the premature lethality, growth

retardation and the reduced grip strength displayed by the

DnaJC11spc/spc mice (Figure 5C-D). No neurological symptoms

manifested in these rescued lines within a period of one year. The

TgF869 line was further investigated in rescue experiments.

Indeed, in TgF869/DnaJC11spc/spc mice the motor neuron

vacuolation phenotype and abnormal cristae structures (Figure

S10A-B), the thymic and splenic hypoplasia, the thymic and

splenic subpopulations phenotype, and the leucopenia were

completely rescued (Figure 5E-H). These data genetically confirm

the causal role of the DnaJC11 mutation in the DnaJC11spc/spc

phenotype and that the mouse and human genes have redundant

functions.

Mitochondrial Localization of the WT DNAJC11 Protein
In order to examine the subcellular localization of muD-

NAJC11, cerebrum from WT mice was processed to obtain either

whole protein extract or cytosolic and mitochondrial fractions that

were then subjected to SDS-PAGE and Western blot analysis,

using an antibody against human and mouse DNAJC11. Our

results showed that DNAJC11 migrated between the range of 60

and 70 kDa as expected (Figure 6A). Specificity of the antibody

was also confirmed by increased levels of DNAJC11 in the

TghuDnaJC11 mice (Figure 6A). No other isoforms could be

verified in this way. DNAJC11 band was present in the

mitochondrial but not in the cytosolic fraction and was hardly

visible in the whole protein extract (Figure 6A). Similar results

were obtained in liver protein extracts.

To verify whether the highly conserved 63 kDa huDNAJC1

isoform also displays mitochondrial localization, fluorescence

microscopy was performed in HeLa cells transiently expressing

FLAG-tagged huDNAJC11 using an anti-FLAG antibody. Our

results showed that huDNAJC11 predominantly co-localized with

MitoTracker Orange, which is a known mitochondrial marker

(Figure 6B), confirming mitochondrial localization. Closer exam-

ination of residual FLAG-huDNAJC11 signal showed that even

when not overlapping with MitoTracker, FLAG-huDNAJC11 was

localized peripherally to MitoTracker, pointing towards an OM

localization since MitoTracker is known to stain the mitochondrial

matrix.

We next performed proteinase K protection assays and alkaline

extraction experiments on mitochondria isolated from HeLa cells

to define submitochondrial localization of huDNAJC11. Accord-

ing to Ensembl database, the huDnaJC11 gene is predicted to

encode 5 protein isoforms with a molecular mass of 63, 59, 57, 52

and 35 kDa respectively. In order to detect the predicted

endogenous huDNAJC11 isoforms in Western blots we used a

different antibody. With this antibody the biggest 63 kDa isoform

could be detected consistently in isolated mitochondria from HeLa

cells (Figure 6C). Interestingly, two additional lower bands were

also visible but not consistently, with their detection depending on

cell line clone and gel conditions and were usually detected in

lower levels (Figure 6C). These bands migrated with a molecular

mass of approximately 57 and 35 kDa, possibly representing two

additional huDNAJC11 isoforms. Interestingly, our results showed

that the various isoforms displayed different submitochondrial

localizations. In the absence of mitochondrial swelling, the

huDNAJC11 63 kDa isoform was accessible to proteinase K,

suggesting localization of the protein in the OM, while the 57 kDa

isoform was accessible to proteinase K only after the addition of

Triton-X, suggesting mitochondrial matrix localization or an IM

localization, with the large part of the protein being protease

protected (Figure 6C). The smallest, 35 kDa isoform, behaved

either as an IMS or an IM protein exposed to the IMS.

Alkaline extraction of mitochondria isolated from HeLa cells

again showed differential association of huDNAJC11 isoforms

with the different fractions. The 63 kDa isoform associated with

the soluble fraction suggesting that the protein is peripherally

associated with the OM and not anchored on or integrated within

it (Figure 6D). The 57 kDa isoform was associated with the pellet

fraction suggesting that this isoform could be anchored to the IM,

facing the mitochondrial matrix. Due to its low abundance we

were not able to detect the 35 kDa isoform in this assay.

Analysis of Mutant muDNAJC11 Protein in Various
Tissues and Biochemical Interaction of huDNAJC11 with
Members of the MICOS Complex

The predicted replacement of the last 51 amino acids of the

muDNAJC11 by 43 different ones could interfere with proper

mitochondrial localization of the protein. Thus, in order to

examine the subcellular localization and the tissue distribution of

the DNAJC11spc mutant protein, Western blot analyses on

cytosolic and mitochondrial fractions were performed in various

tissues. Our results showed that in cerebrum and cerebellum of

DnaJC11spc/spc mice the muDNAJC11 protein was not present in

either fraction (Figure 7A). Additional Western blots on isolated

mitochondria from various tissues of DnaJC11spc/spc mice revealed

that the DnaJC11spc mutation resulted in a reduction of

muDNAJC11 protein levels ranging from severe to complete

depletion depending on the tissue (Figure 7B). Thus, it is suggested

that the DnaJC11spc allele ranges from severely hypomorphic to

null depending on the tissue. The possibility that the observed
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muDNAJC11 bands could represent the predicted mutant form of

the protein is open, though. The two proteins, WT and mutant,

differ only in 1 kDa in mass and thus could not be resolved.

Two previous studies reported the co-immunoprecipitation of

huDNAJC11 along with known MICOS complex proteins

[19,23]. As shown in the respective studies, depletion of the

members of the MICOS complex such as mitofilin [18],

CHCHD3 [20], CHCHD6 [22] or SAM50 [17] results in altered

levels of other MICOS complex proteins. Thus, we investigated

whether depletion or overexpression of DNAJC11 in our

DnaJC11spc/spc and TghuDnaJC11 mice respectively resulted in

altered levels of some of the core components of the MICOS

complex, mitofilin and CHCHD3. Western blot analyses for these

proteins showed that neither depletion nor overexpression of

DNAJC11 influenced the levels of either mitofilin or CHCHD3 in

the tissues examined (Figure 7B).

In order to examine the potential effect of huDNAJC11

depletion on the protein levels of other MICOS complex proteins,

Figure 5. Complete rescue of the DnaJC11spc/spc phenotype through expression of the human DnaJC11 gene. (A) Schematic
representation of the human BAC clone fragment that was used for the generation of TghuDnaJC11 mice. Genes and their orientation are indicated
as well as NotI sites that were used for digestion. Horizontal line and number below represent the fragment length. (B) Copy number determination,
by qPCR, of three transgenic lines, TgF843, TgF867, and TgF869 (n = 5-9 per group) using a primer pair common for both mouse and human DnaJC11
genes. WT mice were considered to carry 2 copies of DnaJC11. (C) Body weight and (D) grip strength (normalized to body weight) curves for the
indicated genotypes. All mice used were sex matched littermates, (n = 8). (E) Rescue of the thymic hypoplasia shown as total thymic cellularity, (n = 3).
(F) Restoration of thymic subpopulations distribution in rescued mice (n = 3) as determined by flow cytometry after staining with antibodies against
CD4 and CD8. Statistical analysis between controls and rescued (Tg/DnaJC11spc/spc) mice is indicated. DP, double positive; DN, Double Negative. (G)
Restoration of splenic subpopulations distribution in rescued mice. B cells and myeloid cells were defined as the ones positive for markers B220 and
CD11b respectively, (n = 3). (H) Restoration of the leucopenia phenotype and the increased red blood cell phenotype in rescued mice (n = 3). Data
represent means 6 SE.
doi:10.1371/journal.pone.0104237.g005
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we generated doxycycline (Dox) inducible huDNAJC11 knock-

down in HeLa cells, designated as Dnajc11kd-3. Of note, in this

cell line only the longest two huDNAJC11 isoforms, 63 kDa and

59 kDa, were targeted by the shRNA. However, only the 63 kDa

isoform could be verified to be downregulated upon Dox induction

as the rest isoforms could not be detected consistently in Western

blots. Depletion of huDNAJC11 after 7 or 14 days of Dox

application was almost complete (Figure 7C). Nevertheless and

consistent with our findings in mouse tissues none of the other

MICOS complex protein levels (mitofilin, CHCHD3, CHCHD6

and SAM50) were affected (Figure 7C).

To investigate whether depletion of mitofilin or SAM50 affects

the levels of huDNAJC11, we utilized a previously described [17]

Dox inducible human mitofilin (mflkd-2) and SAM50 (sam50kd-2)

HeLa-derived knockdown cell line. After 7 and 14 days of Dox

application both mitofilin and SAM50 were severely depleted and

at the same time DNAJC11 protein levels were observed to be

mildly but consistently reduced (Figure 7D-E). In the SAM50

depleted cells other members of the MICOS complex, such as

mitofilin and CHCHD6 were not affected suggesting a more direct

role of SAM50 in the sustainment of DNAJC11 protein levels

(Figure 7D). In the mitofilin depleted cells, though, other members

of the MICOS complex like CHCHD6 (Figure 7E), SAM50 and

CHCHD3 [17] were affected. These findings support indirecty an

interaction of the established MICOS complex proteins mitofilin

and SAM50 with DNAJC11 in human cells.

In order to examine whether DNAJC11 exists in the same

complex with mitofilin and SAM50, we imported radiolabeled

mitofilin and 63 kDa huDNAJC11 into mitochondria isolated

from inducible SAM50 HeLa knockdown cells. Radiolabeled

mitofilin and DNAJC11 was found to assemble in a time-

dependent manner into a large complex of .700 kDa that

resembles the complex described previously as the mitochondrial

intermembrane space bridging (MIB) complex where mitofilin,

Figure 6. Mitochondrial and submitochondrial localization of DNAJC11. (A) Representative Western blot analysis on total protein RIPA
extracts (T), on cytosolic (C) and mitochondrial (M) fractions of cerebrum and liver tissue from WT mice. The huDnaJC11 transgenic (Tg) samples
served as positive controls. Prohibitin served as a mitochondrial specific marker and GAPDH as a cytoplasmic marker. (B) Fluorescence microscopy of
HeLa cells transfected with a C-terminally FLAG-tagged huDNAJC11 cDNA of the 63 kDa isoform (green channel) and stained with the mitochondrial
specific dye MitoTracker Orange (red channel). Scalebar, 100 mm. (C) Proteinase K protection assay on isolated mitochondria from HeLa cells. 50 mg of
mitochondria were either subjected to swelling in the hypotonic buffer (SW, +) or were incubated in the isotonic buffer (SW, -) and then were treated
with proteinase K (PK, +) or not (PK, -). A buffer containing 1% TritonX-100 (Tr) was used to solubilize all mitochondrial proteins and render them
accessible to proteinase K. Samples were then analyzed by SDS-PAGE and Western blot with the indicated antibodies. Metaxin 1 is an outer
membrane protein, mitofilin is an intermembrane space exposed inner membrane protein and Hsp60 is matrix localized. Numbers indicate molecular
mass of protein marker in kDa. (D) Sodium carbonate extraction of isolated mitochondria from HeLa cells. Mitochondria were extracted under the two
indicated pH conditions and the membranes were collected by ultracentrifugation. Pellet (P) and supernatant (S) were analyzed by SDS-PAGE and
Western blot and probed with the indicated antibodies. Tim23 is an integral inner membrane protein and ICDH is a soluble matrix protein. Arrows
indicate the 63 kDa isoform and the putative ,57 kDa isoform. Tim23, Translocase of inner mitochondrial membrane 23 homolog; ICDH, isocitrate
dehydrogenase.
doi:10.1371/journal.pone.0104237.g006

DnaJC11 and Motor Neuron Pathology in Mice

PLOS ONE | www.plosone.org 10 August 2014 | Volume 9 | Issue 8 | e104237



Figure 7. Expression analysis of mutant muDNAJC11 and biochemical interaction of huDNAJC11 with MICOS members. (A) Western
blot analysis of fractionated brain tissue from DnaJC11spc/spc (spc/spc) mice and WT (+/+) littermates showing the loss of muDNAJC11 protein in
DnaJC11spc/spc tissue. Prohibitin is a mitochondrial specific marker and GAPDH a cytoplasmic marker. (B) Equal amounts of isolated mitochondria from
the indicated mouse tissues were analyzed by Western blot and probed for known members of the MICOS complex. Glucose related protein 75
(GRP75) was used as a loading control. (C) dnajc11kd-3, (D) sam50kd-2 or (E) mflkd-2 cells were grown in the absence (-Dox) or presence (+Dox) of
doxycycline for 7 or 14 days, mitochondria were isolated, and 25 or 50 mg of protein were analyzed by SDS-PAGE and probed for the indicated
proteins. SDHA, the component of the respiratory complex II, was used as a loading control. CHCHD3 and 6, coiled-coil-helix-coiled-coil-helix domain
containing protein 3 and 6; SAM50, Sorting and assembly machinery 50; SDHA, Succinate Dehydrogenase subunit A. (F) Mitochondria from non-
induced and induced sam50kd-2 knockdown cells after 7 days of induction with doxycyclin (Dox) were isolated and incubated with the radiolabeled
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SAM50 and CHCHD3 co-exist [17]. Interestingly, the depletion

of SAM50 reduced the assembly of this complex (Figure 7F), as in

the case of imported CHCHD3 [17]. These results strongly

support the presence of DNAJC11, SAM50, mitofilin and

CHCHD3 in the same mitochondrial complex.

Discussion

Using random ENU mutagenesis in the mouse, we have

identified an autosomal recessive phenotype comprising pro-

nounced motor dysfunction and blood/lymphoid abnormalities,

caused by a splicing point mutation in a novel mitochondrial

protein, DNAJC11. Light and transmission electron microscopic

observations of the spinal cord of mutant mice (DnaJC11spc/spc)

showed severe vacuolation of motor neurons in the ventral horn

with the next most affected CNS region being the medulla. This

type and pattern of vacuolation is reminiscent of the one observed

in two mouse models of familial ALS expressing mutant

Superoxide Dismutase 1 (SOD1) alleles [33,34,35]. In those

models, like in DnaJC11spc/spc mice, the vacuoles have dual origin,

the endoplasmic reticulum and mitochondria. It would be

tempting to hypothesize a possible common mechanism of motor

neuron pathology between the mutant SOD1 models and

DnaJC11spc/spc mice, or two different ones converging in

mitochondrial structure and dysfunction. However, the identified

pathology does not necessarily mean dysfunction of motor neurons

which surely needs to be investigated in the future. At any rate, the

manifestation of CNS and especially motor neuron specific

pathology due to a mutation in DnaJC11 surely opens new

possibilities for the search of novel contributors in neuromuscular

diseases, particularly in conditions with motor neuron involvement

like ALS, and especially in the light of our finding that expression

of huDNAJC11 can fully compensate the depletion of muD-

NAC11.

DNAJC11 is a member of the J protein family (Hsp40s) of co-

chaperones that are known to interact with Hsp70 proteins,

regulating their ATP hydrolysis function and thus facilitating a

wealth of cellular processes [28,36,37]. These include binding to

non-native or nascent polypeptides, multiprotein complex assem-

bly and disassembly, translocation of proteins across organelle

membranes and probably others. The list of mouse mitochondrial

proteins compiled by Pagliarini et al. [30] revealed five

mitochondrial J proteins, four of which are classified in the C

subclass (DNAJC4, 11, 15, 19) and one in the subclass A

(DNAJA3). Of note, mutations in DnaJC19, probably a member

of the TIM complex, have been reported to cause dilated

cardiomyopathy with ataxia, a Barth-like syndrome [38,39].

Many others, non-mitochondrial J protein mutations give rise to

neurological or neuromuscular phenotypes. DnaJA3 knockout

mice develop dilated cardiomyopathy [40], a mutation in DnaJB6
cause autosomal dominant myopathy [41] and mutations in

DnaJC5 and 9 cause or are associated with autosomal-dominant

adult-onset neuronal ceroid lipofuscinosis and schizophrenia with

deficits in attention, respectively [42,43], while DnaJC29 (also

known as sacsin) is mutated in autosomal recessive spastic ataxia of

Charlevoix-Saguenay [44]. These phenotypes highlight the

functional importance of J proteins in proper nervous system

function.

DNAJC11 in animals does not have an assigned function yet. It

does not have a yeast homologue but is very highly conserved in

the animal kingdom and is also present in plants [29,45],

highlighting its fundamental importance for cell function. In

Arabidospis thaliana, DNAJC11 homologue, OWL1 (atDjC28 or

At2g35720) is also ubiquitously expressed but displays a dual

nuclear and cytoplasmic localization and has also been shown to

be involved in the very low light fluence response [46]. In the same

study, direct interaction of OWL1 with a nuclear transcription

factor is reported although additional functions are also speculat-

ed. It is highly unlikely that animal DNAJC11 has a similar

nuclear function since it does not show any nuclear localization as

confirmed by our confocal analysis (Figure 6B). Our bioinfor-

matics analysis showed that the full length 63 kDa isoform of

DNAJC11, apart from the J domain which is located at the N-

terminus of the protein, contains a Domain of Unknown Function

(DUF3395) at the C-terminus region possibly involved in protein-

protein interactions for multimers formation.

The identified DnaJC11 mutation and its effects at the mRNA

and protein levels are of particular interest. Interestingly, only the

63 kDa isoform is predicted to be affected at the protein level by

the identified mutation. The novel generated splice site affects

splicing events in the region profoundly, giving rise to a wealth of

transcripts through a mechanism that requires further investiga-

tion. We were able to sequence the most abundant of these

transcripts which is predicted to encode a C-terminal frameshifted

product, which probably lacks the protein-protein association

properties. Although the mutant, as well as the WT transcripts are

expressed, the reduction of the DNAJC11 protein levels is almost

complete in most tissues, suggesting a post-transcriptional regula-

tory mechanism that affects both transcripts. With regard to the

sequenced mutant transcript, non-sense mediated decay offers

such an explanation since this transcript meets the ‘‘50 nucleotide

rule’’ [27], although the transcript levels reduction is far from

complete. Importantly, all aspects of this novel phenotype were

rescued through the expression of the human ortholog in

transgenic mice highlighting the redundant functions of the

human and mouse DnaJC11 genes which share 97% identity.

Two groups have reported the co-immunoprecipitation of

huDNAJC11 along with members of the MICOS complex

[19,23], which is involved in the formation of mitochondrial

cristae [14,15,16,17], suggesting a possible interaction of

DNAJC11 with MICOS proteins. Our importation experiments

also strongly support the presence of DNAJC11, SAM50, and

mitofilin in the same mitochondrial complex. Jans et al., using

super-resolution microscopy, very elegantly showed that huD-

NAJC11 does not display the characteristic submitochondrial

distribution and positioning shared by the MICOS core compo-

nents but had a more patchy distribution, proposing that only a

subset of huDNAJC11 molecules is in physical contact with core

MICOS proteins [47]. The mitochondrial morphology phenotype

seen in our DnaJC11spc/spc mice and the fact that depletion of

mitofilin and SAM50 affect the levels of DNAJC11 in HeLa cells

strengthen its candidacy as an additional MICOS protein or

MICOS interactor having a peripheral role in MICOS function,

maybe participating or mediating the interactions of MICOS with

one of its numerous interactor complexes in the OM like the

TOM or the SAM complex. This hypothesis is based on our

submitochondrial localization data that assign to the 63 kDa

mitofilin and DNAJC11 (the longest isoform) for the indicated time periods. Samples were analyzed by BN-PAGE and autoradiography. The panel on
the right hand side shows the control of the knockdown, where 50 mg of mitochondria from –Dox and +Dox samples were analyzed by SDS-PAGE
and Western blot using antibodies against Sam50 and SDHA.
doi:10.1371/journal.pone.0104237.g007
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DNAJC11 isoform a peripheral OM topology. Moreover, possible

functional interactions between DNAJC11 and Hsp70 chaperons

have to be investigated.

Depletion of specific MICOS proteins has been shown to result

in the destabilization of the MICOS complex and reduction of the

levels of other MICOS proteins [16,17,18,20]. Because of its co-

chaperone nature we speculated that DNAJC11 could function as

a recruitment or stability factor for other MICOS proteins.

Surprisingly, the muDNAJC11 depletion observed in all tissues of

DnaJC11spc/spc mice did not alter the levels of mitofilin or

CHCHD3 leaving the question of whether there is indeed a

functional relationship between DNAJC11 and the MICOS

complex unanswered. Other MICOS proteins that we did not

check could be affected by the loss of DNAJC11. Another

possibility is that although the levels of these two MICOS proteins

were not affected, the general stability of the MICOS complex

could be compromised. Harner et al. showed that upon deletion of

every single member of the yeast MICOS complex not all other

MICOS proteins levels were affected, but in each case the

complex fell apart [14]. Thus, further characterization of the

MICOS complex in WT and DnaJC11spc/spc mice is required in

order to elucidate whether muDNAJC11 interacts with the

MICOS complex in mouse tissue and in order to clarify a possible

connection between this putative interaction and DnaJC11spc/spc

mice pathology.

Identification of possible interacting partners and thus elucida-

tion of the function of DNAJC11 is complicated by the presence of

multiple isoforms. In mouse tissues, out of the 3 predicted

muDNAJC11 isoforms, we were able to identify in Western blots

the longest 63 kDa one, which we found to be ubiquitously

expressed not only in the central nervous system but also in

extraneuronal tissues. In HeLa cells, out of the 5 predicted

huDNAJC11 isoforms we could detect the 63 kDa and two

additional bands of approximately 57 and 35 kDa that could

represent two additional isoforms. Of these only the 63 kDa one

could be validated by its downregulation in dnajc11kd-3 cell lines.

Of note, human isoforms showed three different submitochondrial

localizations; peripheral OM localization for the 63 kDa isoform,

matrix or IM localization with possible membrane anchoring for

the 57 kDa isoform and IMS or IM protein localization for the

smallest 35 kDa isoform. Such different topology of the DNAJC11

isoforms increases the number of possible interacting partners and

thus functions of DNAJC11. Dual localization of MICOS proteins

is not something new. Darshi et al. showed that CHCHD3 is

enriched both in OM and IM fractions but with differential

abundance [20]. This dual localization of CHCHD3 is suggested

to have to do with participation in two different ‘‘versions’’ or

species of the MICOS complex itself. Independent investigators

have suggested the existence of a holo-complex with a reported

molecular mass of approximately 1,2 to 1,5 MDa, that probably

also involves interactions with OM proteins, and a smaller

complex with a molecular mass of approximately 0,7 MDa

[14,17,18]. Different isoforms of DNAJC11 could interact with

different complexes in a similar way. Again, identification of

specific protein interactors is necessary.

The reported DnaJC11 mouse mutant is one of the few mouse

mutants with mutations in proteins involved in mitochondrial

morphology. Other mouse models of this category are mutants for

Optic Atrophy 1 (OPA1) [49,50,51], which is a well studied

protein of the IMS involved in mitochondrial fusion, cristae

remodeling and apoptosis [52,53], and which has been reported to

interact with CHCHD3 [20]. The neuronal subpopulation-specific

and blood/lymphoid pathology of the DnaJC11spc/spc mice raises

very interesting questions about the in vivo role of the DNAJC11

protein. In depth characterization of the DnaJC11spc/spc mice at

the molecular, biochemical, cellular and ultrastructural level could

contribute to the elucidation of the physiological role of DnaJC11
and its involvement in disease pathogenesis. Finally, our study

paves the way for the identification of polymorphisms and

functional mutations in DnaJC11 in patients with neuromuscular

diseases.

Materials and Methods

Mouse husbandry
DBA/2J mice were purchased from the Jackson Laboratories.

Mice were maintained and bred under specific pathogen-free

conditions in the animal facility of Biomedical Sciences Research

Center (BSRC) ‘Alexander Fleming’. Mice were sacrificed via

CO2 inhalation followed by cervical dislocation.

Ethics statement
All animal procedures were carried out in strict accordance to

the Hellenic License for Animal Experimentation at the Biomed-

ical Sciences Research Center ‘Alexander Fleming’ (Licence

Protocol Number 1167/08.03.2012) issued after protocol approval

by the Institutional Animal Ethical Committee of BSRC

‘Alexander Fleming’ (Protocol Number 258/13.02.2012).

ENU mutagenesis
G0 males of a mixed C57BL/6Jx129S6 background were

treated with ENU (Sigma-Aldrich, Inc.) administered in three

weekly doses at 100 mg/kg of body weight [24,54]. Each G0

mouse was crossed to WT C57BL/6Jx129S6 females to produce

G1 males that were further mated with WT females to produce G2

daughters that were subsequently backcrossed with the G1 parent

to generate G3 progeny. These were screened phenotypically for

recessive mutations. ENU mutagenesis was performed at BSRC

‘Alexander Fleming’. Mutant G3 mice were crossed at least 10

times into C57BL/6J background to obtain congenic N10

generation mice carrying the DnaJC11 mutation. All experiments

presented were performed using at least N10 congenic mice.

Grip Strength
The Grip Strength Test Meter, Model GS3 (Bioseb) was used.

Mice were allowed to stand with four paws on the metal grid and

were gently pulled by the tail until they were off the grid. The

mean from three repeats was calculated for every measurement.

Histopathological analysis
Tissue was dissected and fixed in 4% (M/V) formaldehyde

(VWR) at 4uC overnight and then transferred in PBS before

processing for paraffin embedding. Sections of 4 mm thickness

were collected and processed for staining with hematoxylin/eosin.

Neuropathological analysis and Transmission Electron
Microscopy

Mice were sacrificed and transcardially perfused with 5 ml of

ice cold fixative (3% electron microscopy grade glutaraldehyde in

0,1 M phosphate buffer). Tissue was dissected and kept in ice cold

fixative while trimming into ,1mm cubes. Samples were postfixed

in the same fixative at 4uC overnight and were then washed in

phosphate buffer, fixed with 1% OsO4 at room temperature,

dehydrated through a graded series of alcohols, placed for 1 h in

propylene oxide (Aldrich Chemistry) and left overnight in a

propylene oxide/spurr resin 1:1 solution. Samples were placed in
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fresh resin blocks and incubated .36 hours at 60uC for resin

polymerization.

Semi-thin sections (1 mm thick) were obtained using an

ultramicrotome, placed on glass slides, stained with 0,5% toluidine

blue and photographed using an Olympus BX40 digital camera.

Desired regions were identified and ultrathin (60–90 nm) sections

were obtained, collected on copper grids, stained with uranyl

acetate and lead citrate and observed under a JEOL JEM-1005

transmission microscope. Photos were taken with an Olympus

DP71 digital camera.

Flow Cytometry
Mice were sacrificed and thymus and spleen were quickly

excised and ground in 5 ml ice cold PBS using a flat end glass

pestle and size 40 mesh discs (Sigma-Aldrich, Inc.). Cell suspension

was filtered through a 70 mm sheet and cells were pelleted by

centrifugation. Thymocytes were resuspended in PBS and counted

using an hematocytometer. Splenocytes were resuspended in

1,5 ml Gey’s solution, pelleted by centrifugation, resuspended in

PBS and counted. 36106 thymocytes per well were stained with

CD4-Alexa700, CD8-Alexa647, CD25-PE, CD44-FITC. 16106

splenocytes per well were stained with CD4-Alexa700, CD8-

Alexa647, B220-PerCP, Gr1-FITC and CD11b-PE. Antibodies

were purchased from Biolegend.

Biochemical markers and blood analysis
Clinical chemistry on serum samples and blood counts on

peripheral blood samples, obtained by heart puncture, were

performed by a commercial provider (Microanalysi SA, Athens) as

previously described [55].

Mapping and Sequencing
Heterozygous +/spc mice were outcrossed with DBA/2J mice.

F1 mice were intercrossed and tail DNA from the resulting F2

mice was used for the genetic linkage analysis. SSLPs were

analyzed on 4% high resolution agarose gels (Sigma-Aldrich, Inc.)

and SNPs were analyzed by pyrosequencing using the Pyromark

ID instrument (Biotage AB). A standard genome scan was

conducted using the qtl library of R (The R Foundation for

Statistical Computing, version 2.8.0) [56]. Log-likelihood linkage

for single-trait analysis was established by non-parametric interval

mapping of a binary model (diseased versus healthy control

siblings), on 124 F2 animals in total, computed at 1 cM increments

over the entire genome. Sequencing was carried out on PCR

products, purified after agarose gel electrophoresis, as a service by

MWG Biotech AG.

For DnaJC11 genotyping the following primers were used for

pyrosequencing on tail DNA: F: 59-CCT CAG TGC CAG CAA

AGT CT-39, R, 59-ACG GCC ACA GCC ACA GAT-39 and seq,

59-GCC TCT TTC TGG AAC C-39.

Generation and screening of transgenic mice
Human BAC clone RP11-262K21 was purchased from

imaGenes (clone RPCIB753K21262Q). Isolated BAC DNA was

digested with NotI and products were analyzed overnight by

Pulsed Field Electrophoresis. The ,120 kb product containing the

human DnaJC11 gene was excised and and subsequently analyzed

through a 4% low melting agarose gel before isolation with b-

agarase (New England Biolabs) digestion. Fertilized F2 (C57BL/6J

x CBA/J) oocytes were microinjected as previously described

[57,58] Microinjections and embryo implantations were carried

out in BSRC ’Alexander Fleming‘ Transgenics Facility.

Screening of transgenic animals was performed by PCR analysis

on tail DNA using the following primers: F, 59-ACT CAT GGT

TTG GGG TCC TT-39; R, 59-CTG GTT TTG TCT TCC

CTC CA-39, which hybridize on an intronic sequence of the

human but not the mouse gene.

Transgene copy number determination
Determination of transgene copy number was performed by

qPCR using tail DNA from TghuDnaJC11 mice and WT

littermates. A primer pair specific for both mouse and human

DnaJC11 gene was used: F, 5’-CCT CCG TGA GGA TGA GCT

T-3’; R, 5’-GTC AAT GAC AAG AGC AGG AAG-3’ The

nuclear gene HuR was used as internal control for each sample: F,

59-AGG ACA CAG CTT GGG CTA CG-39 and R, 59-CGT

TCA GTG TGC TGA TTG CT. Standard curves were

generated for both primer pairs and CT values were determined

and analyzed by the comparative CT method. Fold change of

transgenic samples compared to the WT was used to extrapolate

the copy number for each transgenic line.

Reverse Transcription and Real Time PCR (qPCR) analysis
Total RNA was extracted by the guanidinium thiocyanate

phenol-chloroform method using Tri-Reagent (MRC Inc.).

Concentration and quality of RNA was determined with a

NanoDrop ND-1000 spectrophotometer.

2 mg of total RNA were treated with DNase1 amplification

grade (Sigma-Aldrich, Inc.) to remove residual DNA, and they

were reverse transcribed with M-MLV reverse transcriptase

(Sigma-Aldrich, Inc.) using 0,5 mg of oligo d(T)18 primer (New

England Biolabs). Reverse Transcription PCR was performed with

the following primer pairs: DnaJC11, F, 59-GGC CAG TCA

GAC CTA CTT C-39 and R, 59-AGC TAG GCT GTC TGC

ATG-39; GAPDH, F, 5’-AGC ACC CCT GGC CAA GG-3’ and

R, 5’-CTT ACT CCT TGG AGG CCA TG-3’.

qPCR on cDNAs was performed using SsoFast EVA Green

Supermix (Bio-Rad) on a Rotor-Gene 6000 RT-PCR machine

(Corbett Life Science). Standard curves were generated for

DnaJC11 and for the b2-microglobulin (B2M), which was used

as internal control. CT values were determined and data were

analyzed by the comparative CT method. Samples were run in

duplicates. The following primers were used: common for human

and mouse DnaJC11, F, 5’-CAA AGG GAT GGG GAG AGT

TG-3’ and R, 5’-CGG GAT GAA AAC TGC AGA G-3’; B2M,

F, 5’-TTC TGG TGC TTG TCT CAC TGA-3’ and R, 5’-CAG

TAT GTT CGG CTT CCC ATT C-3’.

Tissue mitochondria isolation
Tissue mitochondria were isolated by differential centrifugation.

After organ extraction, approximately 100 mg of tissue was

homogenized manually in Mitochondria Isolation Buffer (MIB)

(320 mM sucrose, 1 mM EDTA, 10 mM Tris, pH adjusted to 7,4)

complemented with proteinase inhibitors cocktail (Roche) on ice,

using a 1 ml glass mortar and pestle. Homogenate was centrifuged

at 3000 g for 5 min, the supernatant was kept on ice and pellet

was resuspended in MIB and centrifuged again at 3000 g for

5 min. The two supernatants were mixed and centrifuged at

12000 g for 10min to acquire the mitochondrial pellet and the

cytoplasmic fraction. Protein concentration was determined with

the Bradford method (Bio-Rad Protein Assay).

Knock-down cell lines and isolation of mitochondria
Parental HeLa cells were purchased from ATCC (American

Type Culture Collection, Manassas, VA, USA). HeLa cells with
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an inducible shRNA-mediated knockdown were generated as

already described [59,60]. The sequence of dnajc11kd-3 shRNA

was 59- GCACCGTCTGATCATCAAACC -39. shRNAs of

sam50kd-2 and mflkd-2 were previously described [17,59]. Single

cell clones were isolated for each shRNA. Cells were cultivated in

RPMI 1640 or DMEM (Gibco) supplemented with 10% FCS

(Biochrom) and penicillin/streptomycin. Expression of shRNAs

was induced by cultivating cells in media additionally containing

1 mg/ml doxycycline (BD Biosciences) for indicated time periods.

Isolation of mitochondria was performed as described [59].

Fluorescence Microscopy
Cells grown on glass coverslips were transfected with a

pCDNA3 (Invitrogen) plasmid containing human DnaJC11
cDNA fused to a carboxy-terminal FLAG-tag using Lipofectamine

2000 (Life Technologies). After 24 h to 36 h of expression, cells

were stained by incubation with 150 nM MitoTracker Orange

(Molecular Probes) in cell culture media for 30 min at 37uC.

Samples were washed with PBS, fixed in 3,7% PFA and stained

with an anti-FLAG antibody and the corresponding secondary

fluorophore-coupled antibody. Samples were analyzed with a

Leica confocal microscope using TCS software.

Swelling and alkaline extraction
Alkaline extraction using 100 mM Na2CO3, pH 10,8 or

pH 11,5 were performed as previously described [59,61,62]. For

the swelling experiments and opening of the OM, freshly prepared

mitochondria were incubated in isotonic (250 mM sucrose, 1 mM

EDTA, 10 mM Tris, pH 7,6) or hypotonic (1 mM EDTA,

10 mM Tris, pH 7,6) buffer. Mitochondria were then treated

with 50 mg/ml of proteinase K, inhibited later by addition of

2 mM PMSF. Additional sample of mitochondria was solubilized

in 1% Triton X-100 and, after a 12000g spin to remove insoluble

material, the supernatant was treated with proteinase K as already

described.

Protein import
sam50kd-2 cell line and import into isolated mitochondria have

already been described [59]. In short, sam50kd-2 cells were grown

for seven days in the presence of doxycyclin to induce the

production of shRNA and Sam50 knockdown. Mitochondria from

non-induced and induced knockdown cells were isolated and

incubated with the radiolabeled Mitofilin and DnaJC11 (the

longest isoform) at 37uC in the potassium-acetate import buffer

(250 mM sucrose, 5 mM Mg-acetate, 80 mM Kacetate,20 mM

Hepes, pH 7.4, 10 mM Na-succinate,1 mM ATP, and 1 mM

DTT). Samples were then solubilized in the presence of 1%

digitonin and analyzed by BN-PAGE as described [59].

Antibodies
DNAJC11 antibody for HeLa cells experiments was purchased

from Abnova and for mouse tissue from Proteintech; Mitofilin,

CHCHD6 and CHCHD3 from Abcam; SDHA from Invitrogen;

Hsp60 from Stressgen; Tim23 from BD Transduction Laborato-

ries; Grp75 and GAPDH from SantaCruz Biotechnology;

Prohibitin from NeoMarkers; ICDH from Biogenesis; SAM50

and Metaxin antibodies were raised in rabbits against a full-length

10xHis-tagged protein.

Bioinformatic analysis
Primary structure of muDNAJC11 was determined using the

search tool against the Pfam database (http://pfam.sanger.ac.uk/).

Secondary structure prediction and alignment was performed

using JPred [63]. Sequence homology searches were performed

using BLASTP on both the non-redundand GenBank database

and the SwissProt databases. Defining structural homology was

performed using BLASTP on the sequences of the ProteinData-

Bank (PDB) database [64,65], and the SwissModeller server [66].

Multiple sequence alignment for vertebrate DNAJC11 homo-

logues was performed with ClustalX software. The coiled coil

region was determined using the MARCOIL coiled-coil prediction

software [67].

Statistical analysis
Student’s two tailed unpaired t test was performed using Prism 5

(GraphPad Software). p values were symbolized as follows: *p,

0,05; **p,0,01; ***p,0,001; ns, p.0,05.

Supporting Information

Figure S1 Abnormal mitochondrial structure in spc/spc
spinal cord motor neurons. Representative electron micro-

graphs of mitochondria (M) in motor neuron cell bodies from WT

(a) and spc/spc mice (b-d). Asterisks indicate abnormally stacked or

concentric membranes. Scalebar: 200 nm.

(TIF)

Figure S2 Exon organization and primer pair positions
of the sequenced DnaJC11 brain transcripts. Horizontal

arrows denote the primer pair that was used for sequencing. Black

horizontal lines denote the 735 and 844 base pairs PCR product

from a wild type (WT) and a spastic mouse. The inserted 109 bp

long additional exon in the spastic transcript is indicated with X.

Stop codons of the two transcripts are indicated (TAA in WT,

TGA in spastic). The 107 base pairs distance of the novel TGA

stop codon in the spastic transcript from its next downstream exon-

exon junction is also indicated.

(TIF)

Figure S3 Protein sequence alignment of the C-terminal
region of the WT and predicted mutant (Spastic)
DNAJC11. Grey bars denote percentage of conservancy. Asterisks

denote 100% conservancy. Black arrow denotes the position of the

first frameshifted amino acid of the predicted mutant protein.

(TIF)

Figure S4 Multiple sequence alignment of the DNAJC11
63 kDa isoforms between the indicated vertebrate
species. Sequences were obtained from Ensembl database. Grey

bars denote percentage of conservancy. Asterisks denote 100%

conservancy.

(TIF)

Figure S5 Schematic diagram of the three predicted
isoforms of muDNAJC11. Amino acid numbers for all

recognized domains are shown. Region in blue represents the

DUF3395 domain. Region in red represents the coiled coil

domain. Red asterisk and red arrow represent the site of the

mutation and the stretch of the predicted mutated sequence

respectively. Yellow region in the 45 kDa isoform represents a

region absent in the other isoforms. Black lines denote the protein

regions of the 63 kDa isoform which are absent in the other

isoforms.

(TIF)

Figure S6 A structural model of the J domain of the N-
terminal 14–72 amino acid residues of DNAJC11. A-

helices are represented as cyan springs and non ordered linkers as

purple tubes.

(TIF)

DnaJC11 and Motor Neuron Pathology in Mice

PLOS ONE | www.plosone.org 15 August 2014 | Volume 9 | Issue 8 | e104237

http://pfam.sanger.ac.uk/


Figure S7 The secondary structure prediction for the C-
terminal region of the 63 kDa isoform. Each block runs

horizontally along the protein’s amino acid sequence and vertically

indicating homologues sequence analysis, sequence conservation

(boxes), and predicted secondary structure elements (a- helices as

purple rods and b-strands as yellow arrows). Query, Mus
musculus; Q7QDV2, Anopheles gambiae; B4J6Z1, Drosophila
grimshawi; B3S076, Trichoplax adhaerens; Q9NVH, Homo
sapiens; A9RS49, Physcomitrella patens; A8QCS0, Malassezia
globosa; Q54PV9, Dictyostelium discoideum; B0D6Q8, Laccaria
bicolor; C1E8E4, Micromonas sp.; A9PH24, Populus trichocarpa;

A2QUD0, Aspergillus niger.

(TIF)

Figure S8 A structural model of the C-terminal domain
of the protein MAS5/HSP40/YDJ1. This model resembles

the C-terminal domain of the 63 kDa isoform of muDNAJC11

that may form the association domain. A-helices are shown in

cyan, b-strands are shown in purple. On the left, part of the coiled

coil region is shown, represented as pink tube.

(TIF)

Figure S9 Expression analysis of DnaJC11 in TgF869
transgenic mice. (A) qPCR analysis of DnaJC11 expression

using a primer pair common for both mouse and human

DnaJC11 transcripts. Cerebrum, Wt (n = 5), Tg (n = 8); Spinal

Cord, WT (n = 3), Tg (n = 6); Muscle (n = 4); Thymus (n = 2-3).

Data represent mean 6 SE. (B) Western blot analysis of isolated

mitochondria for DNAJC11 expression in various tissues of WT

and Tg mice. Grp75 served as a loading control. Student’s t test

was performed for statistical analysis. ***p, 0.001, **p,0.01,

*p,0.05.

(TIF)

Figure S10 Normal motor neuron morphology in res-
cued (TgF869/DnaJC11spc/spc) mice. (A) Representative

toluidine blue stained semi-thin resin sections showing motor

neurons in the ventral horn of the spinal cord from two, 2 month

old rescued mice. Motor neurons of rescued mice (n = 2) had a

perfectly normal appearance and were indistinguishable from the

WT ones. Scalebar: 20 mm. (B) Representative electron micro-

graphs of mitochondria in motor neuron cell bodies from rescued

mice. Scalebar: 200 nm.

(TIF)

Table S1 Fine mapping results.
(DOC)

Video S1 (AVI)
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