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1. Introduction 

1.1. Receptors and ligands of the TNF family 

1.1.1. TNF receptor superfamily (TNFRSF) 

   Receptors and ligands of the tumor necrosis factor (TNF) superfamily participate in a wide 

range of biological processing including cell differentiation, proliferation, apoptosis, survival 

and induction of inflammatory mediators such as cytokines and chemokines (Moran et al., 

2013). Therefore, it is no wonder that researchers have paid and still pay great attention on 

the investigation of receptors and ligands of TNF superfamily. Members of the TNFRSF 

typically consist of three major domains: an extracellular domain, which binds the 

corresponding TNF ligand, a transmembrane domain and an intracellular domain, which 

interacts with adapter proteins and various kinases (Aggarwal, 2003; Bodmer et al., 2002; 

Locksley et al., 2001). The assignment of a protein to the TNFRSF bases on the presence of 

one to six copies of a conserved cysteine rich domain (CRD) (Locksley et al., 2001).  

   Except a few soluble or GPI-anchored decoy receptors (DcRs), all members of the 

TNFRSF are single spanning transmembrane receptors which typically activate 

proinflammatory and cytotoxic signaling pathways after stimulation by their corresponding 

TNF ligand (Locksley et al., 2001). The transmembrane members of the TNFRSF can be 

further classified into two groups: TNFR associated factor (TRAF)-interacting or nondeath 

receptors and death receptors (DRs) (Figure 1) (Bodmer et al., 2002). The nondeath 

receptors of the TNFRSF, such as CD40 and TNFR2, interact directly with members of the 

TRAF adapter protein family and stimulate signaling pathways resulting in the activation of 

nuclear factor κB (NFκB) and mitogen-activated protein kinases (MAPK) (Chakrabarti et al., 

2007; D'Aversa et al., 2008; McLeish et al., 1998; Tanimura et al., 2005). On the other hand, 

DRs are characterized by intracellular domain containing a conserved protein-protein 

interaction domain, the death domain (DD). By help of the DD, some DRs, such as CD95 

(Fas), TRAILR1 (DR4) and TRAILR2 (DR5), trigger apoptotic and/or necrotic cell death via 

DD-containing adapter proteins and caspase-8 (Locksley et al., 2001). 

1.1.2. TNF ligand family 

   The name giving TNF itself is a proinflammatory molecule and that is why there are many 

research trials to develop antibodies or Fc fusion proteins that inhibit or interfere with TNF 

signaling pathways as successful tools for the treatment several immune and inflammatory 

diseases such as rheumatoid arthritis (RA) and Crohn’s disease (Denmark and Mayer, 2013; 

Paula and Alves, 2014). Many other ligands of the TNF family have similarly implicated in the  
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stimulation of T and B lymphocytes and antigen-presenting cells such as dendritic cells 

(DCs) but now it has been recognized that TNF ligands also regulate non-lymphoid cells 

(Croft et al., 2012). Based on the broad functions and distribution of TNF ligands, 

researchers have paid more attention to discover and analyze all members of TNF 

superfamily as additional or alternative therapeutic targets for patients suffering from 

inflammatory or autoimmune diseases (Figure 1) (Bodmer et al., 2002).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Receptors and ligands of the TNF superfamily.    
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   For example, the TNF ligand OX40L, which stimulates the TNFR OX40, has acquired 

research interest due to its broad distribution and regulation of variable cell types such as T 

cells, B cells, natural killer (NK) cells and DCs. Indeed, OX40L and OX40 are considered as 

proinflammatory molecules that were well proved to participate in the etiology of many 

inflammatory diseases such as asthma, colitis, diabetes and atherosclerosis (Croft, 2010). 

Furthermore, the OX40L/OX40-system is required for survival and proliferation of T memory 

due to its ability to induce antiapoptotic proteins (Gramaglia et al., 2000; Hori, 2006; Rogers 

et al., 2001). Another member of TNF superfamily is CD30L which binds to CD30. The 

expression of CD30 is not only restricted to malignant tumors such as Hodgkin lymphoma 

but also to T-cells and other many cell types (Kennedy et al., 2006; Schirrmann et al., 2013). 

Regarding the therapeutic benefits after discovery of CD30L/CD30-pathway, it was revealed 

that blocking of this pathway attenuates the progress of inflammatory diseases such as 

diabetes and asthma (Oflazoglu et al., 2009).  

   Likewise, CD70 is also another member of the TNF superfamily that is expressed on B-

cells, activated T-cells and mature dendritic cells (mDCs). CD70 exerts its biological function 

via binding to a member of TNFRSF known as CD27 which is expressed on various types of 

T-cells, some types of B-cells, NK and NKT cells (Denoeud and Moser, 2011; Nolte et al., 

2009). Actually, it is well proved that CD27 activation plays a vital role in triggering survival 

signals and differentiation of T-cells via activation of both classical and alternative NFκB 

signaling (Gerondakis et al., 2012; Ramakrishnan et al., 2004). Moreover, CD70 is highly 

expressed in a variety of hematologic malignancies and also on solid tumors and thus 

represents a novel target for antitumor drugs (Diegmann et al., 2005; Junker et al., 2005; 

Ryan et al., 2010; Wischhusen et al., 2002). Indeed, immune-inhibitory effects were reported 

as a consequence of expression of CD70 on tumor cells and have been attributed to 

exhaustion of the T-cell pool and accumulation Tregs in the tumor (Claus et al., 2012; van 

Gisbergen et al., 2009). Therefore, CD27/CD70-pathway deserves more research interest in 

the field of cancer therapy as an interesting target for blocking the immune-inhibitory effects 

of CD70-expressing tumor cells (Vinay and Kwon, 2009).  

   Although the previously mentioned TNF ligand/TNFR-systems provide therapeutic benefits 

through their blockade, there are other members of the TNF superfamily that elicit antitumor 

activity or immune suppression through their stimulation. Agonistic antibodies of the TNFR 4-

1BB, for example, which is naturally stimulated by 4-1BBL, exhibit antitumor activity in some 

murine tumor models (Kim et al., 2001; Melero et al., 1997; Shi and Siemann, 2006). The 

antitumor activity of agonistic 4-1BB-specific antibodies has been attributed to an increase of 

cytotoxic T-lymphocyte and NK cell activity (Tansey and Szymkowski, 2009; Vinay and 

Kwon, 2011). Unfortunately, there are reports that agonistic 4-1BB antibodies are associated 
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with adverse effects (Croft, 2009; Salek-Ardakani and Croft, 2010; Tansey and Szymkowski, 

2009; Vinay and Kwon, 2011). CD40 is another prominent member of the TNFRSF that is 

targeted in clinical studies with agonistic antibodies (see details under section 1.5). 

   Worth mentioning, some ligands of TNF superfamily and agonistic antibodies of some 

TNRSF members are currently in clinical trials for treatment of cancer patients due to their 

ability to trigger apoptosis and antitumor activity upon binding to their corresponding DRs. 

For example, the TNF ligand CD95L (FasL) stimulates the DR CD95 (Fas). The 

CD95L/CD95-system represents an effector mechanism of cytotoxic T-lymphocytes against 

viral infection and transformed cells. Moreover, its expression on NK cells increases in 

response to CD16 engagement and other cytokines such as IL2 and IL12 (Eischen et al., 

1996). In addition, stress inducing agents, such as chemotherapy, radiation or viral infection, 

can trigger CD95L release in various cell types (Pinkoski and Green, 1999). In addition to 

CD95L release under stress condition, this molecule plays also a vital role under 

physiological conditions to control different biological processes such as skin homeostasis, 

erythroid differentiation and angiogenesis in the eye (De Maria et al., 1999; Hill et al., 1999; 

Janssen et al., 2003; Kaplan et al., 1999). Actually, CD95L is an interesting candidate for 

treatment of cancer patients due to its ability to induce apoptosis and consequent tumor cell 

death. The apoptotic activity of CD95L results from its binding to CD95 and triggering the 

recruitment of the adaptor molecule Fas-associated death-domain (FADD). The latter 

subsequently recruits and activates the initiator caspase which is known as caspase-8 and 

stimulates apoptosis (Kischkel et al., 1995; Muzio et al., 1996). Unfortunately, systemic 

activation of CD95 triggers deadly side effects in the liver which currently limit the use of 

CD95L and agonistic CD95 antibodies as safe antitumor drugs. It is thus a novel research 

challenge to widen the safety margin of CD95 targeting by the development of therapy 

concepts/drugs that allow tumor localized activation of CD95 (Guicciardi and Gores, 2009; 

Wajant et al., 2005). 

 

1.2. TRAIL/TRAILR-system and activation of apoptosis 

1.2.1. Classification of TRAILRs 

   TRAIL is a member of the TNF superfamily which is important for immune surveillance and 

represents also a defensive function against tumor development as was proved by 

experiments in TRAIL-deficient mice (LeBlanc and Ashkenazi, 2003). Interestingly, 

molecules targeting the TRAIL DRs are considered as safe antitumor drugs as TRAIL DRs 

induce apoptosis preferentially in many cancer cells but have little or no cytotoxicity against 

normal cells. Actually, TRAIL induces apoptosis upon binding to its DD-containing receptors, 
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TRAILR1 (DR4) and/or TRAILR2 (DR5) (LeBlanc and Ashkenazi, 2003). Three other 

TRAILRs lack a functional DD and are thus unable to induce apoptosis. Two of these 

TRAILRs are Decoy receptor 1 (DcR1) and osteoprotegerin (OPG), without a cytoplasmic 

domain and their overexpression is in some tumor cells responsible for TRAIL resistance 

against apoptosis. The fifth TRAILR is also named as a DcR, DcR2 (TRAILR4) as it 

interferes with TRAIL-induced apoptosis similar to the other DcRs (Lane et al., 2013; Pan et 

al., 1997; Sheridan et al., 1997). However, TRAILR4 has a cytoplasmic domain with a 

truncated DD and it is thus possible that this receptor triggers death-independent signaling 

pathways (Degli-Esposti et al., 1997). 

   
1.2.2. Mechanisms of TRAIL DR-induced apoptosis  

   Induction of apoptosis by TRAIL starts with binding of the molecule to TRAILR1 and/or 

TRAILR2 and triggering of receptor trimerization. Similar as in the CD95L/CD95-system, 

activation of the TRAIL DRs results in the recruitment of the DD-containing adaptor molecule 

FADD via a DD–DD interaction. Receptor-bound FADD in turn via a second protein-protein 

interaction domain, named death effector domain (von Pawel et al.), recruits procaspase-8/-

10 and triggers their activation by oligomerization-induced proximity (Kischkel et al., 2000). 

Apoptosis signaling is further transmitted by the ability of active caspase-8/-10 to convert 

procaspase-3 into active caspase-3 (Figure 2). Moreover, caspase-8 can further stimulate 

apoptosis via other pathway known as the intrinsic pathway which starts with the cleavage 

and the activation of the pro-apoptotic Bcl-2 protein, Bid (Green, 2000). Cleaved Bid 

activates Bax and Bak and triggers their oligomerization and subsequent pore formation in 

the outer mitochondrial membrane that leads to the release of the pro-apoptotic factors, 

cytochrome c and SMAC/DIABLO into the cytosol (Du et al., 2000; Verhagen et al., 2000). 

The released cytochrome c then binds to apoptosis-inducing factor-1 (Apaf1) and 

procaspase-9 resulting in the assembly of the apoptosome which triggers the release of 

caspase-9 which subsequently activates caspase-3. Of similar importance is that SMAC can 

antagonize the anti-apoptotic activity of xIAP which blocks caspase-3 activation downstream 

of caspase-8. Thus, DR-induced caspase-8 mediated BID cleavage and activation of the 

intrinsic pathway enhance apoptosis induction by the extrinsic pathway. Moreover, 

executioner caspases such as caspase-3 can cleave caspase-8 providing a positive 

feedback in the apoptotic caspase cascade (Kroemer and Reed, 2000). Indeed, caspase-8 

mediated activation of caspase-3 and other executioner caspases is sufficient to trigger 

apoptosis in some cell types, while in other cell types the intrinsic pathway is necessary for 

the fulfilment of DR-induced apoptosis. Thus, conclusively, tumor cells are classified into type 

I tumor cells, which are independent on the intrinsic mitochondrial pathway, and type II tumor 



Introduction 

16 

 

cells which are dependent on the intrinsic mitochondrial pathway to trigger apoptosis (Figure 

2) (Maas et al., 2010).  

   Interestingly, a tumor suppressor protein known as p53 plays a vital role in the intrinsic but 

also in the extrinsic pathway pathway. p53 is a transcription factor and is activated in 

response to a variety of cellular stress conditions such as DNA damage or oxidative stress 

following chemotherapy or radiation therapy. The role of p53 is either to inhibit cell cycle 

through regulation of p53-responsive genes such as p21 and p27 or to trigger apoptosis 

through activation of the intrinsic pathway by some proapoptotic members of Bcl-2 family 

such as Bax, PUMA and Noxa but also by stimulation of the extrinsic pathway by 

upregulation of TRAILR2, CD95 and CD95L (Chandrasekaran and Richburg, 2005; 

Vogelstein and Kinzler, 2004; Yu and Zhang, 2005). Therefore, resistance to chemotherapy 

or irradiation may be attributed to mutations in p53 which are often detected in tumor cells. 

 
   

Figure 2: Mechanism of apoptosis induction via TRAILR1 and/or TRAILR2 stimulation. 

Details are discussed in the text. 
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1.2.3. Clinical trials for TRAIL DR targeting therapies 

   TRAIL attracts more research interest than other ligands of the TNF superfamily as a 

strong apoptosis inducing agent and a safe antitumor drug due to its ability to induce cell 

death mainly in tumor cells with little or no detected cytotoxicity in non-transformed cells and 

tissues (Newsom-Davis et al., 2009). Although TRAIL-knockout mice display no 

developmental defects and grow in a normal manner, they are more susceptible to tumor 

initiation and display accelerated growth of malignancies and reduced apoptosis (Akazawa et 

al., 2013; Cretney et al., 2002; Finnberg et al., 2005; Grosse-Wilde et al., 2008; Zerafa et al., 

2005). As far as the role of TRAIL/TRAIL DRs in the induction of apoptosis and inhibition of 

tumor growth was confirmed, clinical research has paid great attention to investigate 

recombinant TRAIL or other TRAIL DRs targeting agents such as agonistic antibodies. 

Dulanermin is an example of recombinant TRAIL that acts as an agonist for both TRAILR1 

and TRAILR2. Actually, dulanermin is now in phase II clinical trials and is evaluated in 

combination with other agents regarding its efficacy as an antitumor drug (Wainberg et al., 

2013). Unfortunately, recombinant TRAILR1/TRAILR2 agonistic ligands are associated in 

vivo with rapid clearance from the circulation and a short half life due to their small size 

(Herbst et al., 2010; Kelley et al., 2001). 

  In addition to recombinant TRAIL, TRAIL DRs can be stimulated with agonistic 

TRAILR1/TRAILR2 antibodies. It is worth saying that many TRAILR2 agonistic antibodies are 

in phase II trials such as conatumumab, drozitumab and lexatumumab (Holland, 2013). In 

addition, mapatumumab is an example for TRAILR1 agonist which is also in phase II trials 

(Holland, 2013; von Pawel et al., 2013). Interestingly, TRAILR1/TRAILR2-agonistic 

antibodies provide more advantages than recombinant ligands. One of these advantages is 

that they have higher affinity to TRAIL DRs and bind with limited affinity to DcRs or OPG 

(Kruyt, 2008). Moreover, the half life of TRAIL DRs agonistic antibodies are longer than 

recombinant TRAIL and thus can be applied at lower doses (Duiker et al., 2006). In addition, 

TRAILR1/TRAILR2-agonistic antibodies were reported to activate antibody-dependent cell-

mediated cytotoxicity (ADCC) against tumor cells expressing TRAIL DRs (Maddipatla et al., 

2007). Unfortunately, phase I/II studies on TRAILR1/TRAILR2-agonistic antibodies have not 

proved their success as promising antitumor drugs (Holland, 2013). One reason for the later 

is that the in vivo activity of these agonistic antibodies is directly related to their binding to 

Fcɣ receptors (FcɣRs) and the subsequent cross linking of the antibodies (Wilson et al., 

2011). Therefore, the limited or the low expression of FcɣRs in the in vivo tumor environment 

interferes with the antibody cross linking and the induction of the antitumor activity. 
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1.2.4. Mechanisms of resistance against TRAIL-induced apoptosis 

   Although TRAIL is a potent inducer of apoptosis and death of tumor cells via TRAIL DRs 

stimulation, the presence of TRAIL DRs does not always reflect TRAIL sensitivity. Some 

tumors, such as chronic lymphocytic leukemia (CLL), meningioma and astrocytoma, are 

TRAIL resistant despite considerable expression of TRAIL DRs on their surfaces (Dyer et al., 

2007). Against the background of the considerable interest on TRAIL DR targeting for tumor 

therapy, knowledge of TRAIL resistance mechanism is an interesting and important research 

challenge. The mechanisms of TRAIL resistance are variable and cell type dependent. For 

example, TRAIL resistance can be attributed to the overexpression of DcRs, DcR1 and/or 

DcR2, which protect cancer cells from TRAIL binding to TRAIL DRs and thus prevent 

subsequent induction of apoptosis (LeBlanc and Ashkenazi, 2003; Morizot et al., 2011; Pan 

et al., 1997; Sheridan et al., 1997). Unfortunately, DcRs are not always responsible for 

TRAIL resistance because scientific research failed to find a significant correlation between 

TRAIL resistance in most tumor cells and the expression of DcRs (Zhang et al., 1999).  

   The most powerful inhibitor of TRAIL-induced apoptosis is presumably cellular FLICE-

inhibitory protein (c-FLIP) which blocks caspase-8 binding on FADD and/or forms heteromers 

with procaspase-8 with limited activity and thus inhibits apoptotic DISC activity and interrupts 

the apoptosis cascade already at the receptor level (Figure 2) (Irmler et al., 1997; Safa and 

Pollok, 2011). Many research trials have been directed to sensitize TRAIL-induced apoptosis 

through downregulation of c-FLIP level (Bijangi-Vishehsaraei et al., 2010; Seo et al., 2013). 

In addition to c-FLIP, other inhibitors of TRAIL-induced apoptosis were detected such as 

inhibitor of apoptosis proteins (IAP) which is a family of caspase inhibitory proteins including 

X-linked IAP (XIAP), c-IAP1, c-IAP2 and survivin (Figure 2) (Schimmer et al., 2004). 

Needless to say that many research trials revealed a great success to sensitize tumor cells 

toward TRAIL-induced apoptosis by antagonizing IAPs (Allensworth et al., 2013; Finlay et al., 

2013; Park et al., 2013). In the same scenario, Bcl-2 is considered as antiapoptotic protein 

conferring TRAIL resistance in some tumor cells and its suppression sensitizes tumor cells to 

TRAIL-induced apoptosis (Li et al., 2011; Zhang et al., 2012). Moreover, tumor cells can 

trigger resistance to the intrinsic pathway of apoptosis via mutations in tumor suppressor 

proteins such as p53 that interferes with the release of some Bcl-2 family members as 

mentioned before (Vogelstein and Kinzler, 2004; Yu and Zhang, 2005). 
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1.3. Exogenous activation of TNFRs 

   The major initial character of all members of TNF ligands is that they are expressed as 

transmembrane proteins which are transformed naturally to soluble trimeric ligands by 

proteolytic processing or alternative splitting. These soluble TNF ligands still contain the TNF 

homolgy domain and therefore have the ability to bind to their corresponding members of the 

TNFRSF (Wajant et al., 2013). Antibodies and recombinantly produced soluble TNF ligand 

variants are developed and used as research tools for exogenous activation of the TNFRSF. 

Indeed, both types of reagents are under consideration for TRAIL DR-targeted therapies in 

clinical studies. A major consideration for TNFR-specific antibodies in general and TRAIL 

DR-specific antibodies in particular is that their binding to FcɣRs can be extremely important 

for their agonistic activity. This means that the availability of FcɣRs expressing cells in the 

microenvironment of the tumor as well as the isotype of the antibody are of overwhelming 

importance for in vivo activity (Dhein et al., 1992; Li and Ravetch, 2011; Vonderheide and 

Glennie, 2013; Wilson et al., 2011). In addition, agonistic antibodies can activate in vivo 

immune cells and stimulate immune functions such as ADCC. With respect to recombinantly 

produced soluble TNF ligands, members of the TNFRSF respond differently to soluble ligand 

molecules in contrast to membrane-bound TNF ligands that always mediate strong receptor 

activation. Despite the strong activation of some members of the TNFRSF by soluble ligands, 

other members are unable to mediate signaling even after binding to soluble ligands (Wajant 

et al., 2013). This particular also attains to TRAILR2 (Wajant et al., 2001). 

1.4. Response of TRAIL DRs to soluble recombinant TRAIL and strategies to improve its 

activity 

   Concerning the response of the TRAIL DRs to soluble recombinant TRAIL, there is 

evidence that TRAILR1 equally responds to the membrane bound form of TRAIL and the 

soluble ligand, whereas TRAILR2 signals only in response to membrane bound form of 

TRAIL (Kelley et al., 2005; Wajant et al., 2001). Despite research trials, it is difficult to explain 

the reasons for the inability of TRAILR2 to trigger apoptosis after binding to soluble TRAIL. 

However, it was proved that soluble TNF ligands become active after oligomerization in 

supramolecular clusters (Berg et al., 2007; Wajant et al., 2001). According to this finding, the 

first strategy to enhance the activity of soluble TRAIL was secondarily oligomerization. 

Fortunately, there is a proof of the success of this strategy in cell lines expressing only 

TRAILR2 such as Jurkat cells that revealed significant induction of cell death with soluble 

TRAIL ligands oligomerized with anti-Flag antibodies (Berg et al., 2007). As far as 

oligomerization of soluble ligands revealed enhanced activity, research trials have continued 
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to improve the activity of soluble TRAIL ligands with the help of genetic engineering to design 

hexameric and nonameric death ligands that showed superior activity as compared to 

trimeric ligands (Bremer et al., 2009; Greaney et al., 2006; Holler et al., 2003; Lamanna et 

al., 2013; Wyzgol et al., 2009). Hexameric death ligands can be produced through the design 

of fusion proteins of soluble TRAIL with a N-terminally Fc-immunoglobin-1 domain that 

exhibit a significant increase in activity and do not need further oligomerization with anti-Flag 

antibodies (Wajant et al., 2013). Another strategy to obtain oligomerized ligand is the design 

of single chain polypeptide where three subunits of the TRAIL molecules are connected by 

polypeptide linker sequences (Krippner-Heidenreich et al., 2008). Interestingly, fusion 

proteins of soluble TRAIL with a single chain antibody fragment (scFv) recognizing a cell 

surface antigen revealed enhanced TRAIL activity after anchoring to the cell surface antigen 

and mimiced the action of transmembrane TRAIL (Wajant et al., 2013). These scFv-TRAIL 

fusion proteins trigger not only significant receptor activation and apoptosis induction but they 

also provide target antigen-restricted apoptosis induction on cells that express this specific 

antigen on their surface or on cells in the direct neighborhood of such cells (Bremer et al., 

2004b). Moreover, scFv-TRAIL fusion proteins represent a novel strategy to obtain 

bifunctional molecules which on one side are able to stimulate apoptosis through stimulation 

of TRAIL DRs by the TRAIL domain and on the other side are able to stimulate/block other 

specific cellular function by the scFv-domain binding to a specific cell surface antigen (de 

Bruyn et al., 2010). As implied by previous findings, scFv-TRAIL represents a novel strategy 

to improve the activity of soluble TRAIL and the following table represents some scFv-TRAIL 

fusion proteins (Table 1).  

 

Table 1: scFv fusion proteins of soluble TRAIL. 

 

TRAIL Fusion protein Targeted cell surface antigen Reference 

scFv:CD70-TRAIL CD70 (Trebing et al., 2014) 

scFvM58-sTRAIL MRP3 (Wang et al., 2013a) 

scFv-EHD2-scTRAIL EGFR (Seifert et al., 2013) 

Ad-KDRscFv:sTRAIL VEGF (Yang et al., 2012) 

scFv-scTRAIL Extracellular domain of ErbB2 (Schneider et al., 2010) 

Anti-MCSP:TRAIL MCSP (de Bruyn et al., 2010) 

scFvCD33:sTRAIL CD33 (ten Cate et al., 2009) 

scFvCD19:sTRAIL CD19 (Stieglmaier et al., 2008) 

scFvCD7:sTRAIL CD7 (Bremer et al., 2005a) 

scFv425:sTRAIL EGFR (blocking antibody) (Bremer et al., 2005b) 

scFvC54:sTRAIL EGP2 (Bremer et al., 2004a) 

MBOS4-TRAIL FAP (Wajant et al., 2001) 
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1.5. CD40 and its role in cancer immunotherapy 

   As mentioned before, members of TNFRSF are broadly expressed in the cells of immune 

system such as 4-1BB, CD27, OX40 and CD40. CD40 is composed of a protein of 277 

amino acids. These amino acids include a large extracellular domain of 193 amino acids, 

transmembrane region of 22 amino acids and a short cytoplasmic C-terminus composed of 

62 amino acid (Loskog and Eliopoulos, 2009). Concerning CD40L/CD40-system, CD40 

mediates signaling mainly dependent on recruitment of adaptor proteins of the TRAF family 

upon binding to its corresponding ligand, CD40L (Bishop et al., 2007). Despite the absence 

of intrinsic kinase activity in cytoplasmic tail of CD40, TRAFs are able to conduct CD40 to the 

intracellular signaling components and activate protein kinases resulting in the recruitments 

of many signaling pathways, such as JNK, ERK, MAPK and NFκB, that are responsible for 

the reported CD40 activities (Eliopoulos, 2008; Loskog and Eliopoulos, 2009). 

  CD40 is constitutively expressed on antigen presenting cells (APCs) such as B cells and 

DCs and a range of tumor cells. Therefore, CD40 represents an interesting therapeutic target 

due to its activity in immune cells and as a tumor target antigen. Concerning its role in 

immune regulation, stimulation of CD40 on APCs leads to a wide range of cellular responses 

such as maturation of DCs and subsequent secretion of cytokines, induction of antigen 

presentation via stimulation of CD40 on B cells and stimulation of antigen specific T cells 

(Vonderheide and Glennie, 2013). With regard to CD40 expression on tumor cells, almost all 

mature B-cell tumors display high CD40 expression such as Hodgkin lymphoma, NHL and 

CLL (Banchereau et al., 1994; O'Grady et al., 1994; Wang et al., 1997). Moreover, CD40 

expression is not limited only to B-cell malignancies but it has recently also been detected on 

some solid tumors such as melanoma, breast, neck, prostate and ovary tumors (Ottaiano et 

al., 2002; Pellat-Deceunynck et al., 1994). 

  The important role of immune system stimulation as an anticancer therapy has been 

recently proved in many cancer types (Gao et al., 2013). Therefore, CD40 represents an 

attractive target for immunotherapy in cancer treatment because of its wide expression on 

different malignancies and cells of the immune system. Indeed, stimulation of CD40 acts as a 

bridge between the immune response and the antitumor activity due to the release of effector 

immune cells after stimulation of CD40 on DCs, such as CD8+ cytotoxic T lymphocytes, NK 

cells and M1 macrophages, which in turn play a vital role in antitumor immunity (Loskog and 

Eliopoulos, 2009). In the view of CD40 role in tumor cells, agonistic CD40 antibodies reveal 

inhibition of tumor growth and potent antitumor efficacy alone or in combination with 

chemotherapy (Khong et al., 2013; Vardouli et al., 2009). Moreover, they can also inhibit 
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postoperative cancer recurrence and metastasis in some murine tumor models (Khong et al, 

2013). 

   Actually, there are two hypothesises regarding the mechanism of antitumor activity of 

CD40 antibodies. The first one is related directly to disruption of tumor proliferation after 

inhibition of CD40L/CD40-pathway and the ability of the CD40 antibody to trigger antibody-

dependent phagocytosis of tumor cells. The second one is related indirectly to CD40 

stimulation in immune system and the release of effector immune cells which in turn mediate 

antitumor immunity (Moran et al., 2013). It is worth saying that some CD40 agonistic 

antibodies are now in phase 1 studies as safe effective antitumor drugs which can be used 

alone or in combination with other agents such as chemotherapeutic drugs to synergize their 

antitumor activity (Beatty et al., 2013; Hussein et al., 2010). The following table lists some 

agonistic CD40 antibodies which were well proved in the clinical research for their antitumor 

efficacy (Table 2). 

 

Table 2: Some agonistic CD40 antibodies used in the clinical research as antitumor 
drugs. 
 

Agonistic CD40 

antibodies 

Types of the treated tumors References 

Chi Lob 7/4 Advanced solid tumors and 

Lymphoma (ongoing research) 

(Vonderheide and 

Glennie, 2013) 

CP-870,893 Advanced pancreatic ductal 

adenocarcinoma (solid tumor) 

(Beatty et al., 2013) 

FGK45 AB1-HA mesothelioma tumor in 

mice 

(Khong et al., 2013) 

ADX40 Murine -cell lymphoma model 

in mice 

(Carlring et al., 2012) 

Dacetuzumab (SGN-40) NHL (Lewis et al., 2011) 

G28-5  Lymphoma xenografted mice (Francisco et al., 1997) 

 

1.6. The role of DCs in immune system and the effect of tumors on their function 

1.6.1 The role of DCs in immune system 

   DCs are considered as a small subgroup of immune cells that are originated from the bone 

marrow and then found in nearly every tissue in the human body as a prime line of defence 

especially on body surfaces such as skin, on mucosal surfaces such as gastrointestinal tract 

and in immunological organs such as spleen and lymph nodes (Steinman and Banchereau, 

2007). DCs are considered the best professional APCs that have the ability to initiate, 

coordinate and regulate the adaptive immune responses. Indeed, DCs act as a messenger in 

http://www.ncbi.nlm.nih.gov/pubmed/23924788
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the immune system that recognizes foreign antigens, as an innate immune response, then 

transfers the information to T and B cells leading to differentiation of naive T cells into diverse 

T helper lymphocytes representing an adaptive immune reaction. Therefore, DCs are 

considered as link between innate and adaptive immune system (Banchereau et al., 2000; 

Levings et al., 2005; Pulendran et al., 1999).  

   Initially, DCs are present in an immature status at homeostatic condition that is 

characterized by lower MHC class II and costimulatory molecules expression. Then, when 

DCs recognize and ingest foreign antigens, they are transformed from the immature state to 

the mature state in presence of proinflammatory cytokines and this mature state is 

distinguished with upregulation and downreulgation of different markers. MHC class II 

molecules, CD80, CD86, CD40, OX40L and the CCR7 are examples of molecules 

undergoing upregulation on mDCs while CCR6 is downregulated on mDCs. Hence, mDCs 

gain the ability to migrate to lymph nodes and activate naive T lymphocytes and thus trigger 

an antigen-specific response (Benencia et al., 2012). 

 

1.6.2. Effect of tumors on DCs function 

   Concerning DCs role in tumor recognition, DCs are able to recognize tumor antigens and 

trigger adaptive immune response in an antigen-specific way to eradicate tumors. Therefore, 

DCs are considered as good candidates for cancer immunotherapy (Palucka and 

Banchereau, 2012). Unfortunately, tumor cells can bypass the response of DCs and disrupt 

their function through different inhibitory pathways which may start either early during DCs 

formation or appear at a later stage. The earlier inhibitory effect of tumor cells is attributed to 

their interference with the differentiation of monocytes into DCs by forcing the differentiation 

towards macrophages with the help of costimulatory molecules such as IL6 and macrophage 

colony stimulating factor (Chomarat et al., 2000). The later interference of tumor cells with 

DCs function could be attributed to the tumor secretion of inflammatory mediators, such as 

IL10 which interferes with DC maturation, and other factors, such as lactoferrin and CD47 

that bind to protein-α on the surface of phagocytes and then trigger inhibitory signals 

interfering with phagocytosis (Chao et al., 2010; Palucka and Banchereau, 2012; Yanofsky et 

al., 2013). Thus, recent research trials have been directed toward bypassing these inhibitory 

effects of tumor cells and restoration of DCs activity to trigger potent antitumor immunity 

(Kuhn and Ronchese, 2013; Li et al., 2013; Wang et al., 2013b). 
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1.7. Aim of the work 

  Some tumors are preferentially killed via only one of the two TRAIL DRs. Furthermore, 

there is evidence that combination therapies of TRAIL DRs targeting with sensitizing drugs 

may have side effects on normal cells. Against this background, one aim of this work was to 

evaluate TRAIL mutants that exhibit preferential binding to either TRAILR1 or TRAILR2 for 

their usefulness in the construction of scFv-TRAIL fusion proteins to have the option to 

circumvent side effects related to the activation of the TRAIL DR not relevant for antitumor 

activity in a certain tumor type. A second aim was to test with a scFv derived of a CD40-

specific antibody whether it is possible to construct bifunctional scFv-TRAIL fusion proteins 

enabling TRAIL DR and DCs stimulation. 
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2. Materials 

2.1. Chemicals, reagents and cell culture mediums for the cell culture 

Substance Company 

1kb DNA-ladder   Fermentas, St. Leon-Rot, Germany  

3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide (MTT) 

Sigma, Deisenhofen, Germany 

Acetic acid   J. T. Baker, Leibzig, Germany    

Acrylamide (30 %)   Carl Roth, Karlsruhe, Germany   

Agar   Carl Roth, Karlsruhe, Germany 

Agarose Carl Roth, Karlsruhe, Germany 

Ammonium persulfate (APS) AppliChem, Darmstadt, Germany 

Ampicillin  Carl Roth, Karlsruhe, Germany    

Anti-CD14-coated beads Miltenyi Biotec, Bergisch Gladbach, Germany 

Anti-Flag M2 agarose beads Sigma, Deisenhofen, Germany 

Bovine serum albumin (BSA) Sigma, Deisenhofen, Germany 

Crystal violet (CV) powder Carl Roth, Karlsruhe, Germany 

Cycloheximide (CHX)   Sigma, Deisenhofen, Germany 

Dimethyl sulfoxide (DMSO) Carl Roth, Karlsruhe, Germany 

DMEM medium PAA, Pasching, Austria 

Ethanol J. T. Baker, Leibzig, Germany 

Ethidium bromide Carl Roth, Karlsruhe, Germany 

Ethylenediaminetetraacetic acid (EDTA) Carl Roth, Karlsruhe, Germany 

Fetal bovine serum (FCS)     PAA, Pasching, Austria     

Flag peptide  Sigma, Deisenhofen, Germany 

Geneticin disulfate (G418-Sulfate)    Carl Roth, Karlsruhe, Germany  

Granulocyte-macrophage colony-

stimulating factor (GM-CSF) 

Miltenyi Biotec, Bergisch Gladbach, Germany 

IL1β R&D Systems, Wiesbaden, Germany 

IL4 Miltenyi Biotec, Bergisch Gladbach, Germany 

IL6 Immuno tools, Friesoythe, Germany 

Iodoacetamide Sigma, Deisenhofen, Germany 

Killer-TRAIL Enzo Life Sciences, Lörrach, Germany 

Lipopolysaccharide (LPS) Sigma, Deisenhofen, Germany 

Lymphocyte separation medium PAA, Pasching, Austria 

Methanol J. T. Baker, Leibzig, Germany 

Nonfat dried milk powder Sigma, Deisenhofen, Germany 

Paraformaldehyde Carl Roth, Karlsruhe, Germany 

Penicillin-Streptomycin (100 x)   PAA, Pasching, Austria    

Peptone Carl Roth, Karlsruhe, Germany 

Phosphatase inhibitor II Sigma, Deisenhofen, Germany 

Phosphate buffered saline (PBS) PAA, Pasching, Austria 

Polymyxin B (PMB) InvivoGen, Toulouse, France 

Prestained protein marker (broad range) New England Biolabs, Frankfurt, Germany 

http://en.wikipedia.org/wiki/Di-
http://en.wikipedia.org/wiki/Di-
http://en.wikipedia.org/wiki/Thiazole
http://en.wikipedia.org/wiki/Phenyl
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Prostaglandin E2 (PGE2) Biomol, Hamburg, Germany 

Protease inhibitor cocktail  Roche, Mannheim, Germany   

Protein G agarose  Roche, Mannheim, Germany 

RPMI 1640 Medium   PAA, Pasching, Austria  

Silver gel marker (low molecular weight) GE Healthcare, Garching, Dassel, Germany 

Sodium dodecyl sulfate (SDS) Carl Roth, Karlsruhe Garching, Germany 

Sucrose  Sigma, Deisenhofen, Germany 

Tetramethylethylenediamine (TEMED) Sigma, Deisenhofen, Germany 

Tris Carl Roth, Karlsruhe, Germany 

Triton X-100 Sigma, Deisenhofen, Germany 

Trypsin-EDTA solution (10X) PAA, Pasching, Austria 

Tween-20 Carl Roth, Karlsruhe, Germany 

Yeast extract Carl Roth, Karlsruhe, Germany 

β-Mercaptoethanol Sigma, Deisenhofen, Germany 

 
2.2. Enzymes 

Enzyme Company 

T4-Ligase  Fermentas, St. Leon-Rot, Germany 

 

  All enzymes used for cloning TRAIL variants and TRAIL fusion proteins were obtained from 

Fermentas, St. Leon-Rot, Germany. 

2.3. Antibodies 

Antibody Source Company 

Anti-caspase-3 Rabbit polyclonal, #9662 Cell Signaling Technology, Beverly, 

MA, USA 

Anti-caspase-8 Mouse IgG2b, clone C15 Enzo Life Sciences, Lörrach, 

Germany 

Anti-caspase-9 Rabbit polyclonal, #9502 Cell Signaling Technology, Beverly, 

MA, USA 

Anti-CD14-PE Mouse IgG1, clone 

134620 

R&D Systems, Wiesbaden, 

Germany 

Anti-CD40-PE Mouse IgG1, clone HB14 Miltenyi Biotec, Bergisch Gladbach, 

Germany 

Anti-CD83-PE Mouse IgG1, clone HB15e R&D Systems, Wiesbaden, 

Germany 

Anti-CD86-PE Mouse IgG1, clone 37301 R&D Systems, Wiesbaden, 

Germany 

Anti-FADD Rabbit polyclonal Santa Cruz Biotechnology, 

Heidelberg, Germany 

Anti-Flag mAb M2 Mouse IgG1 monoclonal Sigma, Deisenhofen, Germany 

Anti-Flag mAb M2-FITC Mouse IgG1 Sigma, Deisenhofen, Germany 

Anti-FLIP (NF6) Mouse IgG1 monoclonal Enzo Life Sciences, Lörrach, 

Germany 



Materials 

27 

 

Anti-IκBα Mouse monoclonal, clone 

L35A5 

Cell Signaling Technology, Beverly, 

MA, USA 

Anti-JNK Rabbit polyclonal, #9252 Cell Signaling Technology, Beverly, 

MA, USA 

Anti-mouse IRDye 800 Goat polyclonal LI-COR Bioscience, Bad Homburg, 

Germany 

Anti-mouse-HRP Rabbit polyclonal Dako-Cytomation, Glostrup,  

Denmark 

Anti-PARP Mouse IgG1, clone 7D3-6 BD Biosciences, Heidelberg, 

Germany 

Anti-pIκBα Rabbit polyclonal, #2859  Cell Signaling Technology, Beverly, 

MA, USA 

Anti-pJNK Rabbit polyclonal, #9251 Cell Signaling Technology, Beverly, 

MA, USA 

Anti-rabbit-HRP Goat polyclonal Dako-Cytomation, Glostrup,  

Denmark 

Anti-rabbit-HRP Goat polyclonal, #7074 Cell Signaling Technology, Beverly, 

MA, USA 

Anti-TRAILR1 Rabbit polyclonal Merck Chemicals, Schwalbach, 

Germany 

Anti-TRAILR1-PE Mouse IgG1, Clone 69036 R&D Systems, Wiesbaden, 

Germany 

Anti-TRAILR2 Rabbit monoclonal, clone 

D4E9 

Cell Signaling Technology, Beverly, 

MA, USA 

Anti-TRAILR2-PE Mouse IgG2B, clone 

71908 

R&D Systems, Wiesbaden, 

Germany 

Anti-TRAILR3-PE Mouse IgG1, clone 90906 R&D Systems, Wiesbaden, 

Germany 

Anti-TRAILR4-PE Mouse IgG1, clone 

104918 

R&D Systems, Wiesbaden, 

Germany 

Anti-tubulin Mouse monoclonal Dunn Labortechnik, Asbach, 

Germany 

Mouse IgG1-PE Clone 11711 R&D Systems, Wiesbaden, 

Germany 

Mouse IgG2B-PE Clone 133303 R&D Systems, Wiesbaden, 

Germany 

 

2.4. Kits 

Kit Company 

Gaussia Luciferase Assay  New England Biolabs, Frankfurt, 

Germany 

Human IL12 ELISA DuoSet R&D Systems, Wiesbaden, Germany 

OptEIA IL8-ELISA  BD Biosciences, Heidelberg, Germany 

Pierce ECL Western Blotting Substrate Fermentas, St. Leon-Rot, Germany 

Pierce® Silver Stain  Fermentas, St. Leon-Rot, Germany 
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Pure Yield Plasmid Miniprep/Midiprep System Promega, Mannheim, Germany 

 

2.5. Instruments and disposable materials/equipments 

Instrument or material/equipment Company 

96-well ELISA plates (high binding) Greiner, Frickenhausen, Germany 

Agfa Curix 60 processing maschine Agfa, Düsseldorf, Germany 

Black 96-well ELISA plates Greiner, Frickenhausen, Germany 

Casting chambers for SDS-PAGE PeqLab, Erlangen, Germany  

Cell culture bottles Greiner, Frickenhausen, Germany 

Cell culture petri dishes Greiner, Frickenhausen, Germany 

Cell culture plates Greiner, Frickenhausen, Germany 

Centrifuge Rotana 460R   Hettich, Tuttlingen, Germany 

CO2 incubator Heraeus Cell Safe Heraeus, Hanau, Germany 

Cryotubes Greiner, Frickenhausen, Germany 

Dialysing tubes, Viking, MWCO 15kDa Carl Roth, Karlsruhe, Germany 

Electrophoresis system "Mini-Protean Tetra 

Cell" 

BioRad, München, Germany  

Eppendorf tubes, 1,5 ml und 2 ml Eppendorf, Hamburg, Germany 

Equibio EasyjecT Plus electroporator PeqLab, Erlangen, Germany 

Flow cytometer FACScaliber BD Biosciences, Heidelberg, Germany 

Flow cytometry tubes Falcon, Heidelberg, Germany 

Heat block PeqLab, Erlangen, Germany 

LI-COR Odyssey® Infrared Imager LI-COR Biosciences, Lincoln, USA 

Lucy 2 luminometer/ELISA-reader   Anthos Labtec, Krefeld, Germany 

MACS LS columns Miltenyi Biotec, Bergisch Gladbach, 

Germany 

MACS multistand Miltenyi Biotec, Bergisch Gladbach, 

Germany 

MACS separator Miltenyi Biotec, Bergisch Gladbach, 

Germany 

Microcentrifuge 5417C Eppendorf, Hamburg, Germany 

Nitrocellulose membranes, 0,2 µM pore size Whatman, Dassel, Germany 

PCR-Thermocycle Primus MWG Biotech, Ebersberg, Germany 

Pipetus Hirschmann Laborgeräte, Eberstadt, 

Germany 

Polyallomer tubes Seton, Los Gatos, CA, USA 

Polypropylene tubes Greiner, Frickenhausen, Germany 

Power supply EPS 301 GE Healthcare, Garching, Germany 

Sterile filters (0,2µm) Sarstedt, Nümbrecht, Germany 

Sterile plastic Pasteur pipettes Hartenstein, Würzburg / Versbach, 

Germany 

Ultracentrifuge OPTIMA-L70 Beckman Coulter, Krefeld, Germany 

Well plates for cell culture Greiner, Frickenhausen, Germany 

Wet/tank blotting system PeqLab, Erlangen, Germany 
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Whatman papers Hartenstein, Würzburg / Versbach, 

Germany 

 
2.6. Preparations and buffers 

Preparation Prescription 

Assay diluent 1 x PBS 

10 % (v/v) FCS 

Blot buffer 10x  0,025 M Tris 

0,192 M glycin 

20 % (v/v) methanol 

pH 8,3 

CV staining solution 20 % (v/v) methanol  

0,5 % (w/v) CV powder 

ELISA coating buffer 8,4 g/l NaHCO3 

3,56 g/l Na2CO3 

pH 9,5 

Laemmli buffer  (SDS-PAGE, 4 x) 8 % (w/v) SDS 

10 % β-Mercaptoethanol  

40 % gycerol 

0,2 M Tris pH 8 

0,04 % bromphenol blue 

LB medium 10 g peptone 

5 g yeast extract 

10 g/l NaCl 

Lysis buffer for immunoprecipitation (IP) I M Tris-Hcl pH 7.4 

2M NaCl 

100 % glycerol 

100 % triton 

volume adjusted to 1 L with distilled 

water 

MACS buffer 1 x PBS 

0,5 % (w/v) BSA 

2 mM EDTA 

MTT lysis buffer  250ml dimethyl formamide 

75g SDS 

pH 4,7 (adjusted with acetic acid) 

volume adjusted to 500ml with distilled 

water 

MTT solution 500 mg MTT powder 

10 ml DMSO 

PBS 0,02 M Na phosphate 

0,7 % (w/v) NaCl 

pH 7,2 

PBST 1 x PBS 

0,05 % (v/v) tween-20 

PBST in milk 1 x PBS 
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0,05 % (v/v) tween-20 

5 % (w/v) nonfat dried milk powder 

Running buffer 10x (SDS-PAGE) 0,05 M Tris 

0,38 M glycin 

0,004 M SDS 

pH 8,3 

Separating gel buffer (SDS-PAGE) 1,5 M Tris 

 0,015 M SDS  

pH 8,8 

Stacking gel buffer (SDS-PAGE) 0,5 M Tris 

0,015 M SDS 

pH 6,8 

TAE buffer 2 M Tris 

1 M acetic acid 

0,1 M EDTA 

pH 8,3 

TBS 0,02 M Tris 

8 % (w/v) NaCl 

pH 7,6 

TBST 1 x TBS 

0,05 % (v/v) tween-20 

TBST in milk 1 x TBS 

0,05 % (v/v) Tween-20 

5 % (w/v) nonfat dried milk powder 

 

2.7. Cells 

2.7.1. Eukaryotic cells 

  The human cancer cell lines used for this work were already available in the Division of 

Molecular Internal Medicine, University Hospital of Würzburg. 

Cell line Source Origin of cancer  

786-O Institution's own stock Human kidney carcinoma 

BJAB Institution's own stock Human B-cell lymphoma  

HEK293 Institution's own stock Human embryonic kidney  

HeLa Institution's own stock Human cervical carcinoma 

HeLa-CD40 Stably transfected cell lines established the 

Division of Molecular Internal Medicine, 

University Hospital of Würzburg 

Human cervical carcinoma 

HT1080 Institution's own stock Human fibrosarcoma 

HT1080-

CD40 

Stably transfected cell lines established the 

Division of Molecular Internal Medicine, 

University Hospital of Würzburg 

Human fibrosarcoma 

HT29 Institution's own stock Human colorectal 

adenocarcinoma 
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Jurkat Institution's own stock Human T-cell lymphoma  

Mino Institution's own stock Mantle cell lymphoma 

OVCAR3 Institution's own stock Human ovarian carcinoma 

Panc89 Institution's own stock Human pancreatic 

carcinoma 

Rec-1 Institution's own stock Mantle cell lymphoma 

 

2.7.2. Dendritic cells (DCs)  

  Blood of healthy donors were obtained from the Institute of Clinical Transfusion Medicine 

and Hemotherapy, University Hospital of Würzburg (Oberdürrbacher Str 6, 97080 Würzburg). 

Then, monocytes were freshly purified and isolated. Monocytes were differentiated into 

immature dendritic cells (iDCs) after one week of treatment with IL4 and GM-CSF (see 

section 3.14.1). 

 

2.7.3. Prokaryotic cells 

  NEB 5-alpha Competent E.Coli was obtained from New England Biolabs Company, 

Frankfurt, Germany. 

 

2.8. Plasmids 

  The expression plasmids for each protein used in this work were cloned by my own or with 

the help of other members in the Division of Molecular Internal Medicine, University Hospital 

of Würzburg. Then, HEK293 cells were transfected with the corresponding plasmid by my 

own to produce the required proteins (see section 3.2 and 3.3). TRAILmutR1 and 

TRAILmutR2 genes were ordered as synthetic genes from Life Technologies Company, 

Darmstadt, Germany. 
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3. Methods 

3.1. Cell culture 

  All cell lines used in this work were cultivated under standard conditions (5 % CO2, 37 °C) in 

RPMI 1640 medium with 10 % FCS (heat inactivated at 56 °C for 30 min) except OVCAR3 

cells which were cultivated in DMEM medium with 10 % FCS. Adherent cells were harvested 

after incubating the cells with trypsin-EDTA solution for 10-30 min and then the cells were 

centrifuged at 1200 rpm for 4 min. The cells were counted under the microscope using 

hemocytometer before seeding on cell culture plates for further experiments. The rest of the 

cells were diluted to the ratio of 1:5 till 1:10 and further cultivated in fresh medium with 10 % 

FCS and were regularly freezed at -80 °C in 1 ml freezing medium (10 % DMSO in FCS) 

using cryotubes. 

 

3.2. Cloning and production of the expression plasmids 

  The encoding plasmids for the trimeric TRAIL variants, Fc-fusion proteins of TRAIL variants, 

various scFv:G28-TRAIL fusion proteins, scFv:G28-2xFlag-GpL and scFv:G28-Fc-GpL were 

designed by cloning the corresponding DNA fragments encoding TRAIL aa 95-281 

(accession number U37518), chicken tenascin-C (TNC) aa 110-139, human IgG1 aa 222-

447 Gaussia princeps luciferase (GpL), a Flag epitope and scFv G28-5 derived from the 

human CD40 specific mAb G28-5 (accession number AJ853736) into pCR3 plasmid behind 

a leader of Ig. Then, the corresponding plasmids were transformed in competent E.coli and 

the obtained clones were controlled in the next day for the success of the cloning using the 

corresponding digestion enzymes to check the size of cutting fragments using horizontal 

electrophoresis unit. Afterwards, the positive plasmids were produced in E.coli in the 

presence of LB medium and isolated after purification steps. Finally, the sequence of each 

plasmid was proved and the plasmids were ready for transfection in HEK293 cells for protein 

production. 

3.3. Protein production 

  The expression plasmids were further transfected in HEK293 with electroporation 

technique. First, HEK293 cells were harvested after incubation with trypsin-EDTA solution for 

10 min at 37 °C in incubator and then the cells were centrifuged at 1200 rpm for 4 min. 

50×106 cells/ml of HEK293 cells were further electroporated with the corresponding 

expression plasmids (40 µg) in 1 ml of the culture medium containing 10 % FCS and 1 % 

penicillin-streptomycin using 4-mm cuvette and an Easyject Plus electroporator (PeqLab) 
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(250 V, 1800 µF, maximum resistance). Afterwards, the transfected cells were transferred in 

large Petri dishes in the presence of RPMI 1640-Medium, 2 % FCS and 1 % penicillin-

streptomycin and left in incubator at 37 °C. After 7 days, the supernatant were collected and 

centrifuged at 4600 rpm for 10 min to discard the dead cells. To establish stably transfected 

HEK293 cells, the cells were transferred directly after the transfection in large cell culture 

bottles in the presence of RPMI 1640-Medium, 10 % FCS and 1 % penicillin-streptomycin 

and left in incubator overnight at 37 °C. Then, the positive transfected cells were selected by 

adding G418-Sulfate (0.5 mg/ml) for four weeks. The status of protein production was 

controlled regularly by measuring the protein concentration using Western Blot technique 

after boiling protein samples for 5 min at 95 °C (see section 3.9). The nitrocellulose 

membranes were then incubated overnight with anti-Flag mAb M2 and incubated in the next 

day for one hour with the second antibody anti-mouse IRDye 800 after washing the first 

antibody. Finally, the nitrocellulose membranes were scanned using LI-COR Odyssey® 

Infrared Imager to determine the concentration of each protein depending on the intensity of 

the detected bands of the corresponding proteins and a standard protein of known 

concentration. 

 

3.4. Protein purification 

   The protein supernatants produced by HEK293 cells were further purified using affinity 

chromatography on agarose beads of anti-Flag M2. The beads were settled in a column and 

then washed with autoclaved TBS. Then, the supernatant was applied on the column with 

adjusted flow rate of at least one drop/30 sec. The column was left at 4 °C until all the flow-

through was collected. Afterwards, the beads were washed with TBS and the bound protein 

molecules were eluted from the beads in 0,5 ml fractions using TBS containing 100 µg/ml of 

Flag peptide and the flow rate was at least one drop/min. The eluted proteins were dialyzed 

against PBS overnight at 4 °C and then sterile filtered in the next day and stored at -20 °C for 

further analysis. The percent of protein recovery after purification was controlled by 

measuring the protein concentration in all of the followings: the supernatant before 

purification, the flow-through, the elution-fractions, the TBS washing flow-through after 

purification and beads using Western Blot technique (see section 3.3 and 3.9). 

 

3.5. FACS analysis 

3.5.1. Detection of cell surface markers  

  The cells were counted and 105 cells/marker were transferred to U shape 96-well plates. 

The plates were centrifuged for 4 min at 1200 rpm and the cells were washed 2 times with 
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PBS and then incubated for 30 min at 4 °C with the antibody that detects the required cell 

surface marker and its corresponding isotype control according the instruction of the 

manufacturer. Afterwards, the cells were washed 3 times with PBS and transferred in 200 µl 

PBS into flow cytometry tubes and analyzed with the FACSCalibur. 

3.5.2. scFv:G28-TRAIL binding to CD40-transfectant cells 

  HeLa-CD40, HT1080-CD40 and their corresponding parental cells were counted and 

washed as mentioned in the previous section and then incubated with scFv:G28-TRAIL (500 

ng/ml) or left untreated for 30 min at 4 °C. Then, the cells were washed 3 times with PBS and 

incubated again 30 min at 4 °C with anti-Flag mAb M2-FITC. Finally, the cells were washed 3 

times with PBS and transferred in 200 µl PBS into flow cytometry tubes and then analyzed 

with the FACSCalibur. 

3.6. Equilibrium binding studies 

3.6.1. Binding studies in HEK293 cells transiently transfected with the various TRAILRs 

  HEK293 cells were transiently transfected with the expression plasmids of the 

corresponding TRAILR using electroporation technique as mentioned before in protein 

production section (see section 3.3). HEK293 cells were also transfected in parallel with 

plasmid of the empty vector to determine nonspecific binding. The transefected cells were 

seeded on large Petri dishes and left in incubator at 37 °C overnight. In the next day, the 

cells were harvested from plates after incubation with trypsin-EDTA solution and counted as 

5-10 x 105 cells/group and prepared in 200 µl medium (RPMI 1640, 10 % FCS) in 1,5 ml 

Eppendorf tubes. Then, the cells were stimulated for 1 h with the increasing concentrations 

of the GpL fusion proteins of the different TRAIL variants at 37 °C. Afterwards, cells were 

centrifuged for 5 min at 4000 rpm and washed 5 times with 1 ml ice cold PBS. After the final 

washing step, cells were harvested from the Eppendorf tubes in 50 µl medium (RPMI 1640, 

0,5 % FCS) and transferred to black 96-well plates. The cell bound GpL-TRAIL intensity was 

assayed using the Gaussia Luciferase Assay Kit and a Lucy 2 Luminometer according to the 

protocol of the manufacturer. To calculate specific binding values, nonspecific binding values 

were subtracted from total binding values of the corresponding TRAIL variant. GraphPad 

Prism 5.0 program (GraphPad Software, Inc.) was used to calculate KD-values by non-linear 

regression equation. 
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3.6.2. Binding studies in Jurkat and HT1080 cells 

  Jurkat cells were counted, prepared and stimulated as mentioned before in the transiently 

transfected HEK293 cells. Nonspecific binding was determined by pretreating Jurkat cells for 

1 h at 37 °C in the incubator with 10 µg/ml of TRAILR2-specific anti-rabbit anti-serum. 

  In case of HT1080 cells, cells were counted 2-3 x 105 cells/well and seeded in 24-well 

plates in 1 ml medium (RPMI 1640, 10 % FCS) and left in incubator overnight at 37 °C. In the 

next day, the old medium was absorbed and fresh medium with and without 10 µg/ml of 

TRAILR2-specific anti-rabbit anti-serum were added on the cells in plates to determine 

nonspecific binding. The plates were left in incubator for 1 h at 37 °C and then the different 

groups were treated for 1 h with the increasing concentrations of the GpL fusion proteins of 

the corresponding TRAIL variant at 37 °C. Afterwards, the 24-well plates were washed 10 

times with ice cold PBS and the rest of PBS was removed perfectly from the plates. The 

plates were left on ice and then the cells were scratched in 55 µl medium (RPMI 1640, 0,5 % 

FCS) and 50 µl were transferred to black 96-well plates to measure cell bound GpL-TRAIL 

intensity as mentioned before in case of HEK293-transfected cells. In case of both Jurkat 

and HT1080 cells, nonspecific binding values of the groups pretreated with 10 µg/ml of 

TRAILR2-specific anti-rabbit anti-serum were subtracted from total binding values of the 

corresponding TRAIL variant to calculate specific binding values.  

 

3.7. In vitro binding studies 

  Black 96-well ELISA plates were coated with 0,5 ug/ml of protein G overnight at 4 °C in 

refrigerator. In the next day, plates were loaded with ~ 1 µg/ml of TRAILR1(ed)-Fc or 

TRAILR2(ed)-Fc or remained untreated to determine nonspecific binding. The unbound 

molecules were removed and then GpL fusion proteins of the different TRAIL variants were 

added on the plates for 1 h at 37 °C. The unbound molecules were removed and then the 

luciferase intensity of each TRAIL variant were assayed using the Gaussia Luciferase Assay 

Kit and a Lucy 2 Luminometer according to the protocol of the manufacturer. 

3.8. Immunoprecipitation (IP) analysis 

  TRAILR-complex was analyzed using IP method. Panc89 and HT29 cells were seeded on 

large Petri dishes. The plates were left in incubator until they were completely full with the 

cells. Afterwards, the cells were treated with the corresponding Fc-TRAIL fusion proteins (1 

µg/ml, 2 h) in 8 ml medium. Then, the cells were harvested on ice in 50 ml falcon tubes and 

the volume was completed to 50 ml with ice cold PBS. The falcon tubes were centrifuged for 

3 min at 2300 rpm and the supernatant was discarded and then the pellets were centrifuged 
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again with 50 ml ice cold PBS. The pellets were further suspended in 1,5 ml IP lysis buffer 

with protease inhibitor in 2 ml Eppendorf tubes and left for 20 min on ice. Then, the 

Eppendorf tubes were centrifuged for 5 min at 5000 rpm (4 °C) and the supernatants were 

transferred to new 2 ml Eppendorf tubes. The supernatants were centrifuged again for 45 

min at 14000 rpm (4 °C). 200 µl of the supernatants from each group was stored at -20 °C for 

further analysis of lysates by Western Blot and the rest were used for the IP experiment. 10 

ng/ml of each Fc-TRAIL variant was added to the corresponding negative control group. 

Afterwards, the supernatant of each group was mixed with 40 µl agarose beads in 2 ml 

Eppendorf tubes and left overnight on a roller at 4 °C. In the next day, the Eppendorf tubes 

were centrifuged for 30 sec at 5000 rpm (4 °C). The supernatants were then discarded using 

1 ml insulin syringes. Then, 2 ml IP lysis buffer without protease inhibitor was added on the 

beads and the Eppendorf tubes were centrifuged again for 30 sec at 5000 rpm (4 °C). The 

previous step was repeated for other 3 times and then the supernatants were removed 

completely using 1 ml insulin syringes. In the next step, 60 µl 4× Laemmli buffer and 60 µl IP 

lysis buffer were added on the beads in Eppendorf tubes and the mixture  was further heated 

at 80 °C for 15 min. Afterwards, the Eppendorf tubes were left on ice for 10 sec and then 

centrifuged for 5-10 sec. Finally, the supernatants from each group were carefully transferred 

away from the beads in other new Eppendorf tubes using 1 ml insulin syringe and stored at -

20 °C for further analysis of immunoprecipitates by Western Blot. 

 

3.9. Western Blot 

3.9.1. SDS-PAGE 

  The proteins were separated using SDS-PAGE. First, the separating gel was prepared from 

0,374 M Tris (pH 8,8) , 0,0035 M SDS and 12 % acrylamide and then polymerized using 0,1 

% APS and 0,1 % TEMED. Isopropanol was added on the surface of the separating gel 

immediately after pouring of the gel and before its polymerization to obtain a straight surface. 

After polymerization, isopropanol was removed and the stacking gel was added which was 

composed of 6 % acrylamide in 0,123 M Tris (pH 6,8) , 0,00375 M SDS, 0,1 % APS and 0,1 

% TEMED. The sample chambers were inserted in the stacking gel before polymerization. 

After polymerization, these sample chambers were removed and the samples were added 

using micropipette to run electrophoretic separation at 120 V and 400 mA for 95 min in case 

of small gels and 105 min in case of large gels. 
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3.9.2. Blotting on nitrocellulose membranes 

  The proteins separated by SDS-PAGE were blotted on nitrocellulose membranes using 

Wet/tank blotting system. Nitrocellulose membranes and Whatman papers were cut perfectly 

to the same size of the gels and wetted with blot buffer directly before use. The blotting 

process was started by pressing the nitrocellulose membranes directly on the gels in the 

blotting chamber as a sandwich in the following order: 

anode - 2 wet Whatman papers - nitrocellulose membrane- gel - 2 wet Whatman papers -

kathode. 

The blotting process was finished after 90-150 min at room temperature, 90 V and 400 mA. 

 

3.9.3. Membrane detection 

  After blotting, nonspecific binding of the nitrocellulose membranes was blocked by washing 

the membrane for 1 h with PBST-milk on the shaker. After that, the membrane was washed 3 

times with PBST for 30 min and then incubated overnight at 4 °C on the shaker with the 

required 1st antibody in PBST or TBST according to the manufacturer. In the next day, the 

membranes were washed again three times with PBST or TBST for 30 min and then the 2nd 

antibody in PBST or TBST-milk was added on the membranes for 1h at room temperature on 

the shaker. Finally, the membranes were washed 3 times with PBST or TBST for 30 min and 

then detected either with ECL-system or using LI-COR Odyssey® Infrared Imager. 

3.10. Cell viability assays 

  In case of adherent cell lines (HT29, HT1080, HeLa, HeLa-CD40, HT1080-CD40, 786-O 

and OVCAR3), 20×103 cells/well were seeded in 96-well plates with 100 µl medium 

containing 10 % FCS (RPMI 1640 medium for all cell lines or DMEM medium for OVCAR3 

cell line) and left overnight in incubator at 37 °C. In the next day, the plates were full with 

cells and ready to start the experiments. All adherent cells were sensitized with CHX (2.5 

µg/ml) for 30 min before stimulating with TRAIL constructs. The suspension cell lines (Jurkat, 

Mino, BJAB and Rec-1) were counted (60×103 cells/well) and seeded in 96-well plates and 

then stimulated in the same day in the absence of CHX. In the coculture assay, Jurkat cells 

(60×103 cells/well) were seeded together with Rec-1 (6×103 cells/well) in 96-well plates. In 

case of oligomerization with anti-Flag mAb M2, the corresponding TRAIL variant was 

incubated for 30 min with 1 µg/ml of anti-Flag mAb M2 in a separate 96-well plate and then 

added on the cells. To determine CD40-binding dependent enhancement of apoptosis, 

scFv:G28-Fc-GpL (2 µg/ml) and scFv:G28-2xFlag-GpL (2 µg/ml) were used as competitors 

and added to the cells 30 min before the corresponding scFv:G28-TRAIL fusion protein. 
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Untreated group represented 100 % living cells whereas the group treated with a cytotoxic 

cocktail (100 ng/ml of Fc-CD95L, 5 µg/ml of CHX and 0,5 % sodium azide) represented 0 % 

living cells. 

  In the next day, cell viability was determined using CV staining in case of adherent cells or 

MTT staining in case of suspension cells. In case of CV staining, the supernatants were 

removed from the plates and 80 µl/well of the CV staining solution was added on the plates 

and left for 15 min at room temperature. Afterwards, the excess CV staining was removed by 

immersing plates in distilled water. The plates were left to dry at room temperature before 

adding 180 µl methanol/well on the plates and then the plates were left on the shaker for 15 

min. Finally, the plates were measured at 595 nm using Lucy 2 Luminometer. In case of 

suspension cells, 35 µl/well of MTT solution diluted with PBS (1:2,5) was added on the cells 

and the plated were incubated at 37 °C in incubator for 2 h. Then, 90 µl/well of MTT lysis 

buffer was added on the plates. The plates were covered with aluminum foils and left 

overnight at room temperature on the shaker and measured in the next day using Lucy 2 

Luminometer at 570 nm. 

3.11. Total cell lysates 

  Total cell lysates were prepared by harvesting the cells in ice-cold PBS and centrifuging 

them at 2300 rpm for 3 min at 4 °C. Then, the pellets were lysed in 4× Laemmli buffer with 

freshly added phosphatase inhibitor mixture II and protease inhibitor. Afterwards, cell lysates 

were sonficated for 20 sec and then boiled for 5 min at 95 °C. Finally, total cell lysates were 

centrifuged for 10 min at 14000 rpm and stored at -20 °C for further analysis by Western Blot. 

3.12. Silver staining 

  The purified scFv:G28-TRAIL was separated by SDS-PAGE and then the gel was stained 

using  Pierce® Silver Stain Kit according to the instructions of the manufacturer. 

3.13. IL8 ELISA 

  HeLa and HeLa-CD40 cells were seeded (2×104 cells/well) in 96-well plates in 100 µl 

medium (RPMI 1640, 10 % FCS) and left overnight in incubator at 37 °C. The old medium 

was removed in the next day and cells were stimulated in triplicates in the absence of CHX 

with the indicated concentrations of scFv:G28-TRAIL and Killer-TRAIL prepared in fresh 

medium. The plates were left in incubator at 37 °C and after 8 h the supernatants were 

collected and freezed at -20 °C for further IL8 production analysis using the BD OptEIA 

Human IL8 ELISA Set according to the instructions of the manufacturer. 
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3.14. Isolation, cultivation and stimulation of monocyte-derived DCs 

3.14.1. Preparations of DCs 

  Blood of healthy donors obtained from the Institute of Clinical Transfusion Medicine and 

Hemotherapy, University Hospital of Würzburg (Oberdürrbacher Str 6, 97080 Würzburg) 

were used to isolate PBMCs. Blood was transferred to 50 ml falcon tubes and then diluted 

slowly with sterile PBS (1:1) and transferred carefully on the surface of 15 ml lymphocyte 

separation medium in other 50 ml falcon tubes. The tubes were then centrifuged at 1800 rpm 

without brake for 15 min at 22 °C. Then, the buffy coat layer between plasma and 

lymphocyte separation medium was transferred carefully to another 50 ml falcon tube using 

sterile plastic Pasteur pipettes and mixed homogenously with 15 ml of sterile PBS-EDTA 

(PBS with 2 mM EDTA). The volume was then completed to 50 ml with PBS-EDTA and the 

tubes were centrifuged for 10 min at 1300 rpm. Afterwards, the supernatants were discarded 

and cells were suspended in 15 ml sterile PBS without EDTA and the volume was completed 

to 50 ml with PBS. The cells were centrifuged again for 10 min at 1300 rpm. The 

resuspension of the cells in PBS and centrifugation steps were repeated again. Then, the 

cells were suspended in 6 ml MACS buffer containing 200 µl anti-CD14-coated beads and 

left for 20 min at 4 °C in refrigerator. Afterwards, MACS buffer was added to the cells to 

complete the volume to 50 ml and then the cells were centrifuged for 10 min at 1300 rpm (8 

°C). In the next step, the cells were suspended in 6 ml MACS buffer and applied on MACS 

LS column using MACS multistand and MACS separator. Finally, CD14+-monocytes were 

harvested in 6 ml MACS buffer and centrifuged for 4 min at 1200 rpm. Monocytes were 

transferred to 10 cm Petri dish in the presence of 8 ml medium (RPMI 1640, 10 % FCS, 1 % 

penicillin-streptomycin). Purity of monocytes was controlled immediately after isolation by 

FACS analysis of CD14 expression. To differentiate monocytes into iDCs, monocytes were 

treated with IL4 (30 ng/ml) and GM-CSF (50 ng/ml) every 2 days for 1 week. 

3.14.2. FACS analysis of monocytes, iDCs and mDCs 

  Monocytes were scanned on the same day of isolation by FACS analysis to detect the 

positive expression of CD14 as control for the purity of monocytes. iDCs were evaluated after 

one week of treatment with IL4 and GM-CSF by FACS analysis for the absence of CD14 and 

the expression of CD40, CD83 and CD86. mDCs were generated by treating iDCs for 24 h 

with TNF (1 µg/ml) or with Gold standard (mixture of 20 ng/ml of TNF which is a purified 

protein produced in HEK293 cells, 10 ng/ml of IL1β, 20 ng/ml of IL6 and 1 µg/ml of PGE2) 

and then scanned by FACS analysis for the same markers as in case of iDCs. To test the 

ability of scFv:G28-TRAIL fusion proteins to maturate iDCs, iDCs (1 × 106 cells/well) were 
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seeded on 12-well plates and treated for 48 h with the indicated concentrations of the 

corresponding TRAIL fusion protein, Killer-TRAIL, scFv:G-28-TNC-GpL, Gold standard 

(mixture of 20 ng/ml of TNF which is a purified protein produced in HEK293 cells, 10 ng/ml of 

IL1β, 20 ng/ml of IL6 and 1 µg/ml of PGE2) and then cells were harvested and scanned by 

FACS analysis for the cell surface expression of both CD83 and CD86. Handling of cells and 

the procedures of FACS staining were the same as mentioned before (see section 3.5.1). 

3.14.3. Cell viability assays 

  iDCs or mDCs prepared by treating iDCs for 24 h with TNF (1 µg/ml) or with Gold standard 

(mixture of 20 ng/ml of TNF which is a purified protein produced in HEK293 cells, 10 ng/ml of 

IL1β, 20 ng/ml of IL6 and 1 µg/ml of PGE2) were seeded (4 × 104 cells/well) in 96-well plates 

in 100ul medium (RPMI 1640, 10 % FCS, 1 % penicillin-streptomycin) in the presence of IL4 

(30 ng/ml) and GM-CSF (50 ng/ml) and treated with the indicated concentrations of scFv:G-

28-TRAIL fusion proteins and Killer-TRAIL for 24 h. In the next day, cell viability was 

determined using MTT assay (see section 3.10).  

3.14.4. IL12 ELISA 

  iDCs were counted (4 × 104 cells/well) and then seeded in 96-well plates in 100 µl medium 

(RPMI 1640, 10 % FCS, 1 % penicillin-streptomycin) in the presence of IL4 (30 ng/ml) and 

GM-CSF (50 ng/ml). Then, the cells were treated in triplicates with the various scFv:G28-

TRAIL fusion proteins, Killer-TRAIL, gold standard (mixture of 20 ng/ml of TNF which is a 

purified protein produced in HEK293 cells, 10 ng/ml of IL1β, 20 ng/ml of IL6 and 1 µg/ml of 

PGE2), control supernatant of mock-transfected HEK293 cells and scFv:G28-TNC-GpL. The 

plates were left overnight in incubator and then in the next day the plates were centrifuged 

for 2 min at 1200 rpm and the supernatants were collected and analyzed for IL12 production 

using R&D Systems Human IL12 ELISA DuoSet kit according to the instructions of the 

manufacturer. 

  LPS contamination in scFv:G28-TRAIL fusion proteins was controlled using two methods. 

The first one was the heat inactivation of 200 ng/ml of the different TRAIL fusion proteins 

parallel with LPS (100 ng/ml) for 30 min at 70 °C. After heat inactivation, both TRAIL fusion 

proteins and LPS were tested in regard to IL12 production in iDCs. The second experiment 

was to test the ability of PMB (50 µg/ml) to interfere with the IL12 production in iDCs induced 

by scFv:G28-TRAIL (200 ng/ml) or LPS (20 ng/ml). 
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3.15. Statistical analysis 

  Figures shown in this current work were designed by Microsoft Office Excel 2007, 

GraphPad Prism 5.0 program (GraphPad Software, Inc.) and CorelDRAW Graphics Suite X4 

software. KD-values for the different TRAIL constructs were also calculated using GraphPad 

Prism 5.0 program by non-linear regression equation. 
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4. Results 

4.1. Characterization of TRAILR1- and TRAILR2-specific TRAIL mutants  

   TRAIL is known to induce apoptosis by binding to two DRs, TRAILR1 and TRAILR2 

(LeBlanc and Ashkenazi, 2003). Therefore, these two receptors have received more 

research interest than the other TRAILRs and there are now considerable research efforts to 

characterize TRAIL mutants that exhibit preferential binding to TRAILR1 or TRAILR2 

(MacFarlane et al., 2005b; Reis et al., 2010). Indeed, there are various reasons arguing for 

the development of TRAIL DR-specific mutants. It may be a way to attenuate the potential 

adverse effects mediated upon the activation of the TRAIL DR type other than the TRAIL DR 

required for induction of apoptosis in the targeted tumor cells. This concept bases on the 

previous finding that some tumors show an apoptotic response preferentially through 

stimulation of only one of the two TRAIL DRs. For example, CLL and pancreatic tumors show 

an apoptotic response mainly through stimulation of TRAILR1 although TRAILR2 is also 

expressed on these cells (Lemke et al., 2010; MacFarlane et al., 2005a; Stadel et al., 2010). 

Moreover, there is evidence that TRAIL DR-specific mutants exhibit a higher specific activity 

than the wild type molecule due to reduced formation of TRAILR1-TRAILR2 

heterocomplexes which seem to be less active than homotrimeric TRAIL DR complexes 

(Reis et al., 2010).  

   As was the aim of our work to develop TRAIL variants with reduced side effects and a high 

specific activity on tumor cells, we wanted to exploit such mutants also in our project. 

Therefore, we characterized two recently published TRAIL DR-specific mutants that elicited 

promising specificities and activity features. Initially, we introduced the mutations of these 

two TRAIL mutants in our basic TNC-TRAIL construct, one conferring specificity for TRAILR1 

(TRAILmutR1) G131R/R149I/S159R/N199R/K201H/S215D and the other for TRAILR2 

(TRAILmutR2) Y189Q/R191K/Q193R/H264R/I266L/D267Q (MacFarlane et al., 2005b; Reis 

et al., 2010).  

 

4.1.1. Binding studies with TRAIL mutants and TRAIL wild type 

  Initially, we analysed the binding of TNC-TRAILmutR1 and TNC-TRAILmutR2 to the 

different TRAILRs in cellular equilibrium binding studies. For this purpose, we tagged the 

TNC-TRAIL variants N-termnally with the GpL which enables quite sensitive detection and 

quantification of the tagged protein (Lang et al., 2012; Tannous et al., 2005). Then, we 

performed equilibrium binding studies with HEK293 cells transiently transfected with 

TRAILR1, TRAILR2, TRAILR3 and TRAILR4. Mock-transfected HEK293 cells were used to 
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determine nonspecific binding. The surface expression of the TRAILRs in both TRAILRs- and 

mock-transfected HEK293 cells were evaluated with FACS analysis before performing the 

binding studies not only to prove the success of TRAILR-transfection but also to analyze the 

expression of endogenous TRAILRs on the mock-transfected HEK293 cells. Actually, our 

results revealed that mock-transfected HEK293 cells expressed no endogenous TRAILR1 

and TRAILR3 and had only moderate expression of endogenous TRAILR2 and TRAILR4 

(Figure 3). 

 

Figure 3: FACS analysis of cell surface expression of the various TRAILRs on TRAILR- 
and mock-transfected HEK293 cells. 

HEK293 cells transfected with TRAILR1, TRAILR2, TRAILR3 and TRAILR4 expression 
constructs were analyzed along with empty plasmid transfected cells by FACS to determine 
cell surface expression of the various TRAILRs.  

 

  According to the results of these binding studies, GpL-TNC-TRAIL has KD-values for 

TRAILR1 and TRAILR2 of 3450 and 880 pM respectively (Figure 4). The measured KD-value 

of the interaction of GpL-TNC-TRAILmutR1 with TRAILR1 was 2590 pM (Figure 4). 

Concerning the binding of GpL-TNC-TRAILmutR1 to TRAILR2, there was also a significant 

binding to TRAILR2-transfected HEK293 cells but the maximal specific binding was 

significantly lower than that of GpL-TNC-TRAILmutR2 and GpL-TNC-TRAIL (Figure 4). Thus, 

the observed binding/KD-value of GpL-TNC-TRAILmutR1 in the TRAILR2-transfectants most 

likely does not reflect binding to TRAILR2 but may be attributed to the binding to endogenous 

TRAILR4 and/or heterocomplexes of TRAILR2 and endogenous TRAILR4. This idea was 

supported by the further binding studies in the Jurkat and HT1080 cell lines expressing only 

or dominantly TRAILR2 (Figure 5a) (Sprick et al., 2000). Here we found that GpL-TNC-

TRAILmutR1, in contrast to GpL-TNC-TRAIL and GpL-TNC-TRAILmutR2, failed to show 
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specific TRAILR2 binding (Figure 5b). Regarding GpL-TNC-TRAILmutR2, the affinity of the 

binding to TRAILR2-transfected HEK293 cells was 720 pM while there was no detectable 

binding to the TRAILR1-transfectants (Figure 4). Furthermore, we also analyzed specific 

binding of the two TRAIL mutants to TRAILR3- and TRAILR4-transfected HEK293 cells and 

we found that GpL-TNC-TRAILmutR1 bound to both TRAILR3 and TRAILR4 while GpL-

TNC-TRAILmutR2 showed only weak binding to TRAILR4, as compared to TRAIL and 

TRAILmutR1, and failed to bind TRAILR3 (Figure 4). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Binding studies in TRAILR-transfected HEK293 cells to evaluate the binding 
properties of TRAIL mutants with specificity for TRAILR1 and TRAILR2. 

Expression constructs encoding the four types of cell bound TRAILRs were transiently 
transfected in HEK293 cells. The next day, equilibrium binding studies were performed at 
37°C with GpL-TNC-TRAIL, GpL-TNC-TRAILmutR1 and GpL-TNC-TRAILmutR2. 
Nonspecific binding was determined using mock-transfected HEK293 cells.  
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Figure 5: Binding studies in cell lines expressing endogenous TRAILR2 but no 
TRAILR1. 

a) Jurkat and HT1080 cells were analyzed by FACS with respect to the cell surface 
expression of TRAILR1 and TRAILR2. b) Equilibrium binding studies were performed with 
the various GpL-TRAIL fusion proteins and Jurkat and HT1080 cells. Cells pretreated with 10 
µg/ml of a TRAILR2-specific anti-rabbit anti-serum were used to determine non-specific 
binding.   

 

  We also performed cell-free binding studies with immobilized TRAILR1-Fc and TRAILR2-Fc 

and the results confirmed that GpL-TNC-TRAILmutR1 and GpL-TNC-TRAILmutR2 efficiently 

discriminates between TRAILR1 and TRAILR2 (Figure 6). 
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Figure 6: In vitro binding studies with immobilized TRAILR1-Fc and TRAILR2-Fc. 

Protein G (0,5 µg/ml) was used to coat black 96-well ELISA plates. Then, these plates were 
loaded with TRAILR1(ed)-Fc or TRAILR2(ed)-Fc (~ 1 µg/ml) or remained untreated to 
determine later non-specific binding. Unbound molecules were removed and then GpL-TNC-
TRAIL, GpL-TNC-TRAILmutR1 and GpL-TNC-TRAILmutR2 were added at the indicated 
concentrations of for 1 h at 37°C. Finally, the well-associated luciferase activity was 
quantified and specific binding was calculated as the difference of total binding (wells with 
immobilized TRAILR1/2-Fc) and nonspecific binding. (This experiment was done with the 
help of Johannes Trebing, PhD student in the research group of Prof. Dr. Wajant). 

 

4.1.2. Immunoprecipitation (IP) analysis 

   To further confirm the selective binding of the TRAIL mutants to TRAILR1 and TRAILR2, 

we performed IP experiments. For this purpose, we generated Fc-fusion proteins of TRAIL, 

TRAILmutR1 and TRAILmutR2. The fusion of the TRAIL variants with the human IgG1 Fc 

domain by genetic engineering resulted in the formation of hexameric proteins which 

provided two advantages. First, they allowed easy IP of ligand bound receptor complexes. 

Second, the hexamerization provided a substitute for the known need of oligomerization of 

soluble trimeric TRAIL variants to achieve optimal activity (Berg et al., 2007; Wajant et al., 

2001). Consistent with the results of the binding studies, there was no significant presence of 

TRAILR2 in Fc-TRAILmutR1 immunoprecipitates and no detectable level of TRAILR1 in Fc-

TRAILmutR2 immunoprecipitates whereas both receptors were easily detectable in 

immunoprecipitates of the Fc-TRAIL stimulated Panc89 and HT29 cells (Figure 7). 
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Figure 7: Immunoprecipitation (IP) with TRAILR1 and TRAILR2 discriminating TRAIL 
mutants. 

Fc fusion proteins of the indicated TRAIL variants were incubated with Panc89 and HT29 
cells for 2 h (37°C) and were then immunoprecipitated by help of protein G agarose. Western 
Blot was used to analyze immunoprecipitates with respect to the presence of the indicated 
proteins. Lysates of untreated cells supplemented with 10 ng of the corresponding Fc fusion 
proteins were also subjected to IP and served as negative control groups (c).  

 

4.1.3. Cell viability assays 

  To evaluate the functional consequences of selective binding of TRAIL mutants to TRAILR1 

or TRAILR2, we analyzed Jurkat, HT1080 and HT29 cells with respect to cell death induction 

(Figure 8a,b). In these experiments, the TNC-TRAIL variants were used with and without 

anti-Flag mAb M2 oligomerization. Our results revealed that oligomerized TRAILmutR1 

induced significant cell death only in the case of HT29 cells which, in contrast to Jurkat and 

HT1080 cells, express significant amounts of TRAILR1 (Figure 8a). On the other hand, 

oligomerized TRAILmutR2 induced significant cell death in the all cell lines which all express 

endogenous TRAILR2 (Figure 8a). In all cases, the non-oligomerized TRAIL variants were 

far less active. Although it was shown previously that anti-Flag oligomerization of the Flag-
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tagged TNC-TRAIL enhanced the cell death induction via TRAILR2, we marshalled in this 

current research the first-time investigation of the enhanced cell death induction via both 

TRAILR1 and TRAILR2 after anti-Flag oligomerization of the specific TRAIL mutants (Figure 

8a) (Berg et al., 2007). In addition, we also analyzed the cell viability of the different cell lines 

using the hexameric Fc fusion proteins of the TRAIL variants described above in the absence 

of oligomerization with anti-Flag mAb M2 (Figure 8b). In contrast to soluble trimeric TRAIL, 

Jurkat cells showed significant cell death with Fc-TRAIL and Fc-TRAILmutR2 in the absence 

of oligomerization with anti-Flag mAb M2 (Figure 8b). Thus, these results confirmed the 

above mentioned concept that hexameric ligands of some members of TNF superfamily 

exhibit superior activity and they can act as a substitute for the known need of 

oligomerization of soluble trimeric ligands (Holler et al., 2003; Wyzgol et al., 2009). 

Consistent with the cell viability results of TNC-TRAIL variants, it was not unexpected that 

Fc-TRAILmutR1 showed no cell death in Jurkat cells which express only TRAILR2 (Sprick et 

al., 2000). Likewise, it showed also no cytotoxic effect in case of HT1080 cells (Figure 8b). 

On the other hand, all of the three Fc-TRAIL variants exhibited significant cell death at 

different degrees in HT29 cell lines which express both TRAILR1 and TRAILR2 (Figure 8b).  
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Figure 8: Cell viability assays discriminating between TNC-TRAIL and Fc-TRAIL 
constructs of TRAIL mutants in cell lines expressing endogenous TRAILR1 and/or 
TRAILR2. 

a) HT29, HT1080 and Jurkat cells were challenged in triplicates with the indicated 
concentrations of Flag-TNC-TRAIL, Flag-TNC-TRAILmutR1 Flag-TNC-TRAILmutR2 in the 
presence and absence of 1 µg/ml of the anti-Flag mAb M2. b) Cells were stimulated in 
triplicates with the indicated concentrations of Fc-Flag-TRAIL, Fc-Flag-TRAILmutR1 and Fc-
Flag-TRAILmutR2. Next day, cellular viability was determined using the MTT assay or CV 
staining. HT29 and HT1080 cells were challenged in the presence of 2.5 µg/ml of CHX which 
sensitizes these cell lines for apoptosis induction. 

 



Results 

50 

 

   In addition to cellular viability, we also evaluated processing of caspases and caspase 

substrates in TRAIL-treated cells by Western Blot. Consistent with the results of the viability 

assays, Western blotting confirmed the inability of TRAILmutR1 to induce apoptosis in the 

absence of TRAILR1 expression. There were no processing of caspases and the caspase-3 

substrate PARP in the TRAILR1-negative HT1080 cells while these signs of apoptosis were 

easily detectable in the HT29 cells (Figure 9). In contrast, oligomerized TRAILmutR2 induced 

caspase processing in both cell lines in accordance with their positive TRAILR2 expression  

Thus, the results of binding studies, viability assays and Western Blot analysis of caspase 

processing conclusively support the strong TRAILR1/TRAILR2 binding preference of the 

various TRAILmutR1 and TRAILmutR2 proteins.  

 

Figure 9: Western Blot analysis cells challenged with the TRAILR1 and TRAILR2 
discriminating TRAIL mutants. 

HT1080 and HT29 cells were treated for 4-6 h with 50 ng/ml of the various Flag-TNC TRAIL 
variants oligomerized with 1 µg/ml of the anti-Flag mAb M2 and then total cell lysates were 
analyzed by Western Blot to detect the presence of indicated proteins. The cells were 
sensitized with CHX 2,5 µg/ml. 
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4.2. Targeting and activation of CD40 with scFv-TRAIL fusion proteins 

4.2.1. Design and production of scFv-TRAIL fusion protein targeting CD40  

  As discussed in the introduction, cell surface anchoring of fusion proteins of TRAIL with 

scFv antibody against cell surface expressed antigens is a well proved option to enhance the 

activity of soluble TRAIL and to convert it to a pseudo-membrane TRAIL molecule (table 1). 

Therefore, we constructed a fusion protein of soluble TRAIL with a CD40-specific scFv-

domain to achieve targeting to CD40. The fusion protein is termed in the following as 

scFv:G28-TRAIL and consists of a Ig signal peptide followed by a scFv derived from the 

human CD40-specific mAb G28-5 and aa 95-281 of human TRAIL encompassing its C-

terminal TNF homology domain. We further included an internal Flag epitope and the short 3 

kDa trimerization domain of TNC between the scFv and TRAIL domains (Figure 10). The 

Flag epitope serves to facilitate detection and purification of the protein while the TNC 

domain stabilizes the trimeric assembly of the fusion protein which is acquired by the TRAIL 

domain (Wyzgol et al., 2009). 

 

Figure 10: Domain architecture of the scFv:G28-TRAIL fusion protein. 

Scheme of scFv:G28-TRAIL. scFv:G28, scFv derived from the human CD40-specific mAb 
G28-5; Flag epitope; TNC, trimerization domain, aa 110-139 of chicken TNC; TRAIL, aa 95-
281 of human TRAIL. 

 

  The scFv:G28-TRAIL fusion protein was produced using HEK293 cells stably transfected 

with the corresponding expression plasmid and then the supernatants were collected and 

subjected to affinity chromatography purification on anti-Flag agarose. This resulted in 

adequately pure preparations of the scFv-TRAIL fusion protein as was evident from SDS-

PAGE analysis with subsequent silver staining of the gel (Figure 11). 
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Figure 11: Evaluation of the purity of the scFv:G28-TRAIL fusion protein.  

Anti-Flag affinity chromatography purified scFv:G28-TRAIL (100 ng) was subjected to SDS-
PAGE and visualized by silver staining. 

 

4.2.2. Evaluation of inherent functionality of scFv and TRAIL domain of scFv:G28-TRAIL 

fusion protein 

   First, we controlled that the principle functionality of TRAIL domain is preserved in the 

scFv:G-28-TRAIL fusion protein using viability analysis in CD40-negative Jurkat cells. 

Although TNC-TRAIL showed no significant toxicity in Jurkat cells without oligomerization, 

scFv:G28-TRAIL fusion protein showed a significant cytotoxic effect on Jurkat cells between 

20 and 200 ng/ml (Figure 12). Moreover, both molecules elicited a comparable strong 

cytotoxic effect on Jurkat cells upon oligomerization with the anti-Flag mAb M2 recognizing 

the internal Flag tag of the two molecules (Figure 12). As mentioned before, it is well proved 

from previous studies that soluble TRAIL trimers can only induce significant cell death in 

Jurkat cells upon oligomerization (Kelley et al., 2005; Wajant et al., 2001). Therefore, it 

seems that scFv:G28-TRAIL preparations contained a minor fraction of oligomerized 

molecules that was responsible for the observed apoptosis induction at higher concentrations 

but otherwise had similar capability to induce apoptotic activity as compared to TNC-TRAIL 

(Figure 12). 
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Figure 12: Evaluation of the inherent functionality of TRAIL domain of the scFv:G28-
TRAIL fusion protein. 

The indicated concentrations of scFv:G28-TRAIL or its conventional counterpart TNC-TRAIL 
were  added to Jurkat cells (60 x 103 per well; 96-well plate, triplicates). Cellular viability was 
determined the next day by using the MTT assay. 

 

   Furthermore, we analyzed the functionality of the scFv:G28 domain by evaluation of the 

binding of the scFv:G28-TRAIL fusion protein to HeLa and HT1080 cells transfected with 

CD40 as compared it to their corresponding parental cells. FACS analysis revealed that the 

scFv:G28-TRAIL fusion protein efficiently binds to the cell lines transfected with CD40 as 

shown by the strong signal with anti-Flag mAb M2-FITC and exhibits only weak binding, due 

to TRAILR binding via the TRAIL domain, to the parental cell lines expressing no CD40 

(Figure 13). Therefore, this experiment provided the proof for the functionality of the 

scFv:G28 domain of the fusion protein and its ability to target CD40-positive cells. 
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Figure 13: Analysis of CD40 binding of the scFv:G28-TRAIL fusion protein by FACS 
analysis. 

scFv:G28-TRAIL (500 ng/ml) was incubated with HeLa and HT1080 cells parallel with the 
corresponding CD40 transfectants. After three washes, FACS was used to detect bound 
molecules using anti-Flag mAb M2-FITC. 

 

4.2.3. Analysis of CD40-dependent enhancement of apoptosis induction by CD40-targeted 

TRAIL fusion proteins 

   As shown by us and others, scFv fusion proteins of soluble TRAIL exhibit enhanced 

antitumor activity (Table 1). Therefore, we expected that scFv:G28-TRAIL fusion proteins 

exhibit enhanced apoptotic activity on tumor cells in a CD40-dependent manner. To prove 

this idea, we performed viability assays using HT1080-CD40 and HeLa-CD40 transfectants 

along with their corresponding CD40-negative counterparts. The different cell lines were 

challenged with increasing concentrations of scFv:G28-TRAIL in the presence of the 

apoptosis sensitizer CHX (2,5 µg/ml) and the following day the viability of the cells were 

determined by CV staining. There was only partial killing in the case of the parental HeLa 

and HT1080 cells even at high concentrations of 200 ng/ml, whereas the HT1080-CD40 and 

HeLa-CD40 transfectants were already efficiently killed at concentrations of below 10 ng/ml. 

There was a shift of approximately two orders of magnitude in the ED50-values of cell death 

induction towards lower concentrations (Figure 14).  
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Figure 14: CD40-dependent enhancement of cell death-induction by scFv:G28-TRAIL.  

HT1080 and HeLa cells along with corresponding CD40 transfectants were seeded in 96-well 
plates. Next day, cells were stimulated in triplicates with the indicated concentration of 
scFv:G28-TRAIL. One day later, CV staining was used to determine cellular viability. Cells 
were sensitized with CHX (2.5 µg/ml) to enhance apoptosis.  

 

  Furthermore, we confirmed the CD40-dependent enhancement of apoptosis induction by 

scFv:G28-TRAIL in different cell lines expressing endogenous CD40 by challenging the cells 

with scFv:G28-TRAIL in the presence and absence of a Fc fusion protein of scFv:G28 that 

competes with this fusion protein for CD40 binding (Figure 15a,b). In all CD40-expressing 

cells, cell death induction was inhibited in the presence of scFv:G28-Fc indicating that 

scFv:G28-TRAIL is able to trigger a potent cell death response in a CD40-anchoring 

depenent manner. Indeed, there was no CD40-dependent enhancement of apoptosis in the 

CD40-negative Jurkat cell line (Figure15a,b). Thus, conclusively, our results confirmed that 

the scFv:G28-TRAIL fusion protein has the expected ability to trigger enhanced cell death 

upon binding to cell surface exposed CD40. 
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Figure 15: CD40-dependent enhancement of cell death-induction by scFv:G28-TRAIL 
in cell lines expressing endogenous CD40. 

a) CD40 expression was analyzed by FACS in the indicated cell lines. b) Cells were seeded 
in 96-well plates and challenged in triplicates with the indicated concentrations of scFv:G28-
TRAIL in the presence and absence of scFv:G28-Fc-GpL (2 µg/ml) as a competitor. Cellular 
viability was determined the next day by CV staining or using the MTT assay. OVCAR3 and 
786-O cells were sensitized with CHX (2.5 µg/ml) to enhance apoptosis. 

 

   Consistent with the results of the viability assays, there was also a stronger activation of 

caspases in CD40 expressing cells as compared to the corresponding parental cells or the 

group pretreated with the scFv:G28-Fc fusion protein (Figure 16). These results confirmed 

the idea that the detected enhancement of cell death-induction with scFv:G28-TRAIL in 

CD40 expressing cells is due to enhanced activation of caspases. 
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Figure 16: Analysis of caspase activation by scFv:G28-TRAIL in CD40 expressing 
cells. 

The indicated cell lines were treated with scFv:G28-TRAIL (10 ng/ml) in the presence or 
absence of scFv:G28-Fc-GpL (2 µg/ml) as a competitor for 5 h. Cells were sensitized with 
CHX (2.5 µg/ml) to enhance apoptosis. Then, total cell lysates were analyzed by Western 
Blot for the presence of the indicated proteins. 

 

4.2.4. CD40-bound scFv:G28-TRAIL induces cell death in CD40-negative bystander cells 

   It has been reported that a scFv fusion protein of soluble TRAIL exhibits a potent apoptotic 

effect on antigen negative bystander cells in the presence of target antigen positive cells 

(Bremer et al., 2005b). Therefore, we wondered if CD40-bound scFv:G28-TRAIL could also 

exhibit an apoptotic effect on neighboring CD40-negative cells which express TRAIL DRs 

and are TRAIL sensitive. To prove this idea, we used CD40-expressing Rec-1 cells which 

are TRAIL-resistant  and CD40-negative Jurkat cells which are only killed by oligomerized or 

cell surface immobilized TRAIL trimers (Figure 17a,b) (Wajant et al., 2001).  
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Figure 17: Analysis of CD40 expression and TRAIL resistance of Rec-1 cells. 

a) CD40 cell surface expression on Rec-1 cells was analyzed by FACS. b) Rec-1 cells were 
seeded in 96-well plates and treated with the indicated concentrations of Killer-TRAIL. 
Cellular viability was analyzed in the next day using the MTT assay. 

   

   As shown in (Figure 12), scFv:G28-TRAIL induces cell death in Jurkat cells only between 

20 and 200 ng/ml without oligomerization with anti-Flag mAb M2 and there is no significant 

cell death at lower concentrations. In addition, individual cultures of Jurkat and Rec-1 cells 

treated with 5 ng/ml of scFv:G28-TRAIL revealed no caspase activation (Figure 18a). 

However, scFv:G28-TRAIL induced significant cleavage of caspases in cocultures of the two 

cell lines (Figure 18a). Moreover, cell death induction and caspase activation in cocultures by 

scFv:G28-TRAIL were diminished in the presence of scFv:G28-2xFlag-GpL as a competitor 

confirming that this paracrine effect was fully dependent on the binding of scFv:G28-TRAIL 

fusion protein to CD40  on Rec-1 cells (Figure 18a,b).  
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Figure 18: Binding of scFv:G28-TRAIL to TRAIL resistant CD40-positive cells confers 
the ability to induce apoptosis in TRAIL sensitive CD40-negative bystander cells.  

a) Individual cultures or cocultures of Rec-1 and Jurkat cells were stimulated for 6 h with 
scFv:G28-TRAIL (5 ng/ml) in the presence and absence of scFv:G28-2xFlag-GpL (2 µg/ml) 
as a competitor for CD40 binding of scFv:G28-TRAIL. Then, cells were harvested for 
Western Blot analysis of caspase processing. b) Cocultures of Rec-1 and Jurkat were 
challenged with the indicated concentrations of scFv:G28-TRAIL in the presence and 
absence of scFv:G28-2xFlag-GpL (2 µg/ml) as a competitor. The next day, cellular viability 
was analyzed using the MTT assay. 
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4.2.5. Analysis of CD40-dependent activity of TRAILR1- and TRAILR2-specific scFv:G28-

TRAIL fusion proteins 

   As far as CD40-dependent activity of the scFv:G28-TRAIL fusion protein was confirmed, 

we extended our work to scFv:CD40-targeted TRAILmutR1 and TRAILmutR2 fusion 

proteins. The idea behind this work was to combine the TRAIL DRs-specific binding of these 

TRAIL mutants with the CD40-restricted activity of scFv:G28-TRAIL. Therefore, we analyzed 

the degree of CD40-anchoring dependent enhancement of apoptotic activity of both 

scFv:G28-TRAILmutR1 and scFv:G28-TRAILmutR2 in HT1080- and HeLa-CD40 

transfectants. Similar to scFv:G28-TRAIL, both scFv:G28-TRAILmutR1 and scFv:G28-

TRAILmutR2, revealed significant enhanced induction of cell death upon CD40 binding 

(Figure 19). 

 

Figure 19: Analysis of apoptosis induction by scFv:G28 of TRAILR1- and TRAILR2-
specific TRAIL mutants.  

HT1080-CD40 and HeLa-CD40 transfectants along with the corresponding parental cell lines 
were seeded in 96-well plates. Next day, cells were challenged in triplicates with the 
indicated concentrations of scFv:G28-TRAIL, scFv:G28-TRAILmutR1 and scFv:G28-
TRAILmutR2 in the presence of CHX (2.5 µg/ml). One day later, cellular viability was 
determined by CV staining. 

 

    Moreover, we also studied cell death-induction by scFv:CD40-targeted TRAILmutR1 and 

TRAILmutR2 fusion proteins on cell lines expressing endogenous CD40 (Figure 20). 

Consistent with the results obtained with the HeLa- and HT1080-CD40 transfectants, 

treatment of Mino and OVCAR3 with scFv:CD40-TRAILmutR1 and scFv:CD40-TRAILmutR2 
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in the absence and presence of scFv:G28-Fc-GpL also revealed CD40-restricted caspase 

activation and cell death induction (Figure 20, 21). 

 

Figure 20: CD40-dependent induction of cell death by scFv:G28-TRAILmutR1 and  
scFv:G28-TRAILmutR1 in cell lines expressing endogenous CD40. 

OVCAR3 and Mino cells were seeded in 96-well plates and challenged with the indicated 
concentrations of the various scFv:G28-TRAIL fusion proteins with and without pretreatment 
with scFv:G28-Fc-GpL (2 µg/ml) for 30 min. Cellular viability was determined the next day by 
CV staining in the case of OVCAR3 cells or by the MTT assay in the case of Mino cells. 
OVCAR3 cells were sensitized with CHX (2.5 µg/ml) to enhance apoptosis. 
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Figure 21: Analysis of CD40-dependent activation of caspases by scFv:G28 fusion 
proteins of TRAILR1- and TRAILR2-specific TRAIL mutants. 

a) HeLa-CD40 and HT1080-CD40 transfectants and the corresponding control cells were 
stimulated for 5 h with 10 ng/ml of the various scFv:G28-TRAIL variants in the presence of 
CHX (2.5 µg/ml). b) OVCAR3 cells were similarly stimulated in the presence and absence of 
scFv:G28-Fc. Cells were harvested and total cell lysates were analyzed by Western Blot for 
the presence of the indicated proteins. 
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4.2.6. Analysis of effects of scFv:G28-TRAIL on CD40 signaling  

4.2.6.1. scFv:G28-TRAIL triggers CD40 signaling in HeLa-CD40 cells 

  Some antibodies targeting members of the TNFRSF reveal agonistic activity after 

oligomerization or FcɣR binding (Dhein et al., 1992; Li and Ravetch, 2011; Vonderheide and 

Glennie, 2013). Indeed, the parental antibody G28-5 used to construct the scFv domain of 

the scFv:G28 constructs acts as a potent CD40 agonist that rapidly crosslinks cell surface 

CD40 (Francisco et al., 1996; Gaspari et al., 1996). Therefore, we asked whether scFv:G28-

TRAIL could act as an agonist of CD40. To answer this, we initially analyzed CD40 signaling 

in HeLa-CD40 transfectants. HeLa-CD40 and in parallel the parental HeLa cells were 

stimulated with scFv:G28-TRAIL and analyzed with respect to IL8 production as an indicator 

for CD40 activation. This experiment revealed that scFv:G28-TRAIL induces significant IL8 

production only in HeLa-CD40 cells but not in HeLa cells (Figure 22a). It was shown before 

that the TRAIL DRs can also trigger robust IL8 production in HeLa, however, only upon 

sensitization for TRAILR1/2 signaling by CHX and blockade of apoptosis (Wajant et al., 

2000). Therefore, we avoided the proinflammatory IL8-inducing effect of the TRAIL domain of 

the scFv:G28-TRAIL fusion protein by screening IL8 production in the absence of CHX. To 

confirm the absence of TRAIL-induced IL8 production, a commercially available active form 

of TRAIL, Killer-TRAIL was screened in parallel with the scFv:G28-TRAIL fusion protein. 

Killer-TRAIL exerted only a weak IL8-inducing effect in HeLa and HeLa-CD40 cells in the 

absence of CHX (Figure 22a). On the other hand, both Killer-TRAIL and the scFv:G28-TRAIL 

fusion protein trigger apoptosis in HeLa-CD40 cells with more or less similar efficiency under 

CHX-sensitized conditions (Figure 22b). Therefore, the detected scFv:G28-TRAIL induced 

increase of IL8 in the absence of CHX can be attributed to the scFv:G28 domain of the 

scFv:G28-TRAIL fusion protein and is largely independent from TRAIL DR signaling. 

 

 

 

 

 

 

 



Results 

64 

 

 

 

 

 

 

 

 

Figure 22: Stimulation of CD40 signaling by scFv:G28-TRAIL. 

a) HeLa-CD40 transfectants along with the parental HeLa cells were seeded in 96-well plates 
and then stimulated in triplicates with the indicated concentrations of scFv:G28-TRAIL and 
Killer-TRAIL. After 8 h the supernatants were collected and analyzed by ELISA for the 
presence of IL8. b) HeLa-CD40 transfectants were seeded in 96-well plates and challenged 
in triplicates with the indicated concentrations of scFv:G28-TRAIL and Killer-TRAIL in the 
presence of CHX (2.5 µg/ml). CV staining was used to determine the cell viability the next 
day.  

 

   Furthermore, we analyzed the ability of the scFv:G28-TRAIL fusion protein to activate the 

classical NFκB pathway by detection of the degradation of IkBα. HeLa-CD40 cells were 

challenged with both scFv:G28-TRAIL and Killer-TRAIL in the absence of CHX and there 

was significant IκBα degradation after 7 min treatment with scFv:G28-TRAIL while Killer-

TRAIL again showed no effect. Moreover, there was significant accumulation of p-JNK, 

indicative for activation of the proinflammatory JNK pathway, after 7 min in the case of 

stimulation with scFv:G28-TRAIL but not in response to Killer-TRAIL (Figure 23). This 

experiments thus provided additional evidence that the scFv:G28-TRAIL fusion protein 

stimulates CD40 signaling by help of its scFv:G28 domain independent from its TRAIL 

domain. 
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Figure 23: scFv:G28-TRAIL but not Killer-TRAIL robustly activates classical NFκB and 
JNK signaling in HeLa-CD40 cells. 

HeLa-CD40 cells were challenged with 200 ng/ml of scFv:G28-TRAIL and Killer-TRAIL for 7, 
20 and 120 min. The total cell lysates were then analyzed to detect the indicated proteins. 

 

4.2.6.2. Stimulation of DCs maturation 

   One of the most important consequences of CD40 activation in vivo is the induction of DCs 

maturation which is required to enhance antitumor immunity (Vonderheide and Glennie, 

2013). Therefore, we analyzed the ability of scFv:G28-TRAIL to trigger maturation of 

monocyte-derived DCs. Actually, iDCs are characterized by high expression of CD40, low 

expression of CD83 and CD86 and the absence of CD14 expression while mDCs are 

characterized by upregulation of the cell surface molecules CD83 and CD86 (Figure 24a) 

(Figdor et al., 2004; Goxe et al., 1998; Zhu et al., 2005). Although DCs exhibit strong 

expression of CD40, there was no or only very low cell death-induction in iDCs and mDCs 

treated with scFv:G28-TRAIL fusion proteins (Figure 24b). 
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Figure 24: FACS screening of iDCs and mDCs and evaluation of cellular viability of 
scFv:G28-TRAIL-treated iDCs and mDCs. 

a) FACS analysis of the cell surface expression of the indicated proteins on iDCs and mDCs 
that have been matured with the “gold standard” mixture for DCs maturation (20 ng/ml of 
TNF, 10 ng/ml of IL1β, 20 ng/ml of IL-6 and 1 µg/ml of PGE2). b) Both iDCs and mDCs were 
seeded in 96-well plates and stimulated with the indicated concentrations of scFv:G28-TRAIL 
variants, Killer-TRAIL or a cytotoxic cocktail (100 ng/ml of Fc-CD95L, 5 µg/ml of CHX and 0.5 
% sodium azide). Cellular viability was analyzed in the next day using the MTT assay and 
normalized according to cells treated with the cytotoxic cocktail. 

 

   Next, we analyzed the ability of scFv:G28-TRAIL to stimulate DCs maturation and 

compared its effect to a mixture of TNF, IL6, IL1β and PGE2, the gold standard for in vitro 

DCs maturation. We found that all scFv:G28-TRAIL variants as well as a TNC trimerization 

domain-containing variant of the sole scFv:G28 domain (scFv:G28-TNC-GpL) were able to 

stimulate maturation of DCs. Indeed, the scFv:G28 domain-containing reagents were as 

effective as the gold standard in the upregulation of CD83 and CD86 and the induction of 

IL12 release. On the other hand, Killer-TRAIL was unable to mature DCs which proved that 

DCs maturation was dependent on the induction of CD40 signaling rather than TRAILR 

signaling (Figure 25a,b).  
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  It is well known that LPS is a potent stimulant for DCs maturation. That is why it was worth 

to control that the detected DCs maturation induced by the scFv:G28-TRAIL fusion proteins 

were really related to the protein components rather than to any residual LPS contamination 

(Buelens et al., 1997; Dowling et al., 2008; Lapteva et al., 2007). As implied by previous 

findings, LPS is heat resistance and PMB suppresses LPS effects (Morrison and Ryan, 

1979; Rietschel et al., 1993; Tynan et al., 2012). According to these facts, we designed our 

strategy to control the absence of LPS contamination in our protein preparations. We found 

that the IL12 release triggered by LPS was not affected by heat inactivation while IL12-

induction by the various scFv:G28-TRAIL samples was completely abrogated after heat 

inactivation (Figure 25b,c). Vice versa, the IL12 release induced by scFv:G28-TRAIL was not 

significantly affected by PMB treatment while the LPS-induced IL12 release was strongly 

inhibited after PMB treatment (Figure 25c). The observed reciprocal effect of heat-

inactivation and PMB treatment on LPS- and scFv:G28-TRAIL-induced IL12 production in 

iDCs confirmed that the latter was mainly mediated by scFv:G28-TRAIL and not by 

unexpected LPS contaminations. Thus, conclusively, our results reveal that scFv:G28-TRAIL 

fusion proteins act as bifunctional molecules that not only induce cell death in tumor cells via 

their TRAIL domain upon CD40 binding but also stimulate DCs maturation via their scFv:G28 

domain.     
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Figure 25: Induction of DCs maturation by scFV:G28-TRAIL fusion proteins.  

a) iDCs were treated for 48 h with the various scFv:G28-TRAIL variants (200 ng/ml), 
scFv:G28-TNC-GpL (200 ng/ml), a tenascin-C trimerization domain-containing fusion protein 
of scFv:G28 and GpL or with 200 ng/ml of Killer-TRAIL. Mock- transfected HEK293 cells 
supernatant was included as a negative control for scFv:G28-TNC-GpL, scFv:G28-
TRAILmutR1 and scFv:G28-TRAILmutR2. FACS analysis of the cell surface expression of 
CD83 and CD86 was used to evaluate DCs maturation. The different groups were compared 
to an untreated group and DCs matured with the “gold standard” mixture as a positive 
control. b) iDCs were seeded in 96-well plate and challenged in triplicates with the indicated 
concentrations of the various scFv:G28-TRAIL variants as well as with 200 ng/ml of Killer-
TRAIL, the gold standard mixture, 100 ng/ml of LPS, scFv:G28-TNC-GpL and a control 
supernatant of mock-transfected HEK293 cells. As indicated, heat-stable endotoxin 
contaminations were controlled by heat-inactivated (HI) samples at 70°C for 30 min. 
Supernatants were collected from DCs after 24 h and analyzed for the production of IL12 by 
ELISA. c) iDCs were seeded in 96-well plate and treated in triplicates with scFv:G28-TRAIL 
(200 ng/ml) or 20 ng/ml of LPS. Where indicated, samples were heat-inactivated (HI) at 70°C 
for 30 min or treated with PMB (50 µg/ml). DCs supernatants were again assayed by ELISA 
after 24 h for IL12 production. 
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5. Discussion 

5.1. Characterization of TRAILR1- and TRAILR2-specific TRAIL mutants  

   Despite the intensive worldwide research, cancer remains a devastating, often poorly 

treatable disease. The major challenge in treating cancer patients is to find antitumor 

therapies that exhibit selective antitumor activity only on tumor cells without significant 

cytotoxic effects on normal cells. TRAIL, which is a member of TNF ligand family, is well 

proved as a potent inducer of apoptosis in many tumor and transformed cells without major 

toxic effects on normal cells (Bernardi et al., 2012; den Hollander et al., 2013; Newsom-Davis 

et al., 2009; van Dijk et al., 2013). Therefore, it is no surprise that several groups and 

companies have developed and evaluated TRAIL/TRAIL DR-based cancer therapeutics. In 

fact, recombinant TRAIL and TRAIL DR-targeting antibodies are in phase I and II trials. As 

implied by these trials, TRAIL DR-targeting therapies are considered as a safe antitumor 

therapy either alone or in combination with other agents (Dimberg et al., 2013; Hellwig and 

Rehm, 2012). TRAIL DR-targeting therapies have a good safety profile but show also only 

moderate antitumor activities (Dimberg et al., 2013; Hellwig and Rehm, 2012).  

  TRAIL or TRAIL DRs-targeting therapies induce tumor cell death via binding to two TRAIL 

DRs; TRAILR1 and TRAILR2 (Newsom-Davis et al., 2009). Therefore, the scientific research 

has unfailingly continued to differentiate between TRAILR1 and TRAILR2 signaling pathways 

by the development of TRAIL mutants that exhibit preferential binding to TRAILR1 or 

TRAILR2 (MacFarlane et al., 2005b; Reis et al., 2010). In this work, recently published 

TRAIL DR-specific mutants were investigated, one conferring specificity for TRAILR1 

(TRAILmutR1) G131R/R149I/S159R/N199R/K201H/S215D and the other for TRAILR2 

(TRAILmutR2) Y189Q/R191K/Q193R/H264R/I266L/D267Q (MacFarlane et al., 2005b; Reis 

et al., 2010). According to our results, TRAILmutR1 bound strongly to TRAILR1 and showed 

no binding to endogenous TRAILR2 or weak binding to TRAILR2 transiently expressed on 

HEK293 cells, as compared to TRAIL and TRAILmutR2 (Figure 4, 5). The weak detected 

binding of TRAILmutR1 to TRAILR2 transiently expressed in HEK293 cells may be related to 

the binding of TRAILmutR1 to TRAILR4 and/or heterocomplexes of TRAILR2 and TRAILR4 

expressed endogenously on HEK293 cells (Figure 3). Concerning TRAILmutR2, it showed 

only significant binding to TRAILR2 either expressed transiently on HEK293 cells or 

endogenously with no detectable binding affinity to TRAILR1 transiently expressed on 

HEK293 (Figure 4, 5). The results of these binding studies were confirmed by in vitro binding 

studies with immobilized TRAILR1-Fc and TRAILR2-Fc and by IP analysis of cell lines 

expressing both endogenous TRAILR1 and TRAILR2 which revealed that TRAILmutR1 

bound strongly only to TRAILR1 and on the other hand TRAILmutR2 displayed strong 
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binding only to TRALR2 with no detectable binding to TRAILR1 (Figure 6, 7). As implied by 

previous findings, TRAIL induces apoptosis in tumor cells by binding to TRAILR1 and/or 

TRAILR2 which leads to a research question whether the detected apoptosis in a given 

tumor is related to TRAILR1 or TRAILR2 (MacFarlane et al., 2005a; Newsom-Davis et al., 

2009). As far as the preferential binding of TRAILmutR1 and TRAILmutR2 to 

TRAILR1/TRAILR2 was proved in this current work, these novel TRAIL mutants provide a 

novel option for future research that aims to differentiate between the biological responses of 

TRAILR1 or TRAILR2. Moreover, this preferential binding to TRAILR1 or TRAILR2 provides 

a possibility to bypass the potential side effects triggered from the activation of the TRAIL DR 

type not required for the induction of apoptosis in the targeted tumor cells (Lemke et al., 

2010; MacFarlane et al., 2005a; Stadel et al., 2010). Although so far unwanted side effects 

are not a major problem in TRAIL based therapies, this may change with the introduction of 

TRAIL DR-targeting reagents with higher activity and/or when novel potent sensitizers for 

TRAIL-induced cell death are used in combination therapies.      

   The selective binding of TRAILmutR1 and TRAILmutR2 translated into selective induction 

of cell death as revealed by the viability assays in cell lines expressing endogenous TRAIL 

DRs with the various trimeric Flag-TNC-TRAIL variants in the presence and absence of 

oligomerization with anti-Flag mAb M2 (Figure 8a). Indeed, these viability assays provided 

two important results/conclusions. The first one is that TRAILmutR1 was only able to induce 

cell death in cells expressing TRAILR1 such as HT29 cells with no significant cell death in 

cell lines expressing only or mainly TRAILR2 such as Jurkat and HT1080 cells, whereas 

TRAILmutR2 showed significant cell death-induction in all cell lines expressing TRAILR2. 

The second conclusion is that oligomerization with anti-Flag M2 mAb enhanced the ability of 

soluble trimeric TRAILR1- and TRAILR2-specific TRAIL to trigger cell death. Although the 

role of oligomerization with anti-Flag M2 mAb was proved before to enhance 

TRAIL/TRAILR2 cell death induction, the current work proved for the first time that TRAILR1-

mediated cell death is also enhanced in response to oligomerized TRAILmutR1 (Berg et al., 

2007; Berg et al., 2009). 

   Depending on previous findings that fusion of the human IgG1 Fc domain with soluble TNF 

ligands results in forced hexamerization and enhanced activity that replaces the need of 

secondary oligomerization with for example anti-Flag M2 mAb, we designed also Fc-TRAIL 

variants of the two TRAIL mutants (Holler et al., 2003; Wyzgol et al., 2009). The mutated 

hexameric TRAIL fusion proteins exhibited TRAILR1/2-selective cell death in the same 

manner as in case of the corresponding oligomerized trimeric TRAIL variants (Figure 8b). 

The oligomerization-mimiking effect of the hexameric structure of the Fc-TRAIL fusion 

proteins was particular obvious in Jurkat cells which responded with cell death in the 
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absence of oligomerization with anti-Flag M2 mAb in the case of the hexameric fusion 

proteins of TRAIL and TRAILmutR2 but not when their soluble trimeric counterparts were 

used (Figure 8a,b). 

 

5.2. Targeting and activation of CD40 with scFv-TRAIL fusion proteins 

   Although recombinant soluble TRAIL and TRAIL DRs-targeting therapies are well proved 

as safe antitumor drugs through clinical phase I and II trials, they have a limitation which is 

their moderate antitumor activity (Dimberg et al., 2013; Hellwig and Rehm, 2012). This 

moderate antitumor activity may be attributed to two reasons. TRAIL resistance in tumor cells 

is the first reason which may overcome by combining TRAIL DR-targeting therapies with 

appropriate drugs that re-sensitize the tumor cells and work against TRAIL resistance 

(Dimberg et al., 2013; Hellwig and Rehm, 2012). The second reason is related to the 

inappropriate capability of TRAIL DR-targeting therapies to trigger the full apoptotic signaling 

activities of TRAILR1/TRAILR2 (Wajant et al., 2013).  

   Despite the fact that the molecular explanation for the different activities of TNFRSF 

complexes with soluble and membrane-bound or oligomerized ligand trimers is still unclear, 

there are strong lines of evidence that supramolecular clusters of the initially formed trimeric 

ligand-receptor complexes play an important role. For example, TRAILR2-specific antibodies 

exhibit enhanced stimulation of TRAILR2-singaling provided that they are oligomerized or 

cross linked in vivo after binding to FcɣRs expressing cells (Adams et al., 2008; Natoni et al., 

2007; Wilson et al., 2011). Therefore, TRAILR2-agonistic antibodies display weak in vivo 

activity in tumors with a microenvironment with limited FcɣRs expression. Furthermore, the 

ability of soluble TNF ligands to stimulate the corresponding member of TNFRSF might be 

enhanced by secondary ligand oligomerization or artificial cell surface immobilization of the 

ligand (Wajant et al., 2013; Wang et al., 2013a). The latter can be achieved by generation of 

fusion proteins of soluble TRAIL with an antibody domain recognizing a cell surface-exposed 

antigen. The latter approach provides many advantages in the field of antitumor therapy. The 

first advantage is that anchoring to a cell surface antigen overcomes the poor receptor-

stimulating activity of soluble TRAIL (Wajant et al., 2001; Wang et al., 2013a). The second 

one is that this type of TRAIL fusion proteins restricts TRAIL activity mainly to the tumor area 

and thus reduces the danger of triggering unwanted side effects on normal cells (Bremer et 

al., 2004a; Trebing et al., 2014). In addition, TRAIL fusion proteins represent a way to obtain 

bifunctional molecules which not only exhibit antitumor activity by stimulating DRs expressed 

on the tumor cells but also trigger or block signals emanating from the targeted antigen via 

the binding of the antibody domain to its cell surface antigen (Bremer et al., 2005b). 
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   The improvement of soluble TRAIL activity by anchoring the latter to cell surface antigens 

was proved by us and others (Trebing et al., 2014; Wajant et al., 2001; Wang et al., 2013a). 

Therefore, we were motivated in this work to design fusion proteins of TRAIL and the 

TRAILR1- and TRAILR2-specific mutants with a scFv against CD40, scFv:G28-5 (Clark et 

al., 1988). The idea behind using the agonistic CD40 antibody-derived scFv for the 

construction of TRAIL fusion proteins is that CD40 is highly expressed on the huge majority 

of B-cell malignancies and on many solid tumors (Banchereau et al., 1994; Ottaiano et al., 

2002; Pellat-Deceunynck et al., 1994; Wang et al., 1997). Moreover, CD40 is also expressed 

on many immune cells especially DCs and represents a powerful target for cancer 

immunotherapy (Moran et al., 2013).  

   Initially, the scFv:G28-TRAIL fusion proteins were investigated with respect to the 

functionality of both the TRAIL domain and the scFv:G28 domain. Regarding the TRAIL 

domain activity, we performed viability assays of the TRAIL fusion proteins along with the 

corresponding soluble trimeric TRAIL in Jurkat cells which are known to express only 

TRAILR2 (Sprick et al., 2000). Our results indicated that the TRAIL domain of the fusion 

proteins behaved in a similar manner as the corresponding soluble trimeric TRAIL variants. 

Thus, both were able to induce cell death particular potent upon oligomerization with anti-

Flag M2 mAb (Figure 12). To analyze the functionality of the scFv domain, we exploited the 

fact that total cellular binding of the scFv:G28-TRAIL fusion protein will increase in the case 

of high CD40 expression. Indeed, our results revealed enhanced binding of the scFv:G28-

TRAIL fusion proteins to HeLa-CD40 and HT1080-CD40 cells as compared to their parental 

CD40-negative cells (Figure 13). The major aim of designing the scFv:G28-TRAIL fusion 

proteins was to enhance the antitumor activity of TRAIL in a CD40-dependent manner. This 

aim was proved through viability assays which elicited an enhanced apoptotic activity upon 

binding to CD40 (Figure 14, 15b). The explanation of the later is that the artificial 

immobilization of the scFv-TRAIL fusion proteins to CD40 constitutes a state for these 

molecules in which they mimic the membrane bound form of TRAIL and thus trigger robust 

caspase activation and strong cell death (Figure 14, 15b, 16).  

   It has been previously shown that scFv fusion proteins of soluble TRAIL exhibit a potent 

apoptotic effect in antigen negative bystander cells after binding to the antigen positive cells 

(Bremer et al., 2004b). Therefore, it was worth in this current research to test the ability of 

scFv:G28-TRAIL fusion protein to induce such a paracrine effect in CD40-negative cells. 

Indeed, after anchoring of the TRAIL fusion protein on CD40-positive cells, the TRAIL 

domain induced cell death in CD40-negative cells without the need of exogenous 

oligomerization (Figure 18, 26).  
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   According to our results, scFv:G28-TRAIL fusion proteins exhibited a strong CD40-

dependent enhancement of apoptosis and cell death. To clarify whether both or only one of 

the two TRAIL DRs exhibit improved responsiveness to CD40-bound scFc:G28-TRAIL, we 

introduced the previously mentioned TRAILmutR1 and TRAILmutR2 in the TRAIL part that 

confer preference to TRAILR1 or TRAILR2. Here, we marshaled the first time investigation of 

TRAILR1- and TRAILR2-enhanced responsiveness to CD40-bound fusion proteins of TRAIL 

DRs specific mutants, TRAILmutR1 and TRAILmutR2 (Figure 19, 20, 21). 

   CD40 represents a tumor associated marker which is expressed on many tumor cells and 

also on many immune cells and mediates different biological functions after its activation. 

That is why we paid a great attention to analyze CD40 signaling induced by our scFv:G28-

TRAIL fusion proteins. scFv:G28-TRAIL was able to induce CD40 signaling in CD40 

expressing tumor cells as indicated by the induction of IL8 production and significant IκBα 

degradation in HeLa-CD40 cells (Figure 22a, 23). Moreover, we analyzed stimulation of 

CD40 signaling by scFv:G28-TRAIL fusion proteins in monocytes-derived DCs. Despite the 

strong CD40 expression on both iDCs and mDCs, our scFv:G28-TRAIL fusion proteins 

induced weak or no significant cell death in iDCs and mDCs (Figure 24). Interestingly, the 

various scFv:G28-TRAIL fusion proteins triggered maturation of iDCs as indicated by the 

upregulation of maturation markers such as CD83 and CD86 and the induction of IL12 

production (Figure 25). As it is well known that LPS is a potent trigger of DCs maturation, we 

controlled that the strong activation of DCs maturation by the CD40-targeted TRAIL fusion 

proteins was indeed related to the protein component and not to LPS contaminations (Figure 

25b,c) (Dowling et al., 2008; Lapteva et al., 2007). 
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Figure 26: The paracrine effect of CD40-bound scFv:G28-TRAIL on TRAIL sensitive 
CD40-negative bystander cells. 

In the presence of both CD40-positive cells and TRAIL sensitive CD40-negative cells, the 
scFv:G28 domain of the scFv:G28-TRAIL fusion protein will bind to CD40 on CD40-positive 
cells. Then, the free TRAIL domain of this artificially immobilized scFv:G28-TRAIL will mimic 
the activity of the membrane bound form of TRAIL that binds with full capacity to TRAIL DRs 
expressed on the surface of the neighboring CD40-negative cells and induces apoptosis. 
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   As revealed by our results, scFv:G28 fusion proteins with soluble TRAIL variants have two 

advantages. The first one is the potential to limit the off-target effects of highly active TRAIL 

variants due to the CD40-binding dependent enhancement of the otherwise low activity of 

soluble TRAIL. This property attracts great attention in the field of TRAIL-based therapy 

because combination of TRAIL with other drugs confers the risk of the potential sensitization 

of normal cells for TRAIL-induced apoptosis (Dimberg et al., 2013; Hellwig and Rehm, 2012). 

Actually, CD40-binding activity of scFv:G28-TRAIL fusion proteins exploits the advantage 

that CD40 is distributed on many tumor cells as well as on immune cells such as DCs (Moran 

et al., 2013). Moreover, we proved also the CD40-dependent enhancement of the activity 

with TRAIL mutants that preferentially stimulate TRAILR1 or TRAILR2 (Figure 19, 20, 21). 

Therefore, needless to say that the combination of using such specific TRAIL mutants with 

CD40 targeting principally provide more safe antitumor therapies by attenuating the potential 

TRAIL-related side effects that are mediated by one TRAIL DR other than the required for 

apoptosis. The second advantage of these fusion proteins is the ability to trigger CD40 

signaling (Figure 22a, 23, 25). Agonistic CD40 antibodies are currently investigated in clinical 

trials for cancer therapy due to their stimulatory effects on APCs and cytotoxic myeloid cells 

(Vonderheide and Glennie, 2013). Thus, conclusively, scFv:G28-TRAIL fusion proteins 

represent novel bifunctional molecules which are not only able to stimulate TRAIL DRs and 

mediate apoptosis in a CD40-dependent manner via the TRAIL domain but also stimulate 

CD40 signaling and activate DCs via the scFv:G28 domain (Figure 27). 
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Figure 27: scFv:G28-TRAIL fusion protein represents bifunctional molecules. 

TRAIL domain of scFv:G28-TRAIL fusion protein binds to the TRAIL DRs expressed on 
tumor cells leading to the activation of the apoptotic signal. Not only that but also scFv:G28 
domain binds to CD40 on CD40 expressing cells such as iDCs leading to their maturation 
and stimulation of the immune response. 

 

 

 



Summary 

77 

 

6. Summary 

   TRAIL is a member of TNF superfamily and mediates apoptosis by binding to two DRs, 

TRAILR1 and TRAILR2. Despite the fact that there are other TRAILRs, TRAILR1 and 

TRAILR2 receive the major research interest due to their ability to trigger apoptosis and their 

possible use as targets in tumor therapy. Due to the potential advantages of TRAILR1- or 

TRAILR2-specific targeting, we investigated recently published TRAIL DR-specific mutants, 

one conferring specificity for TRAILR1 (TRAILmutR1) and one for TRAILR2 (TRAILmutR2). It 

was well proved in this work that TRAILmutR1 shows specific binding to TRAILR1 and no 

specific binding to TRAILR2. TRAILmutR2 vice versa shows specific binding to TRAILR2 and 

no significant binding to TRAILR1. Moreover, these mutants were able to induce caspase 

activation and cell death in a TRAILR1/2-specific manner. Moreover, the enhancement of 

TRAILR2-induced apoptosis by secondary oligomerization of soluble wild-type TRAIL was 

confirmed for the TRAILR2-specifc TRAIL mutant and similar findings were made with the 

TRAILR1-specific TRAIL mutant.  

   The soluble form of TRAIL exhibits weak apoptotic activity as compared to transmembrane 

TRAIL. Therefore, there is the challenge in clinical research to improve the activity of soluble 

TRAIL. A second strategy besides the above mentioned oligomerization to improve soluble 

TRAIL activity is anchoring of the molecule to the cell surface, e.g. through the genetic fusion 

with a scFv domain recognizing a cell surface antigen. In this work, we generated fusion 

proteins of TRAIL, TRAILmutR1 and TRAILmutR2 with a scFv recognizing CD40 (scFv:G28). 

Initially, we analyzed the functionality of both the TRAIL domain and the scFv:G28 domain of 

the corresponding fusion proteins. TRAIL functionality was well proved through its ability to 

induce cell death in TRAIL sensitive cells such as Jurkat cells, provided that scFv:G28-TRAIL 

fusion proteins were oligomerized by anti-Flag mAb M2. Concerning the scFv:G28 domain, 

the fusion proteins showed enhanced binding affinity to cell lines expressing CD40 as 

compared to their parental CD40-negative cells. Consistent with previous studies 

investigating TRAIL fusion proteins with other cell surface antigen-targeting scFvs, the 

scFv:G28 fusion proteins with TRAIL, TRAILmutR1 and TRAILmutR2 showed enhanced 

induction of cell death in a CD40-dependent manner. Moreover, our results revealed that 

these fusion proteins have a significant paracrine apoptotic effect on CD40-negative 

bystander cells upon anchoring to D40-positive cells which are TRAIL resistant. Thus, the 

current work provides for the first time scFv fusion proteins of TRAIL and TRAILR1- and 

TRAILR2-specific TRAIL mutants with CD40-restricted activity. These fusion proteins provide 

the advantage of attenuating the off-target effects and the potential side effects of per se 
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highly active TRAIL variants on one hand due to the CD40-binding dependent enhancement 

of activity and on the other hand due to the differential use of TRAILR1 and TRAILR2. 

  CD40 represents a tumor associated marker which is expressed on many tumor cells but 

also on immune cells. Therefore, the last part of this work focused on the analysis of the 

ability of scFv:G28-TRAIL fusion proteins to induce CD40 signaling both in tumor cells and 

also in immune cells. It turned out that the scFv:G28-TRAIL fusion proteins are able to 

induce CD40 signaling in CD40-positive tumor cells but especially also in immune cells such 

as iDCs leading to their maturation and further activation of immune responses. 

   Taken together, this work provides novel bifunctional scFv-TRAIL fusion proteins which 

combine the induction of apoptosis via TRAIL DR with stimulation of CD40 signaling which 

possibly enhances antitumor immunity.  
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7. Zusammenfassung 

TRAIL ist ein Mitglied der TNF-Superfamilie und vermittelt Apoptose durch die Aktivierung 

der Todesrezeptoren, TRAILR1 und TRAILR2. Obwohl es weitere TRAIL-Rezeptoren gibt, 

liegt das Hauptaugenmerk auf den beiden Apoptose induzierenden Rezeptoren TRAILR1 

und TRAILR2 auf Grund ihrer möglichen Anwendung in der Tumortherapie. Wegen der 

möglichen Vorteile eines spezifischen TRAILR1- und TRAILR2-Targetings, haben wir 

kürzlich publizierte TRAIL-Todesrezeptor spezifische TRAIL Mutanten untersucht, von denen 

eine spezifisch für TRAILR1 (TRAILmutR1) und die andere spezifisch für TRAILR2 

(TRAILmutR2) ist. Es konnte in dieser Arbeit sehr gut belegt werden, dass TRAILmutR1 

spezifisch an TRAILR1 bindet und keine Bindung an TRAILR2 zeigte. Dem entsprechend 

zeigte die Variante TRAILmutR2 nur eine spezifische Bindung an TRAILR2 und keine 

signifikante Bindung an TRAILR1. Des Weiteren waren die Mutanten in der Lage, die 

Caspase-Aktivierung und den Zelltod TRAILR1/2-abhängig zu induzieren. Außerdem konnte 

eine Erhöhung der TRAILR2-induzierten Apoptose durch eine sekundäre Oligomerisierung 

der TRAILR2-spezifische TRAIL-Mutante erzielt werden. Ähnliche Ergebnisse zeigte die 

TRAILR1-spezifische TRAIL-Mutante. 

Um die Aktivität des löslichen TRAIL Oligomerisierung unabhängig zu erhöhen, wurden in 

dieser Arbeit TRAIL-Fusionsproteine mit einem scFv (scFv:G28), der CD40 erkennt 

generiert. In Übereinstimmung mit früheren Studien, die mit TRAIL-Fusionsproteinen von 

anderen Zelloberflächenantigen-spezifischen scFvs wurden, zeigten die CD40-spezifischen 

scFv:G28 Fusionsproteine mit TRAIL, TRAILmutR1 und TRAILmutR2 eine verstärkte CD40-

abhängige Induktion des Zelltods. Darüber hinaus zeigten unsere Ergebnisse, dass diese 

Fusionsproteine nach Bindung an CD40-positive Zellen einen parakrinen apoptotischen 

Effekt, auf umliegende CD40-negative Zellen haben. Diese Arbeit beschreibt somit zum 

ersten Mal scFv-TRAIL Fusionsproteine mit einer CD40-abhängigen TRAILR1- und 

TRAILR2-spezifischen Aktivität.  

CD40 repräsentiert einen tumorassoziierten Marker, der in vielen Tumorzellen aber auch in 

Zellen des Immunsystems exprimiert wird. Aus diesem Grund fokussierte sich der zweite Teil 

dieser Arbeit auf die Analyse der Fähigkeit der scFv:G28-TRAIL Fusionsproteine, CD40-

Signaling sowohl in Tumor- als auch in Immunzellen zu stimulieren. Es konnte festgestellt 

werden, dass die scFv:G28-TRAIL Fusionsproteine in der Lage sind, CD40-Signaling in 

CD40-positiven Tumorzellen, aber auch in Immunzellen, z.B. in iDCs, in denen die ScFv-

TRAIL Fusionsproteine die Reifung und Aktivierung induzieren ohne Zelltod auszulösen. 

Zusammengefasst beschreibt diese Arbeit neue bifunktionelle scFv-TRAIL Fusionsproteine, 

die die Induktion der Apoptose via TRAIL-Todesrezeptoren und die Stimulation des 
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kostimulatorischen CD40-Moleküls kombinieren, was zu einer synergistischen dualen 

Antitumor-Aktivität führen kann. 
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9. Annex 

9.1 DNA sequences 

9.1.1. Flag-TNC-TRAIL 

Signal peptide: NT   1-84              aa   1-28 

Flag:  NT   85-108 aa   29-36 

TNC: NT   115-204        aa   39-68 

TRAIL:               NT   241-801       aa   81-267 

 

1 

1 

55 

19 

109 

37 

163 

55 

217 

73 

271 

91 

325 

109 

379 

127 

433 

145 

487 

163 

541 

181 

595 

199 

649 

217 

703 

235 

757 

253 

atg aac ttc ggg ttc agc ttg att ttc ctg gtc ctg gtg ctg aag ggc gtg cag 

 M   N   F   G   F   S   L   I   F   L   V   L   V   L   K   G   V   Q  

tgc gag gtg aag ctg gtg cca cgc gga tcc gat tac aaa gac gat gac gat aaa 

 C   E   V   K   L   V   P   R   G   S   D   Y   K   D   D   D   D   K  

gat atc gcc tgt ggc tgt gcg gct gcc cca gac atc aag gac ctg ctg agc aga 

 D   I   A   C   G   C   A   A   A   P   D   I   K   D   L   L   S   R  

ctg gag gag ctg gag ggg ctg gta tcc tcc ctc cgg gag cag ggt acc gga ggt 

 L   E   E   L   E   G   L   V   S   S   L   R   E   Q   G   T   G   G  

ggg tct ggc ggc cgc ggt gaa ttc acc tct gag gaa acc att tct aca gtt caa 

 G   S   G   G   R   G   E   F   T   S   E   E   T   I   S   T   V   Q  

gaa aag caa caa aat att tct ccc cta gtg aga gaa aga ggt cct cag aga gta 

 E   K   Q   Q   N   I   S   P   L   V   R   E   R   G   P   Q   R   V  

gca gct cac ata act ggg acc aga gga aga agc aac aca ttg tct tct cca aac 

 A   A   H   I   T   G   T   R   G   R   S   N   T   L   S   S   P   N  

tcc aag aat gaa aag gct ctg ggc cgc aaa ata aac tcc tgg gaa tca tca agg 

 S   K   N   E   K   A   L   G   R   K   I   N   S   W   E   S   S   R  

agt ggg cat tca ttc ctg agc aac ttg cac ttg agg aat ggt gaa ctg gtc atc 

 S   G   H   S   F   L   S   N   L   H   L   R   N   G   E   L   V   I  

cat gaa aaa ggg ttt tac tac atc tat tcc caa aca tac ttt cga ttt cag gag 

 H   E   K   G   F   Y   Y   I   Y   S   Q   T   Y   F   R   F   Q   E  

gaa ata aaa gaa aac aca aag aac gac aaa caa atg gtc caa tat att tac aaa 

 E   I   K   E   N   T   K   N   D   K   Q   M   V   Q   Y   I   Y   K  

tac aca agt tat cct gac cct ata ttg ttg atg aaa agt gct aga aat agt tgt 

 Y   T   S   Y   P   D   P   I   L   L   M   K   S   A   R   N   S   C  

tgg tct aaa gat gca gaa tat gga ctc tat tcc atc tat caa ggg gga ata ttt 

 W   S   K   D   A   E   Y   G   L   Y   S   I   Y   Q   G   G   I   F  

gag ctt aag gaa aat gac aga att ttt gtt tct gta aca aat gag cac ttg ata 

 E   L   K   E   N   D   R   I   F   V   S   V   T   N   E   H   L   I  

gac atg gac cat gaa gcc agt ttt ttc ggg gcc ttt tta gtt ggc taa  

 D   M   D   H   E   A   S   F   F   G   A   F   L   V   G   -   

 

9.1.2. Flag-TNC-TRAILmutR1 

Signal peptide:   NT   1-84              aa   1-28 

Flag: NT   85-108  aa   29-36 

TNC:                NT   115-204        aa   39-68 

TRAILmutR1:     NT   241-801       aa   81-267 

Mutations are indicated in green color. 

 

1 

1 

55 

19 

atg aac ttc ggg ttc agc ttg att ttc ctg gtc ctg gtg ctg aag ggc gtg cag 

 M   N   F   G   F   S   L   I   F   L   V   L   V   L   K   G   V   Q  

tgc gag gtg aag ctg gtg cca cgc gga tcc gat tac aaa gac gat gac gat aaa 

 C   E   V   K   L   V   P   R   G   S   D   Y   K   D   D   D   D   K  
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109 

37 

163 

55 

217 

73 

271 

91 

325 

109 

379 

127 

433 

145 

487 

163 

541 

181 

595 

199 

649 

217 

703 

235 

757 

253 

gat atc gcc tgt ggc tgt gcg gct gcc cca gac atc aag gac ctg ctg agc aga 

 D   I   A   C   G   C   A   A   A   P   D   I   K   D   L   L   S   R  

ctg gag gag ctg gag ggg ctg gta tcc tcc ctc cgg gag cag ggt acc gga ggt 

 L   E   E   L   E   G   L   V   S   S   L   R   E   Q   G   T   G   G  

ggg tct ggc ggc cgc ggt gaa ttc aca tct gag gaa acc att agc acc gtc cag 

 G   S   G   G   R   G   E   F   T   S   E   E   T   I   S   T   V   Q  

gag aaa cag cag aac att tca ccc ctc gtc cgg gaa cgg gga cca cag aga gtg 

 E   K   Q   Q   N   I   S   P   L   V   R   E   R   G   P   Q   R   V  

gcc gct cat att act ggc aca cgg agg cga tcc aat aca ctg agt agc ccc aac 

 A   A   H   I   T   G   T   R   R   R   S   N   T   L   S   S   P   N  

tcc aaa aac gaa aag gca ctg ggc atc aaa atc aat tca tgg gag agt agt agg 

 S   K   N   E   K   A   L   G   I   K   I   N   S   W   E   S   S   R  

cgg gga cat tcc ttt ctg tcc aac ctc cat ctc cga aac ggc gaa ctg gtg att 

 R   G   H   S   F   L   S   N   L   H   L   R   N   G   E   L   V   I  

cac gag aag ggc ttt tac tac atc tac tcc cag acc tac ttc aga ttt cag gag 

 H   E   K   G   F   Y   Y   I   Y   S   Q   T   Y   F   R   F   Q   E  

gag atc aag gaa cgg acc cac aac gac aaa cag atg gtc cag tac atc tac aaa 

 E   I   K   E   R   T   H   N   D   K   Q   M   V   Q   Y   I   Y   K  

tac acc gac tac ccc gac cct atc ctg ctc atg aaa tcc gct aga aat tca tgc 

 Y   T   D   Y   P   D   P   I   L   L   M   K   S   A   R   N   S   C  

tgg agc aag gat gcc gaa tac gga ctg tac tca atc tac cag ggc ggc att ttt 

 W   S   K   D   A   E   Y   G   L   Y   S   I   Y   Q   G   G   I   F  

gaa ctg aaa gag aac gat cgg atc ttc gtg tct gtc aca aac gaa cac ctc atc 

 E   L   K   E   N   D   R   I   F   V   S   V   T   N   E   H   L   I  

gac atg gat cac gag gcc tca ttc ttt ggc gct ttt ctg gtg gga tga  

 D   M   D   H   E   A   S   F   F   G   A   F   L   V   G   -   

 

9.1.3. Flag-TNC-TRAILmutR2 

Signal peptide: NT   1-84              aa   1-28 

Flag:                NT   85-108 aa   29-36 

TNC: NT   115-204        aa   39-68 

TRAILmutR2:     NT   241-801       aa    81-267 

Mutations are indicated in green color. 

 

1 

1 

55 

19 

109 

37 

163 

55 

217 

73 

271 

91 

325 

109 

379 

127 

433 

145 

487 

163 

 

atg aac ttc ggg ttc agc ttg att ttc ctg gtc ctg gtg ctg aag ggc gtg cag 

 M   N   F   G   F   S   L   I   F   L   V   L   V   L   K   G   V   Q  

tgc gag gtg aag ctg gtg cca cgc gga tcc gat tac aaa gac gat gac gat aaa 

 C   E   V   K   L   V   P   R   G   S   D   Y   K   D   D   D   D   K  

gat atc gcc tgt ggc tgt gcg gct gcc cca gac atc aag gac ctg ctg agc aga 

 D   I   A   C   G   C   A   A   A   P   D   I   K   D   L   L   S   R  

ctg gag gag ctg gag ggg ctg gta tcc tcc ctc cgg gag cag ggt acc gga ggt 

 L   E   E   L   E   G   L   V   S   S   L   R   E   Q   G   T   G   G  

ggg tct ggc ggc cgc ggt gaa ttc acc agc gaa gag aca atc agc acc gtg cag 

 G   S   G   G   R   G   E   F   T   S   E   E   T   I   S   T   V   Q  

gaa aag cag cag aac atc agc ccc ctc gtg cgc gaa agg ggc cct cag aga gtg 

 E   K   Q   Q   N   I   S   P   L   V   R   E   R   G   P   Q   R   V  

gcc gcc cac atc act ggc acc aga ggc aga agc aac acc ctg agc agc ccc aac 

 A   A   H   I   T   G   T   R   G   R   S   N   T   L   S   S   P   N  

agc aag aac gag aag gcc ctg ggc cgg aag atc aac agc tgg gag tct agc aga 

 S   K   N   E   K   A   L   G   R   K   I   N   S   W   E   S   S   R  

agc ggc cac agc ttt ctg agc aac ctg cac ctg aga aac ggc gag ctc gtg atc 

 S   G   H   S   F   L   S   N   L   H   L   R   N   G   E   L   V   I 

cac gag aag ggc ttc tac tac atc tac agc cag acc cag ttc aag ttc cgg gaa 

 H   E   K   G   F   Y   Y   I   Y   S   Q   T   Q   F   K   F   R   E  
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541 

181 

595 

199 

649 

217 

703 

235 

757 

253 

gag atc aaa gag aat acc aag aac gac aag cag atg gtg cag tac atc tat aag 

 E   I   K   E   N   T   K   N   D   K   Q   M   V   Q   Y   I   Y   K  

tac acc agc tac ccc gac ccc atc ctg ctg atg aag tcc gcc cgg aac agc tgc 

 Y   T   S   Y   P   D   P   I   L   L   M   K   S   A   R   N   S   C  

tgg tcc aag gat gcc gag tac ggc ctg tac agc atc tac cag ggc ggc atc ttc 

 W   S   K   D   A   E   Y   G   L   Y   S   I   Y   Q   G   G   I   F  

gag ctg aaa gag aac gac cgg atc ttc gtg tcc gtg acc aac gag cgg ctg ctg 

 E   L   K   E   N   D   R   I   F   V   S   V   T   N   E   R   L   L  

cag atg gac cac gag gcc agc ttt ttc ggc gcc ttc ctc gtg gga tag  

 Q   M   D   H   E   A   S   F   F   G   A   F   L   V   G   -  

 

9.1.4. GpL-Flag-TNC-TRAIL 

GpL: NT  1-555 aa   1-185 

Flag:  NT   571-594  aa   191-198 

TNC:      NT   601-690 aa   201-230 

TRAIL:   NT   727-1287            aa   243-429 

 

1 

1 

55 

19 

109 

37 

163 

55 

217 

73 

271 

91 

325 

109 

379 

127 

433 

145 

487 

163 

541 

181 

595 

199 

649 

217 

703 

235 

757 

253 

811 

271 

865 

289 

919 

307 

973 

325 

 

atg ggc gtc aaa gtc ctg ttt gcc ctc atc tgt att gct gtc gct gag gct aaa 

 M   G   V   K   V   L   F   A   L   I   C   I   A   V   A   E   A   K  

cca acc gag aat aat gag gat ttc aac atc gtg gct gtg gca tcc aat ttt gct 

 P   T   E   N   N   E   D   F   N   I   V   A   V   A   S   N   F   A  

acc acc gac ctc gat gcc gat cgg gga aaa ctg cct ggc aaa aaa ctg ccc ctg 

 T   T   D   L   D   A   D   R   G   K   L   P   G   K   K   L   P   L  

gaa gtg ctg aaa gag atg gag gcc aac gct aga aaa gct ggc tgt act aga gga 

 E   V   L   K   E   M   E   A   N   A   R   K   A   G   C   T   R   G  

tgt ctc atc tgc ctg tcc cac atc aag tgt acc cca aaa atg aaa aaa ttc atc 

 C   L   I   C   L   S   H   I   K   C   T   P   K   M   K   K   F   I  

cct ggc cgg tgt cac aca tac gag ggc gac aag gaa tct gct cag ggc gga atc 

 P   G   R   C   H   T   Y   E   G   D   K   E   S   A   Q   G   G   I  

gga gag gct att gtg gat att cct gaa att cct gga ttc aag gac ctg gag cct 

 G   E   A   I   V   D   I   P   E   I   P   G   F   K   D   L   E   P  

atg gaa cag ttt atc gcc cag gtg gac ctc tgt gtc gat tgt aca act ggc tgc 

 M   E   Q   F   I   A   Q   V   D   L   C   V   D   C   T   T   G   C  

ctg aaa ggg ctg gcc aat gtc cag tgt agt gac ctg ctg aaa aaa tgg ctg ccc 

 L   K   G   L   A   N   V   Q   C   S   D   L   L   K   K   W   L   P  

cag aga tgt gcc act ttc gcc tct aaa att cag ggc cag gtc gac aaa atc aaa 

 Q   R   C   A   T   F   A   S   K   I   Q   G   Q   V   D   K   I   K  

ggc gct gga gga gac tct gga gct gga tcc gat tac aaa gac gat gac gat aaa 

 G   A   G   G   D   S   G   A   G   S   D   Y   K   D   D   D   D   K  

gat atc gcc tgt ggc tgt gcg gct gcc cca gac atc aag gac ctg ctg agc aga 

 D   I   A   C   G   C   A   A   A   P   D   I   K   D   L   L   S   R  

ctg gag gag ctg gag ggg ctg gta tcc tcc ctc cgg gag cag ggt acc gga ggt 

 L   E   E   L   E   G   L   V   S   S   L   R   E   Q   G   T   G   G  

ggg tct ggc ggc cgc ggt gaa ttc acc tct gag gaa acc att tct aca gtt caa 

 G   S   G   G   R   G   E   F   T   S   E   E   T   I   S   T   V   Q  

gaa aag caa caa aat att tct ccc cta gtg aga gaa aga ggt cct cag aga gta 

 E   K   Q   Q   N   I   S   P   L   V   R   E   R   G   P   Q   R   V  

gca gct cac ata act ggg acc aga gga aga agc aac aca ttg tct tct cca aac 

 A   A   H   I   T   G   T   R   G   R   S   N   T   L   S   S   P   N  

tcc aag aat gaa aag gct ctg ggc cgc aaa ata aac tcc tgg gaa tca tca agg 

 S   K   N   E   K   A   L   G   R   K   I   N   S   W   E   S   S   R  

agt ggg cat tca ttc ctg agc aac ttg cac ttg agg aat ggt gaa ctg gtc atc 

 S   G   H   S   F   L   S   N   L   H   L   R   N   G   E   L   V   I  

cat gaa aaa ggg ttt tac tac atc tat tcc caa aca tac ttt cga ttt cag gag 

 H   E   K   G   F   Y   Y   I   Y   S   Q   T   Y   F   R   F   Q   E  
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gaa ata aaa gaa aac aca aag aac gac aaa caa atg gtc caa tat att tac aaa 

 E   I   K   E   N   T   K   N   D   K   Q   M   V   Q   Y   I   Y   K  

tac aca agt tat cct gac cct ata ttg ttg atg aaa agt gct aga aat agt tgt 

 Y   T   S   Y   P   D   P   I   L   L   M   K   S   A   R   N   S   C  

tgg tct aaa gat gca gaa tat gga ctc tat tcc atc tat caa ggg gga ata ttt 

 W   S   K   D   A   E   Y   G   L   Y   S   I   Y   Q   G   G   I   F  

gag ctt aag gaa aat gac aga att ttt gtt tct gta aca aat gag cac ttg ata 

 E   L   K   E   N   D   R   I   F   V   S   V   T   N   E   H   L   I  

gac atg gac cat gaa gcc agt ttt ttc ggg gcc ttt tta gtt ggc taa  

 D   M   D   H   E   A   S   F   F   G   A   F   L   V   G   -   

 

9.1.5. GpL-Flag-TNC-TRAILmutR1 

GpL:   NT   1-555 aa   1-185 

Flag:  NT   571-594 aa   191-198 

TNC:                 NT   601-690  aa   201-230 

TRAILmutR1: NT   727-1287             aa   243-429 

Mutations are indicated in green color. 

 

1 

1 

55 

19 

109 

37 

163 

55 

217 

73 

271 

91 

325 

109 

379 

127 

433 

145 

487 

163 

541 

181 

595 

199 

649 

217 

703 

235 

757 

253 

811 

271 

865 

289 

919 

307 

 

atg ggc gtc aaa gtc ctg ttt gcc ctc atc tgt att gct gtc gct gag gct aaa 

 M   G   V   K   V   L   F   A   L   I   C   I   A   V   A   E   A   K  

cca acc gag aat aat gag gat ttc aac atc gtg gct gtg gca tcc aat ttt gct 

 P   T   E   N   N   E   D   F   N   I   V   A   V   A   S   N   F   A  

acc acc gac ctc gat gcc gat cgg gga aaa ctg cct ggc aaa aaa ctg ccc ctg 

 T   T   D   L   D   A   D   R   G   K   L   P   G   K   K   L   P   L  

gaa gtg ctg aaa gag atg gag gcc aac gct aga aaa gct ggc tgt act aga gga 

 E   V   L   K   E   M   E   A   N   A   R   K   A   G   C   T   R   G  

tgt ctc atc tgc ctg tcc cac atc aag tgt acc cca aaa atg aaa aaa ttc atc 

 C   L   I   C   L   S   H   I   K   C   T   P   K   M   K   K   F   I  

cct ggc cgg tgt cac aca tac gag ggc gac aag gaa tct gct cag ggc gga atc 

 P   G   R   C   H   T   Y   E   G   D   K   E   S   A   Q   G   G   I  

gga gag gct att gtg gat att cct gaa att cct gga ttc aag gac ctg gag cct 

 G   E   A   I   V   D   I   P   E   I   P   G   F   K   D   L   E   P  

atg gaa cag ttt atc gcc cag gtg gac ctc tgt gtc gat tgt aca act ggc tgc 

 M   E   Q   F   I   A   Q   V   D   L   C   V   D   C   T   T   G   C  

ctg aaa ggg ctg gcc aat gtc cag tgt agt gac ctg ctg aaa aaa tgg ctg ccc 

 L   K   G   L   A   N   V   Q   C   S   D   L   L   K   K   W   L   P  

cag aga tgt gcc act ttc gcc tct aaa att cag ggc cag gtc gac aaa atc aaa 

 Q   R   C   A   T   F   A   S   K   I   Q   G   Q   V   D   K   I   K  

ggc gct gga gga gac tct gga gct gga tcc gat tac aaa gac gat gac gat aaa 

 G   A   G   G   D   S   G   A   G   S   D   Y   K   D   D   D   D   K  

gat atc gcc tgt ggc tgt gcg gct gcc cca gac atc aag gac ctg ctg agc aga 

 D   I   A   C   G   C   A   A   A   P   D   I   K   D   L   L   S   R  

ctg gag gag ctg gag ggg ctg gta tcc tcc ctc cgg gag cag ggt acc gga ggt 

 L   E   E   L   E   G   L   V   S   S   L   R   E   Q   G   T   G   G  

ggg tct ggc ggc cgc ggt gaa ttc aca tct gag gaa acc att agc acc gtc cag 

 G   S   G   G   R   G   E   F   T   S   E   E   T   I   S   T   V   Q  

gag aaa cag cag aac att tca ccc ctc gtc cgg gaa cgg gga cca cag aga gtg 

 E   K   Q   Q   N   I   S   P   L   V   R   E   R   G   P   Q   R   V 

gcc gct cat att act ggc aca cgg agg cga tcc aat aca ctg agt agc ccc aac 

 A   A   H   I   T   G   T   R   R   R   S   N   T   L   S   S   P   N  

tcc aaa aac gaa aag gca ctg ggc atc aaa atc aat tca tgg gag agt agt agg 

 S   K   N   E   K   A   L   G   I   K   I   N   S   W   E   S   S   R  

cgg gga cat tcc ttt ctg tcc aac ctc cat ctc cga aac ggc gaa ctg gtg att 

 R   G   H   S   F   L   S   N   L   H   L   R   N   G   E   L   V   I  
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cac gag aag ggc ttt tac tac atc tac tcc cag acc tac ttc aga ttt cag gag 

 H   E   K   G   F   Y   Y   I   Y   S   Q   T   Y   F   R   F   Q   E  

gag atc aag gaa cgg acc cac aac gac aaa cag atg gtc cag tac atc tac aaa 

 E   I   K   E   R   T   H   N   D   K   Q   M   V   Q   Y   I   Y   K  

tac acc gac tac ccc gac cct atc ctg ctc atg aaa tcc gct aga aat tca tgc 

 Y   T   D   Y   P   D   P   I   L   L   M   K   S   A   R   N   S   C  

tgg agc aag gat gcc gaa tac gga ctg tac tca atc tac cag ggc ggc att ttt 

 W   S   K   D   A   E   Y   G   L   Y   S   I   Y   Q   G   G   I   F  

gaa ctg aaa gag aac gat cgg atc ttc gtg tct gtc aca aac gaa cac ctc atc 

 E   L   K   E   N   D   R   I   F   V   S   V   T   N   E   H   L   I  

gac atg gat cac gag gcc tca ttc ttt ggc gct ttt ctg gtg gga tga  

 D   M   D   H   E   A   S   F   F   G   A   F   L   V   G   -   

 

9.1.6 GpL-Flag-TNC-TRAILmutR2 

GpL:   NT   1-555  aa   1-185 

Flag: NT   571-594  aa   191-198 

TNC:                 NT   601-690 aa   201-230 

TRAILmutR2:   NT   727-1287             aa   243-429 

Mutations are indicated in green color. 

 

1 

1 

55 

19 

109 

37 

163 

55 

217 

73 

271 

91 

325 

109 

379 

127 

433 

145 

487 

163 

541 

181 

595 

199 

649 

217 

703 

235 

757 

253 

811 

271 

865 

289 

 

atg ggc gtc aaa gtc ctg ttt gcc ctc atc tgt att gct gtc gct gag gct aaa 

 M   G   V   K   V   L   F   A   L   I   C   I   A   V   A   E   A   K  

cca acc gag aat aat gag gat ttc aac atc gtg gct gtg gca tcc aat ttt gct 

 P   T   E   N   N   E   D   F   N   I   V   A   V   A   S   N   F   A  

acc acc gac ctc gat gcc gat cgg gga aaa ctg cct ggc aaa aaa ctg ccc ctg 

 T   T   D   L   D   A   D   R   G   K   L   P   G   K   K   L   P   L  

gaa gtg ctg aaa gag atg gag gcc aac gct aga aaa gct ggc tgt act aga gga 

 E   V   L   K   E   M   E   A   N   A   R   K   A   G   C   T   R   G  

tgt ctc atc tgc ctg tcc cac atc aag tgt acc cca aaa atg aaa aaa ttc atc 

 C   L   I   C   L   S   H   I   K   C   T   P   K   M   K   K   F   I  

cct ggc cgg tgt cac aca tac gag ggc gac aag gaa tct gct cag ggc gga atc 

 P   G   R   C   H   T   Y   E   G   D   K   E   S   A   Q   G   G   I  

gga gag gct att gtg gat att cct gaa att cct gga ttc aag gac ctg gag cct 

 G   E   A   I   V   D   I   P   E   I   P   G   F   K   D   L   E   P  

atg gaa cag ttt atc gcc cag gtg gac ctc tgt gtc gat tgt aca act ggc tgc 

 M   E   Q   F   I   A   Q   V   D   L   C   V   D   C   T   T   G   C  

ctg aaa ggg ctg gcc aat gtc cag tgt agt gac ctg ctg aaa aaa tgg ctg ccc 

 L   K   G   L   A   N   V   Q   C   S   D   L   L   K   K   W   L   P  

cag aga tgt gcc act ttc gcc tct aaa att cag ggc cag gtc gac aaa atc aaa 

 Q   R   C   A   T   F   A   S   K   I   Q   G   Q   V   D   K   I   K  

ggc gct gga gga gac tct gga gct gga tcc gat tac aaa gac gat gac gat aaa 

 G   A   G   G   D   S   G   A   G   S   D   Y   K   D   D   D   D   K  

gat atc gcc tgt ggc tgt gcg gct gcc cca gac atc aag gac ctg ctg agc aga 

 D   I   A   C   G   C   A   A   A   P   D   I   K   D   L   L   S   R  

ctg gag gag ctg gag ggg ctg gta tcc tcc ctc cgg gag cag ggt acc gga ggt 

 L   E   E   L   E   G   L   V   S   S   L   R   E   Q   G   T   G   G  

ggg tct ggc ggc cgc ggt gaa ttc acc agc gaa gag aca atc agc acc gtg cag 

 G   S   G   G   R   G   E   F   T   S   E   E   T   I   S   T   V   Q  

gaa aag cag cag aac atc agc ccc ctc gtg cgc gaa agg ggc cct cag aga gtg 

 E   K   Q   Q   N   I   S   P   L   V   R   E   R   G   P   Q   R   V  

gcc gcc cac atc act ggc acc aga ggc aga agc aac acc ctg agc agc ccc aac 

 A   A   H   I   T   G   T   R   G   R   S   N   T   L   S   S   P   N  

agc aag aac gag aag gcc ctg ggc cgg aag atc aac agc tgg gag tct agc aga 

 S   K   N   E   K   A   L   G   R   K   I   N   S   W   E   S   S   R  

 



Annex 

99 

 

919 

307 

973 

325 

1027 

343 

1081 

361 

1135 

379 

1189 

397 

1243 

415 

agc ggc cac agc ttt ctg agc aac ctg cac ctg aga aac ggc gag ctc gtg atc 

 S   G   H   S   F   L   S   N   L   H   L   R   N   G   E   L   V   I  

cac gag aag ggc ttc tac tac atc tac agc cag acc cag ttc aag ttc cgg gaa 

 H   E   K   G   F   Y   Y   I   Y   S   Q   T   Q   F   K   F   R   E  

gag atc aaa gag aat acc aag aac gac aag cag atg gtg cag tac atc tat aag 

 E   I   K   E   N   T   K   N   D   K   Q   M   V   Q   Y   I   Y   K  

tac acc agc tac ccc gac ccc atc ctg ctg atg aag tcc gcc cgg aac agc tgc 

 Y   T   S   Y   P   D   P   I   L   L   M   K   S   A   R   N   S   C  

tgg tcc aag gat gcc gag tac ggc ctg tac agc atc tac cag ggc ggc atc ttc 

 W   S   K   D   A   E   Y   G   L   Y   S   I   Y   Q   G   G   I   F  

gag ctg aaa gag aac gac cgg atc ttc gtg tcc gtg acc aac gag cgg ctg ctg 

 E   L   K   E   N   D   R   I   F   V   S   V   T   N   E   R   L   L  

cag atg gac cac gag gcc agc ttt ttc ggc gcc ttc ctc gtg gga tag  

 Q   M   D   H   E   A   S   F   F   G   A   F   L   V   G   -   

 

9.1.7 Fc-Flag-TRAIL 

Signal peptide:     NT   1-51              aa   1-17 

Fc:                        NT   51-729          aa   18-243 

Flag:                     NT   814-837        aa   272-279 

TRAIL:                  NT   844-1404      aa   282-468 

 

1 

1 

55 

19 

109 

37 

163 

55 

217 

73 

271 

91 

325 

109 

379 

127 

433 

145 

487 

163 

541 

181 

595 

199 

649 

217 

703 

235 

757 

253 

811 

271 

 

 

atg gct atc atc tac ctc atc ctc ctg ttc acc gct gtg cgg ggc ctc gac aaa 

 M   A   I   I   Y   L   I   L   L   F   T   A   V   R   G   L   D   K  

act cac aca tgc cca ccg tgc cca gca cct gaa ctc ctg ggg gga ccg tca gtc 

 T   H   T   C   P   P   C   P   A   P   E   L   L   G   G   P   S   V  

ttc ctc ttc ccc cca aaa ccc aag gac acc ctc atg atc tcc cgg acc cct gag 

 F   L   F   P   P   K   P   K   D   T   L   M   I   S   R   T   P   E  

gtc aca tgc gtg gtg gtg gac gtg agc cac gaa gac cct gag gtc aag ttc aac 

 V   T   C   V   V   V   D   V   S   H   E   D   P   E   V   K   F   N  

tgg tac gtg gac ggc gtg gag gtg cat aat gcc aag aca aag ccg cgg gag gag 

 W   Y   V   D   G   V   E   V   H   N   A   K   T   K   P   R   E   E  

cag tac aac agc acg tac cgt gtg gtc agc gtc ctc acc gtc ctg cac cag gac 

 Q   Y   N   S   T   Y   R   V   V   S   V   L   T   V   L   H   Q   D  

tgg ctg aat ggc aag gag tac aag tgc aag gtc tcc aac aaa gcc ctc cca gcc 

 W   L   N   G   K   E   Y   K   C   K   V   S   N   K   A   L   P   A  

ccc atc gag aaa acc atc tcc aaa gcc aaa ggg cag ccc cga gaa cca cag gtg 

 P   I   E   K   T   I   S   K   A   K   G   Q   P   R   E   P   Q   V  

tac acc ctg ccc cca tcc cgg gat gag ctg acc aag aac cag gtc agc ctg acc 

 Y   T   L   P   P   S   R   D   E   L   T   K   N   Q   V   S   L   T  

tgc ctg gtc aaa ggc ttc tat ccc agc gac atc gcc gtg gag tgg gag agc aat 

 C   L   V   K   G   F   Y   P   S   D   I   A   V   E   W   E   S   N  

ggg cag ccg gag aac aac tac aag acc acg cct ccc gtg ttg gac tcc gac ggC 

 G   Q   P   E   N   N   Y   K   T   T   P   P   V   L   D   S   D   G  

tcc ttc ttc ctc tac agc aag ctc acc gtg gac aag agc agg tgg cag cag ggg 

 S   F   F   L   Y   S   K   L   T   V   D   K   S   R   W   Q   Q   G  

aac gtc ttc tca tgc tcc gtg atg cat gag gct ctg cac aac cac tac acg cag 

 N   V   F   S   C   S   V   M   H   E   A   L   H   N   H   Y   T   Q  

aag agc ctc tcc ctg tct ccg ggt aaa aga tct ccg cag ccg cag ccg aaa ccg 

 K   S   L   S   L   S   P   G   K   R   S   P   Q   P   Q   P   K   P  

cag ccg aaa ccg gaa ccg gaa gga tct ctg gag gtg ctg ttc cag ggg ccc gga 

 Q   P   K   P   E   P   E   G   S   L   E   V   L   F   Q   G   P   G  

tcc gat tac aaa gac gat gac gat aaa gaa ttc acc tct gag gaa acc att tct 

 S   D   Y   K   D   D   D   D   K   E   F   T   S   E   E   T   I   S  
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1297 

433 

1351 

451 

1405 

469 

aca gtt caa gaa aag caa caa aat att tct ccc cta gtg aga gaa aga ggt cct 

T   V   Q   E   K   Q   Q   N   I   S   P   L   V   R   E   R   G   P  

cag aga gta gca gct cac ata act ggg acc aga gga aga agc aac aca ttg tct 

 Q   R   V   A   A   H   I   T   G   T   R   G   R   S   N   T   L   S  

tct cca aac tcc aag aat gaa aag gct ctg ggc cgc aaa ata aac tcc tgg gaa 

 S   P   N   S   K   N   E   K   A   L   G   R   K   I   N   S   W   E  

tca tca agg agt ggg cat tca ttc ctg agc aac ttg cac ttg agg aat ggt gaa 

 S   S   R   S   G   H   S   F   L   S   N   L   H   L   R   N   G   E  

ctg gtc atc cat gaa aaa ggg ttt tac tac atc tat tcc caa aca tac ttt cga 

 L   V   I   H   E   K   G   F   Y   Y   I   Y   S   Q   T   Y   F   R  

ttt cag gag gaa ata aaa gaa aac aca aag aac gac aaa caa atg gtc caa tat 

 F   Q   E   E   I   K   E   N   T   K   N   D   K   Q   M   V   Q   Y  

att tac aaa tac aca agt tat cct gac cct ata ttg ttg atg aaa agt gct aga 

 I   Y   K   Y   T   S   Y   P   D   P   I   L   L   M   K   S   A   R  

aat agt tgt tgg tct aaa gat gca gaa tat gga ctc tat tcc atc tat caa ggg 

 N   S   C   W   S   K   D   A   E   Y   G   L   Y   S   I   Y   Q   G  

gga ata ttt gag ctt aag gaa aat gac aga att ttt gtt tct gta aca aat gag 

 G   I   F   E   L   K   E   N   D   R   I   F   V   S   V   T   N   E 

cac ttg ata gac atg gac cat gaa gcc agt ttt ttc ggg gct ttt tta gtt ggc 

 H   L   I   D   M   D   H   E   A   S   F   F   G   A   F   L   V   G  

taa  

 -   

 

 9.1.8. Fc-Flag-TRAILmutR1 

Signal peptide:     NT   1-51 aa   1-17 

Fc: NT   51-729          aa   18-243 

Flag:                     NT   814-837        aa   272-279 

TRAILmutR1:       NT   844-1404      aa   282-468 

Mutations are indicated in green color. 

 

1 

1 

55 

19 

109 

37 

163 

55 

217 

73 

271 

91 

325 

109 

379 

127 

433 

145 

487 

163 

541 

181 

595 

199 

 

atg gct atc atc tac ctc atc ctc ctg ttc acc gct gtg cgg ggc ctc gac aaa 

 M   A   I   I   Y   L   I   L   L   F   T   A   V   R   G   L   D   K  

act cac aca tgc cca ccg tgc cca gca cct gaa ctc ctg ggg gga ccg tca gtc 

 T   H   T   C   P   P   C   P   A   P   E   L   L   G   G   P   S   V  

ttc ctc ttc ccc cca aaa ccc aag gac acc ctc atg atc tcc cgg acc cct gag 

 F   L   F   P   P   K   P   K   D   T   L   M   I   S   R   T   P   E  

gtc aca tgc gtg gtg gtg gac gtg agc cac gaa gac cct gag gtc aag ttc aac 

 V   T   C   V   V   V   D   V   S   H   E   D   P   E   V   K   F   N  

tgg tac gtg gac ggc gtg gag gtg cat aat gcc aag aca aag ccg cgg gag gag 

 W   Y   V   D   G   V   E   V   H   N   A   K   T   K   P   R   E   E  

cag tac aac agc acg tac cgt gtg gtc agc gtc ctc acc gtc ctg cac cag gac 

 Q   Y   N   S   T   Y   R   V   V   S   V   L   T   V   L   H   Q   D  

tgg ctg aat ggc aag gag tac aag tgc aag gtc tcc aac aaa gcc ctc cca gcc 

 W   L   N   G   K   E   Y   K   C   K   V   S   N   K   A   L   P   A  

ccc atc gag aaa acc atc tcc aaa gcc aaa ggg cag ccc cga gaa cca cag gtg 

 P   I   E   K   T   I   S   K   A   K   G   Q   P   R   E   P   Q   V  

tac acc ctg ccc cca tcc cgg gat gag ctg acc aag aac cag gtc agc ctg acc 

 Y   T   L   P   P   S   R   D   E   L   T   K   N   Q   V   S   L   T  

tgc ctg gtc aaa ggc ttc tat ccc agc gac atc gcc gtg gag tgg gag agc aat 

 C   L   V   K   G   F   Y   P   S   D   I   A   V   E   W   E   S   N  

ggg cag ccg gag aac aac tac aag acc acg cct ccc gtg ttg gac tcc gac ggc 

 G   Q   P   E   N   N   Y   K   T   T   P   P   V   L   D   S   D   G  

tcc ttc ttc ctc tac agc aag ctc acc gtg gac aag agc agg tgg cag cag ggg 

 S   F   F   L   Y   S   K   L   T   V   D   K   S   R   W   Q   Q   G  

 

http://www.fr33.net/translator.php?modus=2&codon=NTG
http://www.fr33.net/translator.php?modus=2&codon=GNC
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aac gtc ttc tca tgc tcc gtg atg cat gag gct ctg cac aac cac tac acg cag 

 N   V   F   S   C   S   V   M   H   E   A   L   H   N   H   Y   T   Q  

aag agc ctc tcc ctg tct ccg ggt aaa aga tct ccg cag ccg cag ccg aaa ccg 

 K   S   L   S   L   S   P   G   K   R   S   P   Q   P   Q   P   K   P  

cag ccg aaa ccg gaa ccg gaa gga tct ctg gag gtg ctg ttc cag ggg ccc gga 

 Q   P   K   P   E   P   E   G   S   L   E   V   L   F   Q   G   P   G  

tcc gat tac aaa gac gat gac gat aaa gaa ttc aca tct gag gaa acc att agc 

 S   D   Y   K   D   D   D   D   K   E   F   T   S   E   E   T   I   S  

acc gtc cag gag aaa cag cag aac att tca ccc ctc gtc cgg gaa cgg gga cca 

 T   V   Q   E   K   Q   Q   N   I   S   P   L   V   R   E   R   G   P  

cag aga gtg gcc gct cat att act ggc aca cgg agg cga tcc aat aca ctg agt 

 Q   R   V   A   A   H   I   T   G   T   R   R   R   S   N   T   L   S  

agc ccc aac tcc aaa aac gaa aag gca ctg ggc atc aaa atc aat tca tgg gag 

 S   P   N   S   K   N   E   K   A   L   G   I   K   I   N   S   W   E  

agt agt agg cgg gga cat tcc ttt ctg tcc aac ctc cat ctc cga aac ggc gaa 

 S   S   R   R   G   H   S   F   L   S   N   L   H   L   R   N   G   E  

ctg gtg att cac gag aag ggc ttt tac tac atc tac tcc cag acc tac ttc aga 

 L   V   I   H   E   K   G   F   Y   Y   I   Y   S   Q   T   Y   F   R  

ttt cag gag gag atc aag gaa cgg acc cac aac gac aaa cag atg gtc cag tac 

 F   Q   E   E   I   K   E   R   T   H   N   D   K   Q   M   V   Q   Y  

atc tac aaa tac acc gac tac ccc gac cct atc ctg ctc atg aaa tcc gct aga 

 I   Y   K   Y   T   D   Y   P   D   P   I   L   L   M   K   S   A   R  

aat tca tgc tgg agc aag gat gcc gaa tac gga ctg tac tca atc tac cag ggc 

 N   S   C   W   S   K   D   A   E   Y   G   L   Y   S   I   Y   Q   G  

ggc att ttt gaa ctg aaa gag aac gat cgg atc ttc gtg tct gtc aca aac gaa 

 G   I   F   E   L   K   E   N   D   R   I   F   V   S   V   T   N   E  

cac ctc atc gac atg gat cac gag gcc tca ttc ttt ggc gct ttt ctg gtg gga 

 H   L   I   D   M   D   H   E   A   S   F   F   G   A   F   L   V   G  

TGA  

 -   

 

9.1.9. Fc-Flag-TRAILmutR2 

Signal peptide: NT   1-51 aa   1-17 

Fc: NT   51-729          aa   18-243 

Flag:                     NT   814-837 aa   272-279 

TRAILmutR2: NT   844-1404     aa   282-468 

Mutations are indicated in green color. 

 

1 

1 

55 

19 

109 

37 

163 

55 

217 

73 

271 

91 

325 

109 

379 

127 

 

atg gct atc atc tac ctc atc ctc ctg ttc acc gct gtg cgg ggc ctc gac aaa 

 M   A   I   I   Y   L   I   L   L   F   T   A   V   R   G   L   D   K  

act cac aca tgc cca ccg tgc cca gca cct gaa ctc ctg ggg gga ccg tca gtc 

 T   H   T   C   P   P   C   P   A   P   E   L   L   G   G   P   S   V  

ttc ctc ttc ccc cca aaa ccc aag gac acc ctc atg atc tcc cgg acc cct gag 

 F   L   F   P   P   K   P   K   D   T   L   M   I   S   R   T   P   E  

gtc aca tgc gtg gtg gtg gac gtg agc cac gaa gac cct gag gtc aag ttc aac 

 V   T   C   V   V   V   D   V   S   H   E   D   P   E   V   K   F   N  

tgg tac gtg gac ggc gtg gag gtg cat aat gcc aag aca aag ccg cgg gag gag 

 W   Y   V   D   G   V   E   V   H   N   A   K   T   K   P   R   E   E  

cag tac aac agc acg tac cgt gtg gtc agc gtc ctc acc gtc ctg cac cag gac 

 Q   Y   N   S   T   Y   R   V   V   S   V   L   T   V   L   H   Q   D  

tgg ctg aat ggc aag gag tac aag tgc aag gtc tcc aac aaa gcc ctc cca gcc 

 W   L   N   G   K   E   Y   K   C   K   V   S   N   K   A   L   P   A  

ccc atc gag aaa acc atc tcc aaa gcc aaa ggg cag ccc cga gaa cca cag gtg 

 P   I   E   K   T   I   S   K   A   K   G   Q   P   R   E   P   Q   V  
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tac acc ctg ccc cca tcc cgg gat gag ctg acc aag aac cag gtc agc ctg acc 

 Y   T   L   P   P   S   R   D   E   L   T   K   N   Q   V   S   L   T  

tgc ctg gtc aaa ggc ttc tat ccc agc gac atc gcc gtg gag tgg gag agc aat 

 C   L   V   K   G   F   Y   P   S   D   I   A   V   E   W   E   S   N  

ggg cag ccg gag aac aac tac aag acc acg cct ccc gtg ttg gac tcc gac ggc 

 G   Q   P   E   N   N   Y   K   T   T   P   P   V   L   D   S   D   G  

tcc ttc ttc ctc tac agc aag ctc acc gtg gac aag agc agg tgg cag cag ggg 

 S   F   F   L   Y   S   K   L   T   V   D   K   S   R   W   Q   Q   G  

aac gtc ttc tca tgc tcc gtg atg cat gag gct ctg cac aac cac tac acg cag 

 N   V   F   S   C   S   V   M   H   E   A   L   H   N   H   Y   T   Q  

aag agc ctc tcc ctg tct ccg ggt aaa aga tct ccg cag ccg cag ccg aaa ccg 

 K   S   L   S   L   S   P   G   K   R   S   P   Q   P   Q   P   K   P  

cag ccg aaa ccg gaa ccg gaa gga tct ctg gag gtg ctg ttc cag ggg ccc gga 

 Q   P   K   P   E   P   E   G   S   L   E   V   L   F   Q   G   P   G  

tcc gat tac aaa gac gat gac gat aaa gaa ttc acc agc gaa gag aca atc agc 

 S   D   Y   K   D   D   D   D   K   E   F   T   S   E   E   T   I   S  

acc gtg cag gaa aag cag cag aac atc agc ccc ctc gtg cgc gaa agg ggc cct 

 T   V   Q   E   K   Q   Q   N   I   S   P   L   V   R   E   R   G   P  

cag aga gtg gcc gcc cac atc act ggc acc aga ggc aga agc aac acc ctg agc 

 Q   R   V   A   A   H   I   T   G   T   R   G   R   S   N   T   L   S  

agc ccc aac agc aag aac gag aag gcc ctg ggc cgg aag atc aac agc tgg gag 

 S   P   N   S   K   N   E   K   A   L   G   R   K   I   N   S   W   E  

tct agc aga agc ggc cac agc ttt ctg agc aac ctg cac ctg aga aac ggc gag 

 S   S   R   S   G   H   S   F   L   S   N   L   H   L   R   N   G   E  

ctc gtg atc cac gag aag ggc ttc tac tac atc tac agc cag acc cag ttc aag 

 L   V   I   H   E   K   G   F   Y   Y   I   Y   S   Q   T   Q   F   K  

ttc cgg gaa gag atc aaa gag aat acc aag aac gac aag cag atg gtg cag tac 

 F   R   E   E   I   K   E   N   T   K   N   D   K   Q   M   V   Q   Y  

atc tat aag tac acc agc tac ccc gac ccc atc ctg ctg atg aag tcc gcc cgg 

 I   Y   K   Y   T   S   Y   P   D   P   I   L   L   M   K   S   A   R  

aac agc tgc tgg tcc aag gat gcc gag tac ggc ctg tac agc atc tac cag ggc 

 N   S   C   W   S   K   D   A   E   Y   G   L   Y   S   I   Y   Q   G  

ggc atc ttc gag ctg aaa gag aac gac cgg atc ttc gtg tcc gtg acc aac gag 

 G   I   F   E   L   K   E   N   D   R   I   F   V   S   V   T   N   E  

cgg ctg ctg cag atg gac cac gag gcc agc ttt ttc ggc gcc ttc ctc gtg gga 

 R   L   L   Q   M   D   H   E   A   S   F   F   G   A   F   L   V   G  

tag  

 -   

 

9.1.10. scFv:G28-Flag-TNC-TRAIL 

Signal peptide:      NT   1-84                      aa   1-28 

scFv:G28-5:             NT   85-816                  aa   29-272 

Flag:                      NT   823-846                aa   275-282 

TNC:                      NT   853-942                aa   285-314 

TRAIL:                   NT   979-1539              aa   327-513 

 

1 

1 

55 

19 

109 

37 

163 

55 

 

atg aac ttc ggg ttc agc ttg att ttc ctg gtc ctg gtg ctg aag ggc gtg cag 

 M   N   F   G   F   S   L   I   F   L   V   L   V   L   K   G   V   Q  

tgc gag gtg aag ctg gtg cca cgc gga tcc gac atc gtg atg act cag aac cca 

 C   E   V   K   L   V   P   R   G   S   D   I   V   M   T   Q   N   P  

ctg tct ctg cct gtg tct ctg ggg gat gag gct agc att tct tgc cgc tca tct 

 L   S   L   P   V   S   L   G   D   E   A   S   I   S   C   R   S   S  

cag tca ctg gag aac tcc aat ggc aac acc ttc ctg aat tgg ttt ttc cag aaa 

 Q   S   L   E   N   S   N   G   N   T   F   L   N   W   F   F   Q   K  

 



Annex 

103 

 

217 

73 

271 

91 

325 

109 

379 

127 

433 

145 

487 

163 

541 

181 

595 

199 

649 

217 

703 

235 

757 

253 

811 

271 

865 

289 

919 

307 

973 

325 

1027 

343 

1081 

361 

1135 

379 

1189 

397 

1243 

415 

1297 

433 

1351 

451 

1405 

469 

1459 

487 

1513 

505 

ccc ggc cag tca cct cag ctg ctc atc tac cga gtg agc aat cgg ttt agc gga 

 P   G   Q   S   P   Q   L   L   I   Y   R   V   S   N   R   F   S   G  

gtg ccc gat cga ttc tct ggc tcc gga tct ggg acc gac ttt acc ctg aaa atc 

 V   P   D   R   F   S   G   S   G   S   G   T   D   F   T   L   K   I  

tca cga gtg gag gcc gag gat ctg gga gtg tac ttc tgt ctc cag gtc aca cat 

 S   R   V   E   A   E   D   L   G   V   Y   F   C   L   Q   V   T   H  

gtg cct tac aca ttt ggc ggc gga aca act ctc gaa atc aaa gga ggc gga ggc 

 V   P   Y   T   F   G   G   G   T   T   L   E   I   K   G   G   G   G  

tcc ggc gga ggc gga tct ggc gga ggc ggg agt gat atc cag ctc cag cag tct 

 S   G   G   G   G   S   G   G   G   G   S   D   I   Q   L   Q   Q   S  

ggc cct gga ctc gtc aaa cca tct cag agc ctg tct ctc acc tgt tct gtc acc 

 G   P   G   L   V   K   P   S   Q   S   L   S   L   T   C   S   V   T  

gga tac tcc atc acc acc aac tac aac tgg aat tgg att cgg cag ttt cct ggg 

 G   Y   S   I   T   T   N   Y   N   W   N   W   I   R   Q   F   P   G  

aac aaa ctc gaa tgg atg gga tac atc cga tac gac ggc act agt gaa tac acc 

 N   K   L   E   W   M   G   Y   I   R   Y   D   G   T   S   E   Y   T  

cca tct ctc aaa aat cgg gtg tcc att acc cgg gac act tct atg aac cag ttc 

 P   S   L   K   N   R   V   S   I   T   R   D   T   S   M   N   Q   F  

ttt ctc cga ctc acc tct gtg aca cct gag gat acc gcc aca tac tac tgt gct 

 F   L   R   L   T   S   V   T   P   E   D   T   A   T   Y   Y   C   A  

aga ctg gac tac tgg ggg cag gga aca ctg gtg acc gtg tca tct gct tcc acc 

 R   L   D   Y   W   G   Q   G   T   L   V   T   V   S   S   A   S   T  

aaa gga gga tcc gat tac aaa gac gat gac gat aaa gat atc gcc tgt ggc tgt 

 K   G   G   S   D   Y   K   D   D   D   D   K   D   I   A   C   G   C  

gcg gct gcc cca gac atc aag gac ctg ctg agc aga ctg gag gag ctg gag ggg 

 A   A   A   P   D   I   K   D   L   L   S   R   L   E   E   L   E   G  

ctg gta tcc tcc ctc cgg gag cag ggt acc gga ggt ggg tct ggc ggc cgc ggt 

 L   V   S   S   L   R   E   Q   G   T   G   G   G   S   G   G   R   G  

gaa ttc acc tct gag gaa acc att tct aca gtt caa gaa aag caa caa aat att 

 E   F   T   S   E   E   T   I   S   T   V   Q   E   K   Q   Q   N   I  

tct ccc cta gtg aga gaa aga ggt cct cag aga gta gca gct cac ata act ggg 

 S   P   L   V   R   E   R   G   P   Q   R   V   A   A   H   I   T   G  

acc aga gga aga agc aac aca ttg tct tct cca aac tcc aag aat gaa aag gct 

 T   R   G   R   S   N   T   L   S   S   P   N   S   K   N   E   K   A  

ctg ggc cgc aaa ata aac tcc tgg gaa tca tca agg agt ggg cat tca ttc ctg 

 L   G   R   K   I   N   S   W   E   S   S   R   S   G   H   S   F   L  

agc aac ttg cac ttg agg aat ggt gaa ctg gtc atc cat gaa aaa ggg ttt tac 

 S   N   L   H   L   R   N   G   E   L   V   I   H   E   K   G   F   Y  

tac atc tat tcc caa aca tac ttt cga ttt cag gag gaa ata aaa gaa aac aca 

 Y   I   Y   S   Q   T   Y   F   R   F   Q   E   E   I   K   E   N   T  

aag aac gac aaa caa atg gtc caa tat att tac aaa tac aca agt tat cct gac 

 K   N   D   K   Q   M   V   Q   Y   I   Y   K   Y   T   S   Y   P   D  

cct ata ttg ttg atg aaa agt gct aga aat agt tgt tgg tct aaa gat gca gaa 

 P   I   L   L   M   K   S   A   R   N   S   C   W   S   K   D   A   E  

tat gga ctc tat tcc atc tat caa ggg gga ata ttt gag ctt aag gaa aat gac 

 Y   G   L   Y   S   I   Y   Q   G   G   I   F   E   L   K   E   N   D  

aga att ttt gtt tct gta aca aat gag cac ttg ata gac atg gac cat gaa gcc 

 R   I   F   V   S   V   T   N   E   H   L   I   D   M   D   H   E   A  

agt ttt ttc ggg gcc ttt tta gtt ggc taa  

 S   F   F   G   A   F   L   V   G   -   

 

9.1.11. scFv:G28-Flag-TNC-TRAILmutR1 

Signal peptide:      NT   1-84                       aa   1-28 

scFv: G28-5:             NT   85-816                   aa   29-272 

Flag:                     NT   823-846                 aa   275-282 

TNC:                     NT   853-942                aa   285-314 
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TRAILmutR1:       NT   979-1539               aa   327-513 

Mutations are indicated in green color. 

 

1 

1 

55 

19 
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atg aac ttc ggg ttc agc ttg att ttc ctg gtc ctg gtg ctg aag ggc gtg cag 

 M   N   F   G   F   S   L   I   F   L   V   L   V   L   K   G   V   Q  

tgc gag gtg aag ctg gtg cca cgc gga tcc gac atc gtg atg act cag aac cca 

 C   E   V   K   L   V   P   R   G   S   D   I   V   M   T   Q   N   P  

ctg tct ctg cct gtg tct ctg ggg gat gag gct agc att tct tgc cgc tca tct 

 L   S   L   P   V   S   L   G   D   E   A   S   I   S   C   R   S   S  

cag tca ctg gag aac tcc aat ggc aac acc ttc ctg aat tgg ttt ttc cag aaa 

 Q   S   L   E   N   S   N   G   N   T   F   L   N   W   F   F   Q   K  

ccc ggc cag tca cct cag ctg ctc atc tac cga gtg agc aat cgg ttt agc gga 

 P   G   Q   S   P   Q   L   L   I   Y   R   V   S   N   R   F   S   G  

gtg ccc gat cga ttc tct ggc tcc gga tct ggg acc gac ttt acc ctg aaa atc 

 V   P   D   R   F   S   G   S   G   S   G   T   D   F   T   L   K   I  

tca cga gtg gag gcc gag gat ctg gga gtg tac ttc tgt ctc cag gtc aca cat 

 S   R   V   E   A   E   D   L   G   V   Y   F   C   L   Q   V   T   H  

gtg cct tac aca ttt ggc ggc gga aca act ctc gaa atc aaa gga ggc gga ggc 

 V   P   Y   T   F   G   G   G   T   T   L   E   I   K   G   G   G   G  

tcc ggc gga ggc gga tct ggc gga ggc ggg agt gat atc cag ctc cag cag tct 

 S   G   G   G   G   S   G   G   G   G   S   D   I   Q   L   Q   Q   S  

ggc cct gga ctc gtc aaa cca tct cag agc ctg tct ctc acc tgt tct gtc acc 

 G   P   G   L   V   K   P   S   Q   S   L   S   L   T   C   S   V   T  

gga tac tcc atc acc acc aac tac aac tgg aat tgg att cgg cag ttt cct ggg 

 G   Y   S   I   T   T   N   Y   N   W   N   W   I   R   Q   F   P   G  

aac aaa ctc gaa tgg atg gga tac atc cga tac gac ggc act agt gaa tac acc 

 N   K   L   E   W   M   G   Y   I   R   Y   D   G   T   S   E   Y   T  

cca tct ctc aaa aat cgg gtg tcc att acc cgg gac act tct atg aac cag ttc 

 P   S   L   K   N   R   V   S   I   T   R   D   T   S   M   N   Q   F  

ttt ctc cga ctc acc tct gtg aca cct gag gat acc gcc aca tac tac tgt gct 

 F   L   R   L   T   S   V   T   P   E   D   T   A   T   Y   Y   C   A  

aga ctg gac tac tgg ggg cag gga aca ctg gtg acc gtg tca tct gct tcc acc 

 R   L   D   Y   W   G   Q   G   T   L   V   T   V   S   S   A   S   T  

aaa gga gga tcc gat tac aaa gac gat gac gat aaa gat atc gcc tgt ggc tgt 

 K   G   G   S   D   Y   K   D   D   D   D   K   D   I   A   C   G   C  

gcg gct gcc cca gac atc aag gac ctg ctg agc aga ctg gag gag ctg gag ggg 

 A   A   A   P   D   I   K   D   L   L   S   R   L   E   E   L   E   G  

ctg gta tcc tcc ctc cgg gag cag ggt acc gga ggt ggg tct ggc ggc cgc ggt 

 L   V   S   S   L   R   E   Q   G   T   G   G   G   S   G   G   R   G  

gaa ttc aca tct gag gaa acc att agc acc gtc cag gag aaa cag cag aac att 

 E   F   T   S   E   E   T   I   S   T   V   Q   E   K   Q   Q   N   I  

tca ccc ctc gtc cgg gaa cgg gga cca cag aga gtg gcc gct cat att act ggc 

 S   P   L   V   R   E   R   G   P   Q   R   V   A   A   H   I   T   G  

aca cgg agg cga tcc aat aca ctg agt agc ccc aac tcc aaa aac gaa aag gca 

 T   R   R   R   S   N   T   L   S   S   P   N   S   K   N   E   K   A  

ctg ggc atc aaa atc aat tca tgg gag agt agt agg cgg gga cat tcc ttt ctg 

 L   G   I   K   I   N   S   W   E   S   S   R   R   G   H   S   F   L  

tcc aac ctc cat ctc cga aac ggc gaa ctg gtg att cac gag aag ggc ttt tac 

 S   N   L   H   L   R   N   G   E   L   V   I   H   E   K   G   F   Y  

tac atc tac tcc cag acc tac ttc aga ttt cag gag gag atc aag gaa cgg acc 

 Y   I   Y   S   Q   T   Y   F   R   F   Q   E   E   I   K   E   R   T  

cac aac gac aaa cag atg gtc cag tac atc tac aaa tac acc gac tac ccc gac 

 H   N   D   K   Q   M   V   Q   Y   I   Y   K   Y   T   D   Y   P   D  

cct atc ctg ctc atg aaa tcc gct aga aat tca tgc tgg agc aag gat gcc gaa 

 P   I   L   L   M   K   S   A   R   N   S   C   W   S   K   D   A   E  

tac gga ctg tac tca atc tac cag ggc ggc att ttt gaa ctg aaa gag aac gat 

 Y   G   L   Y   S   I   Y   Q   G   G   I   F   E   L   K   E   N   D  

cgg atc ttc gtg tct gtc aca aac gaa cac ctc atc gac atg gat cac gag gcc 

 R   I   F   V   S   V   T   N   E   H   L   I   D   M   D   H   E   A  
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1513 

505 

tca ttc ttt ggc gct ttt ctg gtg gga tga  

 S   F   F   G   A   F   L   V   G   -   

 

9.1.12. scFv:G28-Flag-TNC-TRAILmutR2 

Signal peptide:     NT   1-84                      aa   1-28 

scFv: G28-5:        NT   85-816                  aa   29-272 

Flag:                    NT   823-846                aa   275-282 

TNC:                    NT   853-942                aa   285-314 

TRAILmutR2:       NT   979-1539              aa   327-513 

Mutations are indicated in green color. 
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217 
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atg aac ttc ggg ttc agc ttg att ttc ctg gtc ctg gtg ctg aag ggc gtg cag 

 M   N   F   G   F   S   L   I   F   L   V   L   V   L   K   G   V   Q  

tgc gag gtg aag ctg gtg cca cgc gga tcc gac atc gtg atg act cag aac cca 

 C   E   V   K   L   V   P   R   G   S   D   I   V   M   T   Q   N   P  

ctg tct ctg cct gtg tct ctg ggg gat gag gct agc att tct tgc cgc tca tct 

 L   S   L   P   V   S   L   G   D   E   A   S   I   S   C   R   S   S  

cag tca ctg gag aac tcc aat ggc aac acc ttc ctg aat tgg ttt ttc cag aaa 

 Q   S   L   E   N   S   N   G   N   T   F   L   N   W   F   F   Q   K  

ccc ggc cag tca cct cag ctg ctc atc tac cga gtg agc aat cgg ttt agc gga 

 P   G   Q   S   P   Q   L   L   I   Y   R   V   S   N   R   F   S   G  

gtg ccc gat cga ttc tct ggc tcc gga tct ggg acc gac ttt acc ctg aaa atc 

 V   P   D   R   F   S   G   S   G   S   G   T   D   F   T   L   K   I  

tca cga gtg gag gcc gag gat ctg gga gtg tac ttc tgt ctc cag gtc aca cat 

 S   R   V   E   A   E   D   L   G   V   Y   F   C   L   Q   V   T   H  

gtg cct tac aca ttt ggc ggc gga aca act ctc gaa atc aaa gga ggc gga ggc 

 V   P   Y   T   F   G   G   G   T   T   L   E   I   K   G   G   G   G  

tcc ggc gga ggc gga tct ggc gga ggc ggg agt gat atc cag ctc cag cag tct 

 S   G   G   G   G   S   G   G   G   G   S   D   I   Q   L   Q   Q   S  

ggc cct gga ctc gtc aaa cca tct cag agc ctg tct ctc acc tgt tct gtc acc 

 G   P   G   L   V   K   P   S   Q   S   L   S   L   T   C   S   V   T  

gga tac tcc atc acc acc aac tac aac tgg aat tgg att cgg cag ttt cct ggg 

 G   Y   S   I   T   T   N   Y   N   W   N   W   I   R   Q   F   P   G  

aac aaa ctc gaa tgg atg gga tac atc cga tac gac ggc act agt gaa tac acc 

 N   K   L   E   W   M   G   Y   I   R   Y   D   G   T   S   E   Y   T  

cca tct ctc aaa aat cgg gtg tcc att acc cgg gac act tct atg aac cag ttc 

 P   S   L   K   N   R   V   S   I   T   R   D   T   S   M   N   Q   F  

ttt ctc cga ctc acc tct gtg aca cct gag gat acc gcc aca tac tac tgt gct 

 F   L   R   L   T   S   V   T   P   E   D   T   A   T   Y   Y   C   A  

aga ctg gac tac tgg ggg cag gga aca ctg gtg acc gtg tca tct gct tcc acc 

 R   L   D   Y   W   G   Q   G   T   L   V   T   V   S   S   A   S   T  

aaa gga gga tcc gat tac aaa gac gat gac gat aaa gat atc gcc tgt ggc tgt 

 K   G   G   S   D   Y   K   D   D   D   D   K   D   I   A   C   G   C  

gcg gct gcc cca gac atc aag gac ctg ctg agc aga ctg gag gag ctg gag ggg 

 A   A   A   P   D   I   K   D   L   L   S   R   L   E   E   L   E   G  

ctg gta tcc tcc ctc cgg gag cag ggt acc gga ggt ggg tct ggc ggc cgc ggt 

 L   V   S   S   L   R   E   Q   G   T   G   G   G   S   G   G   R   G  

gaa ttc acc agc gaa gag aca atc agc acc gtg cag gaa aag cag cag aac atc 

 E   F   T   S   E   E   T   I   S   T   V   Q   E   K   Q   Q   N   I  

agc ccc ctc gtg cgc gaa agg ggc cct cag aga gtg gcc gcc cac atc act ggc 

 S   P   L   V   R   E   R   G   P   Q   R   V   A   A   H   I   T   G  

acc aga ggc aga agc aac acc ctg agc agc ccc aac agc aag aac gag aag gcc 

 T   R   G   R   S   N   T   L   S   S   P   N   S   K   N   E   K   A  

ctg ggc cgg aag atc aac agc tgg gag tct agc aga agc ggc cac agc ttt ctg 

 L   G   R   K   I   N   S   W   E   S   S   R   S   G   H   S   F   L  
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agc aac ctg cac ctg aga aac ggc gag ctc gtg atc cac gag aag ggc ttc tac 

 S   N   L   H   L   R   N   G   E   L   V   I   H   E   K   G   F   Y  

tac atc tac agc cag acc cag ttc aag ttc cgg gaa gag atc aaa gag aat acc 

 Y   I   Y   S   Q   T   Q   F   K   F   R   E   E   I   K   E   N   T  

aag aac gac aag cag atg gtg cag tac atc tat aag tac acc agc tac ccc gac 

 K   N   D   K   Q   M   V   Q   Y   I   Y   K   Y   T   S   Y   P   D  

ccc atc ctg ctg atg aag tcc gcc cgg aac agc tgc tgg tcc aag gat gcc gag 

 P   I   L   L   M   K   S   A   R   N   S   C   W   S   K   D   A   E  

tac ggc ctg tac agc atc tac cag ggc ggc atc ttc gag ctg aaa gag aac gac 

 Y   G   L   Y   S   I   Y   Q   G   G   I   F   E   L   K   E   N   D  

cgg atc ttc gtg tcc gtg acc aac gag cgg ctg ctg cag atg gac cac gag gcc 

 R   I   F   V   S   V   T   N   E   R   L   L   Q   M   D   H   E   A  

agc ttt ttc ggc gcc ttc ctc gtg gga tag  

 S   F   F   G   A   F   L   V   G   *   
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9.2. List of abbreviations 

`   Minute(s) 

°C Degree Celsius 

aa Amino acid(s) 

ADCC        Antibody-dependent cell-mediated cytotoxicity 

Apaf1   Apoptosis-inducing factor-1 

APC(s)                   Antigen presenting cell(s) 

APS   Ammonium persulfate 

Bcl-2 B-cell lymphoma 2 

BID BH3 interacting domain death agonist 

BSA Bovine serum albumin 

Caspase Cysteinyl aspartate specific protease 

CCR6/7                                                  C-C chemokine receptor 6/7 

CD30 Tumor necrosis factor receptor superfamily member 8 

CD30L Ligand for tumor necrosis factor receptor superfamily member 8 

CD40 Tumor necrosis factor receptor superfamily member 5  

CD40L Ligand for tumor necrosis factor receptor superfamily member 5  

CD95 (Fas) Tumor necrosis factor receptor superfamily member 6 

CD95L (FasL) Ligand for tumor necrosis factor receptor superfamily member 6 

c-FLIP                                                    Cellular FLICE-inhibitory protein 

CHX        Cycloheximide 

cIAP(s)                                                   Cellular inhibitor of apoptosis protein(s) 

CLL Chronic lymphocytic leukemia 

CO2 Carbon dioxide 

CRD Cysteine rich domain 

CV Crystal violet 

DC(s) Dendritic cell(s) 

DcR(s) Decoy receptor(s) 

DD Death domain 

DED Death effector domain 

DIABLO Direct IAP binding protein with low pI 

DISC Death inducing signaling complex 

DMSO Dimethyl sulfoxide 

DNA Deoxyribonucleic acid 

DR(s)     Death receptor(s) 

E.coli Escherichia coli 

ECL Enhanced chemiluminescence 

EDTA Ethylenediaminetetraacetic acid 

EGFR   Epidermal growth factor receptor 

EGP2 Epithelial Glycoprotein 2 

ELISA Enzyme linked immunosorbent assay 

ERK  Extracellular signal-regulated kinases 

FACS Fluorescence-activated cell sorting 

FADD   Fas-associated death-domain 

FAP Fibroblast activation protein 

FcɣR(s) Fcɣ receptor(s) 

FCS Fetal bovine serum 

FITC Fluorescein isothiocyanate 

fl Full length 

g Gram 

http://en.wikipedia.org/wiki/Extracellular_signal-regulated_kinases
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G418-Sulfate   Geneticin disulfate 

GM-CSF Granulocyte-macrophage colony-stimulating factor 

GPI Glycosylphosphatidylinositol 

GpL Gaussia princeps luciferase 

h  Hour(s) 

HI Heat-inactivated 

HRP   Horseradish peroxidase 

IAP(s) Inhibitor of apoptosis protein(s) 

iDC(s)  Immature dendritic cell(s) 

IgG Immunglobulin G 

IL Interleukin 

IP Immunoprecipitation 

IκBα   Inhibitor of NFκB alpha 

JNK c-Jun N-terminal kinase 

kDa   Kilodalton 

LPS Lipopolysaccharide 

m Milli (10
-3

) 

M  Molar (Mol/Liter) 

M2  Anti-Flag mAb 

m2 Quadratmeter 

mA Milliampere 

mAb Monoclonal antibody 

MAPK    Mitogen-activated protein kinase 

MCSP Melanoma-associated chondroitin sulfate proteoglycan 

mDC(s) Mature dendritic cell(s) 

MHC Major histocompatibility complex 

min Minute(s) 

MTT  3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 

MW Molecular weight 

n.s Nonspecific 

NFκB Nuclear factor κB    

NHL      Non-Hodgkin lymphoma 

NK Natural killer 

NKT Natural killer T cells 

nm Nanometer 

NOXA  BH3-only member of the Bcl-2 protein family 

NT Nucleotide(s) 

OD     Optical density 

OPG Osteoprotegerin 

OX40 Tumor necrosis factor receptor superfamily member 4 

OX40L Ligand for tumor necrosis factor receptor superfamily member 4 

p Pico (10
-12

) 

PAGE Polyacrylamide gel electrophoresis 

PARP Poly (ADP-ribose) polymerase 

PBMCs Peripheral blood mononucleated cell(s) 

PBS Phosphate buffered saline 

PCR Polymerase chain reaction 

PE Phycoerythrin 

PGE2   Prostaglandin E2 

pIκBα Phosphorylated form of IκBα 

pJNK   Phosphorylated form of JNK 

http://en.wikipedia.org/wiki/Di-
http://en.wikipedia.org/wiki/Di-
http://en.wikipedia.org/wiki/Thiazole
http://en.wikipedia.org/wiki/Phenyl
http://en.wikipedia.org/wiki/Bcl-2
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PMB Polymyxin B 

PUMA  p53 upregulated modulator of apoptosis 

RA         Rheumatoid arthritis 

RLU  Relative light unit 

rpm Revolutions per minute 

scFv  Single chain antibody fragment 

SDS   Sodium dodecyl sulfate 

sec    Second 

SMAC  Second mitochondria-derived activator of caspases 

TBS   Tris buffered saline 

TEMED Tetramethylethylenediamine 

TNC Tenascin-C 

TNF   Tumor necrosis factor 

TNFR(s)   Tumor necrosis factor receptor(s) 

TNFRSF Tumor necrosis factor receptor superfamily 

TRAF(s)                                                 TNF receptor associated factor(s) 

TRAIL   TNF-related apoptosis inducing ligand 

TRAILmutR1 TRAIL mutant conferring specificity to TRAILR1 

TRAILmutR2 TRAIL mutant conferring specificity to TRAILR2 

TRAILR(s) TNF-related apoptosis inducing ligand receptor(s)  

Tregs Regulatory T cells 

V Volt 

VEGF  Vascular endothelial growth factor 

wt  Wild type 

xIAP   X-linked inhibitor of apoptosis protein 

α  Anti 

μ Micro (10
-6

) 
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