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Abstract

Background: Phytoplankton communities are often used as a marker for the determination of fresh water quality.
The routine analysis, however, is very time consuming and expensive as it is carried out manually by trained
personnel. The goal of this work is to develop a system for an automated analysis.

Results: A novel open source system for the automated recognition of phytoplankton by the use of microscopy
and image analysis was developed. It integrates the segmentation of the organisms from the background, the
calculation of a large range of features, and a neural network for the classification of imaged organisms into
different groups of plankton taxa. The analysis of samples containing 10 different taxa showed an average
recognition rate of 94.7% and an average error rate of 5.5%. The presented system has a flexible framework which
easily allows expanding it to include additional taxa in the future.

Conclusions: The implemented automated microscopy and the new open source image analysis system -
PlanktoVision - showed classification results that were comparable or better than existing systems and the exclusion
of non-plankton particles could be greatly improved. The software package is published as free software and is
available to anyone to help make the analysis of water quality more reproducible and cost effective.
Background
The composition of phytoplankton communities is
dependent on different ecological and toxicological fac-
tors and the analysis of these communities entails the
monitoring of water quality which is prescribed by the
European Water Framework Directive [1,2]. However,
this approach is time consuming since the organisms
have to be registered individually and, due to the high
morphological complexity of phytoplankton, most of the
routine analysis is still done by hand and microscope.
Also reproducibility between different scientists and
even for the same person is relatively low and reduces
the credibility of the retrieved data [3].
To overcome these problems, automation of phytoplank-

ton analysis seems to be a good alternative. It should speed
up the process, make it more transparent and reproducible,
and therefore improve the effectiveness of phytoplankton
identification for water monitoring and protection. Because
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of these advantages, different systems for an automated ana-
lysis of phytoplankton communities have been developed.
The use of flow cytometers allows a fast analysis of dif-

ferent plankton groups [4] and removes the need to pre-
serve the sample [5]. Yet the strongest drawback of this
method is that particles must be differentiated based on
the optical characteristics as seen by the photomultiplier
tube (e.g. light scattering and fluorescent features)
resulting in poor species resolution, far below microscopic
methods (especially for nano- and microplankton) [5,6].
Another noteworthy approach is the investigation of
the whole phytoplankton community in parallel via a
metagenomic analysis. Since this method is based on gen-
omic data, it has great potential for high taxonomic reso-
lution [7]. Unfortunately, the costs are still too high to be
feasible for a routine analysis, though this is expected to
change in the future with the rapid advancements in this
field. This also applies to some extent to modern
barcoding methods based on the sequence and structure
of genetic markers such as ribosomal RNA [8]. Quantifica-
tion via metagenomic analysis or related barcoding
methods may also be difficult as DNA or RNA molecules
and not cells are counted and the number of genomes of
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each organism (which varies not only depending on spe-
cies, but also on growth phase) has to be known. Finally,
the identification of a DNA needs a previously sequenced
reference genome, i.e. one can only properly identify spe-
cies which have been studied beforehand.
Since taxonomy of plankton is based on morphological

differences, various systems using digital image analysis
(scanner, flow systems, video systems) can be found [9].
Yet, these systems are mostly developed for the analysis of
zooplankton resulting in a resolution too low for an accur-
ate differentiation of phytoplankton. Due to their higher
resolution, microscopic systems seem to be more adequate
for the analysis of this plankton subclass. Additionally, mi-
croscopes are currently used for the established proce-
dures for plankton analysis, thereby allowing first an
adaptation and then an easy comparison of both systems.
One reported automated microscopic system is PLASA,
which was developed with the goal of classifying different
phytoplankton organisms with the use of automated mi-
croscopy and image analysis for an ecotoxicological micro-
cosm study [10]. To allow a better differentiation between
different phytoplankton taxa and between phytoplankton
and other objects in the sample (zooplankton, detritus and
inorganic particles) fluorescence imaging for phycoeryth-
rin and chlorophyll was integrated into the system. The
software was written in IDL, a proprietary programming
language requiring a commercial license to legally run the
respective programs, which potentially hindered the devel-
opment and adoption of this system. Additionally, it has
been reported to only be able to differentiate between few
taxa, and has seen no further development since it was
first published in 2006.
In this paper we describe a novel system using auto-

mated microscopy and image analysis for the automated
identification of phytoplankton for monitoring freshwater
quality. Like PLASA, the microscopic system uses fluores-
cence imaging, for a better discrimination. The chloro-
phyll filter set used in PLASA was improved and in
addition to the filter for phycocyanin, a new filter set for
phycoerythrin was also integrated into the analysis. Add-
itionally, a new method, where different focal levels are in-
tegrated into one image during the microscopy (Quick
Full Focus images), was used. One of the goals was to de-
velop open source software that is available for a broad
range of research. Therefore, the image analysis was writ-
ten as a plugin for ImageJ, which is a free and open source
project written in Java [11]. This allows the use of the soft-
ware on almost any operating system without costs. Since
the code for the plugin is also licensed as free software
anyone can adapt and expand the system.
PlanktoVision was specifically developed to improve

water quality analysis. In order to make this possible, we
so far focused on some of the most important taxa (in-
dicator taxa) as defined by the harmonized taxa list
for phytoplankton in Germany. This list is based on a
nation-wide study with the goal to standardize phyto-
plankton analysis to make it more reproducible [12].
For the automated classification the use of neural net-

works was examined. Neural networks consist of artifi-
cial neurons, resembling the properties of biological
neurons. These neurons are equations connected in dif-
ferent layers and allow complex classification tasks.
In the following, PlanktoVision and the used micro-

scopic system are described. Initial results for the classi-
fications of 10 different indicator taxa using a neural
network are discussed.

Results
Automated image acquisition
Images within the scanning path showed a consistent qual-
ity (e.g. no change in the illumination or background color)
and no significant changes in the characteristics of the sam-
ple could be observed during the microscopy (data not
shown). Because of an uneven bottom of the sedimentation
chamber an auto focus function had to be used for every
position resulting in a longer image acquisition time.
Since typical bright field images only integrate one focal

plane into the image, parts of some organisms with a larger
volume were, however, still blurred, which occurred more
obviously in the mixed samples. In the Quick Full Focus
images (QFF images), which integrate different focal planes
into one image, all organisms could be imaged completely
(without blurred parts) in the mono culture samples, as
well as in the mixed sample (see example images in
Additional file 1). With this method, however, it is essential
to avoid vibration during the imaging process to prevent
the organisms from moving and creating artefacts in the
image. For the fluorescence imaging it could be observed
that the short exposure of a single position already caused
bleaching effects that reached further than the immediate
area of the taken image. To keep the bleaching on the dif-
ferent recording positions to a minimum the distance be-
tween them was set to 500 μm. Additionally, the gain for
the fluorescence images was set as high as possible (without
affecting the subsequent image analysis because of high
noise in the image) to keep exposure times as short as pos-
sible. After this change, the characteristics of the analyzed
samples remained stable during the imaging procedure.

Image processing
Adaptation of ImageJ
All image processing and classification tasks were
performed with ImageJ since it already integrates many
functions for the work with microscopic images. Addition-
ally, ImageJ is an open source project that can be easily ex-
tended. Nevertheless, it is not primarily intended to be
used for complex classification tasks as presented in this
work. To allow this, ImageJ’s core functionality had to be
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expanded. This includes the integration of a region grow-
ing segmentation algorithm and the calculation of add-
itional features (see Methods). ImageJ is also unable to
perform classification tasks by itself. To allow this, the clas-
sification API Encog [13] was integrated into the system.

Segmentation
In this step of the image processing all particles in an
image are separated from the background and registered
individually. Comparing both types of images (typical
bright field and QFF images) the separation of the single
organisms from the background was better for the QFF
images (Figure 1). Since they integrate different focal
planes into one image most of the organisms could be
properly segmented and an accurate feature calculation
(and classification process) was possible. For the bright
field images a good segmentation was only possible when
the organism was imaged at, or near to its focal point.
However, it was often impossible to obtain images with all
organisms in focus. Some organisms have three dimen-
sional structures which can not be focused simultaneously
and not all organisms occupy the same focal level when
sedimented. When the segmentation of organisms that
Figure 1 Exemplary segmentation results for bright field and Quick F
have a certain three dimensional structure. The part of the image which w
segmentation is shown for a bright field image (on the left side) and an ac
were not in focus was possible it still resulted in an in-
accurate feature calculation and a poor classification
process. Based on these results only QFF images were
used for the following training and testing.

Selected features & classification
After the segmentation, different features are calculated
(see Method section “Feature calculation” for a full over-
view) that describe the characteristics of the particles.
These features are then used in the classification step to
differentiate the plankton species. It has to be noted that
not all calculated features are used for the classification
that is presented within this manuscript as the use of
some features reduced the classification results with our
species selection (data not shown). However, these fea-
tures could be useful to differentiate between a different
set of taxa. The features selected for our work are listed
in the section below.
The classification procedure was divided into two

steps. First a neural network was trained to separate
plankton particles from non-plankton particles; the latter
exhibited a great range of texture, size and shape and in-
terfered with the actual classification of the plankton.
ull Focus images. The images show the segmentation of taxa that
as segmented from the background is marked by a black line. The
cording Quick Full Focus image (on the right side).
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Since no non-plankton particles showed any fluores-
cence and all were mostly transparent or brown, features
for color (hu histogram), fluorescence (mean brightness in
the Roi of phycoerythrin, phycocyanin and chlorophyll
fluorescence), area and circularity showed good classifica-
tion results with the mixed test sample (Table 1).
In a second step, another separate network was trained

for the actual differentiation between the plankton taxa.
Best results for the mixed test sample could be achieved
with 2 hidden layers (first hidden layer 50 neurons, sec-
ond hidden layer 30 neurons) and features for the tex-
ture inside of the organism (local binary pattern, image
moment 1), shape (eliptic fourier descriptor 2–13, circu-
larity, roundness, solidity, minimum feret and perim-
eter), size (area), and pigmentation of the organism
(color via hu histogram; single photo pigments via
fluorescence).
The classification of the test sample showed an average

recognition rate of 94.7% ranging from 89.9–99.9%. The
rate of false positive particles showed an average of 5.5%
(ranging from 0–13.6%) and was mainly caused by occluded
or aggregated organisms, organisms that did not show the
typical morphological features, incorrectly segmented parti-
cles or particles that were out of the focus range.

Discussion
We present here a system for the automated identifica-
tion of phytoplankton using microscopy and computer-
based image recognition in regard to water quality ana-
lysis (see Figure 2 for an overview). It integrates methods
already described [10,14] as well as new approaches into
Table 1 Confusion matrix for the classification results

Plan

det ukw 1 2 3 4 5 6

det 11061 0 0 1 0 0 0 0

ukw 0 371 0 2 0 4 3 0

1 0 3 91 0 0 0 0 0

2 0 5 3 182 0 0 0 0

3 0 1 0 0 57 1 1 0

4 0 0 0 2 0 115 0 0

5 0 1 0 0 0 0 124 2

6 0 7 0 2 0 0 0 94

7 0 2 1 0 0 0 0 0

8 0 0 0 0 0 0 0 0

9 0 1 0 0 0 5 0 0

10 0 10 2 0 0 0 1 0

Ø

The data were classified into detritus (det), unknown plankton organism (ukw), Cycl
Staurastrum (6), Botryococcus (7), Pediastrum (8), Trachelomonas (9) and Crucigenia (1
independently prepared, imaged and analyzed on different days to prevent the sel
compared to a manual classification (rows). Correctly classified results are shown in
the analysis. The procedure performed by the system
can be divided into the two general steps: automated im-
aging of the water sample and the following image pro-
cessing and recognition.
The sample was sedimented in an Utermöhl chamber

and automatically scanned in the microscope. To enable a
precise analysis of the samples, different images (bright
field images and autofluorescence of the organisms) were
taken for each position during the scanning process.
Quick Full Focus images (QFF), which integrate different
focal planes into one image, were newly implemented in a
plankton classification system. This has two distinct bene-
fits compared to regular bright field images. On the one
hand plankton organisms with a large expansion over the
focal plane can be imaged in total, even when using a great
magnification, improving the accuracy of the following
image processing and recognition (segmentation, feature
calculation and classification). On the other hand, the loss
of whole groups of organisms, which are mostly located at
a higher focal point above other sedimented organisms
(due to spikes that are attached around the organism or
transparent capsules into which an organism is embed-
ded), can be reduced. This results in a smaller overall sys-
tematic error for the system (data not shown).
Since the used Keyence software is proprietary, it was

not possible to determine exactly how QFF images are gen-
erated. This may complicate the adaption of PlanktoVision
to other microscope systems, which probably have similar
but not necessarily identical functions available. To avoid
these problems and make methods available to more
people it is advisable to use open source solutions for the
ktoVision

7 8 9 10 % recognition % false positive

0 0 0 0 99.99 0.00

7 3 0 13 92.06 8.09

1 0 1 0 94.79 6.59

2 0 0 1 94.30 3.85

0 0 0 0 95.00 0.00

0 0 0 0 98.29 8.70

8 3 0 0 89.86 4.03

0 0 1 0 90.38 2.13

253 2 1 2 96.93 7.51

0 59 3 0 95.16 13.56

0 0 127 0 95.49 4.72

1 0 0 240 94.49 6.25

94.73 5.45

otella (1), Anabeana (2), Chlorogonium (3), Cryptomonas (4), Desmodesmus (5),
0). The test set included images of 4 different samples that were
ection of an over fitted classifier. The results of PlanktoVision (columns) were
bold.



Figure 2 Overview of the plankton analysis. During the automated
microscopy bright field and fluorescence pictures are taken for different
positions in the Utermöhl chamber. For the image analysis all particles
are segmented from the background of the bright field image and
features are calculated. After manual sorting, the segmented images
can be used to train a neural network which is then able to classify new
images according to taxon.
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control of microscopes (if available). One possible solution
would be the use of the micro manager software [15]. Mi-
cro manager allows the recording of z-stacks and since it is
based on ImageJ, existing or newly created plugins for a z-
stack projection could be easily integrated. The currently
supported hardware of Micro manager includes single
components as well as fully motorized microscopes from
leading manufacturers. Unfortunately, micro manager does
not support the hardware currently used for the deve-
lopment of PlanktoVision and therefore could not be
integrated.
In addition to the fluorescence of chlorophyll and

phycoerythrin, which was already recorded by the
PLASA system, the imaging of the phycocyanin fluores-
cence was newly integrated in the imaging process. Un-
like as described for PLASA [14], we used a chlorophyll
filter which is able to excite chlorophyll a and chloro-
phyll b simultaneously so that both could be included
into the analysis. The filter set used for PLASA has been
reported not to induce chlorophyll fluorescence for
some species during the experiments. It only excites
chlorophyll b, which is not present in the photo system
of many phytoplankton species [16].
The image processing itself can be divided into three

distinct steps: (1) segmentation of the organisms from
the background; (2) calculation of features that describe
the segmented particle in a more defined way; and (3)
classification of the different groups of organisms based
on the calculated features.
For the segmentation a region growing approach was

chosen [17]. Compared to a histogram-based thres-
holding, where the whole image influences the segmen-
tation, it enables a more robust segmentation of very dif-
ferent organism. This is possible since only the
background region is included into the calculations for
the segmentation and the amount and type of the organ-
isms in the analyzed image has no influence. Edge detec-
tion (in the brightness channel) was integrated into the
region growing, to allow a good segmentation of trans-
parent organisms and organisms that include transpar-
ent parts. Because of this, the segmentation was only
possible for organisms that were imaged at their focal
point, since edges are only detectable at sharp intensity
differences in the image. This, however, is not a draw-
back, as the segmentation of organisms that are out of
focus results in a reduced accuracy, or even erroneous
feature calculation and has an overall negative impact on
the analysis. Therefore the positive effects of the edge
detection vastly outweigh its disadvantages and we con-
clude for this application that the combined approach of
edge detection and region growing is superior to a re-
gion growing without previous edge detection.
For the feature calculation, new features (especially for

the texture description) as well as those previously
reported (e. g. in PLASA) were used. Despite the fact
that most factors for illumination were set to fixed
values and the image as well as the rotation of the or-
ganisms was corrected before classification, it was noted
that few features, which are not invariant to those fac-
tors, were less suitable for classification. These features
include statistics of the gray level co-occurrence matrix
as well as normalized brightness and saturation of the
organisms. Also features that are influenced strongly by
slight variations in shape (such as fourier descriptor 12–
29, or the aspect ratio) seem to deteriorate the results
since the shape varies to differing extents with the differ-
ent organisms.
The classification of the organisms described was done

by using neural networks. For the differentiation of all taxa
one network with 12 output possibilities (ten for the
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respective taxa, one for detritus, and one for unknown
particles) was chosen and trained with one pre-selected
set of features. Another possibility would be to use one
network for every organism with a feature set optimized
and specifically selected for this organism. In this case,
classification would be done by going through every net-
work and checking if the particle belongs to one class or
not. However, training and feature selection for the differ-
ent networks would be more complex and every network
would have to be checked and (when needed) adapted to
each new organisms integrated into the system. Since the
classification with one network showed a good perform-
ance this approach was preferred due to its simplicity and
expandability.
Despite the average classification rate of ~ 95%, an

over-training of the network can be excluded as the
image test set contained images from independent sam-
ples and all samples showed good classification results
without bias towards a wrong class. A comparison of the
classification rate to other published systems is difficult
since there are differences in the number of classes, as
well as varying similarities of the organisms that should
be differentiated. Additionally, most of the reported sys-
tems are used for differentiation of marine plankton.
Culverhouse [18], however, made a comparison of re-

ported systems. The classification results are summarized
as followed: ADIAC (37 taxa, 75–90% recognition), which
is a system for the automated analysis of diatom slides
[19]; Zooscan (29 groups, 75–85% recognition), which is a
platform for the analysis of mesozooplankton where sam-
ples are imaged with a water-proof scanner [20,21]; SIPPER
(5 groups, recognition of 75–90%) [22] and VPR (7 groups,
72% recognition) [23], which both are system for the ana-
lysis of mesozooplankton, where the organisms are imaged
during the sampling; DiCANN (3–23 species, 70–87% rec-
ognition), which is a system for the classification of dinofla-
gellates [24]; Cytosense (30 groups, 91% recognition),
which is a flow cytometric approach [25].
The average recognition rate of PLASA (~ 94% for 5

classes) was above the recognition rate of the previously
mentioned systems and is comparable to the rate achieved
by PlanktoVision (~ 95% for 10 classes). Nevertheless,
PlanktoVision showed a much smaller rate of false posi-
tives (~ 6%) when compared to other reported results
(PLASA 20%; VPR 55% [23], Zooscan 26% [21]). For all
the mentioned systems the false positives were mostly
caused by a wrong classification of non-plankton particles
and unidentified objects.
In PlanktoVision this cause of errors could be drastically

reduced by the use of the adapted chlorophyll fluorescence
filter which allowed a very good exclusion of non-
planktonic particles from the analysis with an error rate
< 1%. Additionally, “unknown” particles (e.g. particles that
were wrongly imaged and/or segmented and organisms
that did not show the typical morphological features or
were occluded/aggregated with other particles or organ-
isms) could be identified with ~ 92% accuracy during the
analysis, despite the fact that they showed a great range of
shape, color and fluorescence. Additionally, the system
allowed a good classification of taxa that show similarities
in their morphology (for example Cryptomonas and
Trachelomonas, with a round and quite similar shape)
as well as a good differentiation of taxa that show varying
morphology within their class (e.g. Botryococcus and
Anabeana have one basic cell shape, but the number of
cells in an aggregate changes while growing).
Comparing the average classification rate of ~ 95%

achieved by PlanktoVision to human accuracy, the results
are in the same range as those reported for routinely en-
gaged personnel (84–95% accuracy) and notably better
than those for trained but not routinely engaged personnel
(67–83% self consistency and 43% consensus between
trained personnel) [3]. Here it has to be stated that an ana-
lysis of a sample by a human generally does not provide a
reproducible error rate - despite an automated system.
Conclusions
The implemented automated microscopy and the new
open source image analysis system -PlanktoVision- allowed
a good differentiation of the presented test set consisting of
10 different phytoplankton taxa. The classification results
were comparable or better than existing systems and the
false positive rate could vastly be improved over reported
results due to a better exclusion of non-plankton particles
and unidentified objects. The image analysis was devel-
oped as an open source system in order to make it avail-
able for many researches and thereby help to make the
analysis of water quality more reproducible. For future
work, more taxa should be integrated into the analysis to
allow the generation of more significant results in regard
to the water quality analysis of real phytoplankton sam-
ples. However, the chosen methods for the image pro-
cessing might have to be revised to test if they are still suf-
ficient, or if they will have to be further extended
(e.g. the integration of other feature calculation methods).
Additionally, the choice of the neural network structure
might have to be reexamined for the differentiation of a
larger number of taxa.
Methods
Strains
For the training and testing of the system 10 different
taxa (Table 2) from mono-cultures were fixed with 1%
paraformaladehyde to preserve fluorescence characteris-
tics. The morphological characteristics can be seen in
Figure 3.



Table 2 Used taxa for the training and testing of
PlanktoVision

Strain Origin

Cyclotella meneghiniana SAG 2136

Anabaena sp. CBT 149

Chlorogonium elongatum SAG 31.98

Cryptomonas ovata SAG 979-3

Desmodesmus perforatus Isolated by U. Mischke from
the “Müggelsee” lake, Berlin

Staurastrum tetracerum SAG 7.94

Botryococcus braunii SAG 807-1

Pediastrum duplex SAG 28.83

Trachelomonas volvocina SAG 1283-4

Crucigenia tetrapedia SAG 9.81
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Sedimentation
For the image acquisition the fixed samples were
sedimented according to the Utermöhl method [26]. The
sample volume was chosen so that the sedimented cells
did not occlude each other on the bottom of the cham-
ber. To obtain training images for the different taxa the
mono-cultures were sedimented separately. To obtain
Figure 3 Bright field microscopic images and Quick Full Focus image
the bright field image and the right side shows the Quick Full Focus image
Cryptomonas (4), Desmodesmus (5), Staurastrum (6), Botryococcus (7), Pedias
test images, different mixed samples consisting of all
taxa were sedimented.

Automated microscopy
For the image acquisition the computer controlled in-
verse Keyence BZ 9000 fluorescence microscope was
used. The microscope was equipped with the following
fluorescence filter sets: chlorophyll a & b (excitation:
435/40 nm; beam splitter: 510 nm; emission: 515 nm
long-pass), phycoerythrin (excitation: 543/22 nm; beam
splitter: 562 nm; emission: 593/40 nm) and phycocyanin
(excitation: 600/37 nm; beam splitter: 625 nm; emission:
655/40 nm). To allow a fully automated analysis of the
samples, a mouse recorder software was used to pro-
gram a scanning routine, where images for 80 different
positions were taken within a predefined rectangular
area. Before starting the image acquisition, lighting,
aperture stop, and exposure time for the fluorescence
imaging were adjusted to predefined values (bright field:
exposure time 1/28s, aperture 65% open, light intensity
84% ; fluorescence: exposure time 1/4,5s and gain 18dB).
Additionally, a white balance was performed and an
image without the sample was stored for image cor-
rection. During the scanning the auto focus function
s of the analyzed taxa. For every pair of images the left side shows
. The taxa are: Cyclotella (1), Anabeana (2), Chlorogonium (3),
trum (8), Trachelomonas (9) and Crucigenia (10).



Schulze et al. BMC Bioinformatics 2013, 14:115 Page 8 of 10
http://www.biomedcentral.com/1471-2105/14/115
of the Keyence software was started for every position
(since the glass slide in the Utermöhl chamber is not
necessarily completely even). Afterwards, five different
images were taken with an 60× objective: A normal
bright field image, a Quick Full Focus image (QFF)
that integrates 35 different focal levels above and 23
focal levels below the auto focused image into a single
image, and fluorescence images addressing the absorp-
tion/emission spectra of chlorophyll, phycoerythrin and
phycocyanin.

Image processing
The image processing routines were written in Java as
open source plugins for ImageJ. They were separated into
the four plugins PVsegment, PVtrainer, PVclassifier and
PVanalysis. PVsegment implements the segmentation of
the particles from the background and the calculation of
different features. PVtrainer includes the training process
and PVclassifier can be used for the classification using
the trained classifier trained in PVtrainer. Additional
PVanalysis integrates the segmentation, feature calculation
and classification into one plugin and allows a fully auto-
mated analysis of the images.

Image preprocessing
Different factors during microscopy (for example
changes in the light source or the optical system) can in-
fluence the brightness and color within the taken image.
To minimize these effects an image without the sample
was taken before every scan and used in a preprocessing
step for a correction of the original images. This was done
by using the divide function of the CaluclatorPlus from
ImageJ with the following formula: Icor = (Isample / Ilc) *
meanlc where I is the pixel brightness of the respective
image (cor - corrected image; s - image of the sample, lc -
image without the sample) and meanlc is the global mean
of the brightness.

Segmentation
A region growing approach was chosen to separate the or-
ganisms from the background of the microscopic image.
To enable a better segmentation of transparent organisms
an edge detection using the standard Sobel operator and
contrast adjustment (Histogram normalization using 0.4%
of the saturated pixel (ImageJ function “Enhance Con-
trast”)) was performed as preprocessing. The basic
principle of the method is to start with pixels lying in the
background as seed points and add adjacent pixels that fit
a defined background criterion allowing the segmentation
between background and organisms. To find correct seed
points of the background, the watershed segmentation of
the MaximumFinder in ImageJ was used resulting in a
rough segmentation of the image into different areas. For
every area the mode pixel value was determined (i.e. the
pixel value that appears most often). Since in this type of
images the background is the largest even part of any
given image, the largest area with the same mode value
was chosen as being the background. For the region grow-
ing segmentation all pixels with the mode value within this
area were then set as seed points. Afterwards, the region
growing is started by adding adjacent pixel that fit the
background criterion. Different background criteria were
tested. Best results could be retrieved with the standard
deviation of the brightness of all pixels already marked as
background multiplied by 10.To register the different seg-
mented particles as regions of interest (Roi) the Particle
Analyzer function is then used [27]. Particles smaller than
100 pixels (~3 μm2) and particles touching the edge of the
image were excluded from further analysis.

Feature calculation
To enable a classification of the registered regions in the
image a set of different kinds of features, which describe
these areas in a more defined (and less complex) way,
were calculated. To reduce the influence of the rotation
of the particles the angle between the primary axis of a
fitted ellipse and the x-axis of the image was used to ro-
tate the particle to an angle of zero. Basic features were
recorded with the measurement function of ImageJ. For
more complex features, available plugins were integrated
into the system. This includes elliptic fourier descriptors
of the contour [28], statistics of a gray level co-
occurrence matrix (glmc) of the Roi [29,30], a direction-
ality histogram [31] and different image moments [32].
A symmetry measurement [33], rotation invariant local
binary patterns [34] and the extraction of fluorescent
features was newly integrated into the system. All fea-
tures are listed in more detail in Additional file 2. After
the calculation of all features was completed the Roi’s
and features for the image were saved. For the creation
of the training set every Roi was saved as a single image
to enable the sorting into different classes.

Creation of training- and test-data
For the training set, all mono cultures were chemically
fixed and images were taken under the microscope with
the previously described automated procedure. The pic-
tures were segmented and features were calculated for
every segmented particle. After the segmentation, particles
were sorted by hand into different categories: detritus, in-
correctly segmented or unknown plankton organisms, or
one of 10 groups for the particular taxon. The size of the
training data was around 600 images per class.
For the creation of the test set, images for a mixture of

all 10 plankton taxa were used and processed in the
same way as the images for the trainings set. In order to
prevent the selection of an over-trained classifier, which
would only correctly work on the image set used for
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training, four different samples were independently pre-
pared, imaged and analyzed on different days.

Training and classifier
For the classification of the different plankton taxa a
neural network was used. Encog, a java framework for
neural networks, was integrated into ImageJ [13]. The
network type used was a simple feed forward network
with an Elliott activation function [35] since this showed
the best training efficiency.
For the selection of the most suitable features, all avail-

able features were used for an initial training. Based on
these results the significance of every input neuron was
determined with a function integrated in the used API
and the best suited features selected. Additionally, an em-
piric testing was performed where different features were
subsequently added to the network and the impact for a
better classification was determined with the test set (the
selected sub-set of features is listed under the results
section “Selected features & classification”).
Whenever the network was modified (e.g. different

feature set or output count) one training was performed
with an incremental pruning to determine the best num-
ber of hidden layers and of the neurons used in these
layers. To start the training, all data of the training set
was (when needed) normalized to ranges between −1
and 1. The resilient propagation algorithm was chosen
as training method [36,37]. Training was performed to
an error rate of 0%, or a maximum of 3.000 iterations.
After the training was finished, the neural network and
the rules for the normalization of the data were saved
and used for all further analyses. For testing of the clas-
sifier the data of the test set was normalized according
to the saved normalization rules and classified with the
trained neural network. To allow a verification of the re-
sults, the single images of the Roi’s were stored in folders
according to their classified class and compared to the
results of a classification made by hand.

Availability
The ImageJ plugins and a data set supporting the results
of this article are available in the github repository
through https://github.com/KatjaSchulze/PlanktoVision.
The software is licensed under the GNU General Public
License, Version 3.
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