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Abstract 

Background 

It is well known that carbohydrates play fundamental roles in cell signaling and infection 

processes as well as tumor formation and progression. However, the interaction pathways and 

cellular receptors targeted by carbohydrates and glycoconjugates remain poorly examined 

and understood. This lack of research stems, at least to a major part, from accessibility 

problems of large, branched oligosaccharides. 

Results 

To test glycan - cell interactions in vitro, a variety of tailored oligosaccharides was 

synthesized chemo-enzymatically. Glycosyltransferases from the GRAS organisms Bacillus 

megaterium (SacB) and Aspergillus niger (Suc1) were used in this study. Substrate 

engineering of these glycosyltransferases generally acting on sucrose leads to the controlled 

formation of novel tailored di-, tri- and tetrasaccharides. Already industrially used as 

prebiotics in functional food, the immunogenic potential of novel oligosaccharides was 

characterized in this study. A differential secretion of CXCL8 and CCL2 was observed upon 

oligosaccharide co-cultivation with colorectal epithelial Caco-2 cells. 

Conclusion 

Pure carbohydrates are able to stimulate a cytokine response in human endothelial cells in 

vitro. The type and amount of cytokine secretion depends on the type of co-cultivated 

oligosaccharide. 
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Background 

Inflammation processes are essential for the immune system of a host organism attacked by 

bacteria, viruses or other immunogenic molecules. However, persistent inflammation is a 

pathologic indication. The intestine, being the largest barrier of the human body to the 

environment, is under a state of persistent controlled inflammation because of its permanent 

contact with the gut microbiota. Intestinal epithelial cells release cytokines and chemokines 

upon external stimulation, e.g. by bacteria and their surface structures [1]. The factors which 

trigger inflammation and the release or suppression of cytokines and chemokines have been 

investigated thoroughly over the last decade, but the process is still not fully understood. 

Clearly, cytokine secretion can be triggered by lipopolysaccharide (LPS) on the surface of 

Gram-negative bacteria [2,3] or capsular polysaccharides and lipoteichoic acid from Gram-

positive species [4,5]. 

Oligo- and polysaccharides containing fructose have been known for several years as 

prebiotics [6,7]. Fructose recently was described as a signaling molecule and lead structure 

for carbohydrates with enhanced antigenicity in HIV vaccination [8]. The extent of the 

fructan oligo- and polymerization was described as controllable in an enzymatic synthesis 

process [9]. Fructosyltransferases like inulosucrases and levansucrases which synthesize 

fructans of various chain lengths are common in many different bacteria including the gut 

microbiota [10]. The challenges to access large, branched oligosaccharides using chemical 

synthesis, may be overcome using chemo-enzymatic approaches [11-13]. Sucrose analogues 

synthesized by SacB from B. megaterium were used as precursors for the synthesis of 

oligofructosides with the fructosyltransferase Suc1 from A. niger [14]. For the present study, 

the enzymatic synthesis process was scaled up to yield biological test amounts. The tailored 

oligofructosides tested in this study are capped by the monosaccharides D-glucose, D-

mannose, D-galactose, D-fucose or D-xylose, elongated with fructosyl units under tight 

control of the degree of polymerization. These oligofructosides are supposed to mimic the 

structural characteristics of immunogenic carbohydrate patterns of antigens, thus triggering 

the release of cytokines and/or chemokines. 

Results 

Chemo-enzymatic synthesis of novel oligofructosides by substrate engineering 

of fructosyltransferases 

Tailored oligofructosides were synthesized, purified and characterized regarding their 

composition and stereochemistry. Substrate engineering of two fructosyltransferases from 

GRAS organisms (SacB from B. megaterium and Suc1 from A. niger) leads to novel tailor-

made oligofructosides of defined fructosyl backbone lengths (Figures 1 and 2). The first step 

in their enzymatic synthesis is the formation of the α-(1,2) linked disaccharide (sucrose 

analogue). The fructosyltransferase SacB from B. megaterium provides access to the efficient 

synthesis of sucrose analogues (Gal-Fru, Man-Fru, Xyl-Fru and Fuc-Fru) under appropriate 

reaction conditions. The synthesis reaction was performed according to the process of sucrose 

analogue synthesis by SacB from B. subtilis [15]. However, SacB from B. megaterium 

proved to be much more efficient in terms of chemo-enzymatic synthesis with an increased 

substrate affinity (Km 6.6 compared to 14) and turnover number (kcat 2200 as opposed to 165) 

[16]. 

Figure 1 Enzymatic synthesis of novel oligofructosides. Oligofructosides used in this study 

were synthesized by the concerted action of two fructosyltransferases from B. megaterium 

(SacB) and A. niger (Suc1) 



Figure 2 Structure of tailored oligofructosides tested in terms of their immunological 

properties. Controlled enzymatic synthesis was based on sucrose analogue precursors and 

the addition of a variable fructosyl backbone 

Each chemo-enzymatic synthesis process was analyzed by HPAEC. As an example, the 

process for Fuc-Fru synthesis is shown in Figure 3A. The distinct addition of the second and 

third unit of the fructosyl backbone was performed by the fructosyltransferase Suc1 from A. 

niger. Suc1 is highly specific for the synthesis of defined tri- and tetrasaccharides, 1-kestose 

(Glc-Fru2) and 1-nystose (Glc-Fru3) and their analogues depending on the reaction 

conditions. Trisaccharide kestose analogues are Gal-(Fru)2, Man-(Fru)2, Xyl-(Fru)2, and Fuc-

(Fru)2. Tetrasaccharide nystose analogues containing three fructosyl moieties are Gal-(Fru)3, 

Man-(Fru)3, Xyl-(Fru)3 and Fuc-(Fru)3 (Figure 2). The previously described products [14] as 

well as the novel fucosyl-capped tri- and tetrasaccharides were identified and analyzed by 

TLC and HPAEC. Scale-up of the synthesis process yields pure oligofructosides in cell 

culture test amounts (mg-scale, Table 1). As an example, the synthesis process for Fuc-Fru2 

and Fuc-Fru3 is shown in Figure 3B. 

Figure 3 Synthesis of the oligofructosides capped by fucose. A, the acceptor reaction for 

the fucosyl-containing disaccharide Fuc-Fru was analyzed by HPAEC. Reaction conditions 

were: Fucose (1.2 M), sucrose (600 mM) in phosphate buffer after Sörensen (50 mM, pH 

6.6), 10 mg l
-1

 fructosyltransferase SacB, at 200 rpm and 37 °C for 2 h. B, the same acceptor 

reaction as in A shown as HPAEC chromatogram. Carbohydrates corresponding to the peaks 

are indicated. Analysis time points are indicated as follows. Red, 0 min, blue, 10min, green, 

30 min and black, 2 h reaction time. C, The transfructosylation reaction yielding the fucosyl-

capped tri- and tetrasaccharides Fuc-(Fru)2 and Fuc-(Fru)3 was performed using Suc1-

containing culture supernatant 1:50 (v/v), 500 mM Fuc-Fru in Sörensen`s phosphate buffer 

(50 mM, pH 5.6), at 45 °C and 200 rpm 

Table 1 Reaction times and yields for the oligosaccharide synthesis by the 

fructosyltransferase Suc1 from A. niger 
 t Conversion 

 [min] [% mol mol
-1

] 

1-kestose 18 81 

1-nystose 60 93 

MF2 60 71 

MF3 180 87 

GF2 420 44 

GF3 960 65 

XF2 20 75 

XF3 120 94 

FF2 60 65 

FF3 120 88 

Reaction conditions were Suc1 enzyme dilution 1:50 (v/v), 500 mM sucrose analogue to be 

converted in Sörensen`s phosphate buffer (50 mM, pH 5.6) at 45 °C and 200 rpm. The 

reaction time depending on the oligosaccharide to be synthesized is indicated 

Oligofructoside-stimulated Caco-2 cells differentially secrete CXCL8 and 

CCL2 

The novel synthesized oligofructosides were tested in terms of immunostimulating properties 

on human epithelial Caco-2 cells. This cell line is a model for the absorption of 

pharmacological products in the intestinal region [17,18]. 25 cytokines and chemokines were 

analyzed in the growth medium during co-cultivation with the novel oligofructosides 

(Eotaxin, GM-CSF, IFN-α, IFN-γ, IL-1RA, IL- 1β, IL-2, IL-2R, IL-4, IL-5, IL-6, IL-7, IL-8, 

IL-10, IL-12p40/p70, IL-13, IL-15, IL-17, IP-10, MCP-1, MIG, MIP-1α, MIP-1β, RANTES 

and TNF-α, 25-plex cytokine analysis kit, Biosource, Invitrogen). Caco-2 cells were grown 



for 48 h in 24-well dishes containing the oligofructosides to be investigated in a concentration 

of 25 μM. Five-fold repeats of the experiment for each carbohydrate (four-fold for MF2) 

ensured the reproducibility of the results. CXCL8 (also known as interleukin 8, IL-8) and 

CCL2 (monocyte chemoattractant protein, MCP-1) were the only cytokines/chemokines in 

the media supernatants which led to a significant signal detected by the luminex system. Both 

standard curve fits show a correlation of over 99 % (data not shown). The measured 

fluorescence intensities are in the linear part of the standard curve indicating the reliability of 

the data. The other 23 cytokines and chemokines analyzed showed no significant response 

under these conditions. CCL2 generally shows a higher signal-to-background enhancement 

compared to the cultivation of Caco-2 cells without added carbohydrates. The CCL2 release 

is increased up to a concentration of 320 pg ml
-1

 (Man-Fru3, Figure 4C, D). The 

characteristics of a longer fructosyl backbone seem to enhance this effect. For the 

tetrasaccharides 1-nystose (250 pg ml
-1

), Man-Fru3 (320 pg ml
-1

), Fuc-Fru3 (310 pg ml
-1

) and 

Xyl-Fru3 (220 pg ml
-1

), the release of CCL2 is clearly triggered (Figure 4C, D). The 

stimulation of CXCL8 is also observable when the fucose-containing 1-nystose analogue 

Fuc-Fru3 is added (35 pg ml
-1

). Also in the case of CXCL8, longer fructosyl chains seem to 

enhance the release of this cytokine. In the samples containing Man-Fru3 (24 pg ml
-1

), Fuc-

Fru3 (35 pg ml
-1

) and Xyl-Fru3 (25 pg ml
-1

) the highest concentrations of CXCL8 were 

detectable (Figure 4A, B). CXCL8 and CCL2 release was consistently not enhanced when 

incubated with the trisaccharides 1-kestose and Man-Fru2 (Figure 4). 

Figure 4 CXCL8 and CCL2 secretion level upon oligofructoside co-incubation of Caco-2 

cells. A, C Secretion level of CXCL-8 (A) and CCL2 (C) after co-incubation with the 

oligofructoside indicated. B, D Means of A, C were calculated as enhancement factors 

relative to cytokine/chemokine secretion level of the negative control. Significant differences 

according to the Fischer algorithm are indicated by a star. In A, FF3 is significantly different 

from all other oligofructosides except for XF2 and XF3. In C, FF3 and MF3 differ significantly 

from MF2 and kest. Caco-2 cells were incubated in the presence of 25 μM oligofructoside at 

37 °C, 5 % CO2 for 48 h 

Discussion 

Co-incubation of human epithelial Caco-2 cells with certain types of pure, unconjugated 

oligofructosides leads to enhanced secretion of CXCL8 and CCL2. CXCL8 is a potent 

inflammation marker recruiting neutrophils to sites of infection. It is secreted by various cell 

types including epithelial cells [19]. CCL2 is described as an effective chemoattractor for 

monocytes from the blood stream [20]. Our results show that CCL2 release can be clearly 

triggered by the tetrasaccharide 1-nystose and even more enhanced by the nystose analogues 

Man-Fru3 and Fuc-Fru3. The observed differential cytokine secretion pattern raises questions: 

Is this stimulating effect dependent on the carbohydrate structure and if so, which structural 

elements trigger or suppress the release of cytokines and chemokines? Because of the 

differential secretion pattern and only two significant signals (out of 25 investigated), it was 

shown that cytokine secretion by Caco-2 cells in this assay is dependent on the 

oligofructoside type. But why are just 2 significant signals of secreted proteins detectable? 

One possibility is, that epithelial cells in the intestine only have a restricted repertoire of 

cytokines to be synthesized and secreted. Another point is, that this cell type is in constant 

contact with ubiquitous nutrients and commensal gut bacteria. Hence, it may have evolved 

tolerance against certain alien structures. The intestine being the largest barrier of the human 

body to the environment, has a special set of immunologically active cells. This area is under 

a state of persistent controlled inflammation because of its permanent contact with the gut 

microbiota. Special intestinal macrophages (IMACs) mediate tolerance to beneficial gut 

bacteria. Perturbations of these processes, like the release of CCL2, inhibit the differentiation 

of macrophages to IMACs thus leading to (chronic) inflammatory bowel diseases (IBDs) 

[21]. Intestinal epithelial cells release cytokines and chemokines upon external stimulation, 

e.g. by bacteria and their surface structures [1]. The factors which trigger inflammation and 



the release or suppression of cytokines and chemokines have been investigated thoroughly 

over the last decade, but the process is still not fully understood. 

In this study, mannose- and fucose-capped oligofructosides generally evoke the highest 

increase in CCL2 and CXCL8 release (Figure 4). This might be due to their participation in 

natural cell-cell communication processes. Fucose often is a branching carbohydrate unit e.g. 

in the Lewis X motif. This motif is known as immunogenic under certain conditions, e.g. 

incomplete sialylation. Mannose is part of the core N-glycan structure. Its exposition often 

leads to the release of cytokines, e.g. CCL2 in mannosidase knock-out mice [22]. 

Interestingly, the different monosaccharide cap structure of the fructosyl backbone is not the 

only factor influencing the release of CXCL8 and CCL2, but also the length of the fructosyl 

backbone. For example, CCL2 secretion is triggered by 1-nystose and its tetrasaccharide 

analogues Man-Fru3 and Fuc-Fru3 but suppressed by kestose and its analogue Man-Fru2 

(Figure 4). Thus, stereochemical and spatial aspects of oligosaccharides obviously have to be 

considered in terms of cell signalling processes. Recently, it was described that the different 

shape of bacterial lipopolysaccharide (LPS) determines which receptor is targeted and thus 

how cell signalling is processed [23-25]. The potential target receptors which are known to 

act competitively are shown in Additional file 1: Figure S1. The differential secretion of 

cytokines and thus the induction of an inflammatory response by the interaction of these 

receptors is still a scientific area with many long-standing questions. 

Conclusions 

Carbohydrates are ubiquitious structures on the surface of a plethora of different cell types 

including potentially pathogenic and beneficial gut bacteria. Auto-immune diseases like 

Crohn`s disease are linked to persistent, pathologic inflammation. As abundant surface 

structures of host and pathogen cells, carbohydrates may play an important role in the 

induction of inflammation and tolerance, respectively. Advances in carbohydrate research in 

combination with cell biology and immunology methods may lead to a detailed 

understanding of inflammation processes. The pure, tailored carbohydrate structures 

examined in this study induce such a differential secretion of cytokines in endothelial cells in 

vitro. Further advances in oligosaccharide synthesis lead broadened possibilities to 

investigate in vivo inflammation mechanisms of carbohydrate-cell receptor crosstalk. 

Controlled stimulation of the immune system may be one component towards a successful 

treatment of auto-immune diseases. 

Methods 

Chemo-enzymatic synthesis of tailored oligofructosides 

The fructosyltransferases from the GRAS organisms B. megaterium (SacB) and A. niger 

(Suc1) were used for the synthesis of a fructosyl-based carbohydrate backbone capped with 

different types of monosaccharides (glucose, galactose, mannose, fucose and xylose).The 

oligofructosides were synthesized in two steps. First, sucrose analogues were synthesized by 

the fructosyltransferase SacB from B. megaterium. After analysis and purification, the 

elongation reaction was performed by the fructosyltransferase Suc1 from A. niger. 

Synthesis and purification of sucrose analogues by the fructosyltransferase 

SacB from bacillus megaterium 

For the synthesis of sucrose analogues, the acceptor monosaccharide was used in a 

concentration of 1.2 M. The transfructosylation reaction was performed with added sucrose 

(600 mM) in phosphate buffer after Sörensen (50 mM, pH 6.6). SacB was applied in a final 

concentration of 10 mg l
-1

 at 200 rpm and 37 °C for 2 h in a 1.5 ml or 15 ml reaction tube. 

The resulting sucrose analogues were analyzed qualitatively and quantitatively by thin-layer 



chromatography (TLC, 2.2) and high-performance anion exchange chromatography 

(HPAEC, 2.3). The purification of the sucrose analogues was performed by a silica column 

with a carbohydrate-containing mobile phase (60 % ethylacetate, 30 % isopropanol, 10 % 

water, all v/v). The products were analyzed by TLC and HPAEC. 

Synthesis and purification of 1-kestose, 1-nystose and analogues by the 

fructosyltransferase Suc1 from aspergillus Niger 

The subsequent synthesis step of 1-kestose, 1-nystose and their analogues was performed by 

the fructosyltransferase Suc1 from A. niger as described previously with the sucrose 

analogues synthesized by SacB from B. subtilis [14]. Briefly, the supernatant of a cultivation 

of A. niger SKAN1015 was used in a dilution of 1:50 (v/v). The Suc1 dilution was mixed 

with 500 mM of the sucrose analogue to be converted in Sörensen`s phosphate buffer (50 

mM, pH 5.6). The reaction was performed at 45 °C and 200 rpm. The reaction time depends 

on the desired oligofructoside to be synthesized [14].The purification of 1-kestose, 1-nystose 

and their analogues was performed by size exclusion chromatography. An open 

chromatography gel filtration system was used (Biogel, Bio-Rad) and degassed water 

containing the carbohydrates to be separated as mobile phase. 

Analysis of carbohydrates by thin-layer chromatography (TLC) 

The sample was diluted to a total carbohydrate concentration of 1–3 g l
-1

. 3 μl of the sample 

was applied on a TLC plate (TLC aluminium foil coated with silica 60, 20 x 20 cm with 

concentration zone, Merck). After drying the TLC was run in a TLC chamber equilibrated 

with the mobile phase. After 45 min the plate was dried and again incubated for 45 min. The 

staining of the carbohydrates was performed by a short dive into the developing solution 

(sulfuric acid 5 % (v/v) N-(1-naphtyl) ethylendiamine dihydrochloride 0.3 % (w/v) in 

methanol) and incubation at 150 °C for 5 min. An appropriate standard has to be applied each 

time (here: glucose 0.1 g l
-1

, fructose 0.1 g l
-1

, sucrose 0.1 g l
-1

, 1-kestose 0.1 g l
-1

, 1-nystose 

0.1 g l
-1

). 

Analysis of carbohydrates by high-performance anion exchange 

chromatography (HPAEC) 

HPAEC analysis was used to determine the kinetic parameters of the enzyme reactions and 

the optimal reaction conditions. The HPAEC is a modular high-performance liquid 

chromatography optimized for the analysis of carbohydrates. The pre-column (CarboPac 

PA1, 4*50 mm, Dionex) and the following seperation column (CarboPac PA1 4*250 mm, 

Dionex)) of the HPAEC device are used to separate the carbohydrates with a gradient of the 

eluent (1 M sodium acetate in 0.1 M sodium hydroxide in MilliQ, Millipore, deionized water, 

protocol see Table 2). The samples were applied by an autosampler (Perkin Elmer). A 

degaser unit was used for removing oxygen and carbon dioxide from the mobile phase 

(sodium hydroxide, 100 mM in water) and the eluent (sodium hydroxide, 100 mM and 

sodium acetate, 1 M in water). A thermostat ensured a stable temperature of 15 °C. The flow 

rate was 1 ml min
-1

. The total carbohydrate concentration has to be set to 100 – 200 mg l
-1

 

correlating with the used detector sensitivity of “1k”. The chromatograms were recorded with 

the software Clarity (Ver. 2.4.1.77, DataApex). 

Table 2 HPAEC eluent gradient program 
0 - 5 min 0 % 1 M NaAc 

5 - 25 min to 25 % 1 M NaAc 

25 - 30 min to 50 % 1 M NaAc 

30 - 35 min 50 % 1 M NaAc 

35 - 37 min to 0 % 1 M NaAc 

37 - 60 min 0 % 1 M NaAc 



Co-cultivation of Caco-2 cells with tailor-made oligofructosides 

Caco-2 cells were cultivated in Dulbecco`s modified Eagle`s medium (DMEM)/HamsF12 

(Gibco) supplied with 10 % fetal calf serum (FCS) and 200 μg l
-1

 ampicillin at 37 °C and 5 % 

CO2. At 80 % confluency, cells were split in a ratio of 1:10. For the oligofructoside assay, 

Caco-2 cells at 80 % confluence were cultivated in 24-well dishes (Gibco). The split ratio 

was 1:10 and each well was supplied with the carbohydrate to be tested in a concentration of 

25 μM. After 48 h, from each well a sample of the media supernatant was collected for 

cytokine analysis. 

Cytokine and chemokine detection assay 

For the oligofructoside assay, Caco-2 cells at 80 % confluence were split as described and 

cultivated in 24-well dishes (Biochrom). Each well was supplied with the oligofructoside to 

be tested (final concentration 25 μM). After 48 h (80 % confluence) the supernatant medium 

was collected for cytokine analysis. The assay was performed with a 25-plex human cytokine 

analysis kit according to the manufacturer`s instructions (Biosource, Invitrogen). Briefly, the 

supernatant medium was incubated with antibody-functionalized beads and detected with 

biotinylated secondary antibodies. Streptavidin-R-phycoerythrin was used as fluorescence 

marker. The final analysis was performed by the luminex system which recognizes spectral 

properties of the beads and quantifies the bead load by the specific fluorescence intensity. 25 

cytokines were analyzed in parallel per sample (Eotaxin, GM-CSF, IFN-α, IFN-γ, IL-1RA, 

IL- 1β, IL-2, IL-2R, IL-4, IL-5, IL-6, IL-7, IL-8, IL-10, IL-12p40/p70, IL-13, IL-15, IL-17, 

IP-10, MCP-1, MIG, MIP-1α, MIP-1β, RANTES, TNF-α) according to the manufacturer`s 

instructions (luminex system, Qiagen). 

Abbreviations 

Gal-Fru, GF, α-D-galactopyranosyl-(1,2)-β-D-fructofuranoside; Man-Fru, MF, α-D-

mannopyranosyl-(1,2)-β-D-fructofuranoside; Xyl-Fru, XF, α-D-xylopyranosyl-(1,2)-β-D-

fructofuranoside; Fuc-Fru, FF, α-D-fucopyranosyl-(1,2)-β-D-fructofuranoside 
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Additional file 1: Figure S1 Lipopolysaccharide interactions with cell surface-located Toll-

like receptors 2 and 4. The different shapes of bacterial lipopolysaccharides (LPS) are keys 

for the identification of their target receptor (simplified adaption from [17]). Here, the shape 

of LPS ligands is determined by the grade of fatty acid substitution. The distinct receptor 

binding mode depending on the molecular conformation is supposed to be mimicked by the 

oligosaccharides tested in this study 
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