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Abstract 
The functional role of human gut microbiota has attracted substantial interest 
and recent research has uncovered various aspects of the interplay between the 
complex communities of microorganisms colonizing the intestine and their hosts’ 
health. The present review focuses on nutrition-derived bioactive metabolites 
produced by gut microbiota with potential beneficial effects upon human health. 
Thereby, the emphasis is on newly generated bacterial metabolites that are not 
concomitantly present at higher amounts in dietary sources and that have been 
previously detected in human blood samples. Since a multitude of different sub-
stances is generated by gut microbes primarily those metabolites which exert a 
more pronounced activity than their immediate precursor compound are dis-
cussed here. Specifically, the in vitro and in vivo nutridynamics as well as the 
nutrikinetics of equol, enterolactone / enterodiol, urolithins, 8-prenylnaringenin, 
3,4-dihydroxyphenylacetic acid and 5-(3’,4’-dihydroxyphenyl)-γ-valerolactone, 
the short-chain fatty acids butyrate, propionate and acetate, as well as indole-3-
propionic acid are reviewed. Though the metabolites’ mechanism of action and 
the influence of health conditions on metabolite production are not always fully 
understood yet, there are many reasons to direct the attention to “gut health”. It 
could offer new options for preventing or treating a variety of disease states and 
nutrition-derived microbial products might inspire future drug development. 
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INTRODUCTION 
Within the past years the functional role of 
human gut microbiota has attracted sub-
stantial interest and recent research has un-
covered fascinating aspects of the interplay 
between the complex communities of micro-
organisms colonizing the intestine and their 
hosts’ health [1-5]. While it has been known 
that gut bacteria provide complementary 
sources of vitamins and contribute to bile 
acid metabolism [5, 6] current investigations 
focus on the multifaceted interactions be-

tween bacterial communities and human dis-
ease states such as colorectal cancer, type II 
diabetes mellitus, obesity, allergic or inflam-
matory bowel diseases. The availability of 
high throughput analytical techniques for 
DNA, RNA, protein and metabolite profiling 
linked with bioinformatics facilitated first 
insights into the complex networks [7-10]. In 
this context, novel terms describing these 
latest scientific approaches have been coined 
(Table 1). 
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Table 1: Definitions of terms used in the context of nutrient metabolism by gut bacteria. 
 

Term Definition References 

Microbiota The complex communities of microorganisms colonizing 
the (human) body. 

[15, 176] 

Microbiome The genome of the ecological community of commensal, 
symbiotic, and pathogenic microorganisms that share the 
(human) body space. 

[9, 176] 

Metagenomics Science of the gene content and functional and genetic va-
riability of the gut microbial community (microbiome). 

[7] 

Metatranscript-
omics 

Science of the transcripts of the active gut microbial com-
munity and their functional role for human health. 

[7] 

Nutrigenetics Science of the effect of the genetic sequence variation on 
the responses to dietary compounds and susceptibility to 
diet-related diseases. 

[10, 177] 

Nutrigenomics Science of the role of nutrients and bioactive food compo-
nents in gene expression. 

[10, 177] 

Nutrikinetics Science of how nutrients and bioactive food components 
are absorbed, distributed, metabolized and eliminated from 
the human superorganism (communal group of human and 
microbial cells), including interactions between the host 
and the gut microbiome. 

[9, 26,178] 

Nutridynamics Science of how nutrients and bioactive food components act 
on the living organism. 

[9] 

Epigenetics Science of the processes that regulate DNA and chromatin 
modifications which influence gene transcriptional activity 
and persist over cell divisions. 

[177, 179] 

Epigenomics Science of the analysis of epigenetic changes in a cell or the 
entire organism. The epigenome is dynamic and responds 
to environmental signals. 

[177, 179] 

 
 
Main beneficial roles of the gut microbiota 
include metabolic, protective and structural / 
histological functions [1]. 

These include formation of bioactive me-
tabolites, immune system development, in-
nate and adaptive immunity activation as well 
as development and preservation of the gut 
barrier integrity. 

Various environmental factors such as the 
type and composition of the diet, drug use, 
but also diseases, stress or injury can affect 
the human microbiome (Figure 1; [1, 4, 5, 11, 
12]). On the other side, gut microorganisms 

influence each other. Symbiotic commensal 
bacteria prevent growth of pathogenic fecal 
microorganisms while overgrowth of certain 
strains, such as Enterobacteriaceae, might 
support the colonization of pathogens pro-
moting enteric infections [1]. Typically, it is 
assumed that an individual balance of the 
microbiome is attained in the healthy stable 
state [4]. This balance is characterized by a 
high variety of bacterial species, complex me-
tabolism and resistance to colonization of 
microbes that are usually abundant in a dis-
turbed gut environment. Interestingly, this 
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stable microbiome undergoes age-related 
shifts with different composition and function 
of the microbiota in distinct phases of life [5]. 
The gut microbes directly interact with the 
host organism, e.g. via toll-like receptors [13], 
and shape immune responses [14-16]. Vice 
versa, there are indications that the host ge-
nome influences the gut flora [17]. The gut 
microorganisms produce a range of diverse 
metabolites. These metabolites might influ-
ence the growth of certain microbial strains. 
For example, Bifidobacteria and Lactobacilli 
were shown to thrive under the influence of 
urolithins [18]. Bacterial metabolites also 

exert various local or systemic effects upon 
the host organism. While some of these mi-
crobacterial products play vital roles for the 
host’s health, other metabolites have delete-
rious effects and are discussed to trigger 
chronic disorders [1, 5, 19]. The contribution 
of the microbial metabolic activities on the 
hosts’ blood metabolites can be elucidated 
using metabolomic techniques. Typically, 
serum or urinary metabolite profiles of germ-
free mammals are compared to conventional 
controls [8, 20]. 
 

Figure 1: Schematic representation of the complex interactions between environment, host and gut microbi-
ome. 

 
 

The present review focuses on nutrition-
derived bioactive metabolites essentially 
produced by gut microbiota with potential 
beneficial effects upon human health. There-
by, the emphasis is on newly generated bac-
terial metabolites featuring structures that 
are typically formed by multiple step reac-
tions and that are not concomitantly present 
at higher amounts in dietary sources. Conse-
quently, a polyphenol metabolite such as pro-
tocatechuic acid would be beyond the scope 
of the present review despite its recently 

demonstrated in vivo and in vitro activity [21] 
since it is also found at higher concentrations 
in certain food sources [22]. Since a multitude 
of different metabolites is generated by gut 
microbes especially from dietary polyphenols 
[23-27] primarily those metabolites which 
exert a more pronounced activity than their 
immediate precursor compound are dis-
cussed here. This bioactivation that emerges 
from the microbial metabolic process is the 
hallmark of the metabolites discussed here. 
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NUTRIDYNAMICS OF GUT MICROBIAL ME-
TABOLITES 
Nutridynamics describes how nutrients and 
bioactive food components act on the living 
organism [9]. The bioactivity of individual 
nutrition-derived microbial metabolites has 
been primarily investigated using in vitro cell 
culture assays (Table 2). Reflecting these re-
sults it should be always considered whether 
the metabolite concentrations that were re-
quired for a particular in vitro effect could 
also be realistically obtained in vivo. Few data 
from human studies with a distinct purified 
metabolite are available; more frequently 
investigations with animals have been per-
formed. Typically, more than one effect has 
been observed with an individual microbial 
metabolite, in most cases the precise underly-
ing mechanism(s) of action has not been en-
tirely clarified. Generally, the uncovered in 
vitro and in vivo effects of microbiota metabo-
lites span a wide range of activities; occasio-
nally, however, results are ambiguous. 

Several bioactive metabolites with benefi-
cial health effects have been described for 
polyphenols [23-25, 28] which might be due 
to the high abundance and structural diversi-
ty of compounds and due to the fact that pro-
nounced research effort has been dedicated 
to this prominent class of compounds. More 
recently short-chain fatty acids as bacterial 
metabolites of complex carbohydrates have 
attracted attention [29, 30] since they opened 
a new perspective on obesity and metabolic 
balance of the host [31, 32]. While some pro-
tein fermentation products are regarded as 
potentially toxic [33] the tryptophan metabo-
lite indole-3-propionic acid was assigned ad-
vantageous effects [34, 35]. Bacterial metabo-
lites derived from dietary lipids have been 
less extensively discussed which might be 
also related to the estimation that less dietary 
fat enters the colon compared to carbohy-
drates or proteins [11]. So far, the analyzed 
microbiota metabolites of lipids have been 

discussed to have detrimental effects upon 
the host’s health [19]. 

 
 

ACTIVITIES OF POLYPHENOL-DERIVED MICRO-
BIAL METABOLITES 
Equol is an isoflavan metabolite derived from 
daidzein which is typically found in soy prod-
ucts (Table 2; [36, 38]). Various intestinal 
bacteria are capable of this biotransformation 
which exclusively yields S-(-)equol. Another 
daidzein metabolite, O-desmethylangolensin 
[39], is less active compared to equol. Nu-
merous biological activities of equol are dis-
cussed in the context of its estrogen receptor 
(ER) binding affinity. Two ER subtypes, α and 
β, exist and they display varying expressions 
in different tissues and cell types as well as 
different regulation of gene classes. There is 
considerable interest in the development of 
subtype-selective ERβ activators since they 
do not stimulate the proliferation of endome-
trial or breast tissue while they appear to be 
promising therapeutics for e.g. cardiovascular 
or malignant neoplastic disorders and Alz-
heimer’s disease [40]. Indeed, it has been 
shown that S-(-)equol displays a higher bind-
ing affinity to the ERβ compared to the ERα 
[41]. It should be pointed out that R-(+)-equol 
and (±)-equol display a slightly different 
binding behaviour to the estrogen receptors. 
For convenient comparison of the binding 
affinities of different compounds the relative 
receptor binding affinity (RBA) is often used. 
The relative binding affinities of S-(-)equol 
were determined as RBA= 0.1 (ERα) and 
RBA= 3 (ERβ) in relation to the binding affini-
ty of the endogenous hormone estradiol 
(RBA= 100). However, this preferential bind-
ing to the ERβ does not translate into a clearly 
favoured activation of this receptor subtype 
which would be identified by lower S-(-)equol 
concentrations being required for ERβ com-
pared to ERα activation. 
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Table 2: Gut microbial metabolites derived from polyphenols, complex carbohydrates and proteins. All metabolites have been detected in human plasma/serum after ingestion 
of the respective precursor compound. Examples of dietary food sources and bacteria involved in the metabolite formation are given as well as examples of reported in vitro 
and in vivo effects of the isolated compound. For further food source examples see Neveu et al. [22]. 
 

Original Compound(s) 
[source example(s)] 

Bacteria involved in 
metabolism 

Metabolite(s) Examples of in vitro bioactivities of the 
metabolite 

Examples of in vivo bioactivities of meta-
bolite 

Polyphenols     

Daidzein 
[soybean] 

Various bacteria, e.g. 
Adlercreutzia 
equolifaciens 
Slackia equolifaciens 
Slackia 
isoflavoniconvertens  
(Coriobacteriaceae) 
[180-183] 

S-(–)Equol Endocrine effects 

• Estrogen receptor (ER) ligand (ERβ > 
ERα) [184] 

• Antiandrogen effects [47, 48, 185] 
• Inhibition of osteoclast formation 

[186] 

Anticancer activities 

• Inhibition of cancer cell migration and 
invasion; induction of apoptosis in 
cancer cells [187-189] 

Anti-inflammatory / vasoactive effects 

• Inhibition of iNOS [190] 
• Activation of eNOS [191] 

 

Effects in rats 

• Decrease of prostate weight [46, 47] 
• Protection against bone mineral 

density loss [192] 
• Decrease in body weight, abdominal 

white adipose tissue and depressive-
related behaviour [153] 

Effects in humans 

• Alleviation of menopausal related 
symptoms [50-54] 
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Original Compound(s) 
[source example(s)] 

Bacteria involved in 
metabolism 

Metabolite(s) Examples of in vitro bioactivities of the 
metabolite 

Examples of in vivo bioactivities of meta-
bolite 

Polyphenols     

Lignans 
[sesame seed, linseed, flaxseed] 

Various bacteria, e.g. 
Bacteriodes sp., Clo-
stridium sp., Eubacte-
rium sp. Eggerthella 
lenta 
[57, 135, 193]  

Enterolactone 
Enterodiol 

Endocrine effects 

• Estrogen receptor (ER) ligand [49, 64] 
• Antiandrogen effects [48] 

Anticancer activities 

• Inhibition of cancer cell proliferation 
and invasion [68, 69, 194, 195] 

Anti-inflammatory activity 

• Inhibition of IκB degradation and NF-
κB activation [196] 

 

Effects in mice/rats 

• Inhibition of cancer growth, angi-
ogenesis, and/or metastasis [68-72] 

• Modulation of estrogen signaling [66, 
197] 

Isoxanthohumol 
[hops] 

Eubacterium limosum 
[75] 

8-Prenylnaringenin Endocrine effects 

• Estrogen receptor (ER) ligand (ERα > 
ERβ) [76, 78] 

• Estrogen-like effects on bone cell me-
tabolism [78, 80] 

Effects on cell proliferation and angioge-
nesis 

• Inhibition of angiogenesis and cancer 
cell growth [81, 82] 

• Stimulation of angiogenesis and cell 
proliferation [83] 

Platelet aggregation effects 

• Inhibition of platelet aggregation [198] 

Effects in rats 

• Estrogenic activity [199] 
• Protection against ovariectomy in-

duced bone loss and hot flushes [79, 
200, 201]  

Effects in humans 

• Decrease of serum concentrations of 
luteinizing hormone (LH) [80] 
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Original Compound(s) 
[source example(s)] 

Bacteria involved in 
metabolism 

Metabolite(s) Examples of in vitro bioactivities of the 
metabolite 

Examples of in vivo bioactivities of meta-
bolite 

Polyphenols     

Ellagtannins, ellagic acid 
[strawberries, raspberries, 
blackberries, pomgranate, oak-
aged wine, walnuts] 

 

Not specified 
Urolithin A 
(3,8-dihydroxy-6H-
dibenzopyran-6-one) 
urolithins B, C, D 

Endocrine effects 

• Estrogen receptor (ER) ligand (ERα > 
ERβ) [87] 

• Antiproliferative effects on prostate 
cancer cells and aromatase inhibition 
[88, 89] 

Anti-inflammatory / antioxidant effects 

• Downregulation of CCL2 and IL-8, 
inhibition of PGE2, PAI-1 [91, 92] 

• Inhibition of NF-κB activation, MAPK, 
downregulation of COX-2 and micro-
somal PGE synthase-1 [90] 

• Antioxidant effects [85] 

Anticancer activities 

• Inhibition of Wnt signaling [94] 
 

Effects in mice 

• Anti-inflammatory and antioxidant 
effects [93] 
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Original Compound(s) 
[source example(s)] 

Bacteria involved in 
metabolism 

Metabolite(s) Examples of in vitro bioactivities of the 
metabolite 

Examples of in vivo bioactivities of meta-
bolite 

Polyphenols     

Quercetin 
[apples, onions] 
Rutin (Quercetin-glycosid) 
[fruits, vegatables] 

Various bacteria, e.g. 
Bacteriodes sp., Lac-
tobacillus sp., Bifido-
bacterium sp. Strep-
tococcus sp. 
[95] 

3,4-Dihydroxyphenyl 
acetic acid 
(DOPAC / DHPAA) 

Anti-inflammatory effects 

• Inhibition of LPS-induced cytokine 
secretion [202] 

Cardioprotective effects 

• Inhibition of platelet aggregation [95, 
203] 

• Inhibition of AGE (advanced glycation 
end products) formation [204] 

Neuroprotective effects 

• Protection of neuronal cells against 
oxidative stress [102] 

• Induction of mitochondrial dysfunc-
tion and apoptosis in neuronal cells 
[103, 105] 

Anticancer activities 

• Cytotoxic activity on cancer cells, 
antiproliferative activity [95, 100, 103]  

 

Effects in mice 

• Anxiolytic effects [106] 
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Original Compound(s) 
[source example(s)] 

Bacteria involved in 
metabolism 

Metabolite(s) Examples of in vitro bioactivities of the 
metabolite 

Examples of in vivo bioactivities of meta-
bolite 

Polyphenols     

Procyanidins, catechin, epicat-
chin, epigallocatechin 
(-gallate) 
[maritime pine bark extract, 
green tea, grape seed extract, 
cocoa] 
 

 

Not specified 
5-(3’,4’-
Dihydroxyphenyl)-γ-
valerolactone 

Anti-inflammatory / antioxidant effects 

• Inhibition of MMP-1, MMP-2, MMP-9 
activity; inhibition of MMP-9 release 
[205] 

• Inhibition of iNOS expression and NO 
release from macrophage cell line 
[206] 

• Antioxidant effects [140, 205] 

Anticancer activities 

• Antiproliferative effects [207] 
 

 

Not determined 

Procyanidins, epigallocatechin 
(-gallate) 
[green tea, wine, berries, nuts] 

 

Not specified 
5-(3’,4’,5’-
Trihydroxyphenyl)-γ-
valerolactone 

Anti-inflammatory / antioxidant effects 

• Inhibition of arachidonic acid and NO 
release from macrophage cell line 
[207] 

• Antioxidant effects [140] 

Anticancer activities 

• Antiproliferative effects [207] 
 

 

Not determined. 
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Original Compound(s) 
[source example(s)] 

Bacteria involved in 
metabolism 

Metabolite(s) Examples of in vitro bioactivities of the 
metabolite 

Examples of in vivo bioactivities of meta-
bolite 

Complex carbohydrates 
    

Complex carbohydrates 
[inulin, pectin, resistant starch, 
dietary fiber] 

Various bacteria, e.g. 
Eubacterium rectale / 
Roseburia ssp. 
Clostridium coccoides 
[208] 

Short-chain fatty acids 
(SCFAs), e.g. 
butyrate, propionate, 
and acetate 

Multiple intestinal and extraintestinal 
effects 

• Anticarcinogenic and 
chemopreventive activities 

• Anti-inflammatory effects 
• Effects on insulin resistance and 

weight 
• Cardiovascular effects 
• Effects on immune system 
• Effects in inherited disorders (e.g. 

hemoglobinopathies) 
• Neuroprotective effects 
• Effects on stem cells 

[29, 30, 111, 115, 209, 210] 

Effects in mice/rats 

• Improvement of insulin sensitivity 
and energy expenditure, protection 
against diet-induced obesity [120, 
122] 

• Stimulation of neurogenesis [123] 
• Stimulation of colonic transit time 

[121] 

Effects in humans 

• Improvement of ulcerative colitis 
[162, 164, 165, 211] 

• Improvement of congenital chloride 
diarrhea [212] 

• Modulation of oxidative stress in the 
colonic mucosa [213] 

• Induction of fetal globin gene expres-
sion [214] 

 

Proteins 
    

Tryptophan 
[various proteins, in e.g. soy 
beans, nuts] 

Clostridium 
sporogenses 
[20] 

Indole-3-propionic 
acid 

Antioxidant / neuroprotective effects 

• Antioxidant activity [125, 126] 
• Neuroprotective properties in cells 

exposed to Alzheimer β-amyloid [34] 
 

Effects in gerbils 

• Protection from ischemia-induced 
neuronal damage [35] 
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Instead, S-(-)equol induces a similar tran-
scriptional activation of both ERα and ERβ 
[41-43]. There have been several explana-
tions offered for this discrepancy between 
receptor binding and activation such as a dif-
ferent interaction with co-regulator proteins 
[40, 41]. Activation of the receptor requires 
changes in its conformation and alters the 
composition of co-regulatory proteins. The 
complex consisting of ligand, receptor and co-
regulator proteins then interacts with the 
DNA and modulates the gene expression. Be-
sides a cell-type specific gene expression reg-
ulation it has been observed that different 
ligands of the ERβ might influence the tran-
scription of deviating sets of genes [44]. Inte-
restingly, it was reported recently that the 
ERβ transcription complex can contribute to 
anti-inflammatory effects by repressing the 
activity of inflammation-related transcription 
factors such as AP-1 [45]. Besides interaction 
with the ER, antiandrogen activities have 
been described for equol [46, 47]. The anti-
androgen effect has been attributed to the 
complexation of 5α-dihydrotestosterone by 
equol and thus preventing this highly active 
hormone from binding to the androgen recep-
tor and induction of biological actions such as 
prostate growth. Others also determined in-
hibitory effects of equol on 5α-reductase 
which converts testosterone to 5α-dihydro-
testosterone [48]. The majority of the pub-
lished in vitro and in vivo effects of equol (Ta-
ble 2) are consistent with its estrogenic and 
antiandrogen activities. It has been pointed 
out that the risks and benefits of (anti-) 
estrogenic effects are highly depended on the 
target tissue as well as on the extent and tim-
ing of exposure [49]. Notably, equol is one of 
the few nutrition-derived microbial metabo-
lites that has been used in human studies in 
its distinct purified form [50-54]. In that con-
text, effects against various menopausal re-
lated symptoms have been described. 

Enterolactone and enterodiol are meta-
bolites derived from plant lignans such as 
pinoresinol [55, 56]. Lignans are found in 
various food sources such as flaxseed, sesame 
seed, vegetables or whole grain cereals (Table 
2). Various intestinal bacteria have been iden-
tified to contribute to the lignan metabolism 
and formation of enterolactone and entero-
diol [57]. While the production of enterodiol 
dominated in fecal samples [58] higher con-
centrations of enterolactone were observed 
in blood samples [59-61]. This discrepancy 
can be explained by the different elimination 
kinetics of both compounds [62]. Since ente-
rolactone appears to be the main circulating 
enterolignan [57, 61, 63] it will be the focus of 
this discussion. Like for equol, binding to the 
ER has been observed for enterolactone [55]. 
Based on reported data [49], the relative 
binding affinities of enterolactone towards 
ERα / ERβ were RBA= 0.06 and RBA= 0.01, 
respectively, of the binding affinity of estra-
diol (RBA= 100). Thus, there is only a weak 
and no pronounced preferential binding to 
one of the ER subtypes. The transactivational 
potencies and efficacies have been described 
as not being clearly different towards the ERα 
/ ERβ [49] while others found that enterolac-
tone displays preferential transcription via 
the ERα in vitro and in vivo [64]. In contrast to 
equol which has weak agonistic activity at the 
ER, enterolactone was characterized as a par-
tial agonist/antagonist [49]. This mixed li-
gand attributes might contribute to the some-
times divergent results reported in various 
experimental settings [55]. Other factors add-
ing to this complexity are reports that the 
simultaneous presence of endogenous estra-
diol and enterolactone [65, 66] or enterodiol 
and enterlactone [67] modulates the ex-
amined effects. Again, important factors ap-
pear to be the target tissue under considera-
tion as well as the extent and timing of expo-
sure with enterolactone. Besides interaction 
with the ER, antiandrogen activity mediated 
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by inhibition of 5α-reductase has been found 
for enterolactone [48]. In addition to those 
endocrine effects, enterolactone was shown 
to inhibit cancer cell proliferation and inva-
sion in vitro and in rodent studies [68-72]. So 
far, human studies with purified enterolac-
tone administered as single compound have 
not been performed. 

Another microbial metabolite possessing 
estrogen-like activities is 8-prenylnarin-
genin (Table 2). Although 8-prenylnaringenin 
is also present at low quantities in beer [22, 
73], a major source of this compound appears 
to be conversion of hops-derived isoxantho-
humol by the human intestinal microbia, e.g. 
by Eubacterium limosum [74, 75]. Both 2S(–) 
and 2R(+)-8-prenylnaringenin are naturally 
found [76]. Since 8-prenylnaringenin can also 
be produced from isoxanthohumol by human 
hepatic cytochrome P450 enzymes [77] it 
raises the question to which extent the gut 
microbial metabolism contributes to the 
plasma levels in humans. In germ-free rats, no 
8-prenylnaringenin production was observed 
while the administration of Eubacterium li-
mosum increased the metabolite formation 
[75]. It was reported that 8-prenylnaringenin 
exhibited a more than twofold higher affinity 
towards ERα compared to ERβ in receptor 
binding assays [76]. Thereby, 2S(–)-8-
prenylnaringenin displayed a higher affinity 
to both ERα and ERβ compared to 2R(+)-8-
prenylnaringenin. Based on data from a later 
study [78], relative binding affinities for ra-
cemic 8-prenylnaringenin of RBA= 20 (ERα) 
and RBA= 25 (ERβ) in relation to the binding 
affinity of estradiol (RBA= 100) were calcu-
lated. Thus, compared to equol and enterolac-
tone, a clearly more pronounced binding to 
both receptor subtypes was determined. 
Similar to estradiol, 8-prenylnaringenin re-
vealed a stronger absolute binding preference 
to the ERα in this study though the difference 
was less than twofold. Since binding to the ER 
subtypes is not necessarily proportional to 
the transcriptional activation of genes, the 

resulting esterogenic activities have to be 
considered as well. Like equol, 8-
prenylnaringenin is a full agonist [76, 79]. 
Transactivation analysis uncovered a higher 
in vitro esterogenic activity of 8-prenyl-
naringenin at ERα compared to ERβ [76]. 
Animal experiments revealed a tissue-specific 
action of 8-prenylnaringenin with bone-
protective effects comparable to estradiol 
while the uterotrophic activity was less pro-
nounced in relation to estradiol [80]. Again, 
the majority of the published in vitro and in 
vivo effects of 8-prenylnaringenin (Table 2) 
are consistent with its estrogenic activity. 
Results regarding cell growth and apoptosis 
have been inconsistent [81-83]. It was 
pointed out that phytoestrogens display dual 
effects [84]. At low concentrations they often 
show estrogenic activities, illustrated as e.g. 
stimulation of breast cell cancer proliferation, 
while they exhibit antiproliferative effects at 
higher concentrations. The compound has 
also been tested in a small human study with 
postmenopausal women who showed a sig-
nificant decrease of luteinizing hormone (LH) 
in response to 8-prenylnaringenin [80]. 

Urolithins such as urolithin A are ellagic 
acid metabolites derived from dietary ellag-
tannins [85] which are found in e.g. raspber-
ries, pomegranate, oak-aged wine, or walnuts 
([86]; Table 2). Intestinal bacterial strains 
that are involved in the generation of uroli-
thins have not been specified yet. Binding to 
the ER has been observed for urolithins. 
Based on reported data [87], the relative 
binding affinities of urolithin A towards ERα / 
ERβ were RBA= 1.5 and RBA= 0.6, respective-
ly, of the binding affinity of estradiol (RBA= 
100). Thus, urolithin A showed a moderate 
preference for binding to the ERα. Urolithin B 
displayed a significantly lower affinity to both 
ER subtypes. Urolithin A exhibited a weak 
estrogenic and slightly higher antiesterogenic 
activity in cell culture assays [87]. Consistent 
with these results antiproliferative effects on 
prostate cancer cells and aromatase inhibi-
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tion have been described for urolithin A [88, 
89]. Besides hormonal activities anti-
inflammatory and antioxidant effects of uroli-
thins have been extensively investigated in 
vitro [85, 90-92] and in vivo [93]. In addition, 
inhibition of Wnt signaling which plays a key 
role in colon carcinogenesis, has been found 
for urolithin A [94]. 

A microbial metabolite derived from dieta-
ry flavonoids such as quercetin or rutin 
(quercetin-3-O-rutinoside) is 3,4-dihydroxy-
phenylacetic acid (DOPAC or DHPAA; Table 
2). Quercetin is found in e.g. apples and 
onions; rutin is present in various fruits and 
vegetables [22]. Miscellaneous intestinal bac-
teria species have been described to be in-
volved in the flavonoid metabolism to gene-
rate phenol derivatives [95]. Traces of 3,4-
dihydroxyphenylacetic acid are furthermore 
present in olives [22]. Notably, 3,4-dihydroxy-
phenylacetic acid is also the major metabolite 
of dopamine in the central nervous system 
[96]. The production and presence of the 
compound in humans undoubtedly impedes 
any appraisal of the contribution of the gut 
microbial metabolism to plasma concentra-
tions and effects of 3,4-dihydroxyphenyl acet-
ic acid. Observed basal concentrations in hu-
man plasma varied. For healthy adults 3,4-
dihydroxyphenylacetic acid values around 1 
ng/mL (≈ 6 nmol/L) [97] or 28 ng/mL (≈ 166 
nmol/L) [98] were reported. This is further 
complicated by the observation of a circadian 
rhythm of circulating 3,4-dihydroxyphenyl-
acetic acid [99]. Although 3,4-dihydroxy-
phenylacetic acid was one of the major phe-
nolic acids produced in an in vitro model of 
the colon [100] it is not clear how much is 
actually absorbed into systemic circulation in 
vivo. After supplementation of volunteers 
with cocoa powder no significant increase of 
3,4-dihydroxyphenylacetic acid (100 nmol/L 
to 110 nmol/L) was observed in plasma 
[101]. Though cocoa is not particularly rich in 
quercetin, the intestinal microbial catabolism 
of procyanidins or (epi-)catechin has been 

described as another potential source of 3,4-
dihydroxyphenylacetic acid [25]. The biologi-
cal in vitro activities of 3,4-dihydroxyphenyl-
acetic acid span anti-inflammatory, cardio-
protective, and anticancer effects (Table 2). 
Reported effects on cells serving as model of 
neurons have been ambiguous. Protection of 
PC12 cells against oxidative stress was seen 
at high concentrations of 3,4-dihydroxy-
phenylacetic acid (25 µM) [102] while others 
observed induction of mitochondrial dysfunc-
tion and apoptosis in these cells at concentra-
tions higher than 0.2 µM [103-105]. The latter 
was explained by a reaction of 3,4-dihydroxy-
phenylacetic acid with nitric oxide in mito-
chondria producing compounds that inhibit 
oxygen uptake and trigger cell death. The 
intraperitoneal administration of 3,4-
dihydroxyphenylacetic acid exerted anxiolytic 
effects in mice [106]. 

Phenylvalerolactones such as 5-(3’,4’-di-
hydroxyphenyl)- γ-valerolactone and 5-(3’, 
4’,5’-trihydroxyphenyl)- γ-valerolactone are 
(epi-)catechin metabolites derived from pro-
cyanidins [25] which are found in e.g. pine 
bark extract, green tea or cocoa (Table 2). 
Intestinal bacterial strains that are involved 
in the generation of phenylvalerolactones 
have not been specified yet, but the formation 
of these compounds is known to involve mul-
tiple steps such as ring opening and ring fis-
sion reactions [25]. So far, in vitro activities of 
5-(3’,4’-dihydroxy phenyl)- γ-valerolactone 
and 5-(3’,4’,5’-trihydroxy phenyl)- γ-valero-
lactone include various anti-inflammatory 
and antiproliferative effects while in vivo ex-
periments with the isolated compounds have 
not been reported yet (Table 2). 

 
 

ACTIVITIES OF COMPLEX CARBOHYDRATE-
DERIVED MICROBIAL METABOLITES 
Short-chain fatty acids (SCFA), primary 
butyrate, propionate and acetate, can be pro-
duced by various gut microbial species from 
dietary complex carbohydrates such as inulin, 
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resistant starches or dietary fiber (Table 2). 
SCFA are also present in fermented food 
products. Besides the intestinal bacterial pro-
duction, SCFA can originate from endogenous 
metabolism of fat, carbohydrates and amino 
acids [107]. This again raises the question of 
the contribution of the gut microbial metabol-
ism to plasma concentrations measured in 
humans. A current metabolomic analysis in 
rats suggested a major role of the gut bacteria 
in SCFA production [8]. The SCFA concentra-
tions determined in human fecal samples 
revealed the order acetate > propionate > 
butyrate [108]. The same order was reported 
for SCFA plasma concentrations in a human 
study [107]. SCFA have numerous intestinal 
and extraintestinal effects ([108-110]; Table 
2). Local effects include influence on electro-
lyte and water absorption [111], colonic 
blood flow and trophic effects on the healthy 
intestinal mucosa while suppressing tumori-
genic processes [112, 113]. Butyrate is the 
main energy source of enterocytes [114]. Fur-
thermore, SCFA decrease the colonic pH. This 
acidification reduces the number of potential-
ly pathogenic bacteria, decreases the solubili-
ty of bile salts and ammonia absorption [110]. 
The potential roles discussed for e.g. butyrate 
in intestinal and extraintestinal disorders are 
extensive and cannot be comprehensively 
reviewed here. Cellular mechanisms identi-
fied behind the variety of biological activities 
include inhibition of histone deacetylase 
(HDAC) and activation of free fatty acid (FFA) 
receptors which belong to the family of G-
protein coupled receptors (GPCR) [29, 30]. 
Histone acetylation is involved in epigenetic 
regulation of gene expression and HDAC inhi-
bitors are considered as future therapeutic 
options for a range of diseases. Although 
SCFA are rather weak HDAC inhibitors effec-
tive concentrations in the millimolar range 
might be generated in the gut lumen [108, 
115]. Butyrate was found to inhibit HDAC 
more potently than propionate [116]. SCFA 
activate FFA2 (GPCR43) and FFA3 receptors 

(GPCR41) which are targets of interest in 
inflammatory and metabolic diseases [117]. 
The potency of the SCFA was different for the 
individual receptors with acetate activating 
preferentially FFA2 / GPCR43 and butyrate 
preferentially FFA3 / GPCR41 [118, 119]. At 
both receptors propionate displayed the 
highest potency. Again, the affinities of SCFA 
for these receptors appear to be weak and it 
needs to be clarified how they contribute to 
the observed effects and whether additional 
mechanisms might play a role [120]. The ef-
fects of single SCFA have been investigated in 
rodents. Besides influences on gastrointestin-
al and metabolic functions [120-122] stimula-
tion of neurogenesis was observed [123]. In 
humans, various intestinal effects of butyrate 
were described (Table 2) as well as induction 
of fetal globin expression which is relevant in 
the context of sickle cell disease. 

 
 

ACTIVITIES OF PROTEIN-DERIVED MICROBIAL 
METABOLITES 
Indole-3-propionic acid (Table 2) is a tryp-
tophan metabolite produced by human intes-
tinal microbia, e.g. by Clostridium sporo-
genses [20]. The compound is also present in 
traces in some food sources, e.g. in bananas, 
where it functions as a plant hormone [124]. 
A recent metabolomic analysis revealed that 
the production of indole-3-propionic acid was 
completely dependent on the gut microflora 
[20]. Elucidation of the biological activity un-
covered neuroprotective properties of this 
compound in cells exposed to Alzheimer β-
amyloid [34] along with antioxidant efficacy 
[125, 126]. This in vitro observation is consis-
tent with reported protection of gerbils from 
ischemia-induced neuronal damage [35]. Ap-
parently, at present indole-3-propionic acid is 
under investigation in humans as a potential 
therapeutic option for Alzheimer's disease 
[127, 170]. 
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NUTRIKINETICS OF GUT MICROBIAL META-
BOLITES 
The essential requirement for any of the dis-
cussed in vivo effects elicited by gut microbial 
metabolites is a sufficient concentration in 
the target tissue or cells. With reference to 
the long established expression “pharmaco-
kinetics” the term “nutrikinetics” has been 
proposed [9, 128]. Nutrikinetics describe in a 
quantitative way how nutrients and bioactive 
food components are absorbed, distributed, 
metabolized and eliminated from the human 
superorganism, which is the communal group 
of human and microbial cells. 
 
 
METABOLISM I: FORMATION BY GUT BACTERIA 
The formation and concentration of the earli-
er discussed bioactive gut microbial metabo-
lites primarily depend on the presence of 
sufficient precursor molecules in the relevant 
dietary sources, on the presence of microbial 
species that are capable of the respective bio-
transformation reactions (Table 2; [129]), 
and on the exposure time of the microbiota 
with the food components. Of these factors, 
the most critical aspect appears to be the 
presence of relevant bacterial colonies in the 
host’s gut. An indication for this is the high 
variability of microbial metabolite production 
among different subjects who are exposed to 
the same dietary components. In a previous 
extensive study fecal samples of 100 women 
were incubated with an isoflavone extract 
from soy germs, a lignan extract from flax and 
isoxanthohumol to determine the spectrum of 
microbial metabolites [58]. The observed 
interindividual variability was high and the 
study participants were characterized as high, 
moderate and low metabolite producers of 
equol, O-desmethylangolensin, enterolactone, 
enterodiol and 8-prenylnaringenin. 

A high interindividual variability of equol 
production was reported before [130]. About 
30–50 % of the adult population do not ex-
crete equol in urine when challenged daily 

with soy foods [131] and that rate of equol 
producers is lower in Western countries (25–
30 %) compared to an Asian population (50–
60 %). Vegetarians were more frequently 
found to be equol producers [132] while die-
tary fat intake decreased equol production 
[133]. A negative association was observed 
for the production of equol and O-desmethyl-
angolensin which can be explained by the fact 
that both compounds are daidzein metabo-
lites [58]. Interestingly, equol production was 
correlated with the presence of sulfate-
reducing bacteria whereas O-desmethyl-
angolensin generation was related to the 
company of methane-producing bacteria. 

In a small intervention study with 24 par-
ticipants the interindividual variation in urine 
enterolactone excretion was described to be 
less pronounced compared to equol [133]. A 
positive correlation was observed between 
enterolactone and enterodiol production in 
fecal samples [58] which is congruous with 
the finding that enterodiol is an intermediate 
in enterolactone formation [134, 135]. A high 
abundance of Clostridium coccoides / Eubac-
terium rectale bacteria was discussed to have 
a negative influence on the enterodiol pro-
duction [58]. 

In agreement with other microbial meta-
bolites, interindividual variations in the pro-
duction of 8-prenylnaringenin production 
were described [74, 136]. The microbiota of 
more than 60 % of 100 participating women 
converted less than 20 % of isoxanthohumol 
to 8-prenylnaringenin [58]. Interindividual 
differences were also reported for the pro-
duction ellagtannin metabolites [137-139], 
valerolactones [140] and SCFA [141]. 

 
 

ABSORPTION 
A kinetic parameter describing the rate of 
absorption is the time of maximal plasma 
concentration, tmax. As to be expected for 
compounds originating from gut bacterial 
metabolism the tmax is typically delayed after 
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administration of the dietary source of the 
metabolites (Table 3). This delayed tmax can 
be regarded as the combined result of the 
longer passage time of the precursor com-
pounds to the colon as compared to the small 
intestine and the time that the microbiota 
require to produce the respective metabolite. 
After ingestion of dietary equol sources tmax 
values of equol in human plasma ranged from 
9-24 hours while maximal plasma concentra-
tions were reached significantly faster           
(1-3 hours) after administration of equol. The 
tmax of 15 hours for enterodiol and tmax of 20 
hours for enterolactone after ingestion of 

secoisolariciresinol diglucoside is again con-
sistent with the notion that enterodiol is an 
intermediate of enterolactone formation 
[134, 135]. 5-(3’,4’-Dihydroxyphenyl) Valero-
lactone and 5-(3’,4’,5’-trihydroxyphenyl) va-
lerolactone, which are generated from (epi-) 
catechin by multiple reaction steps involving 
ring opening and ring fusion reactions [25], 
display delayed tmax values of up to 12 h. Con-
siderably faster was the formation of SCFA 
from inulin with tmax observed after about 5 
hours. 
 

Table 3: Structural formulas and time of maximal plasma or serum concentrations (tmax; determined in hu-
mans). 
 

Microbiota 

metabolite 
Structural formula 

Human plasma / serum tmax 

after p.o. ingestion of [source] 
Reference 

S-(-)-Equol 

OOH

OH

 

24 h [daidzein] 

12 h [daidzein-7-O-glucoside] 

9-12 h [baked soybean powder] 

1.5-3 h [equol] 

1 h [equol] 

[215] 

[216] 

[144, 

217] 

Enterolactone 

O

O

OH

OH  

20 h 

[secoisolariciresinol diglucosi-

de] 

[62] 

Enterodiol 

OH

OH

OH
OH

 

15 h 

[secoisolariciresinol diglucosi-

de] 
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Microbiota 

metabolite 
Structural formula 

Human plasma / serum tmax 

after p.o. ingestion of [source] 
Reference 

Urolithin A 
O

O

OHOH

 
Detected after 8 and 24 h, 

tmax not determined 

[pomegranate juice] 

[139, 

218] 

Urolithin B 
O

O

OH

 

8-Prenynaringenin OOH OH

OH O

 

1-1.5 h 

[8-prenynaringenin] 
[80] 

3,4-

Dihydroxyphenyl 

acetic acid OH

OH

COOH
 

  

5-(3’,4’-

Dihydroxyphenyl)-

 γ-valerolactone OOH

OH

O
 

5-12 h 

[green tea] 

10 h 

[USP pine bark extract] 

 

[157, 

219] 

5-(3’,4’,5’-

Trihydroxyphenyl)-

 γ-valerolactone OOH

OH

O

OH

 

5-12 h 

[green tea] 
[219] 

Acetate 
O

O

X
+

 
4.5 h [inulin] [220] 

Propionate 
O

O

X
+

 
5 h [inulin] [220] 

Butyrate 
O

O

X
+

 

5 h [inulin] 

0.75 h* [sodium butyrate] 

*measured as 13CO2 excretion in 

breath test 

[220] 

[161] 
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Microbiota 

metabolite 
Structural formula 

Human plasma / serum tmax 

after p.o. ingestion of [source] 
Reference 

Indole-3-propionic 

acid 
N
H

COOH

 

  

 
 

Besides the rate of absorption the extent of 
absorption is another key parameter to de-
scribe the absolute bioavailability of com-
pounds. However, in case of metabolites gen-
erated in the gut by microbiota the absolute 
bioavailability would be intricate to deter-
mine. The pure metabolite would have to be 
administered into the colon and the resulting 
blood concentrations would have to be com-
pared to blood levels obtained after interven-
ous injection. A peroral instead of a colonic 
administration could be misleading in this 
case because the absorptive surface area of 
the small intestine is significantly larger com-
pared to large intestine. Besides simple diffu-
sion processes specialized ways of absorption 
may play a role such as anion exchange for 
SCFA [109]. Consequently, there is little in-
formation available on the precise extent of 
absorption of bacterial metabolites from the 
cecum and colon, though it can be assumed 
that they are taken up well in healthy hu-
mans. The absorption of SCFA from the cecum 
/ colon was described as an efficient process 
[110, 142, 143]. Within 30 minutes more than 
30 % of a combined dose of butyrate, propio-
nate and acetate were absorbed from the hu-
man rectum and distal colon [143]. 

In contrast, it is easier to estimate the ex-
tent of absorption if a pure metabolite is ad-
ministered orally. After oral administration of 
equol to human volunteers an almost com-
plete absorption was reported [144, 145]. 
The absorption of 8-prenylnaringenin ap-
peared to be not complete with about 27-31 

% of a single peroral dose being excreted via 
the feces [80]. 

Interestingly, some gut microbial metabo-
lites reveal two tmax peaks in their kinetic pro-
file which is suggestive for an enterohepatic 
circulation of the compound. This has been 
observed for enterolactone [62] and 8-
prenylnaringenin [80]. Indications for an en-
terohepatic circulation of equol were less 
pronounced [144]. 

 
 

DISTRIBUTION 
Typical kinetic parameters for the characteri-
zation of a compound’s distribution in vivo 
are the plasma protein binding and the ap-
parent volume of distribution (Vd) which 
describes the extent of binding to tissues and 
organs. A high volume of distribution is typi-
cally indicative for a prolonged presence of 
the compound in the organism. While these 
parameters are routinely determined for 
drugs very few data have been published for 
microbial metabolites. 
Moderate to low plasma protein binding has 
been determined for equol (≈ 50 %) [146] 
and 5-(3’,4’-dihydroxyphenyl)-γ-valerolact-
one (≈ 35 %) [147]. Urolithin A showed no 
binding to human serum albumin (HSA) bind-
ing sites I and II [148]. In contrast, a very high 
binding of > 90 % to HSA was reported for 
indole-3-propionic acid [149]. 

Though the dimension of the volume of 
distribution Vd in humans has not been re-
ported for any of the microbial metabolites 
discussed here, some information is available 
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about the tissue disposition of some of the 
compounds. After administration of pome-
granate extract or urolithin A to mice an ac-
cumulation of the metabolite and its conju-
gates was observed in prostate, colon, and 
intestinal tissues in relation to other tissues 
[88]. In men from China (n= 20), Portugal   
(n= 22) and UK (n= 17), consistently higher 
mean concentrations of equol and enterolac-
tone were measured in prostatic fluid as 
compared to plasma [59]. Among those three 
groups, men from China had the highest con-
centrations of equol while men from Portugal 
exhibited the highest enterolactone levels. In 
another study Asian men (n= 10) without 
prostate disease revealed no clearly higher 
equol concentrations in prostate tissue as 
compared to plasma while enterolactone le-
vels in prostate tissue exceeded the respec-
tive plasma concentrations [60]. After inges-
tion of a soy-based isoflavone preparation a 
dose-dependent accumulation of equol was 
also reported to occur in the breast tissue of 
women (n= 2) as compared to the plasma 
concentrations [150]. 

Interestingly, for various gut microbial me-
tabolites central nervous effects have been 
observed (Table 2). This implicates that the 
respective compound was able to cross the 
blood brain barrier (BBB). The BBB consists 
of specialized microvascular endothelial cells 
which strictly limit the access of compounds 
to the brain [151]. Equol has been detected in 
rats’ brains at concentrations of 126 ng/g 
[152] which could be related to the observed 
amelioration of depressive-related behavior 
in other rodents after exposure to equol 
[153]. The fact that 8-prenylnaringenin de-
creased serum concentrations of luteinizing 
hormone (LH) in postmenopausal women 
[80] is also suggestive for a passage of the 
compound through the BBB and a subsequent 
modulation of the central endocrine regulato-
ry circuit. Likewise, the protection of gerbils 
by indole-3-propionic acid from ischemia-

induced neuronal damage [53] indicates 
crossing of the BBB. 

 
 

METABOLISM II: HUMAN METABOLIC INFLU-
ENCES 
Gut microbial metabolites derived from poly-
phenols are typically subjected to conjugation 
reactions by intestinal or hepatic enzymes to 
form glucuronated, methylated or sulfated 
derivatives. In most cases it has not been re-
ported to which degree the respective micro-
bial metabolites undergo conjugation reac-
tions. S-(-)-equol predominately forms glucu-
ronic acid conjugates and to a minor extent 
sulfuric acid conjugates [38]. Among the lig-
nan metabolites in the urine of human sub-
jects glucuronides prevailed (> 90 %), fol-
lowed by mono- and disulfates, while uncon-
jugated enterolactone and enterodiol were 
rare (< 0.1 – 0.9 %) [154]. Glucuronyl and 
sulfate conjugates of urolithins were the main 
metabolites detected in human plasma and 
urine [155]. After administration of 8-prenyl-
naringenin a higher conjugated than unconju-
gated percentage of the compound was de-
tected in urine and plasma samples [80]. Glu-
curonyl and sulfate conjugates of the cate-
chin/epicatechin metabolite 5-(3’,4’-dihy-
droxyphenyl)- γ-valerolactone were discov-
ered in human urine samples [101,156]. No 
unconjugated 5-(3’,4’-dihydroxyphenyl)- γ-
valerolactone was identified in human plasma 
samples [157]. 

For SCFA three metabolic sites have been 
described after absorption from the gut [110]. 
Butyrate is mainly used as energy source of 
the gut epithelial cells. Colonocytes readily 
oxidize butyrate to generate acetoacetate and 
3-hydroxybutyrate [158]. Propionate, resi-
dual butyrate and the major fraction of ace-
tate are metabolized in the liver. Propionate 
can be utilized for hepatic gluconeogenesis 
[110, 159]. The residual acetate is metabo-
lized in muscle cells which generate energy 
by oxidation of this compound. 
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ELIMINATION 
After absorption, the microbial metabolites 
derived form polyphenols appear to be pri-
marily subjected to renal excretion in their 
conjugated or unconjugated form. Another 
way of elimination from the systemic circula-
tion is the biliary secretion which has been 
observed for enterolactone [62] and 8-
prenylnaringenin [80]. After secretion into 
the gut lumen the compound might be reab-
sorbed or excreted with the feces. Again, 
sparse information is available as to which 
percentage the compound undergoes renal 
and/or biliary elimination. After oral adminis-
tration of equol to female volunteers more 
than 80 % of the dose was excreted in urine 
[145]. Of single doses of 8-prenylnaringenin 
about 30 % were recovered within 48 h. The 
largest dose fraction (22-24 %) was excreted 
in feces, a smaller fraction (5-6 %) in urine 
[80]. In contrast to polyphenol metabolites 
SCFA appear to be completely utilized as 
energy source. 

Kinetic factors characterizing a com-
pound’s elimination are the clearance (Cl) 
and elimination rate constant (ke). The elimi-
nation half-live (t½) can be derived from 
these parameters and it has been described 
for some of the gut bacterial metabolites in 
humans. The t½ of equol was determined to 
be approximately 8 hours [145]. The mean t½ 
of the lignan metabolites was highly different 
with 4 hours for enterodiol and 13 hours for 
enterolactone. The mean residence time 
(MRT) which describes the average total time 
substances reside in the body was 21 hours 
for enterodiol and 36 hours for enterolactone 
[62]. The longer presence of enterolactone in 
the body is probably due to the distribution of 
the compound into tissues and organs besides 
the fact that it undergoes enterohepatic circu-
lation. Urolithin A has been detected up to 48 
hours in urine [139] which also suggests a t½ 
within a similar range as equol. Although no 
t½ has been calculated for 8-prenyl-
naringenin, the MRT was found to be 9-12 

hours [80]. SCFA are rapidly cleared from 
plasma [160]. After peroral administration of 
13C labelled sodium butyrate to human vo-
lunteers and subsequent monitoring of ex-
haled 13CO2 the t½ appeared to be less than 
one hour [161]. 

 
 

MEDICINAL USE OF MICROBIAL METABO-
LITES 
The potentially beneficial effects of selected 
microbial metabolites and the fact that the 
formation of those metabolites reveals sub-
stantial inter-subject variability based to the 
composition of the individual microbiome has 
prompted clinical trials in which the metabo-
lites were administered as single compounds 
to patients. Prerequisite for such an approach 
are suitable kinetic properties such as a suffi-
cient stability and half-live of the metabolite. 

In randomized, double-blind, controlled 
trials postmenopausal women (n= 93–134 
[50, 51]) received doses of S-(-)equol be-
tween 2 mg [51] and 40 mg [53] per day for 
up to one year [51]. Various menopausal and 
mood-related symptoms such as depression, 
fatigue, decrease in bone mineral density, or 
hot flashes were shown to respond to the 
equol treatment [50, 51, 53, 54]. 

Postmenopausal women (n= 8) received 
50-750 mg 8-prenylnaringenin in a rando-
mized, double-blind, placebo-controlled pilot 
study to determine the kinetic profile, safety 
and endocrine effects [80]. All doses were 
well tolerated and the highest dose of 8-
prenylnaringenin significantly reduced lutei-
nizing hormone (LH) serum concentrations 
while the levels of follicle-stimulating hor-
mone (FSH) were not significantly altered. 

SCFA have attracted lots of attention due 
to their diverse effects and they have been 
tested in various clinical trials. In a rando-
mized, single-blind, placebo-controlled study 
patients with ulcerative colitis (n= 10) re-
ceived enemas with SCFA. The endoscopic 
score and degree of inflammation significant-
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ly improved [162]. An accelerated healing 
process was observed in patients with radia-
tion proctitis (n= 19) who received SCFA 
enemas in a randomized, double-blind, place-
bo-controlled trial [163]. In a randomized, 
double-blind, placebo-controlled pilot study 
patients with ulcerative colitis (n= 30) un-
derwent treatment with oral sodium butyrate 
(4 g/day) plus oral mesalazine. A significant 
improvement versus baseline, but not com-
pared to control treatment (mesalazine and 
placebo), was recorded [164]. In a subse-
quent multicentre study (n= 51) sodium bu-
tyrate was administered locally into the colon 
in combination with oral mesalazine. In that 
case the combined treatment with topical 
butyrate was found to be more effective than 
mesalazine alone [165]. Though moderate 
anti-inflammatory effects can be concluded 
from these studies it also becomes obvious 
that a major drawback is the fact that high 
doses of SCFA have to be delivered locally for 
the discussed medical indications. The fact 
that SCFA are rapidly cleared hampers their 
therapeutic utilization and prompted the de-
velopment of sustained release dosage forms 
for e.g. butyrate [161] and of butyrate analogs 
with more favorable kinetic properties [160, 
166]. Butyrate derivatives have been tested in 
studies with the aim of e.g. fetal globin-
induction [160], treatment of cystic fibrosis 
[167], lung cancer [168] or malignant glioma 
[169]. 

The tryptophan metabolite indole-3-
propionic acid has been suggested to be a 
potential treatment option for Alzheimer's 
disease [127]. Obviously, a clinical study 
(phase I b) is currently performed, but no 
results are available yet [170]. The compound 
has also been proposed as a treatment option 
with orphan drug status for Friedreich's atax-
ia which is a rare hereditary neurodegenera-
tive disease [171]. 

 
 
 

OUTLOOK 
Diverse nutrition-derived bioactive metabo-
lites produced by gut microbiota have been 
identified and it can be expected that more of 
them will be discovered with the availability 
of new analytical screening and profiling ap-
proaches. Some dietary compounds undergo 
bioactivation by microbial metabolism which 
is reflected by a higher activity compared to 
their immediate precursor substance in vari-
ous functional assays. These metabolites 
might contribute to the health of the host 
organism. 

Many questions remain to be clarified. The 
metabolites’ mechanism of action is not al-
ways fully uncovered and it is unknown 
whether the identified compounds are actual-
ly the active principles or whether they are 
further modified within the target cells yield-
ing molecules with comparable or altered 
activity. Recently it was reported that e.g. 
epigallocatechin-3-gallate undergoes intracel-
lular conjugation to cysteine and that the re-
sulting compound retained biological activity 
[172]. Similar modifications could occur with 
the microbial metabolites. Furthermore, it 
needs to be investigated to which extent the 
gut microbiota metabolites contribute to hu-
man health and how the metabolite produc-
tion differs in health and disease states. 

There are many reasons to direct the at-
tention to “gut health” [2,3,173]. Modification 
of the gut microflora by pre- or probiotic 
strategies [1,11,174] could offer new options 
for preventing or treating a variety of disease 
states and nutrition-derived microbial prod-
ucts might inspire future drug development 
[175]. 
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