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ABSTRACT 

Recently Nasa as well as the European Space Agency have made observational 

satellites images public. The main reason behind opening it to public is to foster 

research among university students and corporations alike. Sentinel is a program by 

the European Space Agency which has plans to release a series of seven satellites in 

lower earth orbit for observing land and sea patterns. Recently huge datasets have been 

made public by the Sentinel program.  

 

Many advancements have been made in the field of computer vision in the last decade. 

Krizhevsky, Sutskever & Hinton, 2012, revolutionized the field of image analysis by 

training deep neural nets and introduced the idea of using convolutions to obtain a high 

accuracy value on coloured image dataset of more than one million images known as 

Imagenet ILSVRC. Convolutional Neural Network, or CNN architecture has 

undergone much improvement since then. One CNN model known as Resnet or 

Residual Network architecture (He, Zhang, Ren & Sun, 2015) has seen mass 

acceptance in particular owing to it processing speed and high accuracy. Resnet is 

widely used for applying features it learned in Imagenet ILSVRC tasks into other 

image classification or object detection tasks. This concept, in the domain of deep 

learning, is known as Transfer learning, where a classifier is trained on a bigger more 

complex task and then learning is transferred to a smaller, more specific task. Transfer 

learning can often lead to good performance on new smaller tasks and this approach 

has given state of the art results in several problem domains of image classification and 

even in object detection (Dai, Li, He, & Sun, 2016).  

 

The real problem is that not all the problems in computer vision field belongs to 

regular RGB images or images consisting of only Red, Green, and Blue band set. For 

example, a field like medical image analysis has most of the images belonging to 

greyscale color space, while most of the Remote sensing images collected by satellites 

belong to multispectral bands of light. Transferring features learned from Imagenet 

ILSVRC tasks to these fields might give you higher accuracy than training from 

scratch, but it is a problem of fundamentally incorrect approach. Thus, there is a need 

to create network models that can learn from single channel or multispectral images 
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and can transfer features seamlessly to similar domains with smaller datasets.This 

thesis presents a study in multispectral image analysis using multiple ways of feature 

transfer. In this study, Transfer Learning of features is done using a Resnet50 model 

which is trained on RGB images, and another Resnet50 model which is trained on 

Greyscale images alone. The dataset used to pretrain these models is a combination of 

images from ImageNet (Deng, Dong, Socher, Li, Li, & Fei-Fei, 2009) and Eurosat 

(Helber, Bischke, Dengel, & Borth. 2017). The idea behind choosing Resnet50 is that 

it has been doing really well in image processing and transfer learning and has 

outperformed all the other traditional techniques, while still not being computationally 

prohibitive to train in the context of this work. 

 

An attempt is made to classify different land-cover classes in multispectral images 

taken up by Sentinel 2A satellite. The dataset used here has a key challenge of a 

smaller number of samples, which means a CNN classifier trained from scratch on 

these small number of samples will be highly inaccurate and overfitted. This thesis 

focuses on improving the accuracies of this classifier using transfer learning, and the 

performance is measured after fine-tuning the baseline above Resnet50 model. The 

experiment results show that fine-tuning the Greyscale or single channel based 

Resnet50 model helps in improving the accuracy a bit more than using a RGB trained 

Resnet50 model for fine tuning, though it haven't achieved great result due to the 

limitation of lesser computational power and smaller dataset to train a large computer 

vision network like Resnet50.  

 

This work is a contribution towards improving classification in domain of 

multispectral images usually taken up by satellites. There is no baseline model 

available right now, which can be used to transfer features to single or multispectral 

domains like the rest of RGB image field has. The contribution of this work is to build 

such a classifier for multispectral domain and to extend the state of the art in such 

computer vision domains. 

Key words: Deep learning, Transfer learning, Image Analysis, Resnet, CNN, 

Multispectral images, ImageNet, Satellite imagery, EuroSat 
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1 INTRODUCTION 

The Sentinel-2 satellite images are openly and freely available in the Earth 

Observation (EO) program known as Copernicus. A classification system using 

satellite images can have multiple use cases like for  example, detecting land use 

changes and land cover changes over time, or helping to improve geographical maps, 

or applications to the domain of agriculture, climate change, forest fires, urban 

development and forest cover erosion. 

 

These satellites images are usually from multiple channels of the sunlight and not just 

the visible light spectrum (red, green, blue). The data used in the research work is both, 

visible spectrum and RGB channel data as well as the multispectral data.  

 

In order to apply deep learning algorithms to satellite data, first images should be 

processed and divided into different classes, like for example the fundamental classes 

of land use and land cover, and secondly data needs to be of huge size in order for 

neural network nodes to learn the features inherent in it. Unfortunately, the available 

labelled datasets are small-scale and thus don’t allow efficient processing. In addition 

to this, images taken by satellite are multispectral in nature, meaning they can have 

multiple bands in an image, other than just visible bands of RGB. The data that the 

thesis uses has for example, thirteen frequency bands for every image. 

 

This research work has aimed to provide a benchmark demonstrating a robust 

performance in classification of multispectral images which could help in developing 

applications for the above-mentioned domains. This work has hypothesized that a large 

convolutional network trained on single channel images, can learn more relevant 

features for multispectral image analysis, than the one trained on coloured images. 

1.1 Background  

 

With the development of remote sensing technologies, the usage of Earth Observation 

images has increased to a great extent in the last couple of decades. Satellite images 
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are used in a wide variety of applications. For example, for tracking roads from 

satellite images (Geman and Jedynak,1996), where the authors used every image to 

reduce overall entropy or uncertainty in identifying a road in a 1D representation of a 

satellite image. Yet another use-case is of detecting vehicles in satellite images using a 

hybrid between deep Convolutional Neural Networks and traditional image feature 

classification techniques like histograms of gradient, binary patterns, and scale-

invariant feature transform (Chen, Xiang, Liu, & Pan, 2014). Another very useful 

application is in flood extent detection, where satellite images can be used to determine 

whether there is a flooding event happening in part of a city at any given time (Jain, 

Schoen-Phelan, & Ross, 2020a; 2020b). Other important applications include 

assessment of large tribal areas, comparison of two landmasses or regions, and 

tracking changes in sea-coast lines due to rising water levels. 

 

The cost of launching a satellite is going down rapidly, firstly, due to the advent of 

companies like SpaceX and Blue Origins, which have reusable rockets, and secondly 

due to the general reduction in the price of electronics and hardware machinery. 

Coupled to this is the rapid advancement happening in the computer vision field in the 

last decade. Artificial Intelligence (AI) powered applications and devices have 

increased the demand of large-scale data, as well as piqued the interest among the 

general masses and governments alike. AI has enabled organisations to look towards 

Earth Observation (EO) for information on buildings, natural structures, urban and 

rural boundaries, natural calamities, both military and civil operations, forest fires, 

melting glaciers vanishing forest covers, and monitoring humanitarian crisis. 

 

Satellite image classification has many challenges too, like high variability inherent in 

EO data, small labelled datasets, low spatial resolution outputs, and the multispectral 

nature of images to name a few of them. Due to these issues, most of the current image 

classification approaches are not suitable for handling this kind of data. And it is a 

research area which is still not fully captured by companies and universities alike. 

Normalization of satellite images or putting these images to use is also not easy, 

mainly due to the presence of clouds in earth observation images, or due to haze and 

other prevailing weather conditions, or due to the changes in lighting of an area at 

different times in a day and during different periods in an year. 
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There have been several attempts to get around small labelled dataset problem in 

satellite image domain. One way is to build new and accurate large labelled training 

sets like EuroSat and SpaceNet (Van Etten, Lindenbaum, & Bacastow, 2018). Another 

approach uses unsupervised feature extraction from an image (Basu et. al.,2015), using 

large RGB-trained CNN based networks like VGG16 for transfer learning (Pallavi, 

Schoen-Phelan & Ross, 2020), and lastly training CNNs over small available data and 

producing low accuracy results. Another issue is that the objects are very small in 

Satellite imagery, this is one of the key differences between natural image datasets like 

ImageNet and satellite image datasets. Attempts have been made to transfer features 

learned in classification problems of the former nature and transferring them to the 

later ones. However, since these two domains are primarily of different nature, thus 

accuracies achieved are not in high ranges.  

 

 

 

 

 

 

 

 

In this research, attention has been given to this aspect of the problem - different nature 

of satellite images than regular natural RGB based images. A satellite image is usually 

multispectral, meaning it has multiple frequency channels summarized into a single 

image. This in turn means a lot of information gets stored in a remote sensing image 

than a typical RGB image (refer figure 1.1). This research approaches the problem of 

analysing  a multispectral image, by firstly training a large network, like Resnet50, on 

Figure 1.1 Thirteen Multispectral bands of an image as 

captured by Sentinel 2A satellite. Bands 01 to Band 13 (from 

left to right and top to bottom). A multispectral image captures 

image data for small number of different ranges or spectral 

bands. 
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single channel image dataset, like a dataset consisting of greyscale images, and then 

using this large model to transfer features to target domain of multispectral image 

classification. The idea is to obtain a better classification accuracy while performing 

transfer learning in comparison to an RGB trained similar network. 

1.2 Research Problem   

 

The size of a labelled satellite dataset is usually very small (a few thousand images 

only) hence prediction accuracy of a CNN network trained on these images from 

scratch can’t get very high. Secondly, transfer learning using a model pre-trained on 

RGB (coloured) images is arguably not the right approach when your target dataset 

consists of multispectral or multiple band images only. Of late, all the transfer learning 

is happening around ImageNet or other comparable RGB image databases, even for 

single channel grey-scale domains like medical Imaging (Cheplygina, 2019). 

Multispectral images and natural images are extremely different to one another, so any 

meaningful transfer is highly doubtful. It is also observed that the usefulness of a pre-

trained network increasingly decreases as the task the network is trained on moves 

away from the target task (Yosinski, Clune, Bengio & Lipson, 2014). This ultimately 

raises the following research question as - 

 

"To what extent can a CNN neural network, pre-trained on single channel (grey-scale) 

Imagenet* and Eurosat** images, improves the image classification accuracy of 

multispectral images in comparison to a comparable model trained on colour 

images.” 

 

* ImageNet dataset is a large-scale collection of natural images built upon the 

backbone of the WordNet structure (Deng, Dong, Socher, Li, Li, & Fei-Fei, 2009). 

** The EuroSat dataset consists of Sentinel-2 satellite images, which are openly and 

freely provided by the EO (Earth observation) program Copernicus. This dataset 

covers 13 spectral bands and consists of 10 classes with a total of 27,000 labelled and 

geo-referenced images (Helber, Bischke, Dengel, & Borth, 2017). 
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Given this, we can formalise our Hypothesis as follows: If a deep neural network 

trained on greyscale images is fine-tuned on a dataset of single frequency images 

extracted from multispectral images taken by satellites, to classify images into one of 

the ten land-cover classes, then the accuracy is higher than both, when the model is 

trained from scratch and when a model pre-trained on RGB-based ImageNet is used.  

 

Objective is to show that current methods of transfer learning from RGB images 

dataset (ImageNet), to a single-channel image problem domain like that of satellite 

images classification, are not effective enough and that use of single-channel pre-

trained model can show better performance in such domains.  

1.3 Research Objectives  

 

Firstly, a model pre-trained on RGB images from mini-ImageNet and EuroSat 

combined will be used to train on our single-band images and performance will be 

noted. These single-band images are extracted for six of thirteen available bands of 

Multispectral images in EuroSat data. A second identical model pre-trained on grey-

scale ImageNet and EuroSat combined data, will be trained and performance change 

will be measured again.  

1.4 Research Methodologies  

 

The research methodology applied here is quantitative. A systematic empirical 

investigation is performed, and mathematical models will be built using CNN and 

Resnet50 as statistical tools. Performance of these three models will be plotted on a 

graph for comparison. In addition to this, secondary research was performed, as 

summary from existing research and datasets already exists and I have systematically 

reviewed existing literature in order to synthesize my research idea. 

1.5 Scope and Limitations  
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The scope of this work is to study whether single channel image features are better 

than RGB features at transferring useful knowledge to networks learning multispectral 

features over a small labelled dataset, using a Resnet50 architecture to learn features 

on ImageNet and EuroSat RGB and single channel data. Limitations of the study 

conducted are – 

 

• Results from the study might not reflect characteristics of models trained on 

single channel images other than Greyscale.  

• Resnet50 is a large neural network architecture, with skip connections, and 

hence requires many epochs and a large number of images to train on single 

channel or RGB image data. This limited the amount of computational 

experimentation and hyper-parameter tuning that was possible. 

• This study has been performed has been done on thirteen bands contained in 

multispectral images of EuroSat dataset. Satellite imaging extends to 

Hyperspectral analysis which consists of over hundreds of bands or channels. 

This research might not extend to hyperspectral imaging domains. 

• The study has been conducted over Land-cover images taken up by Sentinnel-2 

space mission. Other target classes in satellite imaging, like large water bodies 

or cloud formations are not covered in this study.  

• The Resnet50 architecture is used for Modeling over a combination of random 

subset of ImageNet and EuroSat satellite images, but the model still might have 

a biased inherent to the type of images used in ImageNet dataset.  

1.6 Document Outline  

 

The remained of this document is structured as follows. 

 

1.6.1 Chapter 2: Literature Review 

 

Review of existing literature chapter focuses on a thorough review of research that is 

already done in relation to transfer learning and remote sensing relevant to this 

dissertation. The chapter first explains what satellite imaging is and what multispectral 

images are. It goes on to explain current state of the art approaches in image analysis 



 7 

and the rationales behind them. Later on, the chapter focuses on explaining the two 

datasets that are used in this study and the reasoning behind them. It also explains the 

limitation a small dataset size poses to deep learning approaches of problem solving, 

the work done by other researchers in remedying this issue of small data size. One 

such approach is of Transfer Learning, in which a larger network pre-trained on much 

larger dataset is used to fine tune a much smaller dataset on a similar task. This and 

other such approaches are also included in this chapter. 

 

1.6.2 Chapter 3: Experiment design and methodology 

 

This chapter discusses the two datasets in details, the reasoning behind picking them 

specifically, how they are merged for training and validation purposes and how 

greyscale and band wise images are extracted from the two datasets. This study uses 

the Resnet50 architecture to create an image analysis model from scratch over RGB 

and Greyscale image datasets. The chapter discusses this architecture and reasons 

behind using it this study. This chapter also talks about data augmentation and data 

pre-processing of images. Details about evaluation metrics used is also included in the 

chapter. 

 

1.6.3 Chapter 4: Implementation and Results 

 

This chapter discusses the details about implementation like layers, activation 

functions, optimizers used, epochs taken by individual models and validation loss 

obtained at convergence. Associated results with each version of the model is also 

discussed. 

 

1.6.4  Chapter 5: Evaluation and Discussion 

 

The factors that have attributed to the results obtained in the previous section are 

discussed here. Analysis of results related to every band is also included in this 

chapter. A swift comparison is been made between transfer learning obtained by RGB 

and Greyscale models. A decision about the acceptance or rejection of proposed 

hypothesis will be made based on this analysis. This chapter also outlines strengths and 

weaknesses of the research study.  
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1.6.5 Chapter 6: Conclusion and Future Work 

 

This chapter summarize the work done in this study and the findings that have been 

made. It also includes recommendation for the fellow researchers who are working in 

the same domain or are working with spectral data with smaller data sizes. Lastly, 

some ideas and limitation for further research have been proposed and discussed.   
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2 LITERATURE REVIEW 

2.1 Revolution in Image Analysis  

 

Image classification tasks performed on ImageNet have already attained performance 

better than human levels (Szegedy, Ioffe, Vanhouchke & Alemi 2016) using Residual 

and Inception CNN networks. The ImageNet project or dataset is an ongoing research 

effort by Princeton university, aimed at providing researchers around the world with 

easy access to a large natural image database (Deng, Dong, Socher, Li, Li, & Fei-Fei, 

2009). ImageNet is a database of over 15 million coloured (or RGB) images in over 

22,000 classes and hence deep convolutional neural networks trained on a subset of it, 

gives very high accuracy (Krizhevsky, Sutskever & Hinton, 2012; Sermanet et al., 

2014). Also, see figure 2.2, in page 10, for sample images from imagenet database. 

 

There are other very famous labelled image datasets as well – like NORB (LeCun, 

Huang, & Bottou, 2004), Caltech 101/256 (Hinton, Srivastava, Krizhevsky, Sutskever, 

& Salakhutdinov, 2012; Griffin, Holub, & Perona, 2007), and CIFAR-10/100 

(Krizhevsky, 2009). All these datasets have not more than a couple of hundred of 

images in each class. The key reason behind the vast popularity of ImageNet and also 

behind choosing for this study is that it is a huge dataset with objects in realistic 

settings and classes vary in nature from a fish to a clothing accessory, or from a dog 

breed to lake front, or from a furniture item to a deep sea mammal.  

 

In 2012, two PhD students, Alex Krizhevsky and Ilya Sutskever proposed a deeper and 

wider Convolutional neural network model, famously known as AlexNet, as compared 

to the then state-of-the-art LeNet (LeCun, Bottou, Bengio, & Haffner, 1998). LeNet 

was the first popular CNN architecture, while AlexNet won the most difficult image 

classification challenge based on ImageNet database, for visual object recognition 

called the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) in 2012 

(Berg, Deng, & Fei-Fei, 2010). AlexNet was a significant leap in the field of image 

analysis and deep learning and is commonly referred as the point in history where 
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interest in and applications of deep learning increased rapidly. Figure 2.1, in page 10,  

shows the architecture for AlexNet. 

 

Convolutional Neural Networks have proved to have a high learning capacity and they 

are greatly generalizable. One can increase the number of nodes or processing window 

or striding window, depth, and breadth of CNNs very easily. Yann LeCun and his team 

did a lot of pioneering work in establishing CNNs as default networks for Computer 

Vision problem domains (Jarrett, Kavukcuoglu, Ranzato, & LeCun, 2009; LeCun, 

Huang, & Bottou, 2004; LeCun, Kavukcuoglu, & Farabet, 2010). Later on, AlexNet 

established a new state of the art with this network. In addition to using CNNs, their 

paper pioneered several novel and highly effective strategies in running neural 

networks over large datasets, for example, like ReLU, Dropuout and GPU based 

architecture of running models. 

 

 

Figure 2.1 AlexNet Architecture showing Pooling, Strides and Densely connected layers 

(Krizhevsky, Sutskever & Hinton, 2012) 

 

Figure 2.2 A sample of ImageNet images (Deng et. al., 2009) 
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Imagenet ILSVRC became both, a battleground as well as a fountain of novel 

state-of-the-art approaches in the computer vision domain. The following year, 

in 2013, another CNN model known as ZFNet, was crowned as the winner as it 

was further able to reduce the classification error rate to 11.2% (Zeiler & Fergus, 

2013). This paper was more of a fine-tuning of AlexNet, but they laid foundations of 

effectively visualizing CNNs and made the intuitions behind working of CNN very 

clear to the computer vision community.  

 

In summer 2014, VGGNet, came very close to winning the ILSVRC 2014 and showed 

the world what impact a deep network can create in an image classification problem. 

They were able to reduce the error rate further to 7.3% (Simonyan & Zisserman, 

2015). This paper made the path for the deeper networks of future. The state-of-the-art 

performance reinforced the belief that a deeper network is better able to learn the 

image features. VGG implementations like VGG16 and VGG19 are often used in 

image transfer learning solutions. 

 

GoogLeNet (Szegedy et. al., 2015), which won ILSVRC in 2014, and they made the 

CNN network still more deeper, the competition winning configuration had 22 layers. 

They reduced the error rate of top-5 classifications to 6.7%. Instead of stacking the 

CNN layers on top of one another, the paper took an approach of stacking modules 

known as Inception modules one after another. Inside an inception module, all the 

operations like convolutions, max pooling etc., happen in parallel, as can be seen in the 

figure 2.3, in page 12. This is why this network is also known as Inception Net.  

 

Then in ILSVRC-2015, the winning entry was from Microsoft research team and 

winning entry or network was named as Residual Networks or commonly known as 

ResNet. This network was truly deep, with 152 layers stacked in it. The team was able 

to reduce the error rate to 3.6%. just like inception modules, a ResNet was build using 

stacked Residual blocks. This network was trained on 8 GPUs for a period of two to 

three weeks. 
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Figure 2.3 Inception module (Szegedy et. al., 2015) 

2.2 Residual Networks 

 

Resnet or Residual Networks (He, Zhang, Ren, & Sun, 2016) is one of the fastest, most 

widely used and generally accepted ImageNet trained deep model. This model 

architecture has been widely praised for its handling of problems like vanishing and 

exploding gradient, which crops up as a network grows deeper and deeper, i.e. as the 

number of layers increase. The residual architecture that won ILSVRC in 2015 had 

152 network layers and attained a state-of-the art performance of 3.6 % error rate at the 

time. There are Residual Blocks in the network which are nothing, but combination of 

conv-relu-conv series and the network follow skip connections between these blocks. 

The basic idea is that during back propagation, gradient flows easily through the 

network without getting lost or very weak.  

 

In their paper, authors proposed two network architectures. In first architecture, they 

followed an architecture similar to the then state-of-the-art VGG architecture and 

proposed that for the same output feature map size, same number of filters were kept, 

and whenever feature map size was halved the number of filters was doubled. At the 

end of the network, a global pooling average was used and was followed by 1000 node 

Softmax. In the second architecture, the authors proposed short-cut connections 

(shown in figure 2.4, in page 13). These shortcut connections performed the identity 
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mapping (F(x) + x). A random crop of 224*224 was used from the input image and 

standard color augmentation techniques were used. Batch normalization layers were 

inserted right after each convolution operation and just before activation function is 

realized. For propagating error, authors used Stochastic Gradient Descent or SGD with 

batch size of 256. They used variable learning rate which was reduced as the loss 

plateaued. Additionally, paper used a weight decay of 0.0001 and a momentum of 0.9 

for training. 

 

 

Figure 2.4 Residual blocks and Skip connections: In traditional CNNs, H(x) would be 

equal to F(x), but in ResNet transformation (from x to F(x)), outputs are added to the 

outputs of stacked layers, so adding F(x) to the input x. 

2.3 Transfer Learning  

 

If the dataset is smaller, we cannot simply apply bigger and bigger networks as was the 

case for the ImageNet challenge; instead, we need to apply another technique. One 

such way to get good accuracy is called the Transfer learning (Pan & Yang, 2010; 

Rusu et al., 2016; Mikolov, Joulin & Baroni 2015; Torralba & Efros, 2011). Large 

neural networks trained on large image datasets show that network’s first layer learns 

features similar to Gabor filters or color blobs.  

 

The initial layers carry information like what are the location of edges, boundaries, 

corners, and shapes present inside an image. Zeiler and Fergus, 2013, were the first to 

analyse this empirically and visually in a very famous and highly cited paper, titled 

Visualizing and Understanding Convolutional Networks. They used and pioneered an 
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approach called Deconvolutional Network or DeConvNet and used it for visualizations 

as shown in figure 2.5, in page 14. 

 

These features or information contained in the initial layers are not specific for any 

task, rather are general in their nature and are applicable for all sorts of target images 

and tasks (Yosinski, Clune, Bengio & Lipson, 2014). In this landmark paper, the 

authors worked towards establishing some of the key concepts of transfer learning like 

– features transition from general to specific from first few layers to last or final few 

layers, features are not highly transferable to a distant target task, and lastly any kind 

of transfer is better than random initialization even when the source and target tasks 

are not that similar.  

 

 

Figure 2.5 Visualization of features learned in a fully trained deep network. please note, 

how features are enriched as we go up the layers in a deep convolutional network 

 

Generally, the target task is much smaller than the source task, hence overfitting due to 

training a large network is avoided. Transfer learning is of two types – one in which 

pretrained features or the features learned from the source are not touched or are frozen 
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and only the new layers of target task are trained on the target data. In the second, 

source layers are allowed to train, or the error is back-propagated from target task 

layers through the trained source layer and their learned weights are allowed to be fine-

tuned. If the target dataset is very small, and source weights are allowed to be fine-

tuned then there is a risk of overfitting. And if the target data is large enough, it is 

always advisable to train from scratch or go for fine-tuning. 

 

Donahue et al., 2014, proposed a convolutional architecture for transferring features 

between two seemingly different tasks, and named it as Decaf network. Authors 

empirically validated that generic visual features outperforms a host of conventional 

feature coding or representations on most of the benchmark datasets like Caltech-101. 

Models thus pretrained on large datasets like ImageNet have given great results lately 

by training new models on the already extracted features, both on supervised and 

unsupervised machine learning domains (Razavian, Azizpour, Sullivan & Carlsson, 

2014; Radford, Metz & Chintala, 2016; Zhuang, Cheng, Luo, Pan & He, 2015). 

Sermanet et al., in 2014, came up with a brilliant architecture named as Overfeat, 

where they used an Imagenet trained model as a Feature Extractor. This feature 

extractor was used as a sliding window over the images and object detection task as 

accomplished using it. This paper established that CNNs have the intrinsic capabilities 

of learning general to specific features of an image and that these features are 

transferable. 

 

There are other methods as well of doing transfer learning, like making the 

representations in both source and target domains similar so that knowledge can be 

transferred seamlessly between them (Daume III, 2007; Sun, Feng & Saenko, 2016; 

Bousmalis, Trigeorgis, Silberman, Krishnan, & Erhan, 2016; Tzeng, Hoffman, Zhang, 

Saenko & Darrell, 2014; Ganin & Lempitsky, 2015; Ganin et al., 2016). Transfer 

learning can be done using unlabelled or very less labelled data in target domain too 

(Zhu, 2005).  

 

Efforts have been put in to understand how neural networks are able to generalize well 

and how to make them more robust (Zhang, Bengio, Hardt, Recht & Vinyals, 2017; 

Kurakin, Goodfellow & Bengio, 2017). In recent publications, there have been 

attempts to implement few-shot, single-shot and zero-shot (very few source instances 
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to train on) transfer learnings and it has proved that common gradient descent based 

approach suits mainly when source domain data is large and that using an innovative 

LSTM based optimizer can work better in cases with small source instances (Ravi & 

Larochelle, 2017; Xian, Schiele, Akata, Campus & Machine, 2017).  

2.4 Data Augmentation 

 

Small labelled datasets can also practice data augmentation to increase the dataset size 

and thus improve the model fitting over the data (Perez & Wang, 2017). This problem 

is especially common in multispectral domains like medical imaging and satellite 

imaging.  

 

Data Augmentation also helps in reducing overfitting as it increases the training data. 

It helps in increasing the dataset size by either warping or oversampling the data. This 

process makes sure that the labels are preserved during the transformations. Most 

general form of image augmentation includes data warping techniques like geometric 

and color transformations, like obtaining a new image by cropping, flipping, sheering, 

or inverting an image (Chatfield, Simonyan, Vedaldi, & Zisserman, 2014), please refer 

figure 2.6, in page 17 for few samples of geometric transformations. Oversampling 

includes mixing of two images to synthetically increase the data size. This method 

might not be able to preserve the labels. Also, note that oversampling helps in dealing 

with the problem of class imbalance by increasing synthetically the data in a class. 

This helps in making model less biased towards a class that has higher representation 

in the training data. 

 

Furthermore, image augmentation not only has applications in increasing the size of 

the labelled dataset, but also helps in making the model more generalizable for real 

world tasks. Generalizable models are able to perform well on target datasets that are 

entirely new to their training datasets. Poorly generalizable models tend to overfit on 

the data they have been trained on. This is the principle reason why using a validating 

dataset is a must while training a large network over smaller datasets. To build 

effective models validation errors must be continuously monitored. There should be a 

simultaneous decrease in training and validation error. Augmentation helps in attaining 
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this target to a great extent, by providing to the training model much of the possible 

variations and distributions of datapoints or features. This minimizes the distance or 

difference between training and validation sets.  

 

 

Figure 2.6 Traditional Transformations or Data Augmentation for images 

 

Augmentation in computer vision problems has been happening over the last couple of 

decades and was first seen in LeCun, Bottou, Bengio, & Haffner, 1998. They practised 

data warping techniques to distort the hand-written digits in training datasets. After 

that, the iconic AlexNet also used image augmentation techniques to reduce the error 

rate by 1%, and also increased the data size by a huge 2048 times. New images were 

created by clipping the training images followed by random flipping and later on using 

a PCA based color augmentation.  

 

Another very interesting and upcoming technique of image augmentation uses 

generative adversarial networks or GANs, which were introduced by Goodfellow et. 

al., in 2014, and Neural Style Transfer and Neural Architecture Search or NAS 

introduced by Gatys, Ecker, & Bethge in 2015 and enhanced by Zoph and Le in 2017.  

These two approaches have found use in two of the most promising and useful 

augmentation techniques currently – Smart Augmentation (Lemley, Bazrafkan, & 

Corcoran, 2017), and Autoaugment (Cubuk et. al., 2019). Smart Augmentation merges 

or blends two or more samples within the training data, while keeping the label 

information saved, based on expanding the network accuracy or minimizing the loss. 

While Autoaugment selects best possible augmentation method based on a search 

policy which aims at increasing the validation accuracy. The algorithm has obtained 

the state-of the-art on CIFAR-10 and ImageNet datasets. 
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2.5 Satellite or Remote Sensing  

 

Earth Observation (EO) and Remote Sensing (RS) are fairly new computer vision sub-

domains which have received attention from researchers around the world. The data 

from these domains has the capability of bringing about significant improvements in 

agriculture in developing countries. Use of RGB and Near-Infrared region images 

using low-cost and low-orbit observational systems in estimating produce and mapping 

the plantation areas has been advocated as best practises (Ponti et. al., 2016). 

Researchers have also used satellite images coupled with social media images in 

detecting the sections of roads and urban areas covered under flood waters (Bischke, 

Helber, Schulze, Srinivasan, & Borth, 2017). Like these two, there are several 

applications of satellite data, which includes both military and civil usage. 

 

The problem with these Earth Observation datasets is that firstly, there are very few 

and very small sized labelled datasets available and secondly, image features in these 

datasets are quite different from those from natural image datasets, which have images 

like cat, dog, fish, scorpion, car, truck, house, ship etc. Principal examples of Earth 

Observation or Satellite imaging datasets include – UCMerced dataset (Yang & 

Newsam, 2010), PatternNet (Zhou, Newsam, Li, & Shao, 2018), and NWPU-

RESISC45 (Cheng, Han, & Lu, 2018). The UCMerced dataset is a fairly small dataset 

when it is considered for usage in building deep learning models as such models 

historically need large amount of data to train and predict correctly. UCMerced has 21 

land-cover classes with 100 images per class, with 256*256 pixel dimensions and all 

images are from the RGB color space. Likewise, the other two datasets too have 

images in the few hundreds for every class label. Moreover, these datasets have images 

which are already processed and high resolution, thus this does not represent the real-

world scenario of Remote Sensing images.  

 

In a supervised problem-solving approach, the performance of a classifier depends on 

the size and quality of a suitably labelled training and validation dataset. Razavian, 

Azizpour, Sullivan & Carlsson, 2014, suggested in their paper that deep networks learn 

features that can be treated at par or even better than the traditional methods in the 

Computer Vison field like, GIST (Oliva & Torralba, 2001) and BIC (Stehling, 
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Nascimento, & Falcao, 2002). Going by this observation, that deep features can 

generalize better than other means from one dataset or task to another, of late several 

attempts have been made using pre-learned deep models to learn multispectral and in 

general Earth Observation (EO) or Remote Sensing (RS)  data. (Penatti & Nogueira, & 

Santos, 2015; Nogueira, Penatti, & Santos, 2017; Castelluccio, Poggi, Sansone, & 

Verdoliva, 2015; Xia et. al., 2016). All these studies have performed classification 

upon EO or RS datasets, using ImageNet trained large deep networks like Overfeat 

(Sermanet et. al., 2014), CaffeNet (Jia et. al., 2014) GoogLeNet (Szegedy et. al., 2015) 

and others like them. 

 

2.6 EuroSat: A Novel dataset 

 

EuroSat data (Helber, Bischke, Dengel, & Borth. 2017) is a collection of multi spectral 

(thirteen bands) and RGB data captured by Sentinel-2A satellite to address the 

challenge of identifying land-use and land-cover categories in European countries. 

This dataset has 27000 labelled images classified into 10 land-cover classes. It has two 

sets of image data, the first one contains RGB color-space images, while the second 

one has multispectral images consisting of 13 frequency bands. This dataset is made 

freely available for both commercial and non-commercial purposes by the European 

Space Agency (ESA).  

 

In their dataset-introducing paper, authors have performed two steps – firstly satellite 

images of 34 European countries was collected, and secondly, this data was divided 

into 27000 images of 64*64 pixel size, which were georeferenced and labelled with 

proper landcover classes. The 34 countries are chosen to create a wide variety of land 

cover samples, for example these countries include - Austria, Belgium, Cyprus, 

Denmark, Finland, France, Germany, Greece, Iceland, Ireland, Luxembourg, 

Netherlands, Norway, Poland, Portugal, Romania, Switzerland, Ukraine and the 

United Kingdom. The authors have also made sure that different types of sample in a 

particular landcover class are included. For example, different types of forests in 

Forest class, different types of river flows in Rivers class, and different types of 

industry structures in Industrial class, and so on. Moreover, this data is collected over 
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the year and so different lighting conditions have been accounted for in the 

representation. Sample of images can be seen in figure 2.7 and 2.8. 

 

 

Figure 2.7 (a) Industrial (b) Residential (c) Annual Crop (d) Permanent Crop (e) River 

 

Figure 2.8  (f) Sea lake (g) Herbaceous Vegetation (h) Highway (i) Pasture (j) Forest 

 

The authors have established that ResNet50 has given them the highest benchmarking 

performance in the land-cover classification task. Furthermore, the RGB color space 

outperformed all thirteen bands as well as band combinations like shortwave-infrared 

and color-infrared, when ResNet50, trained in ILSVRC datasets which consists of 

nothing other than RGB images.  

 

The main applications that the paper suggests includes Land Cover Change Detection, 

in which a classifier can be trained to detect any changes in the observed land or sea 

portion over a period of time. A change can be defined as a classifier assigning a new 

class to the same patch of the image, for example, a forest area might be converted into 

annual Crop area, thus indicating deforestation. Other applications proposed is, 

providing assistance in mapping for an area under observation. 

 

2.7 Summary, Limitations and Gaps of Literature 

 

A detailed literature review of the state-of-the-art computer vision approaches was 

made. Research papers observing challenges with operating on smaller datasets, and 

transfer learning applications and current limitations were also reviewed. Lack of 
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availability of labelled remote sensing and earth observation data is observed to be a 

major issue hampering any research work in satellite imaging problem domains. 

Literature exploring various aspects of remote sensing and its applications, is studied 

as part of solving the problem of transferring relevant features to multispectral 

classification tasks.  

 

The literature review also pointed out at the revolution that happened in the Computer 

Vision field with the advent of AlexNet in 2012. The most influential approaches in 

the architecture explained that CNNs are the best way to handle image data. The 

relevance and possibility of transferring learned features to another problem area has 

been a key development in the computer vision field over the last decade. 

 

Deep learning can also be applied over smaller labelled datasets by using data 

augmentation methods. A brief review was done on key approaches and the benefits of 

augmentation specially in the sense of real-world tasks. One such task is of identifying 

land-cover classes in remote sensing images. This is essentially useful in cartography 

efforts of private and government bodies. This review also talks about current and 

most prevalent EO datasets and also how classification is been done in present times, 

using pre-trained deep networks like GoogLeNet, Resnet, CaffeNet etc, and other 

current benchmarks. 

 

Apparently, there are no research papers or any publication until now, which talk about 

training a deep industry grade network like Resnet50 on an image dataset which is not 

from the RGB color space and then using that network to transfer features to another 

task from a completely different band or channel space. Limitations and research gap 

identified through the literature review can be addressed by the research question 

introduced in the Introduction chapter – 

 

"To what extent a CNN neural network, pre-trained on single channel (grey-scale) 

Imagenet* and Eurosat** images, can improve the image classification accuracy of 

multispectral images.” 

 

The following chapters provide the research design, experiment methodology, 

implementation, and evaluation of experiment to address this very research question. 
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3 EXPERIMENT DESIGN AND METHODOLOGY 

The purpose of this study is to test whether single channel features are better than RGB 

features for models trying to learn multispectral data. RGB images are combined from 

mini-Imagenet and EuroSat datasets. For single channel features, the greyscale images 

are used instead. These greyscale images are the same as the RGB ones, except they 

are converted to greyscale using image augmentation methods prior to the training 

process. Multispectral data consists of satellite captured multiple band images. The 

dataset that the study uses has TIFF images consisting of thirteen spectral bands each. 

Single bands are extracted from these tiff images and thus every image got divided into 

thirteen different band images. These bands are characterised as B1 to B13. This 

chapter outlines the data preparation and processing steps in detail. 

 

Along with this, model architecture and evaluation criteria are also presented. An 

explanation of how convolutional network works is presented for better understanding 

of the experimental design. Experiments are conducted using the ResNet network, 

which has a CNN as its main building block. How Resnet network is used in the 

experiments, is explained in detail using illustrations. No experimental methodology is 

complete without an evaluation plan. Thus, the performance of all the models has been 

evaluated over validations sets and this part of the section is well documented at the 

end of this chapter. 

 

All programming is done using Python 3.7 and some of the useful libraries that are 

used in the implementation include NumPy, Rasterio, TensorFlow2.0 and Keras, 

among others.  

3.1 Design Methodology 

 

A detailed overview of the plan and design of the experiment is elaborated in this 

section. To help with the basic understanding of the project please refer the figures in 

this section (figure 3.1 – figure 3.11). There are two sources of RGB and Greyscale 

images, one is the mini-ImageNet dataset and another one is EuroSat dataset. Details 
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about data preparation steps on these datasets is in section 3.3. Process and work-flow 

is covered in section 3.2.  

 

 

Figure 3.1a Creating mini-ImageNet Training and Validation data as two sets of 

Augmented and non-Augmented images for both Greyscale and RGB color-space 

 

 

 

Figure 3.1 Creating mini-ImageNet Training and Validation data as two sets of 

Augmented and non-Augmented images for both Greyscale and RGB color-space 

Figure 3.2 Creating mini-ImageNet Training and Validation data as two sets of 

Augmented and non-Augmented images for both Greyscale and RGB color-space 
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Design Methodology is such that first new models are created using Resnet50 

architecture by training them from scratch over datasets from two color spaces, namely 

RGB and Greyscale. Also note that, there are two types of datasets in each category, 

one is smaller in size and consists of Non-Augmented images, while the other one is 

larger and consists of Augmented images. So, four Resnet50 architecture-based models 

were created by training from scratch on RGB and Greyscale datasets independently, 

please refer figure 3.7 in page 26. These four pre-trained models are then used to 

Figure 3.3 Merging Eurosat and ImageNet Greyscale augmented images to create 

final sets for base models Training and Validation 

Figure 3.4 Merging Eurosat and ImageNet Greyscale non-augmented images to create 

final sets for base models Training and Validation 
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transfer features or are finetuned on target images of individual bands, i.e. band B02, 

B03, B04, B05, B08 band B12. The performance is recorded on Tests sets and a 

comparative analysis is made on the outcomes (figures 3.9, 3.10, and 3.11, in page 27). 

This will make it four sets of Test accuracies and F1 scores; two are for RGB based 

feature transfer and another two for Greyscale or single channel-based feature transfer.  

 

 

 

 

 

 

 

Figure 3.5 Merging Eurosat and ImageNet RGB augmented images to create final sets 

for base models Training and Validation 

Figure 3.6 Merging Eurosat and ImageNet RGB non-augmented images to create final 

sets for base models Training and Validation 
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3.2 Business Understanding 

 

The focus of this research study is to improve the general performance of computer 

vision problems in the Multispectral image domain. Currently, most of the 

multispectral and hyperspectral domain problems are addressed using deep models like 

Resnet50, which have been trained in the RGB feature space. The input to an already 

trained Resnet type network will be three channels, each designated for individual 

bands of Red, Green and Blue. While applying this pre-trained network to solve 

multispectral domain problems, their individual spectral bands are fed as an input to 

the three channels of the Resnet50 model. The model then fine tunes its learned 

weights over these smaller target multispectral datasets. Learned features are said to be 

transferred to the  new and smaller task. 

 

The Null hypothesis can be stated as – 

Figure 3.7 Training to create four Base Models 

Figure 3.8 Data preparation for Multispectral images 
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Null Hypothesis, Ho: If a deep neural network trained on greyscale images is fine-

tuned on a dataset of single frequency images extracted from multispectral images 

taken by satellites, to classify images into one of the ten land-cover classes, then the 

accuracy is higher than both, when the model is trained from scratch and when a model 

pre-trained on RGB-based ImageNet is used.  

 

 

 

 

 

 

 

3.3 Data Understanding 

 

Figure 3.9 Process-Flow Diagrams – Non-Augmented 

Figure 3.10 Process-Flow Diagrams – Augmented 

Figure 3.11 Work-Flow diagrams 
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The experiments are conducted using multiple sets of images, where each set has 

distinctive features and are as per the design of research. Each image dataset is 

explained elaborately in below sections. 

 

3.3.1 Dataset: mini-ImageNet 

 

Imagenet – It is a largescale ontology of images built upon the backbone of the 

WordNet structure. With images attached to each of the 5247 synsets of Wordnet, 

there are around 3.2 million images in total. These images are very diverse and 

accurate to their description and are aimed to help computer vision researchers in their 

efforts (Deng et. al., 2009). Due to the limitations of time and computational power, a 

very small subset of this dataset is used for the purpose of this study. Mini Imagenet 

has 500 images each in its 100 overall classes, and each image is of the height 64 

pixels and width 64 pixels. Some samples are shown in figure 3.12, in page 29. 

 

3.3.1.1 Data Processing: RGB images 

 

Since the images are only five hundred in each class, data augmentation is used to 

increase the size of the dataset to two thousand images in each class (also refer figure 

3.1, in page 23). 

 

Data augmentation is done using Keras ImageDataGenerator module, and basic 

geometric transformations are applied to the images. These transformations include, 

Shifting the image across its width and height, Shearing or tilting the image along one 

of the axis, Zooming in and out of the images, Flipping the image either horizontally, 

and lastly by Rotating the images by not more than 90 degrees at a time. Some sample 

images post augmentation is shown in figure 3.13. Few things can be observed here - 

while shifting the images, the last pixels are copied to fill the gaps created by the 

process. Also, since some of the classes in mini-Imagenet dataset are related to 

humans, like clothing, houses, monuments, back-packs and then some are related to 

land animals like cats, dogs, bears etc., thus it doesn’t make sense to vertically flip 

these images while doing the augmentations. 
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Figure 3.12 Mini-Imagenet image samples. Each image is of 64*64*3 dimension, where 3 

stands for the three color channels of Red, Green, and Blue 

  

     

     

Figure 3.13 Augmentations specified are applied at random to a given image. Every 

image is augmented to five of its type, to inflate the dataset size to 2500 images in each 

class. 

 

3.3.1.2 Data Processing: Greyscale images 

 

Greyscale images are extracted using ImageDataGenerator module of Keras and for 

every augmented image, an equivalent greyscale version is created. At the end of this 

processing step, there are exactly the same images as RGB set, except that they are all 

in greyscale (figure 3.1 and 3.2, both in page 23). Some samples of greyscale images 

thus obtained are shown in figure 3.14, in page 30). Here greyscale is used to represent 

the idea of single channel and these images will be used to train Resnet50 based 
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network from scratch, to prepare a single channel trained classifier. This will later be 

used for transferring features to target domains of multispectral bands. 

 

 

     

Figure 3.14 Some Samples from Greyscale mini-Imagenet after transformation 

 

3.3.1.3 Training and Validation sets 

 

Both, for RGB as well as Greyscale datasets, the 500 images from each class are 

randomly divided into two sets of Training and Validation with four hundred images 

per class in training and remaining one hundred images per class in validation. Same 

steps are followed to create augmented datasets too, where each training set has 2000 

images and validation set has 100 to 1000 images per class. Figures 3.1 and 3.2, in 

page 23, clearly depict this process. 

 

3.3.2 Dataset: EuroSat 

 

EuroSat – has two sets of images - RGB and Multispectral. There are around twenty-

seven thousand images belonging to ten classes in total. These classes are the different 

land-use types and they vary from Residential, Industrial, Farmland to Rivers, Forests 

and Pastured crops. Please refer figure 3.15, in page 31 for different classes covered 

their sample image. This dataset is collected by Sentinel 2A satellite in order to address 

the challenge or requirement of land-use or landcover estimation. It is a sun-

synchronous satellite which was launched in June 2015 to cover Earth’s land surface 

with Multispectral Imager (MSI) covering 13 spectral bands listed in table 3.1, in page 

31. The four bands B01, B09, B10  and B11 are intended to be used for the correction 

of atmospheric effects (e.g., aerosols, cirrus clouds, water vapor or snow). The 

remaining bands are primarily intended to identify and monitor the different land use 

or land cover classes. In addition to mainland, large islands as well as inland and 

coastal waters are covered by this satellite (Helber, Bischke, Dengel, & Borth. 2017). 
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Table 3.1 Thirteen bands of Multispectral Imager, their Resolution and Wavelength 

Band 

Spatial 
Resolution 
(m) 

Central 
Wavelength 
(nm) 

B01 - Aerosols 60 443 

B02 - Blue 10 490 

B03 - Green 10 560 

B04 - Red 10 665 

B05 - Rededge1 20 705 

B06 - Rededge2 20 740 

B07 - Rededge3 20 783 

B08 - NIR 10 842 

B08A - Rededge4 20 865 

B09 – Water vapor 60 945 

B10 - Cirrus 60 1375 

B11 - SWIR1 20 1610 

B12 - SWIR2 20 2190 

 

 

     

     

Figure 3.15 Ten EuroSat class, respectively from top to bottom, left to right : Annual 

Crop, Forest, Herbaceous Vegetation, Highway, Industrial, Pasture, Permanent Crop, 

Residential, River, Sea Lake 

 

    

Figure 3.16 Augmented Eurosat data sample 

 

3.3.2.1 Data Processing: Multispectral images 

 

There are ten classes in the EuroSat data, for both RGB as well as Multispectral 

images, please refer to figure 3.15 for class names. In Multispectral data, the images 
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are stored with .TIF file extension, which makes it difficult to display using regular 

tools. Please refer figure 3.8, in page 26, to understand the process of extraction, and 

figure 3.17, to see the extracted images for all 13 bands of a sample image.  

 

     

     

    

Figure 3.17 Same image extracted as 13 Bands. From left to Right, and top to Bottom - 

Band01, Band02, Band03, Band04, Band05, Band06, Band07, Band08, Band09, Band10, 

Band01, Band11, Band12, Band13, and lastly the Original RGB Image 

 

3.3.2.2 Data Processing: RGB images 

 

Similar to the Imagenet dataset, the images are 64 pixels in height and width. The 

RGB dataset is augmented in a similar manner to match the transformations in 

Imagenet counterparts. Here too, a vertical flip is avoided, and rotation range is kept 

within ninety degrees. Some sample transformations or augmented images can be seen 

in figure 3.12. 

 

3.3.2.3 Data Processing: Greyscale images 

 

A Greyscale dataset is created by transforming RGB images using the generator 

module from TensorFlow-Keras. These images are also 64 pixels in height and width. 

Some sample images from this set can be seen in figure 3.18, in page 33. 
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Figure 3.18 Greyscale image samples from EuroSat dataset for classes – Annual Crop, 

Forest, Herbaceous Vegetation, Highway , and Industrial (left to right) 

 

3.3.1.2 Training and Validation sets 

 

All images are selected at random for creating Training and Validation sets. For non-

augmented mode, there are four hundred images in training set and thousand images in 

validation set for both RGB and Greyscale images. For augmented mode, data size is 

bigger, with 2000 images per class for training and 1000 images per class for 

validation sets. 

3.4 Performance Evaluation 

 

For the evaluation of models created over different sets of data, Training, Validation 

and Testing accuracies are used throughout the study. In addition to this, Precision, 

Recall and F1 Scores are constructed to compare performances between individual 

classes. These scores are calculated by looking at the number of misclassifications 

against correct classifications for EuroSat classes. Let’s understand each evaluation 

criteria in a bit more detail – 

 

3.4.1 Accuracy 

 

It is a straightforward concept of estimating the correctness of a classifier and is 

defined as the ratio of correct predictions over the total number of predictions. Since in 

our case, EuroSat Multispectral data is a balanced dataset, meaning all classes have 

nearly equal number of distributions, Accuracy measure can be used without any 

concerns. 

Accuracy = (True positives + True Negatives) / (True Positive s + False Positives + 

True Negatives + False Positives) 
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3.4.2 Precision 

 

It is defined as number of correct predictions of a class divided by the total predictions 

over that class.  

Precision = True Positives / (True Positives + False Positives) 

False positives are the data points which are incorrectly labelled as target class by the 

model. The performance of a model is best when Precision nears to a value of 1, i.e. 

when FP becomes 0. 

 

3.4.3 Recall 

 

It is defined as the correctly predicted fraction of the target class. It can be obtained by 

dividing total correct predictions by total class predictions. Recall is also known as 

Sensitivity and its ideal value is also 1. 

Precision = True Positives / (True Positives + False Negatives) 

For a given class, True positives are the data points classified correctly by the model, 

and False Negatives are number of data points that are incorrectly classified by the 

model. 

 

3.4.4 F1 Score 

 

In an ideal model performance, both Recall and Precision would be equal to 1, or both 

FP and FN would be 0. A performance measure is thus needed, which can take into 

account both precision and recall, and can calculate a score. F1 Score is actually 

defined as the weighted summary of Precision and Recall or in other words it is the 

harmonic means of these two values. This measure is a more balanced approach than 

accuracy of a model, especially if there is an uneven distribution of data points 

between the target classes. 

 

3.4.5 Loss  

 

It is the summation of errors made for each sample in training or validation set. More 

accurately, it is the negative log likelihood and residual sum of errors for classification. 

The lower the loss is, better the model is at prediction a correct target class value. 
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3.5 Summary 

 

This chapter has explained the design methodologies that the experiments have used. 

Elaborate model design shows the architecture that is used in implementing these 

experiments. Four base models will be used, one set of models is from RGB or Red, 

Green and Blue electromagnetic spectrum space and another set of models is from 

Greyscale or single spectrum space. The process flow of the research shows how these 

models will be used to transfer learned features to the target space. The hypothesis, as 

explained in business understanding section, concerns with which model gets a higher 

accuracy value in classification task on multispectral images. The classes are land-

cover or land-use types. 

  

All the datasets used in this study, their key attributes and features were covered in 

great details. Information included - from where the datasets are obtained, what are the 

transformations done upon them, how they are extracted and processed during model 

building and predicting, and lastly what are some of the samples. EuroSat and mini-

ImageNet samples have shown how varying the datasets are. Within Imagenet there 

are different categories of images like animals, daily use tools, cloths etc. And then in 

Eurosat there are land-cover classes which range from Annual crop to Sea lake. Also, 

some Eurosat classes have images which are very much similar to one another, for 

example, images from annual crop and permanent crop classes, or those from rivers 

and highways. The sample images and band descriptions are there for reader’s better 

understanding of multispectral data. This chapter has as well touched upon the creation 

and extraction details of new datasets, Greyscale and Individual Bands (B02-B12).  

 

The evaluation criteria to  be used in this study will monitor the effectiveness of 

feature transferring between different base model configurations. The next chapter of 

this report talks about implementation and results in this direction. Note that, this 

experiment design follows the hypothesis stated in this chapter and the research 

objectives listed at the start of the report in the Introduction chapter.  
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4 IMPLEMENTATION AND RESULTS 

The goal of this chapter is to give implementation details of the research experiments 

that were described in earlier chapters. It will explain all the models that have been 

built and what were the results obtained from them for different spectral bands. This 

chapter is divided into following sub-sections – 

 

• Model Architecture 

• Results 

 

4.1 Model Architecture 

 

The implementation is made using Resnet50, which is a fifty-layer deep convolutional 

neural network. This section covers the essential details of implementing a CNN and 

Resnet50.  

 

4.1.1 Convolutional Neural Network 

 

A Convolutional Network is essentially a sequence of layers, and the network is 

trained using gradient descent algorithm. Every layer in a CNN has a particular role to 

play. These roles include, performing convolutions over an image, calculating max or 

average pooling over a window, and transforming pixel inputs using non-linear 

activations in form of densely or fully connected neuron layers. Main type of layers are 

thus: Input Layer, Convolutional Layer, Pooling Layer, and Fully Connected Layer. In 

more details : 

 

• Input Layer: The pixel values are flattened and fed through the first 

convolutional layer using the input layer. These pixel values are normalized 

values, so that a neural network, while back-propagating, can calculate similar 

gradient for every input feature. Otherwise, the network might over-
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compensate or under-compensate for certain features. This makes the model 

either learn slow or not reach the global maxima in cost.  

 

• Convolutional layer: This will run a square window over pixel values to 

compute the dot product with weights suitable for detecting various features of 

an image like vertical or horizontal edge and corners. This results in volume 

reduction as the window convolve over the whole image producing single 

value for all pixels which come under the window once. Small Striding and 

Padding are ways to keep the size of image from shrinking as pixels move 

through a CNN network.  

 

• Pooling Layer: This layer down-samples the data and thus keeps the network 

lean, simultaneously preserving the most relevant feature information like the 

Max pixel value or the Average pixel value in an operation. This layer operates 

along the dimensions of width and height of the previous layer (a Conv layer). 

 

• Densely Connected Layer: Also known as Fully connected layer, it generally 

consists of Rectified Linear Units or ReLUs in order to process images faster. 

This layer is usually fully connected with all the preceding and following layer 

neurons. There are other activation function choices too, like sigmoid or tanh, 

but ReLU is the faster and more accurate option. This layer applies activation 

function elementwise and size of the input remains unchanged after the 

processing.  

 

• Softmax operation: Last layer of the CNN computes the relative probabilities 

of classes for every input image. The number of nodes or neurons in this layer 

is equal to the number of classes in our classification problem, where each 

nodes value after activating is one of the class score. Also note that, each 

neuron in this layer is connected to all other neurons in the previous layer, or to 

say it is fully connected. A general architecture of CNN can be seen in figure 

4.1, in page 38. 
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Figure 4.1 CNN architecture. A CNN outputs 3D volume at each step of the process, 

where width is the number of channels. The size goes on decreasing due to the nature of 

convolutions and also due to introduced Pooling after every few steps. Image retrieved 

from https://cs231n.github.io/convolutional-networks/ 

  

 

4.1.2 Resnet50  

 

Residual Network (He, Zhang, Ren & Sun, 2015) was the winner of ILSVRC in 2015. 

The network architecture includes, skip connections and batch normalization, among 

other key Convolutional network features like pooling, striding, Relu, SGD etc. 

ResNets are widely used in various applications both at academic as well as industrial 

levels. They are often referred as Deep Residual Networks too.  

 

ResNet50 has residual or conv blocks repeated or stacked over one another using skip 

connections, please refer the figure 4.2, in page 39. Also, please refer figure 4.3, in 

page 40 to see Error rates (in percentages, top 5 and top 1 error rates) on ImageNet 

validation task of ILSVRC 2015. VGG-16 (Simonyan & Zisserman, 2015), 

GoogleNet, and PReLU-net (He, Zhang, Ren, & Sun, 2015) are previous state-of-the-

art classifiers before the advent of Resnet. ResNet-50/101/152 are networks with 

respective number of deep layers included in Resnets. 
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Figure 4.2 A Small Portion of Renet50 layers, shown as an output of summary() 

operation in Tensorflow Keras implementation 
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Figure 4.3 RESNET Performance on ImageNet task in comparison to other state-of-the-

art networks (He, Zhang, Ren & Sun, 2015) 

 

4.1.3 Model A: RGB based model 

 

Architecture: This model is using Resnet50 as the base-model and adding sequential 

TensorFlow Keras layers over it. Resnet50 means it is a residual network which is fifty 

layers deep, the choice of fifty layers is made for the ease of running the model over 

large training and validation datasets, while maintaining the effectiveness of residual 

architecture of using large network depth for learning more intricate and subtle 

features which a smaller network might not be able to learn. 

 

Purposely, Resnet50 is used without its weights, meaning it is used with random 

weight initialization rather than the ImageNet competition learned weights, and the 

layers are kept as trainable. Also, the top layer or the classification layer with previous 

thousand nodes is replaced with a fully connected layer with number of nodes equal to 

the number of new classes, which is equal to hundred and ten in this study (hundred 

ImageNet classes and ten Eurosat classes). The idea here is to learn from scratch on the 

new dataset of mini-ImageNet and EuroSat combined, once on RGB and then on 

Greyscale colour spaces. 

 

On top of trainable Resnet50 base-model, one fully connected ReLU layer is added 

with two hundred and fifty-six activation nodes in it. This Dense or fully connected 
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layer is followed and preceded by a Dropout layer with dropout nodes as 0.5, meaning 

randomly chosen half of the nodes, in the immediately preceding hidden layer, will not 

be used during the training process of the network. 

 

4.1.4 Model B: Greyscale based 

 

The Architecture for Greyscale model is exactly similar to above RGB model’s (Model 

A) architecture except the fact that single channel goes in as input to the three-channel 

input of the base model Resnet50. Please note that, Resnet50 and other ImageNet 

based architectures are designed for three channels as inputs, i.e. one channel each for 

Red, Green, and Blue channel of an incoming coloured image. So, in case of single 

channel images like greyscale ones, the same pixel values are fed as input to three 

input streams of the Resnet50 network. 

  

4.1.5 Models for Bands B02, B03, B04, B05, B08, and B12 

 

Model A and Model B are used to transfer learned features to Multispectral feature 

space separately. A new network architecture is designed and is used as a layer on top 

of the base models A and B for this purpose. This network layer consists of one fully 

connected dense layer with Sigmoid activation function, followed by one Keras Batch 

Normalisation layer to normalize the inputs from this layer to the final output Softmax 

layer. A Dropout layer is also added to this network to reduce the overfitting of the 

model.  

 

Due to the large size of overall model – Resnet50 followed by Relu Activation and 

Dropout layers in the Base model, then new network with one dense activation layer, 

one Batch normalisation layer, one Dropout layer and lastly one fully connected 

Softmax output layer, the overall model Overfitted the small target dataset of 27,000 

Eurosat Multispectral images. Please refer table 4.1, in page 42, to further understand 

the number of instances for every landcover class and for training, validation and test 

sets. This problem of overfitting was solved using a lengthy and iterative trial and error 

approach. During this analysis, I was found that by changing activation function of 

first dense layer from ReLU to Sigmoid, the Validation Loss of the network was 

reduced by manifolds. After this the one of the key Compiling parameters of Optimizer 
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was toggled between ADAM, Stochastic Gradient Descent, and RMSprop for different 

number of epochs. Similarly Learning rate was varied between (10E-4) to (10E-7) and 

it was found lower learning rate was giving them a better fit. Further, RMSprop with 

learning rate of 0.001 and 0 decay, gave the best results so far of 56% Test set 

accuracy.  

 

Table 4.1 Class wise training, validation, and test data-instances count 

  Number of Images 

EuroSat Classes Training Validation Test 

Annual Crop 2025 225 750 

Forest 2025 225 750 

Herbaceous 

Vegetation 

2025 225 750 

Highway 1688 187 625 

Industrial 1688 187 625 

Pasture 1350 150 500 

Permanent Crop 1688 187 625 

Residential 2025 225 750 

River 1688 187 625 

Sea Lake 2025 225 750 

Total 18227 2023 6750 

 

 

With a large network architecture and small target dataset the problem of overfitting 

was still not solved. Further analysis proved that by using a Keras Callback function 

called Reduce Learning Rate on Plateau or ReduceLRonPlateau, with Patience value 

of two overfitting was further reduced and test accuracy was increased. This Callback 

option decreases the learning rate as soon as the model stops progressing or the 

performance plateaus. Using this functionality coupled with low learning rates, raised 

the test accuracy to 59%. 

 

Lastly, it was noticed that both the training accuracy and validation accuracy were 

stagnating at values around 59% for long without showing any significant 
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improvement or degradation even after waiting for many epochs. This happens when 

the loss gets stuck in areas with high eigenvalue regions. In terms of gradient 

traversing, this would mean getting stuck into narrow valleys which are long and any 

movement, no matter for how long it is doesn’t change the overall cost function. This 

happens mainly when there are correlation issues and satellite images are often prone 

to almost similar type of data between different pixels in same images as well as 

between two images. To deal with this issue, a Batch normalization layer was 

introduced in the new network and starting learning rate was kept as 0.0001. This 

tweak coupled with rescaling the images in train, test and validation, the best Test-

Accuracy was observed as 60.38%. 

 

The premise of Transfer Learning is that our pre-trained networks (Model A: RGB and 

Model B: Greyscale) contain rich set of descriptors or filters. To use the concept of 

Transfer Learning effectively, features learned from previous task of training over 

mini-Imagenet and EuroSat are transferred to the target task of Multispectral nature in 

some series of steps. This is achieved by using “Fine-Tuning” techniques, in which 

filters are reused by training the network in parts. The network’s architecture can be 

understood easily from the figure 4.4. The steps that this research has followed are as 

follows – 

 

 

Figure 4.4 Final network architecture. Resnet50 is used as a building block for creating 

the Base Model. This model has been trained on RGB and Greyscale images separately. 

Later on, this Base Model is used for transferring features learned to the target task. 

 

• Step 1 – Train only the head of the network or the new network layers that 

have been added to the base-model and keep the rest of the layers as frozen or 
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non-trainable. In the figure 4.5, the section marked as (1) is the new network 

added on top of the Base Model. Thus, section marked as (2) and (3) are kept as 

non-trainable. The fully connected layers in section (1) are initialised with 

random weights and trained over the EuroSat single band images extracted 

from the multispectral .tif images. 

 

Reasoning – This way only a part of the network is being trained at first and the 

weights correction is not back propagated into the entire network. The new 

layers are initialised with random weights and hence, if the whole network is 

allowed to train from scratch on the target data, there is a risk of losing the 

features and filters learned by the fully trained base model. This way training 

data is propagated in forward direction across the entire network, while 

backpropagation happens only for final layers are set as trainable (section (1) in 

figure 4.5). This training is done only for a few epochs (number of epochs = 5), 

so that the final layers can learn requisite number of features or patterns on the 

target data. The learning rate for this training can be kept as the default values 

that comes with the implementation in Keras or other packages, and is usually 

around 0.001 for RMSprop, or ADAM or SGD alike. 

 

 

Figure 4.5 Different steps in Fine-Tuning and Feature Transfer 

 

• Step 2 – Train only the non-convolutional layers in the Base Model, i.e. the 

section (1) and section (2) layers as shown in the figure 4.5. At this point, no 

weight update will happen for the Resnet50 model and only the top layers are 

getting trained using forward and backward propagation. In this way, using 

step 1 and step 2, the network is being warmed up for the task at hand.  



 

 45 

 

• Step 3 – unfreezing the final residual or convolutional block in the Resnet50 

model, or the terminal block in the section (3) of figure 4.5, in page 44. Also, 

figure 4.6 below, further elaborates the point by highlighting the portion in a 

block marked on extreme right side. This time the network is fine-tuned or 

trained over both, the final residual block, and the final non-convolutional fully 

connected layers.  

 

 

 

Figure 4.6 In Resnet50 model or the Section (3) of model shown in figure 4.5, last Resnet 

convolutional block, which is highlighted in the box, was made trainable and rest was left 

as non-trainable. Image from Mahdianpari et. al., 2018. 

4.2 Results  

 

This research is done to determine if networks trained on single channel images are 

better at transferring features to multispectral domains like satellite and medical 

imaging, then those trained over RGB images. The performance in land-cover 

classification task is taken as a measure to answer this research question. Similar steps 

are followed for training on all the shortlisted six bands out of the thirteen bands that 

are there in the multispectral images. Throughout the evaluation, the F1 score, 

Precision, Recall, and average Accuracy over whole dataset has been used as criteria to 

measure the performance of the models. 

 

The original dataset of 27,000 remote sensing images is split randomly into 75 % 

Training and remaining 25% as Test rows. Out of these 75% Training, 10% is used as 
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Validation set. This results in 18,227 images in Training set, 2,023 images in 

Validation set, and lastly 6,750 images in Testing data set. So, for every band there are 

27,000 images that are split into training, validation, and test sets as per above 

distribution percentages (Table 4.1, in page 42) 

 

 

4.2.1 Model A: RGB based   

 

Two models, with exact same architecture, have been created over the coloured image 

database of ImageNet and EuroSat combined. The first model is trained on non-

augmented images, thus the number of training images per class is 400 for both 

ImageNet and Eurosat classes, while for validation it is 100 images per class for 

ImageNet and 1000 images per class for Eurosat (table 4.2).  

 

Table 4.2 Class instances for small-sized Non-augmented RGB image dataset 

Non-Augmented RGB Number of Images Per 

Class 

Classes Training Validation 

100 ImageNet Classes 400 100 

10 EuroSat Classes 400 1000 

Total 44000 20000 

 

 

The second model is trained on the augmented and larger database of coloured images 

from ImageNet and Eurosat alike. The training set has 2000 images for each class, 

while the validation has a similar configuration to before. No augmentation is done in 

Validation set in order to keep the set as closely reflecting the real-world scenario as 

possible (table 4.3, in page 47). The architecture of both these models is the same and 

can be understand by looking at the figure 4.5, in page 44, where the sections marked 

as (2) and (3) represent them as Base model. 
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Table 4.3 Class instances for large-sized Augmented RGB image dataset 

Augmented RGB Number of Images Per 

Class 

Classes Training Validation 

100 ImageNet Classes 2000 100 

10 EuroSat Classes 2000 1000 

Total 220,000 20000 

 

 

For both the models, a high training accuracy, in late 90%s, has been achieved by 

training just over 100 epochs. However, the validation scores do not seem to be 

coming up correctly at the moment, but this data will be corrected and included during 

the final presentations. Due to the remote nature of dissertation owing to the pandemic, 

a dearth of local GPU clusters, limited time for dissertation efforts, and a huge size of 

training and validation datasets, the processing a was very challenging task. For 

example, the total size of training images for creating augmented models was more 

than 400,000 RGB and Greyscale images and total number of classes was 110 with 

ImageNet and Eurosat combined. Currently, validation accuracy is not that high 

(around 48%). 

 

4.2.2 Model B: Greyscale based   

 

Two models are similarly created, with exact similar architecture and parameters as in 

Model A mentioned in above section. One model was created on non-augmented and 

smaller dataset, while the other one was created on augmented and larger datasets with 

same number of images in both training and validation sets as used in previous section 

for two RGB based models. High training accuracies have been observed in similar 

number of epochs for both the models, while validation accuracies and losses are not 

that optimal at the time of writing this report. However, this will be remedied for both 

the models, in the final presentation. Tables 4.4 and 4.5, both in page 48, depicts the 

class distribution and total samples in the greyscale training and validation sets. 
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Table 4.4 Class instances for small-sized Non-augmented Greyscale image dataset 

Non-Augmented 

Greyscale 

Number of Images Per 

Class 

Classes Training Validation 

100 ImageNet Classes 400 100 

10 EuroSat Classes 400 1000 

Total 44000 20000 

 

Table 4.5 Class instances for large-sized Augmented Greyscale image dataset 

Augmented Greyscale Number of Images Per 

Class 

Classes Training Validation 

100 ImageNet Classes 2000 100 

10 EuroSat Classes 2000 1000 

Total 220,000 20000 

 

 

4.2.3 Model Band B02, B03, B04, B05, B08, and B12 

 

Model architecture for all the bands is same and it is already discussed in section 4.1.5 

in great details. These six bands are chosen out of given thirteen bands because of 

mainly to reasons – they were the top performers in the original paper (Helber, 

Bischke, Dengel, & Borth. 2017), some of the bands like B01, B09, B10 and B11 are 

not even meant for land observation altogether. Band01 is for detecting Aerosols in the 

air, Band09 is for detection of Water Vapours suspended in the atmosphere, Band10 is 

meant for treating Cirrus clouds (low thin clouds near earth’s surface), and lastly 

Band11 is meant for cloud/ice/snow discrimination. Thus, the Bands that will be 

evaluated in this study are –  

 

Band02 – Blue Color 

Band03 – Green Color 
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Band04 – Red Color 

Band05 – Red Edge 1 

Band08 – Near Infrared 

Band12 – Shortwave Infrared 2 

 

Table 4.6 below, shows overall accuracy values over test sets for these six bands, and 

Aug stands for models created over larger augmented datasets. It is evident from the 

table that for all bands the highest accuracy was recorded when a Greyscale 

Augmented base model was used. Also, note that for five out of six bands, bands B02, 

B03, B04, B08 and B12, the Greyscale base model has trumped the RGB base model. 

Also, note that, for band B05 the accuracy for model with RGB as base model is only 

marginally better than the accuracy Greyscale base model.  

 

Table 4.6 Accuracy values over the dataset for different bands as measured for every 

Base-Model types used 

Bands Test-Set Accuracy Values for each type of Base-

Model 

RGB GREY RGB-Aug GREY-Aug 

Band B02 – Blue 57.7 60.67 59.87 66.3 

Band B03 – Green 54.82 56.19 61.27 65.83 

Band B04 – Red 55.02 59.62 59.71 62.6 

Band B05 – Red Edge 1 43.44 43.32 45.44 52.78 

Band B08 – NIR 55.82 58.84 59.64 64.05 

Band B12 – SWIR 2 43.11 45.15 47.29 54.35 

 

 

The grouped bar charts, shown in figure 4.7, in page 50, clearly depicts the behaviour 

for all bands over different base models. On an average, the performance was worse 

when RGB based images were used to train the base model, and it was best when 

Greyscale images were used for training of the base model. Also, note that 

augmentation helped in increasing the performance in both cases – RGB color space 

and Greyscale space.  
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The authors of database contributing paper have observed that best performance was 

given by spectrums of Red (B04), Green (B03) and Blue (B02) bands. This is quiet 

similar to what is observed in this research. Interestingly, the band NIR or Near-

Infrared (B08) has outperformed even the Red (B04) band, and the bands Red Edge 1 

(B05) and Shortwave-Infrared 2 (B12) are worse performers. 

 

 

 

Figure 4.7 Grouped bar charts depicting the performance of different bands as well as 

different base models among them. Clearly Greyscale Augmented base model has 

outperformed in every group. 

 

 

4.2.3.1 Model Band B02 

 

As per table 4.6, in page 49, highest overall accuracy has been recorded by the model 

which is using base model trained on augmented greyscale images.  
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Figure 4.8 B02: Comparative performances for Greyscale images trained base model 

 

For all the Models on band B02, classes Sea Lake, Residential, and Forest have given 

highest F1 scores. While Highway, River and Permanent Crop are the lowest 

performing classes. This (Figure 4.8, 4.9, 4.10, 4.11). Interestingly, it can be seen that 

class Sea Lake has high Precision, Recall and thus high F1 score. This can be 

explained by entirely different Reflectance of a water body from another typical land 

bodies.  

 

 

 

Figure 4.9 B02: Comparative performances for RGB images trained base model 
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Figure 4.10 B02: Comparative performances for Augmented RGB images trained base 

model 

 

 

Figure 4.11 B02: Comparative performances for Augmented Greyscale images trained 

base model 

 

4.2.3.2 Model Band B03 

 

The highest F1 score is shown by Sea Lake class across all the models, and the 

Highway class has the lowest F1 scores across all the models. 
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Figure 4.12 B03: Comparative performances for Greyscale images trained base model 

 

Likewise, when base model was used as augmented greyscale one, the F1 scores rose 

for all the classes (figure 4.12, 4.13, 4.14, and 4.15). Also, it can be seen clearly that, 

greyscale augmented has trumped all other models in feature transfer. 

 

 

 

Figure 4.13 B03: Comparative performances for RGB images trained base model 
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Figure 4.14 B03: Comparative performances for Augmented RGB images trained base 

model 

 

 

Figure 4.15 B03: Comparative performances for Augmented Greyscale images trained 

base model 

 

4.2.3.3 Model Band B04 

 

Band B04, is the Red spectrum of visible light. It has similar performance as the 

previous visible bands (B02 and B03). As per figures 4.16, 4.17, 4.18, and 4.19, it I 

evident that here too base model trained on augmented greyscale images has given best 

F1 Scores for all classes among the four model configurations.  
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Figure 4.16 B04: Comparative performances for Greyscale images trained base model 

 

 

 

Figure 4.17 B04: Comparative performances for RGB images trained base model 
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Figure 4.18 B04: Comparative performances for Augmented RGB images trained base 

model 

 

 

Figure 4.19 B04: Comparative performances for Augmented Greyscale images trained 

base model 

 

 

4.2.3.4 Model Band B05 

 

Things got interesting with Band B05 or Red Edge 1, as River is among the best 

performing classes for this band unlike other seen till now. Also, Forest class had high 

F1 scores for all bands till now, but for band B05, it is one the worse performing. 
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Residential and Sea Lake are high performers in this case too (figure 4.20,  4.21, 4.22 

and 4.23). 

 

 

Figure 4.20 B05: Comparative performances for Greyscale images trained base model 

 

 

 

Figure 4.21 B05: Comparative performances for RGB images trained base model 
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Figure 4.22 B05: Comparative performances for Augmented RGB images trained base 

model 

 

As per table 4.9, in page 49, this band has performed worse among the six bands, in 

terms of overall accuracies. However, here too the best performing model is the one 

trained on augmented greyscale images. This implies that using greyscale along with 

augmentations can significantly increase the performance of a model on multispectral 

bands. 

 

 

Figure 4.23 B05: Comparative performances for Augmented Greyscale images trained 

base model 
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4.2.3.5 Model Band B08 

 

Similar to Band B05, Band B08 or Near Infrared (NIR) has River class as one of the 

high F1 scorers. Other than this, the scores are similar to visible bands, with Sea Lake 

as best performer and Permanent Crop as worst. 

 

 

Figure 4.24 B08: Comparative performances for Greyscale images trained base model 

 

 

Figure 4.25 B08: Comparative performances for RGB images trained base model 
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Figure 4.26 B08: Comparative performances for Augmented RGB images trained base 

model 

 

Using augmented greyscale images for training base model has shown best 

performance, as per table 4.6, in page 49, and also from figures 4.24, 4.25, 4.226 and 

4.27. notedly, Band B08 has scored even higher than visible band B04 or Red.  

 

 

 

Figure 4.27 B08: Comparative performances for Augmented Greyscale images trained 

base model 

 

 



 

 61 

4.2.3.6 Model Band B12 

 

Permanent crop has F1 score, Precision, and Recall all as 0 values, meaning, not even 

once True Positive or True Negative has been identified by the model. This behaviour 

is consistent for RGB, RGB-Augmented and Greyscale models, only Augmented 

Greyscale images model was able to classify permanent crop class (figure 4.28, 4.29, 

4.30, and 4.31).  

 

 

Figure 4.28 B12: Comparative performances for Greyscale images trained base model 

 

 

Figure 4.29 B12: Comparative performances for RGB images trained base model 
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Figure 4.30 B12: Comparative performances for Augmented RGB images trained base 

model 

 

Base model built using augmented greyscale images has shown most robust 

performance for band B12 or Shortwave Infrared 2 as well.  

 

 

 

Figure 4.31 B12: Comparative performances for Augmented Greyscale images trained 

base model 
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4.3 Summary 

 

This chapter elaborates upon the model architecture, the data distribution among 

classes and the readings from various experiments. Resnet50 has been used to build the 

base models in this research and it has been fine-tuned by unfreezing the last residual 

convolutional blocks. Non-convolutional layers of base model are retrained by running 

on the target task for small number of epochs. This was done to ensure that patterns 

learned from the previous or source task are not completely unlearned. Furthermore, 

the new layers that were added on top of base model were trained from scratch first for 

small number of epochs and later on for more number of epochs to completely learn 

the features from base model as well as from the target data.  

 

The bands chosen for the analysis in this study are the top performers in the original 

paper and the results from this study and original paper look consistent. Original paper 

used Resnet50 trained on the Imagenet ILSVRC task, and thus has features only from 

coloured space. This study however analyses use of single channel source instead of 

RGB and results seems very exciting. 
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5 EVALUATION AND DISCUSSION 

5.1 Introduction 

Evaluating on only six of the 13 Sentinel 2A multispectral bands, because these are the 

top performers among all 13 bands. Band01, Band 09, Band10, and Band11 are not 

meant for landcover observation. Band01 is for detecting Aerosols in the air, Band09 

is for detection of Water Vapours suspended in the atmosphere, Band10 is meant for 

treating Cirrus clouds (low thin clouds near earth’s surface), and lastly Band11 is 

meant for cloud/ice/snow discrimination.  

5.2 Evaluation of Results 

 

While training the base models, Training accuracy was used as a criterion to judge the 

performance of the models. A very deep network with many layers, like Resnet50 was 

trained over large augmented and non-augmented image datasets. Due to the time 

constraint, remote nature of dissertation and lack of availability of local GPUs, very 

high Validation score was not possible to attain during model training for creating base 

models. However, very high training accuracies, in 90s, were attained over all the 

model configurations. This does make the base models less generalizable, however, 

models were able to learn enough features that can be transferred to a target task at a 

later stage.  

 

For target task of land classification, using single band images from six bands (B02, 

B03, B04, B05, B08, and B12), F1 scores and overall accuracies were used to judge 

the model performances. Total twenty-four models were created over six training sets 

belonging to six bands. None of the model created achieved accuracies higher than 

66%, though individual F1 scores of certain classes like Sea Lake and Residential did 

attained values in initial 90s. 

 

Data augmentation done using Keras ImageDataGenerator created a huge difference in 

base model’s capability to transfer general or relatable features. Dataset sizes were 
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increased to five folds using just geometric transformations as augmentation 

techniques. Augmented base models were the best performers for every band in both 

RGB and Greyscale feature space. Moreover, Greyscale models outperformed the 

RGB base models on every band and hence this is in line with the research question 

posed at the start – Can a CNN model, pre-trained on single channel (grey-scale) 

images, improve the image classification accuracy of multispectral images, in 

comparison to a comparable model trained on colour images. The answer to this 

question is yes, it can improve the classification accuracies. The major problem with 

these results is that the extent of positive impact of using single channel greyscale 

trained model to transfer features is yet to be fully understood due to time constraints 

and lack of computational resources available locally.  

5.3 Strengths of Results  

 

There are several strengths of these results. Firstly, it is observed during the study that 

the size of networks used does impact the final results. Using deep networks like 

Resnet50 and getting positive results has opened up the possibilities of using still 

larger networks to train far more generalizable single channel base models. On the 

same lines, since increasing the dataset size using image augmentations has increased 

the final F1 scores and overall and weighted accuracies, this knowledge can be used 

for future augmentation efforts in computer vision problems. More types of 

augmentations and a higher number of image counts in training and validation sets can 

be used expecting a positive outcome. 

 

Further, the results have shown that fine tuning techniques have the ability to change 

the model performance as well as its ability to generalize well and in lesser number of 

epochs. In some cases, it took lesser than 25 epochs to reach the highest possible 

training and validation accuracies without causing overfitting.  

 

Initial results suggest that all six bands that were used for the study have shown better 

performance with single channel base models, thus it can be generalized to a greater 

number of multispectral and hyperspectral bands. Also, since using greyscale as a 



 

 66 

single channel gave great performance, other single channels can also be used to train 

the base models.  

5.4 Limitations of Results  

 

Higher computational power or easy availability of local GPUs and clusters could have 

given much more generalizable base models. Due to lack of time and computational 

resources, it was difficult to train the base models with still larger image databases, and 

more hyperparameter tunings. This would have given better end results. Online 

resources were used to supplement the computational power but due to a limitation of 

GPU runtime on such portals, long running models with larger number of parameters 

could not be tested. Reesnet50 was used mainly because of its faster speed in training 

over large image databases, other deep networks like Inception networks, VGG and 

GoogleNet could have also been tested with better local cluster availability. Also note 

that, a very large network like Resnet50 made training for base models a very difficult 

and lengthy task on personal machines. 

 

Also, if time would have permitted, not just single bands but band combinations like 

shortwave infrared (SWIR 1, SWIR 2, and Red) and Color Infrared (NIR, Red, and 

Green) could have also been tested using available single channel base models. For 

same reasons, the study was conducted only using only six of the available thirteen 

multispectral bands.  
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6 CONCLUSION AND FUTURE WORK 

6.1 Research and Experiment Overview 

 

This research is done to improve the transferability of large computer vision models to 

target domains which work on single or multichannel images and have smaller labelled 

datasets. This research will help in improving deep learning model’s performance in 

fields like Earth Observation and Medical Imagining. The idea was conceived when 

working on multispectral images, the researcher had to use RGB trained models for 

feature transfer instead of one which is more relevant to spectrums involved in the 

problem set. 

 

Originally the datasets that were used are mini-ImageNet and Eurosat datasets.  Mini-

Imagenet is a natural image dataset which consists of 200 classes with 500 images in 

each, while Eurosat is the Remote Sensing image dataset which consists of 10 classes 

with 27,000 images in total.  Actually, Eurosat has two components to it, one is the set 

of RGB images of different land-cover classes, while another one is the dataset of 

multispectral images of same RGB regions, but with .tif extensions. These two RGB 

datasets, Eurosat and mini-Imagenet are fused together to form one large database. 

Greyscale images are extracted from this large database and using them another 

Greyscale database is created. The idea is to use this as a single-channel images 

source. Later on, using both, RGB and Greyscale images, two new datasets were 

created by augmenting the available images, this increased the database size by a 

factor of five. Total classes were 110, with 100 were Imagenet classes while 10 

Eurosat were classes. 

 

This research was done by first creating four models using these four datasets. Same 

architecture or network configurations were used for all the four models. So, at the end 

of this exercise, one model was created on RGB images, another one was created on 

Greyscale images, another on Augmented RGB and yet another on Augmented 

Greyscale datasets. These were treated as base models to transfer features to 

multispectral target tasks.  
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Six bands were extracted from multispectral images consisting of 13 bands each and 

six new datasets of 27,000 images each were created using them. Four base models 

created earlier were used to transfer learned features and patterns to new target 

networks and performance was measured in the land-cover classification task. 

Performance measures like Precision, Recall, F1 Scores, overall weighted Accuracies 

and validation and training loss were used throughout the study.  

 

Results have shown that single channel trained base models are better at transferring 

more relevant features to multispectral problem space like satellite imaging. Whole 

code is written by self, using Python 3.7, Tensorflow2.0 and Keras.  

6.2 Contributions and Impact  

 

Using this knowledge, of single channel trained base models being better at 

transferring features to a multispectral task with smaller labelled datasets than RGB 

trained base models, better remote sensing applications can be developed. Remote 

sensing has many applications in flood detection, coastline detection, urban and rural 

planning, and also in military and scientific research. All these sectors stand benefitted 

from this research. 

6.3 Future work and Recommendations 

 

Using the base models created during the research, similar analysis can be conducted 

on band combinations rather than using single extracted bands. Similarly, more single 

channels can be used to train the base models to test the best transferability among all 

available bands.  

 

Lack of clusters limited the dataset size for creating base models and also the network 

size. More computational resources can be used to train with still large ImageNet 

ILSVRC images in greyscale mode to build a comparable Resnet50 as the standard 

one available in RGB mode. Likewise, more parameter tuning ca be experimented like 

dropout values, activations, different learning and decay rates, training with 
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momentum, different optimizers, different number, and type of hidden layers as well as 

different number of nodes between them. 
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