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Abstract 

Glioblastoma Multiforme (GBM) makes up approximately 45% of all primary brain 

tumours. State of the art treatment at present involves concurrent and adjuvant 

temozolomide (TMZ) with radical radiotherapy which extends median survival from 12.1 

months (radical radiotherapy alone) to 14.6 months according to the study of the 

European Organization for Research and Treatment of Cancer (EORTC) Brain Tumour 

and Radiotherapy Groups and the National Cancer Institute of Canada (NCIC) Clinical 

Trials Group. Meanwhile, National Cancer Registry Ireland presented that GBM 

represents over 40% of all malignant brain tumours and had the worst five-year net 

survival (4%) compared to overall malignant brain cancer (five-year net survival, 19%) 

in Ireland. Long term survival of patients with GBM has not been significantly improved 

in the last 20 years. GBM tumours also have presented high level of resistance to normal 

treatments. Therefore, novel therapies to treat GBM are urgently needed. This study 

aimed to investigate efficient therapeutic methods by combining novel interventions, 

including cold atmospheric plasma (CAP), gold nanoparticles (AuNPs) and specific 

chemotherapeutic compounds to overcome the barriers of GBM treatment. Over the past 

decade CAP has emerged as a novel approach in health care area, especially cancer 

therapy. CAP generates chemically active species such as reactive oxygen species (ROS) 

and reactive nitrogen species (RNS) and has been demonstrated to act in synergy with a 

selection of traditional chemotherapeutic compounds which could reduce the effective 

concentrations of drugs needed at the tumour and may allow for targeted toxicity at sites 

exposed to the plasma field. AuNPs, well known as biocompatible drug delivery and 

diagnosis agents for cancer therapy, have been demonstrated to have synergistic anti-

cancer effects in combination with CAP treatment. 

In this project, for the first time, we investigated and described the detailed mechanism 
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behind the synergistic anti-cancer effects between AuNPs and CAP treatment. Chapter 2 

and Chapter 3 demonstrated that low dose treatment of CAP treatment was capable of 

promoting the uptake of AuNPs into glioblastoma U373MG cells via stimulated 

membrane repair clathrin-dependent endocytosis. The intracellular accumulation of 

AuNPs was tracked using atomic absorbance spectrometry (AAS) and simulated with 

numerical modelling to identify the enhanced uptake routine. AuNPs were tracked into 

early endosomes, late endosomes and finally lysosomes using specific fluorescent probes 

and confocal microscope. The lipid oxidation of cancer cells induced by CAP treatment 

was confirmed by various methods, including confocal microscopy, Thiobarbituric Acid 

Reactive Substances (TBARS) assay and flow cytometry. Meanwhile, the related 

endocytosis pathway was determined to be clathrin dependent using multiple clathrin and 

caveola specific inhibitors and clathrin siRNA.   

In Chapter 4, we performed the screening of 47 prodrug candidates for their cytotoxicity 

against U373MG cells in combination with CAP treatment. The selection of 

chemotherapeutic compounds provided by collaborators have been tested to determine 

dose response curves with or without CAP treatment using Alamar Blue assay, thus, to 

characterise their synergistic potential in combination with CAP. Two leading candidates 

which showed significant cytotoxicity with CAP, have been identified from 47 

compounds. Furthermore, the mechanism behind the synergistic cytotoxicity between 

one of the leading candidates, JW-04-061, and CAP treatment has been investigated. It 

has been demonstrated that reactive species, especially short-lived species, generated in 

culture medium may play a main role in the oxidation and activation of the prodrug during 

CAP treatment. 
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CHAPTER 1. INTRODUCTION 

Part of this introduction has been published (Book Chapter). 

He, Z., Liu, K., Byrne, H.J., Cullen, P.J., Tian, F. and Curtin, J.F., 2019. Combination 

Strategies for Targeted Delivery of Nanoparticles for Cancer Therapy. In Applications 

of Targeted Nano Drugs and Delivery Systems (pp. 191-219). Elsevier.  

DOI: 10.1016/B978-0-12-814029-1.00008-9 

See Appendix I
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1.1  Brain Cancer 

As technology improves, the survival rates of certain types of cancer, such as lung and 

breast cancer, have changed dramatically during recent years. However, only small 

improvements were made in brain cancer treatment. Brain cancers are divided in two 

types, primary brain cancer and secondary brain cancer (Young et al., 2015). Primary 

brain cancer originates in brain cells, forms in the central nervous system (CNS) and 

usually does not metastasize to the outside of the CNS. Secondary brain malignancy is 

formed by tumours cells metastasized from outside of CNS, such as lung cancer and 

breast cancer (Young et al., 2015). Although secondary brain cancer is more common, 

primary brain cancer is more deadly, which is the third leading cause of cancer deaths in 

age 15-34 adults and the most common cause of neoplasm deaths in children (Mladenov 

et al., 2007). Primary brain cancer can be classified as gliomas and nongliomas according 

to the origination (as described in Table 1 below). 

Table 1. Main types of primary brain cancer 

Gliomas Astrocytomas, Oligodendrogliomas, Ependymomas 

Nongliomas  Menigiomas, Medulloblastomas 

 

Gliomas are developed from glial cells, including astrocytes, oligodendrocytes and 

ependymal cells or mixed of the above (Parsons et al., 2008). Glial cells are non-neuronal 

cells in CNS and the peripheral nervous system which mainly provide protection and 

support for neurons (Jessen and Mirsky, 1980). Most common types of nongliomas 

include meningiomas, tumours that are developed in the meninges (Marta, Correa and 

Teixeira, 2011), and medulloblastomas, primitive neuroectodermal tumour that is raised 

in the cerebellum and commonly represents in childhood brain tumours (Schroeder and 

Gururangan, 2014). 
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Astrocytomas are the most common type (representing approximately 50%) in the above 

primary brain cancer. According to the World Health Organization (WHO), astrocytomas 

are classified into 4 types, including pilocytic astrocytoma (Grade 1), low-grade 

astrocytoma (Grade 2), anaplastic astrocytoma (Grade 3), glioblastoma (Grade 4) (Young 

et al., 2015). Grade 1 pilocytic astrocytomas glow slowing and typically can be cured by 

surgical excision (Louis et al., 2016). Low-grade astrocytomas, also known as diffuse 

astrocytomas, have higher possibility to recur and may further progress to higher grade 

astrocytomas, thus regarded as malignant tumours (Louis et al., 2016).  WHO grade 3 

and 4 astrocytomas grow much faster compared to the previous tumours mentioned above, 

when surgical excision is more difficult to be performed completely (Young et al., 2015). 

Thus, radiation therapy and chemotherapy are typically applied to control the progress of 

malignancy and extend survival. 

1.2  Glioblastoma Multiforme 

Glioblastoma, also known as glioblastoma multiforme (GBM), is the most invasive brain 

malignancy and the most common primary brain cancer among the previous tumours 

mentioned in section 1.1, accounts for 60-75% of astrocytic tumours and 15% of 

intracranial tumours in adults (Young et al., 2015). The term glioblastoma multiforme 

was first defined by Harvey Cushing and Percival Bailey in 1926, as the name implies, 

GBM is developed from glial cells, and presents highly various morphologies, as well as 

variable levels of cellular and nuclear polymorphism, which also is able to induce 

multiple symptoms, including cysts, haemorrhage and necrosis (Møller et al., 2013). 

Even “multiforme” is currently not used in WHO classification, GBM is still commonly 

accepted in the literature as abbreviation synonymous with glioblastoma. 

The most common symptoms of GBM include changes to personality, headaches, 

localized neurological problems, memory loss, mood or concentration, nausea, seizure 
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and vomiting (Alifieris and Trafalis, 2015). However, the type of symptoms induced has 

no specificity and mainly depends on the location of the neoplasm. Computed 

tomography (CT), Magnetic resonance imaging (MRI), Magnetic resonance spectroscopy 

(MRS) are commonly used to view suspected GBM. Craniotomy with tumour resection, 

stereotactic biopsy and pathology are typically required for definitive diagnosis. 

Furthermore, based on histological confirmation and genetic analysis, GBM can be 

divided into primary and secondary subtype. Primary GBM directly originates from glial 

cells (de novo), and develops faster, presenting much worse prognosis compared to 

secondary GBM. Secondary GBM is progressed from lower-grade (WHO Grade 2) 

astrocytoma which has been previously clinical identified. It should be noted that, as 

mentioned in section 1.1, all primary and secondary subtypes of GBM originate in brain 

cells, which are all primary brain cancer. Due to the difference between primary and 

secondary GBM, it is crucial to distinguish these two subtypes, especially identify 

primary glioblastoma to determine tumour therapy and prognosis. Although, primary and 

secondary GBM cannot be differentiate morphologically, clinical statistic presented that 

primary GBM was frequently diagnosed in patients older than 60 years, whereas 

secondary GBM more commonly occurred in patients younger than 45 years. The genetic 

make-up of primary and secondary GBM can be distinguished. The genetic alternation in 

primary GBM more commonly (40-50%) presents as over expression of Epidermal 

Growth Factor Receptor (EGFR), whereas tumour suppressor protein (TP53) mutations 

were usually (~60%) identified in secondary GBM (Riemenschneider et al., 2010).  

However, the current common chemotherapy agents showed little efficacy in the 

treatment of primary GBM which develops faster and has worse prognosis compared to 

secondary GBM (Clarke, Butowski and Chang, 2010; Tabunoki et al., 2012). Therefore, 

efficient novel therapy for primary GBM is urgently needed. The following sections will 
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focus on primary GBM treatment. U373MG glioma cell line was used for investigation 

of the treatment against primary GBM in this project. In the following sections, the term 

‘GBM’ was used to present primary GBM.  

Surgery typically is applied after diagnosis of GBM to remove the tumour as much as 

possible, followed by aggressive treatment, including radiotherapy or chemotherapy or 

combining of them (Gallego, 2015). TMZ is commonly used in chemotherapy, which is 

considered having relatively efficient killing effect to GBM cells compared with other 

drugs, therefore is used in standard treatment following maximal surgical resection (75 

mg/m2 TMZ daily, together with 60 Gy radiotherapy for 6 weeks) (Hart et al., 2013; 

Khosla, 2016). However, even when aggressive treatment was applied after operation, 

the neoplasm usually will recur and the prognosis is very dismal (Gallego, 2015). The 

length of survival is 12-15 month following diagnosis in most cases, and only less than 

3%-5% of patients survived longer than 5 years. The median survival without treatment 

is merely 3-4 months (Omuro and DeAngelis, 2013; Gallego, 2015). 

The largest cause of treatment failure is the strong resistance of GBM tumours to 

conventional therapies, including radiotherapy and chemotherapy. Tumour hypoxia is 

that tumour cells alter their metabolism to survival under oxygen deficit situation. As 

tumours grow, the insufficient blood supply and rapid proliferating of tumour cells limit 

the oxygen diffusing further into core area of the tumour. Therefore, to survive and 

proliferate under low oxygen condition, those hypoxic tumour cells dramatically changed 

their signalling pathway and following behaviour, which can lead to the resistance to 

radiotherapy compared to well-oxygenated cells (Gilkes, Semenza and Wirtz, 2014). 

Hypoxia is well known to exhibit in portions of GBM tumours. Spontaneous necrosis was 

frequently found in GBM tumours and considered as result of hypoxia (Brat et al., 2004). 

In 1994, Rampling et al. proved that hypoxic regions are present in glioblastomas via 
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directly measuring the oxygen level (varies from 9.5% to 68.5%, pO2) in tumours from 

10 patients (Rampling et al., 1994). Oxygen plays the key role in the cytotoxicity of 

ionizing radiation. The free electron of the free radical in DNA caused by ionizing 

radiation, can aggressively react with oxygen then causes covalent modification of DNA 

leading to damage of tumour cells and alteration of the sensitivity of tumour cells to other 

DNA damaging agents.  

However, under hypoxic conditions, the radical in DNA can be ‘neutralized’ when 

obtained hydrogen from non-protein sulfhydryls in tumour cells, which gives 

glioblastomas strong resistance to ionizing radiation (Brown, 1999). The alteration of 

signalling pathways in the absence of oxygen, such as hypoxia-inducible factor (HIF-1) 

and following pathways, also have been indicated that induce resistance to radiotherapy. 

At present, TMZ has been approved by the US Food and Drug Administration (FDA) and 

used as standard chemotherapy in GBM treatment. TMZ can alkylate the guanine base of 

DNA, thus leading to cell damage (Figure 1). Meanwhile, this alkylating agent can be 

effectively transported through the blood brain barrier (BBB) and get into GBM cells. As 

seen in Figure 1, TMZ acts a prodrug which is stable at acidic pH but labile above pH 7 

and spontaneously breaks down to form monomethyl triazene 5-(3-methyltriazen-1-yl)- 

imidazole-4-carboxamide (MTIC) (Zhang et al., 2011). MTIC then reacts with water to 

release 5-aminoimidazole-4-carboxamide (AIC) and the highly reactive 

methyldiazonium cation which methylates DNA (Tisdale, 1987; Zhang et al., 2011). 

Although the extracellular pH level in the environment of cancer cells is lower than that 

around normal cells whereas the acidic products/protons generated during rapid 

metabolism of cancer cells are actively transported to the extracellular space via Na+/H+ 

exchangers, Na+HCO3– transporters, Cl–/HCO3– exchangers and monocarboxylate 

transporters (MCT), etc. (Hjelmeland et al., 2011). The average intracellular pH level of 
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brain tumours was found to be 7.31, slightly higher than normal brain cells (7.24) (Hao, 

Xu and Li, 2018). In this case, GBM cells possess a more alkaline pH compared with 

healthy tissue, therefore favouring TMZ activation preferentially within tumour tissue 

DNA (Rottenberg et al., 1984; Zhang et al., 2011).  

 
Figure 1. Structure and activation route of prodrug temozolomide (Zhang et al., 2011). 

However, it has been demonstrated that glioblastomas also present resistance to TMZ 

treatment (Mirimanoff et al., 2007; Hegi et al., 2008). The enzyme, methylguanine 

methyltransferase (MGMT), can attach to damaged DNA and obtain the alkyl group from 

guanine. The alkylated MGMT then will be detached and finally be degraded via 

ubiquitin/proteasomal system (Zhang et al., 2011). The expression level of MGMT is 

increased in GBM cells, thus resulting in resistance to TMZ treatment. Meanwhile, it has 

been found that TMZ has little or no effect on prognosis in up to half GBM 

(FERNANDES et al., 2017). 

Various radiosensitizers, such as oxygen diffusion-enhancing compound trans sodium 

crocetinate, have been investigated in preclinical and clinical trials with limited success 

(Gainer et al., 2017). More powerful techniques, molecular targeted therapy (such as HIF-

1 inhibitors) and hypoxia-selective drugs, etc. were investigated to beat glioblastomas 

(HARADA, 2011). However, the limitations of conventional treatment in GMB therapy 
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haven’t been overcome and novel efficient therapeutic methods with low side effects are 

still urgently needed. 

1.3  Plasma 

Plasma is one of the four fundamental states of matter which is a form of ionized gas, 

usually, and accounts for most of the known Universe’s matter. Its early stage of 

biomedical applications is focus on the heat and high temperature of thermal plasma for 

the purpose of tissue removal, sterilization, and cauterization (Fridman et al., 2008). 

1.3.1 Clinical Application of Hot Plasmas 

Hot plasmas, also known as high temperature/thermal plasmas, have been widely used 

for sterilization, blood coagulation, tissue ablation and tumour therapy, etc. The high 

temperature and kinetic energy generated by thermal plasmas device are utilized to 

coagulate, cut or ablate tissue surfaces (Heinlin et al., 2010; Gibson and Suslov, 2012). 

In the mid-1970s, Glover et al. first reported a convenient thermal plasma device with a 

nozzle that was capable of generating high power density of plasma flow by a low gas 

flow, which was able to both coagulate and cut tissue and showed that plasma scalpel is 

effective in cauterizing blood vessels and causes less damage compared with 

steel/electrosurgical scalpels (Link, Incropera and Glover, 1976). This design rapidly 

gained ground in surgical operation and has been developed further to invent the 

PlasmaJet system. 

The PlasmaJet system has been used in clinical surgery since 2004, using small scale, 

high-thermal and high-kinetic argon plasma jet to effectively ablate, coagulate a tissue 

surface (Roman et al., 2013). The PlasmaJet causes slight thermal tissue damage (seldom 

more than 600 μm) with the formation of a filmy coagulum (Deb et al., 2010). It has 

shown safety and high performance in plastic surgery, hepatic surgery, gastroenterology, 

orthopedics and thoracic surgery (Nezhat and Kho, 2009). More recently, PlasmaJet and 
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other thermal plasma devices have been investigated as safe and effective modalities for 

treatment of tumours which are untreatable by surgery (Sagawa et al., 2003; Roman et 

al., 2013). For instance, using PlasmaJet in ablation of endometrioma showed 

encouraging recurrence and pregnancy rates compared with the best reported results of 

endometrioma cystectomy, may be due to the fact that the surgeon can select appropriate 

degree of completeness of treatment and keep enough normal endometrial tissues by the 

plasma operation (Roman et al., 2013). Meanwhile, electrically neutral thermal argon 

plasma technology has been demonstrated that can maximize cancer cell killing effects 

and decrease tumour burden in several cases of epithelial ovarian cancer (Renaud and 

Sebastianelli, 2013). In gynecological oncology cases, PlasmaJet also is used to minimize 

the damage to the underlying tissue when removing secondary tumour from the sensitive 

or vital structures, such as ureter, bowel and liver (Madhuri et al., 2010). 

1.3.2 Cold Atmospheric Plasma 

Technological advances have allowed researchers to generate cold atmospheric plasma 

which possesses ambient temperatures and approximately 1.0 atmospheric pressure, 

compared to hot plasma. Even though hot and cold plasma are both generated by adding 

energy to a gas, releasing electrons from nuclei of atoms, electrons in cold plasma can be 

at several million K whereas the nucleus of atoms are at room temperature 

(thermodynamic disequilibrium state).  These are known as cold (or non-thermal/low 

temperature) atmospheric plasmas. The application of cold atmospheric plasma allows 

direct treatment of cells or live tissues with ionised gases without risking thermal injury. 

Cold atmospheric plasma (CAP) has been investigated as a promising technique for 

therapies in various fields. Known biomedical applications of CAP include cancer 

therapy (Keidar et al., 2011), sterilization (Zelzer et al., 2012), wound healing (Isbary et 

al., 2012) blood coagulation (Kalghatgi et al., 2007) and viral destruction (Shi et al., 
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2012). CAP has also been investigated as a novel method to enhance cell transfection 

(Leduc et al., 2009) and promote cell proliferation (Kalghatgi et al., 2010). 

CAP generates a unique physical and chemical environment activating short- and long-

lived reactive nitrogen species (RNS, e.g.  peroxinitrite (ONOO-), nitric oxide radicals 

(NO)) and reactive oxygen species (ROS, e.g. hydroxyl radicals (OH), oxygen atoms (O), 

oxygen negative ions (O2
-)), photons as well as generation of heat, pressure gradients, 

charged particles, and electrostatic and electromagnetic fields (Stoffels, Kieft and Sladek, 

2003; Kong, Keidar and Ostrikov, 2011; Babington et al., 2015), many of which are 

known to induce  biological effects. For example, peroxinitrite (ONOO-), which also 

occurs naturally (Babington et al., 2015), can initiate lipid peroxidation reactions and help 

to protect against infection during inflammation (Patel et al., 1999) whereas ROS can 

cause damage to DNA and induce apoptosis by activating the cell death receptors in the 

TNF/NGF-family (Stoffels, Sakiyama and Graves, 2008). These high flux of ROS also 

have significant effect in inactivating fungi, virus and bacteria (Fridman et al., 2008; 

Kong et al., 2009; Park et al., 2014). 

Figure 2. The dielectric barrier discharge (DBD) plasma source (Lu et al., 2014). 

CAP can be generated by several different principles such as dielectric barrier discharge 

(DBD) plasma sources, atmospheric pressure plasma jet and corona discharge plasma 

sources (Weltmann et al., 2008; Hähnel, Von Woedtke and Weltmann, 2010; Ehlbeck et 

al., 2011; Wu et al., 2011; Park et al., 2012; Haertel et al., 2014; Babington et al., 2015).  
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Different gases such as air, argon, helium, oxygen and nitrogen can be used which alter 

the physical and chemical properties of the CAP (Babington et al., 2015). Cold 

atmospheric plasmas can be divided into three types in accordance with the interaction 

with target cells / tissues: direct plasmas, indirect plasmas and hybrid plasmas (Kong et 

al., 2009). 

The dielectric barrier discharge (DBD) plasma source is known as the most widely used 

direct plasma. The electrical discharge is generated between two electrodes separated by 

a dielectric barrier. The dielectric cannot pass direct current and prevents the rise of arcing 

after breakdown (Kuchenbecker et al., 2009). The prototype DIT-120, DBD plasma 

source used in this project, consists of two circular aluminium plate electrodes over 

perspex dielectric layers, a high voltage transformer and a voltage variac (Figure 2). The 

applied voltage to the electrode is obtained from the voltage transformer (Lu et al., 2014; 

Pankaj et al., 2014). The two electrodes are separated by a dielectric barrier and the 

discharge is generated between these two electrodes to ionize gas and create plasma 

(Babington et al., 2015). The treated sample has direct contact with all agents in DBD. 

The main difference between indirect plasmas and direct plasma is that the plasmas 

generated between two electrodes are then mixed into a gas flow to treat samples remotely 

in indirect plasmas devices. This technology is also called the atmospheric pressure 

plasma jet, Figure 3 (Cullen and Milosavljević, 2015), and has developed various devices 

from large ‘plasma torches’ to very narrow ‘micro plasma jet’ (Laroussi, 2002; Kieft, 

Laan and Stoffels, 2004; Sladek and Stoffels, 2005; H. W. Lee et al., 2009; Kong et al., 

2009; Babington et al., 2015) . Corona discharge plasma source is also known as ‘barrier 

coronal discharges (BCD)’, BCD introduce a grounded wire mesh electrode and combine 

the current-free property of indirect plasmas and the production technique of direct 

plasmas (Morfill et al., 2009). As seen in Figure 4, the BCD device can be safely applied 
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on human body for disinfection. 

Figure 3. kINPen® MEDTM plasma source.  

Photograph of kINPen® MEDTM plasma source (right) with the schematic of the entire 

system (left). It’s a commercially available plasma jet with pure argon as a carrier gas 

(Cullen and Milosavljević, 2015). 

Figure 4. ‘HandPlaSter’, a prototype of corona discharge plasma source (Morfill et al., 

2009). 

Cold atmospheric plasmas have been proved to have various effects on mammalian cells, 

such as stimulating proliferation or inducing proliferation arrest, necrosis and apoptosis. 

All these responses are dependent on the type and dose of CAP and the type of cell being 
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treated (Kim et al., 2010; Kalghatgi et al., 2011). At present, it is promising that there are 

a great variety of CAP generating prototypes and commercial cold atmospheric plasma 

devices. With different devices, by alternation of gas types, voltage, frequent and current 

of energy input, etc., the dose and location of applied CAP can be precisely and easily 

controlled to induce specific reaction to targeted area (Adhikari et al., 2020). Most 

importantly, cancer cells are generally sensitive to low doses of CAP and can 

subsequently undergo apoptosis. These doses often do not produce any measurable 

cytotoxic effect on corresponding normal cells (Ahn et al., 2011; Keidar et al., 2011; Siu 

et al., 2015). As described above, the wide range and high amounts of reactive oxygen 

species and reactive nitrogen species (ROS/RNS) generated by plasma were proposed to 

play the major role in the selective cytotoxicity (Walk et al., 2013). It also showed that 

CAP can likely induce cancer cells to produce more of their own ROS/RNS (Keidar et 

al., 2011). However, the exact mechanism of CAP is not fully understood. Previous 

research has proposed several mechanisms for the selective toxicity of cold atmospheric 

plasmas, including membrane disruption, mitochondrial dysfunction, DNA damage, 

deregulation of signal pathways, protein up/down regulation, cell cycle arrest and finally 

apoptosis/necrosis/ autophagy. 

CAP have been demonstrated to induce the S-nitrosylation of  SH-groups in proteins and 

thereby cause inactivation of proteins function (Ishaq, Evans and Ostrikov, 2014). In 

addition, ROS can cause lipid peroxidation by interacting with unsaturated fatty acid. It 

has been found that CAP treatment could cause the loss of cancer cell membrane integrity, 

induce the leakage of cellular content (Siu et al., 2015) and promote the transmission of 

ROS/RNS into cells by  S-nitrosylation, lipid peroxidation and creating rifts in the 

membrane (Halliwell, 1991; Rao, Hale and Ormrod, 1995; Bestwick et al., 2001; 

Babington et al., 2015). Nina Recek et. al have studied the differential effects of CAP on 
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cell membrane of normal human astrocytes and human glioblastoma cells by atomic force 

microscopy (Recek et al., 2015). CAP didn’t harm E6/E7 cells but only caused temporary 

disappearance of microvilli structure on cell membrane, whereas plasma treatment  

caused selective apoptotic effect on the GBM cells along with granular elevations and 

bigger clusters were observed on the surface of GBM cells (Recek et al., 2015). These 

different effects on cell membrane may indicate the potential mechanisms of selective 

toxicity of CAP (Recek et al., 2015). In the meantime, the cold atmospheric plasma 

treatment has been shown to cause enhanced mitochondrial transmembrane permeability 

and possible release of proapoptotic factors by depolarizing the mitochondrial membrane 

potential via generation of free radicals. And the plasma-induced cell apoptosis has been 

proved to be mediated partially by mitochondria-dependent caspase cascade (Ahn et al., 

2011). 

After CAP treatment, it was found that cellular DNA was damaged with increasing 

intracellular levels of ROS (Babington et al., 2015). In addition, plasma treatment has 

been proved to selectively induce the deregulation of several genes in cancer cells. These 

genes are intimately associated with multiple pathways, including cell adhesion, cell 

proliferation, growth regulation and cell death. Some of these pathways are involved in 

cancer processes and their deregulation may be the potential reason of tumour ablation 

while treating CAP. Notably, the genes related with oxidative stress and apoptotic 

pathways were significantly deregulated in tumour cells by plasma treatment, which 

could potentially help explain the plasma-induced apoptosis mechanism (Keidar et al., 

2011). 

At present stage, the short-lived and long-lived reactive species generated by cold 

atmospheric plasma are considered playing key role in selective cytotoxicity to cancer 

cells. In the following section, the interaction between reactive species and tumour cells 
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will be detailed introduced. 

1.4 The Intracellular Reactive Species and Signalling Pathway 

Affected by CAP 

Reactive oxygen species (ROS) are a group of highly reactive molecules that have been 

identified as important regulators of many signaling pathway. Moderate levels of ROS 

are generated during normal cellular metabolism progress and participate in cellular 

signalling and several cellular functions by reversibly oxidizing/modifying protein 

structure (Ray, Huang and Tsuji, 2012; Perillo et al., 2020). Meanwhile, uncontrolled 

ROS have long been known as initiating tumourigenesis, which can cause oxidative 

damage to lipid, proteins and DNA or disrupt oxidative signalling to promote cancer-

causing mutations and cell proliferation (Perillo et al., 2020). Some epidemiological 

evidence exists for this, including the observation that a diet high in natural anti-oxidants 

is generally associated with lower incidence of various cancers. Thereby, antioxidant food 

and supplements have been considered as weapon to prevent cancer for a long term. 

As understanding deepens, ROS were found to be a double-edged sword to cancer cells. 

Evidence shows that higher level of ROS were generated in cancer cells, compared to 

normal cells, due to higher metabolic activities and more rapid proliferation of 

transformed cells (Schumacker, 2006). Hence, the cellular antioxidant system works 

under heavier load to protect tumour cells from oxidative stress, suggesting it may be 

possible to selectively eliminate them with inducers of tumour ROS (Trachootham, 

Alexandre and Huang, 2009). 

One hypothesis for the increased production of ROS in tumour cells is the difference in 

metabolism between normal and cancer cells. Cancer cells require more biomass 

synthesis per unit time due to the unregulated and relatively rapid cell growth and 

proliferation (Harris et al., 2015). It has been found a phenomenon called “the Warburg 
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effect” that cancer cells rely primarily on glycolysis and lactic acid fermentation to 

generate energy, whereas most other nucleated cells generate adenosine triphosphate 

(ATP) by oxidative phosphorylation (Vander Heiden, Cantley and Thompson, 2009). To 

deal with higher intracellular ROS levels, tumour cells synthesise nicotinamide adenine 

dinucleotide phosphate (NADPH). NADPH is utilized as a reducing equivalent to reduce 

thioredoxins (TRX), peptides that in turn reduce oxidized proteins such as peroxiredoxins, 

a family of hydrogen peroxide-scavenging enzymes (Sabharwal and Schumacker, 2014). 

NADPH is also involved in the generation of the antioxidant glutathione (GSH), an 

important tripeptide in antioxidant systems (Harris et al., 2015). Despite the increased 

expression of antioxidant systems, cancer cells generally have a higher baseline 

intracellular ROS which strains the antioxidant capacity of tumour cells to deal with 

additional oxidative stressors (Harris et al., 2015). With the excessive intracellular levels 

of ROS, lipids, proteins and DNA can be damaged in cancer cells, leading to lipid 

peroxidation-initiated oxidative stress, inhibition of phosphatases, alternation of 

cytoplasmic and nuclear signaling, disruption of epigenetic modulators, etc., and 

eventually apoptosis, autophagy or ferroptosis of cancer cells (Perillo et al., 2020). 

Therefore, the reactive species generated by CAP can be selective toxic to tumour cells 

which can be exploited for efficient, specific and low side effects anticancer strategies. It 

has been shown that CAP treatment regulates possible signalling cascades implicated in 

cancer cell death, such as stress kinases pathways and growth signalling pathways, etc. 

Meanwhile, it also has been found that the interaction of CAP with proteins and 

interrupting of cell cycle play important roles in CAP-induced selective cell death, as 

detailed below. 

1.4.1 Stress Kinase Pathways 

Mitogen-activated protein kinase (MAPK or MAP kinase) is involved in the regulation 
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of various cellular functions, including apoptosis, differentiation, gene expression, 

mitosis and proliferation. c-Jun N-terminal kinase (JNK) is also involved in multiple 

pathways which are responsive to apoptosis, differentiation and stress stimulation, 

including ROS, ultraviolet radiation, heat and osmotic shock. (Tobiume et al., 2001).  

Elevated accumulation of intracellular ROS was found to activate p38α MAPK/JNK by 

the activity of Apoptosis signalling regulating kinase 1 (ASK1) (Elenitoba-Johnson et al., 

2003; S. P. Li et al., 2003). ASK1 is one of the regulators of pathways involving p38α 

MAPK and JNK. Then p38α MAPK results in the activation of several tumour 

suppressors, including protein 53 (P53) (Bulavin and Fornace, 2004), Cdc25 

phosphatases (Manke et al., 2005) and pro-apoptotic members of B-cell lymphoma 2 

(Bcl2) family (Ishaq, Evans and Ostrikov, 2014), leading to caspases-dependent 

apoptosis of cancer cells (Figure 5). Inhibitory members of Bcl-2 family are capable of 

inhibiting the release of cytochrome c from mitochondria and in turn lead to the inhibition 

of caspases in the apoptosis pathway (Küpper et al., 2014). P53 is able to downregulate 

the production of anti-apoptotic Bcl-2 members  promote phosphorylation of the 

inhibitory Bcl-2, then stimulate caspases pathway (Ling et al., 2002) (Figure 5). 

Phosphorylation of inhibitory Bcl-2 members has been observed after CAP treatment in 

a study using Hela and lung cancer cells (Ahn et al., 2014).  

Figure 5. CAP affected stress kinase pathway.  

Excessive intracellular ROS generated by plasma can stimulate TNF pathway and inhibit 

CBR1 and GSTP1, leading to the activation of downstream JNK or p38α MAPK, which 

finally induces caspase-dependent tumour cell apoptosis. 

Similarly, the signalling cascade of the stress-activated protein kinase JNK is important 
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and involved in cellular environment adaptiveness and several physiological processes, 

including inflammation, proliferation and apoptosis (Ishaq, Evans and Ostrikov, 2014). 

The augmented level of intracellular ROS also has been indicated that may activate JNKs 

by blocking stress-response proteins such as Glutathione S-transferase pi 1 (GSTP1) and 

carbonyl reductase 1 (CBR1), leading to tumour cells suppression and growth arrest by 

stabilizing p53 and stimulating the caspase cascade (Ishaq, Evans and Ostrikov, 2014) 

(Figure 5). There’s evidence that pre-treatment of HeLa cells with antioxidants, JNK and 

p38 inhibitors, and JNK and p38 siRNA inhibits mitochondrial membrane depolarization 

and reduced plasma-induced cancer cell death (Ahn et al., 2014).  

The exact mechanisms for activation of JNK and P38 is not fully clear, although in a 

study using melanoma cells, upregulation of TNFR1 and TNFα was observed when 

incubated with CAP. This was accompanied by an increase in active caspases and could 

be reversed using TNFR1 blocking antibodies. Interestingly, increased expression of 

TNFR1 and TNFα was only observed in malignant melanoma cells and not in 

melanocytes (Ishaq et al., 2014). 

1.4.2 Growth Signalling Pathways 

CAP can directly interact with growth signalling pathways. For example, the 21-kDa 

protein (p21), known as a tumour suppressor encoded by gene WAF1/CIP1, was found 

to inhibit the activities of cyclin-dependent kinase which is required for progression of 

the cell cycle (Wade Harper et al., 1993). The expression of p21 provided another 

pathway to inhibit tumour growth whilst normal p53 function is lost in half of all tumours. 

It has been found that excessive level of intracellular ROS induces the expression of p21 

as a consequence of oxidative damage, which is independent of p53 (Russo et al., 1995). 

Secondary GBM often shows p53 mutation whereas primary GBM mainly contain EGFR 

amplification as the principal mutation and rarely present p53 genetic alteration 
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(Watanabe et al., 1996). The EGFRvIII, a ligand-independent constitutively active 

mutant of EGFR which is often associated in primary GBM, is keeping activating the 

phosphatidylinositol 3-kinase (PI3K)/v-akt murine thymoma viral oncogene homolog 

(AKT) signaling pathway, thus promotes the survival of primary GBM cells (Li et al., 

2004; Tabunoki et al., 2012). PI3K/AKT pathway is known as a oncogenic signalling 

disturbed in many human tumours, which plays an important role in tumour development 

and affect the response of cancer cells to tumour treatment (Fresno Vara et al., 2004). 

PI3K binds to the growth factor receptors on cell membrane while the receptor is 

activated, and then converted to phosphatidylinositol-3,4,5-trisphosphate (PIP3). PIP3 

induces the activation of several signalling proteins, including PKB/AKT, subsequently 

leading to survival, growth and proliferation of cells via various signalling pathways 

(Fresno Vara et al., 2004). AKT phosphorylates and inhibits p21 by sequestering it in the 

cytoplasm (Zhou et al., 2001). Therefore, excessive intracellular ROS generated by 

plasma can potentially activate p21, counteract the PI3K/AKT pathway and control 

tumour cell growth (Ishaq, Evans and Ostrikov, 2014) (Figure 6).  

Figure 6. Cold plasma affected growth signalling pathway.  

The induced generation of ROS can counteract PI3K/AKT pathway and induce growth 

arrest of cancer cells via activation of p21, PTEN and INK4a/ARF. 

Intracellular ROS is also capable of inhibiting PI3K/AKT by activating several other 

tumour suppressors, including phosphatase and tensin homolog (PTEN) and INK4a/ARF 

(Ishaq, Evans and Ostrikov, 2014). PTEN downregulates the level of PIP3 by 

dephosphorylating it and inhibits the phosphorylation/activity of AKT(Stambolic et al., 



27 

 

1998). INK4a/ARF encodes two proteins p16 and p14 respectively, which are required 

for the activation of PTEN (Maehama and Dixon, 1999; Uhrbom et al., 2002). 

1.4.3 Protein Interactions 

CAP can directly modify cellular enzymes and structural proteins. For instance, CAP are 

able to enhance lipase activity (Li et al., 2011), inactivate lysozyme in aqueous solution 

(Takai et al., 2012), decrease peroxidase (POD) activity in fruits and vegetables (Pankaj, 

Misra and Cullen, 2013), and inactivate lactate dehydrogenase (LDH) in the phosphate 

buffer solution (PBS) (Zhang et al., 2015). The changes of protein activity could be 

mainly due to the interaction between protein and the long-lived reactive species (RS) 

generated by CAP. These long-lived RS, such as ozone (O3) and hydrogen peroxide 

(H2O2) can modify many amino acids (Cataldo, 2005)  and denature proteins by oxidizing 

them (Nordberg and Arnér, 2001). Therefore, the modification of amino acids can lead 

to the secondary structure changes or protein-protein cross-linkage. The structure changes 

in the active centre will significantly affect protein activity and protein-protein cross-

linkage may cause the molecular aggregation between proteins and then decrease the 

amount of viable exposed active sites (Zhang et al., 2015). Especially, cysteine was found 

to be the most sensitive of the 20 amino acids to oxidizer. The oxidation of thiol group 

on the cysteine residue can affect the function of proteins, including several antioxidant 

small molecules or enzymes, including thioredoxin, peroxiredoxin and glutathione 

peroxidase, which further reduces the capacity of the antioxidant system of targeted 

cancer cells and facilitates the cytotoxicity of extracellular ROS generated by CAP 

treatment (Yan et al., 2015). 

1.5 Nanoparticles in Cancer Therapy 

Cancer treatment can be affected by a combination of physical, chemical and biological 

technologies. Due to the considerable variation between types and status of tumours and 
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individual patients, the efficiency of cancer therapy is difficult to guarantee and 

commonly associated with side effects and off-target toxicity can be daunting (Chen et 

al., 2017). However, recent technological advances have led to the development of new 

nanotechnological approaches for cancer therapies, which promise high-precision ways 

to beat cancer. Nanotechnology can be combined with chemotherapy to facilitate targeted 

delivery into cancer tissue with high specificity and efficacy (Ferrari, 2005). 

Nanoplatforms allow more accurate, non-invasive and real-time cancer diagnosis and 

monitoring during therapy using magnetic resonance imaging, ultrasonography, etc. 

(Alexis et al., 2008; Baetke, Lammers and Kiessling, 2015; Zaimy et al., 2017) Adjuvant 

nanotechnological devices are used in cancer interventions such as radiotherapy (Wu et 

al., 2016), photodynamic therapy (Clement et al., 2017) and sonodynamic therapy (H. 

Xu et al., 2016), which are capable of achieving considerably higher precision of 

treatment and reduced side effects. After decades of developing the understanding of 

nanotechnology, cancer-related nano-treatments have undergone extensive preclinical 

and clinical-trial studies and shown promising results (Chen et al., 2017). Bregoli et al. 

have summarised the current state of the art of nanomedicines undergoing clinical trial 

and clinically-approved nanomedicines for cancer therapies (Bregoli et al., 2016). 

The traditional definition of a nanotechnological device for cancer treatment is that the 

essential components of the device or the device itself are artificial, and have at least one 

dimension in the 1-100 nm range (Whitesides, 2003; Ferrari, 2005). It has been suggested 

that there should be less emphasis on the exact definition of size which could be extended 

to a range of 1–1,000 nm, and define the approaches to bionanotechnology according to 

their function and purpose (Ferrari, 2005). According this definition, nanotechnologies 

used in cancer treatment include drug-delivery, therapeutic nanovectors, nano-sensitizers, 

diagnostic agents and macroscopic devices with essential nanocomponents such as 
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microarrays/ ‘nanoarrays’, nanocantilever arrays and silicon nanowires for highly-

specific and highly-efficient molecular detection and diagnostic (Ferrari, 2005). The 

recent advances and use of these emerging nanotechnological treatments for cancer is 

briefly reviewed in this section with an emphasis on nanotechnologies used for drug-

delivery.  

The applications of nanoparticles in pharmacology have been investigated over the last 

three decades and a new generation of vehicles for delivery of biomedical compounds 

has emerged (Couvreur and Vauthier, 2006). Nano-scale carriers have been exploited for 

drug delivery, drug targeting, histological engineering, tissue targeting and labelling 

(Kong, Keidar and Ostrikov, 2011). The evolution of nanotechnology enables researchers 

to synthesize a wide variety of nanoparticles with distinct functions and characteristics. 

Such nanomaterials can be functionalised with molecular and imaging probes or bioactive 

compounds which can be conjugated, linked, coated or adsorbed to them, in order to 

implement specific functions (Kong, Keidar and Ostrikov, 2011). 

For cancer therapy, nanoparticles have been demonstrated to provide site-specific 

delivery by incorporation of various targeted ligands to bind to the desired site or utilizing 

stimuli-responsive strategies. Targeted ligands can include various compounds (e.g. 

antibodies, peptides, hormones, receptor ligands, nucleic acids and lipid derivatives) 

(Eckmann et al., 2014). Functionalized nanoparticles are capable of responding to one or 

more physical, chemical, biochemical or environmental stimuli, including osmotic 

pressure, hydrodynamic pressure, vapor pressure, mechanical force, magnetics, 

sonophoresis, iontophoresis, hydration, electricity, pH, salt concentration, hydrolysis, 

enzyme, temperature, light and hypoxia, etc. (Bennet and Kim, 2014) In addition, 

nanocarriers can prolong circulation time and are incapable of diffusing across non-

fenestrated endothelium, thus enabling accumulation in the tumour tissues, resulting in 
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enhanced permeation and retention (EPR). Notably, however, it has been pointed out that 

precise prognosis should be based on comprehensive characterisation of an individual 

tumour, rather than broadly on the EPR effect (Chen et al., 2017). 

The term nanoparticle can encompass a variety of materials, including liposomes, 

nanogels and polymer-based nanoparticles, silicon and silica nanoparticles, dendrimers, 

metal-based nanoparticles, and combinations of the above. This section reviews the recent 

developments of nanoparticles for effective cancer treatment and provides related content 

that can be used for reference. 

1.5.1 Liposomes 

Liposome platforms have attracted considerable attention from the academic and clinical 

arenas and have become one of the most studied biomaterial nanoparticles, due to the fact 

that liposomes can significantly improve the efficiency of a drug by increasing its 

solubility, overcoming resistance, controlling its targeted release and modifying its 

biocompatibility, bioavailability and safety profile. There have been several clinically 

approved liposome-based nanomedicines for cancer therapies, such as Doxil, Myocet, 

Mepact, Dauno Xome, Depocyt, Marqibo and MEPACT (Bregoli et al., 2016). Moreover, 

advances in liposome research have led to the emergence of hundreds, even thousands, 

of different functional liposomes for various tumours, which have been tested in 

preclinical research and clinical trials (Ferrari, 2005; Bregoli et al., 2016). According to 

their number of bilayer membranes, liposomes are grouped into unilamellar and 

multilamellar vesicles (Zununi Vahed et al., 2017). Unilamellar vesicles have a single 

lipid bilayer, while multilamellar vesicles consist of several unilamellar vesicles 

surrounded by lipid bilayers. On the another hand, according to the formulation, 

liposomes can be grouped into several types, including PEGylated stealth liposomes 

(Couvreur and Vauthier, 2006), immunoliposomes (Tila et al., 2015), lipoplexes (Lonez, 
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Vandenbranden and Ruysschaert, 2008), fusogenic liposomes (Yuba et al., 2010), 

stimuli-responsive liposomes (Zununi Vahed et al., 2017) and combinations of the above. 

(Couvreur and Vauthier, 2006) 

Nanoparticles, including liposomes, can be rapidly cleared from the bloodstream by the 

mononuclear phagocytic system (MPS), significantly decreasing in-vivo circulation half-

life and the delivery efficiency of drugs (Bregoli et al., 2016). Therefore, for a longer 

circulation time, it is critical to protect liposomes from MPS detection. Doxil, the first 

clinical approved nanomedicine for cancer therapy, is made of polyethylene glycol-

coated (PEGylated) liposomes containing anti-cancer drug doxorubicin (Bregoli et al., 

2016). Coating liposomes with polyethylene glycol, which is a class of biocompatible, 

inert and hydrophilic polymer, results in significant increases of the circulation half-life, 

from several hours to around 45 h, achieving sustained and prolonged drug delivery, and 

promoting tumour accumulation of liposomes (Couvreur and Vauthier, 2006). PEGylated 

stealth liposomes have been widely applied in the clinic and are easily functionalised with 

other functional features, such as stimuli-responses and ligand targeting (Tila et al., 2015). 

Alternatively, sustained release of a drug from MPS cells, more complex liposomal 

formulations (e.g. small size, net neutral charge, incorporation of cholesterols and lipids), 

or drug release into specific areas, such as the cerebrospinal fluid, non-PEGylated 

liposomes have been demonstrated to result in an increase in the tumour exposure to the 

drug (Bregoli et al., 2016). 

Attaching targeting ligands to the liposome surface is now a well-established and widely 

used feature in liposome design. Liposomes functionalised with antibodies, also known 

as immunoliposomes, can carry a drug dose and selectively bind to a chosen tumour site, 

whilst antibody fragments, glycoproteins, peptides, vitamins and oligonucleotide 

aptamers can also be used as targeting ligands (Zalipsky et al., 1996; Park et al., 1997; 
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Mastrobattista, Koning and Storm, 1999; Gunawan and Auguste, 2010; Tila et al., 2015). 

Gene therapies have been considered as a novel and promising method for cancer 

treatment. Lipoplexes (cationic liposomes) have been investigated as an attractive gene 

delivery system that are simple to synthesize and control, have high delivery efficiency 

and can enhance the stability of nucleic acid therapeutics (Tila et al., 2015). Cationic 

lipids used in lipoplexes are comprised of a cationic head and hydrophobic domain and 

have the capacity to form particulate complexes in the liposomal membrane by interacting 

with nucleic acids therapeutics (negatively charged), including plasmid DNA (pDNA), 

small interfering RNA (siRNA) or micro-RNA (Tila et al., 2015). 

Fusogenic liposomes are able to fuse with cellular membranes and directly release 

encapsulated drugs into the cytoplasm or targeted cell organelles, significantly enhancing 

the cellular uptake of drugs, avoiding lysosomal degradation, and counteracting the drug 

resistance of cancer cells (Kunisawa et al., 2005; Tila et al., 2015). Membrane fusion is 

achieved by the specific interactions between the membrane receptors and the liposomes 

or the membrane-associated proteins or peptides that are contained within the liposomes. 

Moreover, negatively charged phospholipids promote the fusion in the presence of 

calcium in some types of fusogenic liposomes (Malaekeh-Nikouei et al., 2008; Yuba et 

al., 2010; Watarai et al., 2014). The formation of lipid bilayers and incorporation of 

special lipids (e.g. dioleoyl phosphatidylethanolamine (DOPE)) also promote the 

membrane fusion reaction and enhance the release of the encapsulated drugs (Tila et al., 

2015). 

Functional liposomes have been used for the improvement of circulation time and 

stability of drugs, specifically targeting cancer cells, and promoting drug delivery. More 

recently, the maturation of stimuli-responsive liposome technologies has yielded precise 

control of drug release, which provides greater individualised treatment with lower 
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undesirable side effects (Deshpande, Biswas and Torchilin, 2013). Several types of drug 

release triggers have been used in liposome-based delivery systems, including 

temperature, pH level, enzymes, light, ultrasound, electromagnetic waves and magnetic 

fields. (Zununi Vahed et al., 2017) 

Tumor cells are efficient at maintaining plasmalemmal pH gradients, whereas the protons 

generated during the metabolism of cancer cells are exported to the extracellular space 

efficiently and the extracellular bicarbonate is taken up by cancer cells, following re-

export of CO2, for increasing intracellular pH (Chiche et al., 2012). Therefore, the 

extracellular pH level in the environment of cancer cells is lower than that around normal 

cells (pH 6.2-6.8 vs pH 7.35-7.45). Additionally, in endosomal vesicles, the pH is lower 

than 5 (Moussa, Martins and Husseini, 2015). pH-sensitive liposomes (PSLs) are stable 

at the neutral pH of blood and healthy tissues, but are designed to become destabilized 

and release encapsulated drugs in the vicinity of cancer cells and/or in endosomes 

(Karanth and Murthy, 2007). The most developed class of PSLs are designed to be 

triggered after endocytosis and several mechanisms may be involved: direct release of 

drugs into the cytosol due to the fusion of the endosome and liposome membranes which 

is induced via pH changes; drug leakage into the cytosol because of the pH-induced 

destabilization of liposomal membranes which will cause the destabilization of 

endosomal membranes; release of drugs inside the endosomes due to the pH-induced 

destabilisation of the liposomes, followed by the diffusion of the molecules into the 

cytosol (Moussa, Martins and Husseini, 2015). There are several classes of materials used 

in the formulation of different PSLs, including polymorphic lipids combined with 

amphiphilic compounds that contain an acidic group, lipid derivatives that have pH-

sensitive chemical bond (e.g. N-acylated aminophospholipid derivatives and 

plasmalogens), reconstituted fusion proteins or peptides that are pH-sensitive and able to 
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destabilise the membrane of liposomes in acidic environments, and pH-titratable 

polymers, which change conformations at low pH, as recently reviewed by Moussa et al. 

(Moussa, Martins and Husseini, 2015) 

Thermo-sensitive liposomes (TSLs) are sensitive to temperature, due to their specific 

chemical composition. For example, some types of liposomes consist of lipids (e.g. 

dipalmitoyl phosphatidylcholine) that begin to melt when the temperature exceeds their 

thermal threshold, whereupon the surface of the liposomes becomes porous and the 

encapsulated drug is released (Moussa, Martins and Husseini, 2015). The increase of local 

temperature, known as hyperthermia, can be induced via pathological status or external 

triggers such as light, ultrasound, microwave or magnetic fields (Moussa, Martins and 

Husseini, 2015; Tila et al., 2015). Optimisation of the hyperthermic effect allows precise 

control over the amplitude and location of the temperature rise in targeted cancer tissues. 

Therefore, TSLs which are stable at the temperature of the human body (37°C on average), 

can be triggered to release the encapsulated molecules at targeted sites by hyperthermia 

(about 39-43°C) to achieve greater therapeutic effect and reduced side effects (Ta and 

Porter, 2013; Moussa, Martins and Husseini, 2015). 

Moreover, liposomes can be designed to be sensitive to certain enzymes that only have 

high activity at the tumour site, such as lipases, cancer-associated proteases and 

phospholipases (de la Rica, Aili and Stevens, 2012; Arouri et al., 2013; Moussa, Martins 

and Husseini, 2015). There are several classes of enzyme-sensitive liposomes, chemically 

modified with different molecules (e.g. lipopolymers (Arouri et al., 2013), small peptides 

and phosphorylated synthetic estrogen, etc.(Bibi et al., 2012)) that can specifically 

respond to certain enzyme levels above a threshold. 

Some types of liposomes are capable of absorbing the energy of certain external triggers 

(e.g. light, ultrasound, electromagnetic waves or magnetic fields, etc.) and subsequently 
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converting it to heat, causing a localised hyperthermia that effects the liposomes and 

induces the release of drugs (Moussa, Martins and Husseini, 2015). These external 

triggers also can be used to directly affect the liposomes. For instance, light can induce 

changes in the form of photosensitive lipids, which are chemically modified, and change 

the membrane permeability (Anderson and Thompson, 1992). Ultrasound is able to 

induce the rupture of microbubbles at target sites, known as transient cavitation. The 

collapse of microbubbles produces enormous localised heat and pressure waves, which 

can cause the disruption of the liposomal and/or cell membranes, consequently allowing 

the release and permeation of drugs (Hernot and Klibanov, 2008). 

Additionally, liposomal platforms which are capable of co-delivering combinatorial 

drugs bring a paradigm shift in tumour therapy (Hu, Aryal and Zhang, 2010). Several 

classes of liposome-based drug combinations have been reported, including the co-

delivery of chemotherapeutic drugs, the co-delivery of chemosensitizers and 

chemotherapies, and the co-delivery of siRNA and chemotherapies (Mayer et al., 2006; 

Saad, Garbuzenko and Minko, 2008; Hu and Zhang, 2010). The combination of drugs 

can achieve greater synergistic activity by loading them into liposomes at optimised 

molar ratios and selecting appropriate encapsulation schemes (Hu, Aryal and Zhang, 

2010). For example, multiple hydrophilic drugs can be encapsulated in liposomes; 

lipophilic drugs can be partitioned into the membrane of liposomes; and negatively 

charged oligonucleotide drugs (e.g. siRNA) are able to bind to the positively charged 

liposomal surface (Hu, Aryal and Zhang, 2010). 

1.5.2 Nanogels and Polymeric Nanoparticles 

Polymeric nanoparticles are nano-sized colloidal particles and have been extensively 

explored for drug delivery for cancer therapies. Among the various materials, designs and 

synthesis methods, the polymeric nanoparticles studied most commonly consist of a 
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hydrophobic polymer-based core containing anticancer drugs and a hydrophilic outer 

shell, which ultimately enabled longer persistence and systemic circulation time in the 

bloodstream, leading to further accumulation of nanoparticles in cancer tissue (Masood, 

2016). Alternatively, there has also been increasing interest in using nanosized 

hydrophilic cross-linked polymer networks, also termed as nanogels, for drug delivery 

(Sivaram et al., 2015; Chan and Almutairi, 2016). 

Polyhydroxyalkanoates (PHAs) (Li and Loh, 2017), cyclodextrins (CDs) (Duchene, 

Cavalli and Gref, 2016) and poly-(lactide-co-glycolic acid) (PLGA) (Katiyar et al., 2016) 

are the most commonly used polymer materials for the core fabrication (Masood, 2016). 

Meanwhile, nontoxic hydrophilic outer shells provide outstanding blood biocompatibility, 

such as , polyvinyl alcohol (PVA), PEG and monomethoxy poly-(ethylene glycol) 

(mPEG), which has also been widely applied in surface modification of other kinds of 

nanoparticles, such as liposomes and gold nanoparticles (Masood, 2016). The reader is 

referred to (Duchene, Cavalli and Gref, 2016; Masood, 2016; Li and Loh, 2017) for an 

in-depth investigation and discussion of recent advanced PHAs, CDs and PLGA-based 

polymeric nanoparticles used for cancer treatment. 

Nanogels are hydrophilic nanosized cross-linked polymer networks, also called hydrogel 

nanoparticles (Lux et al., 2013; Sivaram et al., 2015; Chan and Almutairi, 2016). In the 

last decade, there has been increasing interest in the applications of nanogels as drug 

carriers and imaging agents (Maya et al., 2013; Sultana et al., 2013; Sivaram et al., 2015). 

Nanogels have unique utilities and properties including: 

1. high biocompatibility on account of the high water content and living tissue-like 

physical properties and they are easily biodistributed by intravenous injection (Chan 

and Almutairi, 2016; Soni and Yadav, 2016). 

2. the ability to selectively respond to stimulation, including changes of pH, ionic 
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content, biomolecules, magnetic field, light and temperature, which is important in 

specific drug delivery and responsive imaging (Stuart et al., 2010; Eckmann et al., 

2014). 

3. highly efficient loading capacity of a wide range of drugs due to the prolonged 

residence time provided by muco-adhesive polymers (Sivaram et al., 2015). 

The release of the drugs and other molecules is easy to control by varying the nanogel 

properties, for example by incorporating stimulus-responsive crosslinkers or changing 

crosslinking density (Sivaram et al., 2015). 

Nanogels are capable of generating appropriately sized complexes with molecules and 

keeping their configuration and activity, and even encapsulating fragile compounds to 

increase their stability (Bae et al., 2008; Sasaki et al., 2010; Singh, Gill and Gill, 2013; 

Sivaram et al., 2015). Like other nanomaterials, nanogels have nanoscale physical 

properties, such as size (20~200 nm) and large surface area (Maya et al., 2013; Soni and 

Yadav, 2016). Meanwhile, the production of nanogels enables versatile formulation and 

it is facile to chemically modify nanogels for specific purposes, including triggered drug 

release and targeted drug delivery (Vinogradov, Bronich and Kabanov, 2002; Maya et al., 

2013). These properties of nanogels make them promising for applications in anti-skin 

disease, anti-inflammatory, ocular, transdermal and protein/peptide drug delivery and 

therapy, cancer drug delivery and imaging (Sivaram et al., 2015). 

For cancer therapy, nanogels demonstrate site-specific delivery by incorporating various 

targeted ligands to bind to a desired site, or utilising the stimuli-responsive ability 

(Eckmann et al., 2014). Targeting ligands can include various compounds, such as 

antibodies, peptides, hormones, receptor ligands, nucleic acids and lipid derivatives, etc. 

In addition, nanogel carriers have prolonged circulation time and are incapable of 

diffusing across non-fenestrated endothelium, and thus are able to accumulate in tumour 
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tissues. For instance, Liang et, al. described a novel self-assembled nanogel consisting of 

hyaluronic acid-epigallocatechin gallate conjugates (HA–EGCG), cytotoxic protein 

Granzyme B (GzmB) and linear polyethylenimine (PEI) (Liang et al., 2016). HA is 

known to have the ability of targeting CD44, which is overexpressed in many cancer cells 

types and EGCG is used to facilitate the formation of stable nanogels. After endocytosis, 

PEI is able to change the pH in endosomes and rupture the membrane to release drugs 

into the cytosol (Boussif et al., 1995). It has been observed that this nanogel  efficiently 

kills CD44-overexpressing cancer cells and shows little toxic effect to normal cells (Liang 

et al., 2016).  

After accumulating in tumour tissues via the EPR effect, pH-responsive nanogels are 

triggered to release drugs either in the extracellular fluids (pH 6.8) or, after cellular uptake, 

in the acidic endosomes and lysosomes (pH 4.5-6.5) in cancer cells (Manchun, Dass and 

Sriamornsak, 2012; Manchun et al., 2015). In recent research, hybrid nanogels have been 

applied to photothermal cancer therapy. Hui Wang et al. fabricated drug loaded core-shell 

hybrid nanogels that have the function of both tumour imaging, local hyperthermia, 

temperature sensing and triggered drug release (Wang et al., 2014). These multifunctional 

nanoparticles have high photoluminescence, photostability, magnetic/NIR-heat 

conversion ability and drug accumulation potential due to the composite structure 

consisting of fluorescent carbon dots, a porous carbon shell and superparamagnetic iron 

oxide nanocrystals. Meanwhile, the hydrogel shell can control the release of drug and 

fluorescence intensity by varying environmental temperature, which is based on the 

thermo-responsive poly (N-isopropylacrylamide-co-acrylamide) (Wang et al., 2014). 

Therefore, NIR light and magnetic field are able to induce localised heating and trigger 

the release of drugs. In addition, they demonstrated that these hybrid nanogels are capable 

of overcoming cellular barriers to exert effects in mouse melanoma B16-F10 cells (Wang 
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et al., 2014). 

1.5.3 Silicon and Silica Nanoparticles 

As emerging nanomaterials, nanosized porous silicon (silicon-based nanoparticles) and 

silicon oxide (silica)-based nanoparticles have attracted great attention for cancer 

treatment applications. Compared to other types of nanoparticles, silicon and silica based 

nanoparticles have uniquely mesoporous structures, strong hydrophobicity and other 

distinct material characteristics which make them a promising nanomaterial for cancer 

therapy applications (Feng et al., 2016). Due to the biocompatibility, porous 

structures/volume and high active surface area of silicon-based nanoparticles, they have 

been demonstrated to be one of the outstanding candidate nanovectors for targeted drug 

delivery, diagnosis and sensitisations of sonodynamic, photodynamic and thermal 

therapies, etc. (Ferrari, 2005; Stojanovic et al., 2016) Silicon is one of the most 

fundamental trace materials in the human body, and silicon-based nanoparticles are 

completely degradable in the living organism. The generated free silicon atoms can be 

converted to a nontoxic bioavailable form and be excreted efficiently, which illustrates 

the biocompatibility of silicon-based nanoparticle (Stojanovic et al., 2016). It was 

observed using Raman spectroscopy that silicon nanoparticles can be completely 

biodegraded in breast cancer cells after 13-days incubation (Tolstik et al., 2016). The 

surface modifications of silicon-based nanoparticles for stabilisation, targeted delivery, 

controlled drug release or immunotherapy can be accomplished due to the porous 

structures/volume and high surface area (Stojanovic et al., 2016). Meanwhile, the pores 

inside silicon-based nanoparticles and their structure allow high-efficiency loading of 

varied compounds for cancer treatment, including both hydrophilic and hydrophobic 

compounds (Salonen et al., 2005; Kinsella et al., 2011; Kaasalainen et al., 2015; 

Stojanovic et al., 2016). 
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Coating silicon nanoparticles with PEG (Putnam, 2008) or serum albumin (Xia et al., 

2013) is capable of increasing the solubility and stability of silicon nanoparticles in 

aqueous environments and results in a much longer circulation time and EPR, similar to 

other nanoparticles. Simultaneously, silicon nanoparticles can target tumour tissue and 

enter cancer cells by recognising the receptors on the cell membrane and anchoring via 

multiple functionalised components, such as carbohydrates, antibodies and peptides 

(Godin et al., 2011; Secret et al., 2014; Stojanovic et al., 2016). A variety of silicon 

nanoparticle-delivered drugs have been examined, such as methotrexate, SFN (Wang et 

al., 2015), indomethacin (Liu et al., 2013), PTX (Liu et al., 2015), DOX (Xu et al., 2015) 

and siRNA (Osminkina et al., 2012), etc. 

Silicon oxide, also known as silica, is well-known as a bio-safe and widely applied natural 

material. Due to the large internal surface area, controllable porous structure and other 

material properties of silica-based nanoparticles, they have been investigated as imaging 

agents, drug vectors and sensitisers as well as silicon-based nanoparticles (Feng et al., 

2016). The most commonly studied structures of silica nanoparticles for drug delivery 

are mesoporous silica based nanoparticles based on Mobil Composition of Matter No. 41 

(MCM-41) and/or Santa Barbara Amorphous-15 (SBA-15) (Feng et al., 2016). By 

altering the temperature, solution composition and concentrations of the synthesis system, 

the size, shape, surface area and pore size of the hexagonal porous MCM-41 structure can 

be easily controlled. SBA-15 type silica nanoparticles are synthesized using a polymeric 

template, which is able to provide mesostructural ordering properties for silica 

nanoparticles (Zhao et al., 1998). MCM-41 type and SBA-15 type have both been 

extensively explored for targeted drug delivery (Feng et al., 2016). Controlled-release 

drug delivery systems based on silica nanoparticles have also attracted increasing 

attention. The stimuli used for triggered drug release from silica nanoparticles include pH 



41 

 

(Casasús et al., 2004), temperature (Yang et al., 2014), redox potential (Giri et al., 2005), 

enzyme (Radhakrishnan et al., 2015) and light (Tang et al., 2015), etc. For instance, 

Chang et al. fabricated a pH-sensitive drug delivery system by modifying the surface of 

silica nanoparticles with polydopamine. The anti-cancer drug desipramine contained in 

pH-triggered silica nanoparticles can be released in low-pH cellular conditions (Chang et 

al., 2016). Compared to free desipramine, pH-sensitive silica nanoparticles showed 

significantly higher toxicity and inhibitory effects to cancer cells. Lipid-coated silica 

nanoparticles, a lipid bilayer surrounding silica nanoparticles containing anti-cancer 

drugs, have been investigated recently, and less drug leakage, slower rate of drug release, 

and more substantial in vivo therapeutic effects where observed (Meng et al., 2015; Choi 

et al., 2016; Liu et al., 2016) . 

1.5.4 Dendrimers 

Dendrimers are 3-dimensional, highly branched monodispersed nanoscale 

macromolecules (Sharma et al., 2017). Generally, dendrimers consist of an initiator core, 

branches which emanate from the core and functional end groups on the outermost layer 

(Gupta et al., 2010). Dendrimers have been considered as a promising nanomaterial for 

targeted delivery and diagnostic imaging agents, due to their unique properties, such as 

the monodispersity, internal cavities and modifiable functional end groups (Sharma et al., 

2017). The cavity in the hydrophobic core and the multivalent surface allow dendrimers 

to effectively load hydrophobic and hydrophilic compounds, respectively (Hu, Aryal and 

Zhang, 2010). Varied dendrimer-based MRI, X-ray and CT contrast agents have been 

developed by linking contrast agents to dendrimers with design formulations (Sharma et 

al., 2017). In addition to diagnostic agents, functionalized and ligand-anchored 

dendrimers have shown outstanding ability to target drug delivery. The ligands that have 

been used with dendrimers include folic acid (Hilgenbrink and Low, 2005), biotin (Yang 
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et al., 2009), N-acetyl-glucosamine (Vannucci et al., 2014) and riboflavin, etc. (Sharma 

et al., 2017) Due to the definition of dendrimers, the formulations of dendrimers are 

various, such as PAMAM (Buczkowski et al., 2011), polyglycerol (Lee and Ooya, 2012), 

PPI (Jain et al., 2015), polyester (Morgan et al., 2006) and nucleic acid (Taghdisi et al., 

2016), etc. (Sharma et al., 2017) For instance, Taghdisi et al. fabricated an aptamer-base 

DNA dendrimer containing the anti-cancer drug epirubicin, and targeted drug delivery 

and considerable in vivo tumour inhibiting effects were observed (Taghdisi et al., 2016). 

Several major types of nanovectors, including liposomes, polymeric, metal-based, silicon 

and silica-based nanoparticles, and dendrimers which have been applied in clinical or 

preclinical trials for targeted delivery of anti-cancer drugs, have been briefly introduced 

above. Moreover, oceans of novel nanoparticles are currently under study and the 

systematically combination of varied nanomaterial will provide a very large number of 

options for selecting highly specific and highly efficient therapeutic nanovectors 

according to individual patient. On the other hands, to develop more selective and less 

toxic cancer therapies, nanoparticles have been applied to combine several therapeutic 

interventions, including photodynamic (Chatterjee, Fong and Zhang, 2008; Roblero-

Bartolon and Ramon-Gallegos, 2015; Agostinis P, Berg K, Cengel K., 2017), 

sonodynamic (H. Xu et al., 2016; Rengeng et al., 2017) and radiotherapy (Hainfeld et al., 

2010), etc., as sensitisers or imaging agent or both. The following sections will review 

the recent advance in the combination of nanoparticles with existing anti-cancer 

interventions. 

1.5.5 Metal-based Nanoparticles 

Metal-based nanoparticles used for drug delivery include gold (Cooper, Bekah and 

Nadeau, 2014), iron oxide (Sharma et al., 2015), zinc oxide (Rasmussen et al., 2010) and 

titanium oxide (Bakhshizadeh et al., 2017) based nanoparticles. For instance, Sun et al. 
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fabricated iron oxide nanoparticles conjugated with anti-cancer drug methotrexate and 

targeting ligand chlorotoxin, and enhanced cytotoxicity was observed both in vitro and in 

vivo (Sun et al., 2008). Meanwhile, due to the superparamagnetic properties of iron oxide 

nanoparticles, they can also be used as MRI contrast agents for diagnosing and 

monitoring the effects of tumour treatment at the same time (Sun et al., 2008). To enhance 

the loading capacity of metal-based nanoparticles, polymer (Bakhshizadeh et al., 2017), 

lipid (Kong et al., 2012) or other customized shells have been used to coat the metal cores, 

which also provide high stability and biocompatibility. For instance, Bakhshizadeh et al. 

assembled core-shell molecularly imprinted polymer for drug delivery by coating 

titanium oxide nano-cores with diacrylated polycaprolctone as cross-linkers and 

methacrylic acid or 4-vinylpyridin as the functional modification, and superior loading 

capacity, higher amount of drug release and considerable cytotoxicity in vitro were 

observed (Bakhshizadeh et al., 2017). 

On the other hand, metal-based nanoparticles, including copper, copper oxide (Studer et 

al., 2010; Akhtar et al., 2016), titanium oxide (Park et al., 2008), silver (Foldbjerg et al., 

2009) have been demonstrated to be able to induce the generation of reactive oxygen 

species inside cells and ultimately lead to oxidative stress, DNA damage and apoptosis 

of targeted cells, which provide the therapeutic potential as anti-cancer agents themselves. 

Among those nanoparticles, gold nanoparticles (AuNPs) are the most studied metal-based 

nanoparticles for anti-cancer drug delivery and have been demonstrated to be promising 

and effective imaging labels and contrast agents on account of their strong surface 

plasmon resonance (SPR) effect. Electromagnetic radiation of specific resonant 

frequencies can induce a coherent oscillation of the free electrons on the nanoparticle 

surface, when the diameter (1-100 nm) of the metal nanoparticles is less than the 

wavelength of light. The oscillation is called the SPR. The SPR can cause an intensely 
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enhanced absorption and scattering of electromagnetic radiation in resonance with the 

metal nanoparticles (Jain, ElSayed and El-Sayed, 2007). Furthermore, AuNPs have high 

stability and can be easily manufactured in controllable size, shape and functionalised by 

bioconjugations and biomodifications, which make them an outstanding nanomaterial for 

drug delivery. AuNPs are facile to be bio-conjugated and bio-modified on account of the 

strong binding affinity towards amines, disulphides and thiols of their surface. This strong 

affinity allows AuNPs to conjugate a variety of peptides, proteins, DNA and other 

biomedical compounds (Niemeyer, 2001; Katz and Willner, 2004; Jain, ElSayed and El-

Sayed, 2007). Cancer specific antibodies (such as anti-FAK antibody and anti-EGFR 

antibody), biomolecules (which can be eagerly taken up by cancer cells) and viruses etc. 

can be conjugated to AuNPs to selectively target cancer cells (El-Sayed, Huang and El-

Sayed, 2005; Jain, ElSayed and El-Sayed, 2007; Kim et al., 2008; Cheng et al., 2014). 

Therefore, antibody-conjugated gold nanoparticles are widely used in cancer diagnosis 

and therapy. It is also known that AuNPs with strong surface-plasmon-enhanced 

absorption can convert the absorbed light into localized heat expeditiously and therefore 

can be utilised for selective photothermal cancer therapy (El-Sayed, Huang and El-Sayed, 

2006). 

AuNPs are generally considered relatively nontoxic to normal cells (Connor et al., 2005; 

Shukla et al., 2005; Alkilany and Murphy, 2010; Villiers et al., 2010), but non-

functionalized AuNPs have been reported to show selective cytotoxicity to certain cell 

lines, especially cancer cells. Hirak K. Patra and colleagues found that citrate-capped 

AuNPs (13 nm in diameter) can specifically induce death in the human carcinoma lung 

cell line (A549), while leaving two other cell lines, baby hamster kidney and human 

hepatocellular liver carcinoma, unaffected at the same dosage (Patra et al., 2007). AuNPs 

have been implicated in detrimental  effects on various important cellular components, 
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such as mitochondria and membrane, damage to DNA, generation of reactive chemical 

species, hindrance of cell function and ultimately induction of cell death (Alkilany and 

Murphy, 2010). Triphenylphosphine monosulfonate (TPPMS) capped AuNPs (1.4 nm in 

diameter) were found to be toxic to HeLa cervical carcinoma epithelial cells (IC50 = 48 

μM）as a result of oxidative stress and mitochondrial damage leading to necrosis (Pan et 

al., 2009). Metal nanoparticles can capture electrons from O2, owing to their high 

surface/volume ratio and the specific electronic configuration of surface atoms (Nel et al., 

2006). Jia et Al. reported that AuNPs (13 nm in diameter) can catalyse the production of 

nitric oxide (NO) from endogenous S-nitroso adducts with thiol groups (RSNOs) in blood 

serum, resulting in the formation of Au-thiolate on the surface. It is known that NO can 

effectively interact with superoxide to generate a toxic peroxinitrite (ONOO-) (Jia et al., 

2009). 

Cellular responses to AuNPs depend on their chemical/physical properties, such as 

surface charge, size and shape (Alkilany and Murphy, 2010). For instance, Goodman and 

colleagues found that cationic (aminated) AuNPs (size 2 nm) are able to cause membrane 

disruption and cell death, while anionic (carboxylated) AuNPs with similar size and shape 

show no toxicity to cells. It suggests that the binding of the AuNPs to the negatively 

charged cell membrane can be a potential mechanism of the cytotoxicity of cationic 

AuNPs (Goodman et al., 2004). 

Recent nanoparticles-cancer research has led to the development of special functional 

nanosized gold-based particles that conjugate drugs, antibodies or bioactive ligands 

which are designed to target or kill cancer cell (Service, 2005; Kong, Keidar and Ostrikov, 

2011; Cheng et al., 2014). Branch et al. reported aurimmune CYT-6091, constructed by 

concurrently binding polyethylene glycol (PEG) and recombinant human Tumour 

Necrosis Factor (rhTNF) to AuNPs. It was tested in a phase I dose escalation clinical trial. 
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It was demonstrated that the rhTNF plays a role in targeting and killing cancer cells 

(Libutti et al., 2010). Anil Kumar et al. successfully investigated a kind of peptide 

functionalized AuNPs which consists of a therapeutic peptide, PMI and neuropilin-

1(Nrp-1) receptor-targeted peptide on ultrasmall AuNPs (2 nm). Since nrp-1 is highly 

expressed by a variety of human cancer cell lines and PMI is a potent inhibitor of 

suppressive protein, p53, these AuNPs can target cancer cells and show strong anti-cancer 

activity (Kumar et al., 2012).  

1.5.6 Combination of Gold Nanoparticles and CAP Treatment 

The combination of CAP treatment and nanoparticles, especially gold nanoparticles, has 

been a new approach in the therapies of cancer. There are few studies reported that CAP 

treatment has anti-cancer synergy with various types of nanoparticles, including iron 

nanoparticles (Jalili, Irani and Mirfakhraie, 2016), iron oxide-based magnetic 

nanoparticles (Li et al., 2019), silver nanoparticles (Manaloto et al., 2020), paclitaxel 

loaded core-shell magnetic nanoparticles (Yu et al., 2018). However, the related studies 

were mainly focused on the combination therapy between CAP treatment and AuNPs due 

to the unique properties and various advantages of AuNPs. 

Kim et al. first reported their study about synergistic effect between CAP and antibody-

conjugated AuNPs on G361 human melanoma skin cell (Kim et al., 2008). The authors 

achieved five-fold enhancement in G361 cell death over the case of the CAP alone by 

using CAP with AuNPs conjugated to anti-phospho-focal adhesion kinase (FAK) 

antibodies (Kim et al., 2008). In this study, melanoma cancer cells were placed 2 mm 

from the touch-safe CAP source and treated for 40s. The CAP temperature remained less 

than 38℃ even after radiating for 10 min (Kim et al., 2008). FAK was more expressed 

in melanoma cells than in normal cells and crucial for melanoma cells’ survival, growth 

and metastasis. So anti-FAK antibody-conjugated AuNPs (FAK-AuNPs) can target 
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melanoma cells and enter into cytoplasm to bind to FAK (Kim et al., 2008). In the 

research, there were three groups cultured in: (1) only medium (control); (2) medium 

containing AuNPs; (3) medium containing FAK-AuNPs. FAK-AuNPs (30 nm) and 

AuNPs (30 nm) did not show to toxicity to G361 compared with the control group. After 

these groups of cells were exposed to CAP for 40s, the cell death rate was 74% (FAK-

AuNPs), 36% (AuNPs) and 14% (control) (Kim et al., 2008). It seems that CAP 

stimulated nanoparticles induced deactivation of FAK and led to increased cell death rate. 

This study first demonstrated that a low-dose CAP treatment can combine AuNPs located 

inside cells to effectively kill cancer cells. The synergy of CAP and AuNPs suggested a 

promising novel method to against cancer which is low-dose, safe, selective and effective 

(Kim et al., 2008).  

More recently, using CAP plus various cancer specific antibody-conjugated AuNPs has 

been reported that has significant cancer selective lethal effect, such as anti-epidermal 

growth factor receptor (EGFR) antibody conjugated AuNPs (AuNPs-EGFR). EGFR has 

been demonstrated to be overexpressed in multiple cancer types and can promote solid 

tumor growth (Nicholson, Gee and Harper, 2001). It was shown that AuNPs coated with 

EGFR binding immunoglobulins can bind selectively to EGFR on cancer cells membrane 

and inactivate them with CAP stimulating, consequently causing the destruction of cancer 

cell membrane and cell death while leaving normal cells significantly less affected (Choi 

et al., 2012).  

A similar approach was taken by the same authors (Choi BB et al.) using anti-human 

epidermal growth factor receptor 2 (NEU) antibody labelled AuNPs and CAP to treat 

melanoma cells. The NEU protein is usually over-expressed in melanoma cells and the 

anti-NEU antibody labelled AuNPs can preferentially target melanoma cells rather than 

other normal cells (Choi et al., 2015). It was shown that the NEU protein was selectively 
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destroyed, leading a downstream effector after the synergistic treatment. These effects 

finally caused significantly higher death rate of melanoma cells compared with other 

control groups (Choi et al., 2015).  

Unconjugated AuNPs also display synergistic effects when used in combination with 

CAP against cancer. Chen et al. studied the synergistic effect of non-attached AuNPs and 

CAP on human brain glioblastoma U87 cell line, which takes a larger CAP lethal dose 

than other brain glioblastoma cancer cell lines and is resistant to AuNPs (Cheng et al., 

2014). The synergy can induce up to 30% more cell death with an optimal concentration 

of AuNPs compared to control groups (Cheng et al., 2014). The unconjugated AuNPs in 

the cell culture medium may potentially promote the absorption of extracellular ROS and 

RNS generated by CAP into cells (Cheng et al., 2014). The absorption may help 

accumulation of intracellular ROS and RNS and theoretically leads to oxidative stress, 

which further affects the cellular pathways and causes damage to the DNA, lipids and 

proteins. This strengthened effect on CAP treatment varies with the concentration, 

incubation time of AuNPs and cancer cell lines (Cheng et al., 2014). The exact 

mechanism has yet to be studied further.  

In the study by Irani S et al. higher concentration of AuNPs showed stronger cytotoxicity 

to Human colorectal cancer cells (HCT-116). The authors used highest concentration of 

AuNPs (375 ppm) and CAP (exposure time: 60, 90, 120 and 180 s) to treat HCT-116 

cells, longer CAP treatment time led to more apoptotic cell death synergistically 

combined with AuNPs treatment (Irani et al., 2015).  The endocytosis of AuNPs plays an 

important role in their application, and indicated that CAP may promote the uptake of 

AuNPs into cancer cells. X. Cheng et al. found that CAP induced the formation of small 

pores on cell membrane of Glioblastoma cells (U87) and made the membrane become 

uneven, while leaving immortalized normal human astrocytes (E6/E7) unaffected. The 
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cancer cell morphology was changed by CAP treatment which may explain the 

accelerated uptake of AuNPs by CAP (Cheng et al., 2015).  

The combination of low doses of AuNPs and CAP was indicated to inhibit PI3K/AKT 

pathway in cancer cells (Kaushik et al., 2016). AKT activation has been demonstrated to 

obstruct the function of p53 protein and inhibit the activity of caspase-9 (Cardone et al., 

1998; Jeong et al., 2005). Caspase cleavage plays a crucial role in apoptosis (Jia et al., 

2015) and is known as reliable marker of apoptotic cell death with PARP cleavage 

together (Kaushik et al., 2016). Moreover, CASP9, p53, and CASP3 mRNA expression 

were observed that were enhanced by the co-treatment with AuNPs and CAP (Kaushik 

et al., 2016). Epithelial-mesenchymal transition (EMT) is known as a cellular mechanism 

that contributes to  normal embryonic development and generally is responsible for the 

initiation of metastasis in solid tumors (Roizen, 2012; Kaushik et al., 2016). It has also 

been indicated that EMT can stimulate the cancer stem cells (CSCs) potential of cancer 

cells. CSCs are the only cells that can initiate and drive tumor growth, resulting metastasis, 

tumor recurrence and clinical relapse (Mani et al., 2008; Morel et al., 2008). A growing 

amount of evidence indicates that these cells are resistant to radiation therapy and 

chemotherapy. Hence, it is highly promising that co-treatment with AuNPs and CAP can 

effectively block EMT and inhibit CSCs. It has also been found that low dose of AuNPs 

combined with CAP induce the increase of epithelial markers, such as E-cadherin, with 

decrease in mesenchymal markers, such as N-cadherin (Kaushik et al., 2016). Co-

treatment also can enhance the expression levels of some EMT-associated transcription 

proteins, such as N-Cad, Zeb-1 and Slug which can block cell cycle and are related with 

the loss of N-Cadherin (Kajita, McClinic and Wade, 2004; Vega et al., 2004; Kaushik et 

al., 2016). Besides, it has been shown that co-treatment with AuNPs and CAP can 

significantly reduce the population of glioma stem-like cells (GSCs) in vivo and vitro 
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model and thus avoid drug resistance, recurrence and metastasis (Kaushik et al., 2016). 

However, the effects of combination therapy of CAP treatment and AuNPs can vary due 

to the wide range of different AuNPs, CAP-generating devices and cell lines. More 

importantly, the exact and detailed mechanism behind the synergistic cytotoxicity, 

especially, accelerated uptake of AuNPs into cancer cells by CAP, has yet been to be 

discovered. Therefore, considering all the advantage of AuNPs and the unsolved research 

questions, this project used AuNPs to investigate the synergistic anti-cancer effects 

combined with CAP treatment. 

1.6 Combination of Chemotherapy with CAP Treatment 

A number of studies have investigated the possible additive, or synergic effect of CAP 

with traditional chemotherapeutic agents. The chemical and physical effects (i.e. 

production of reactive oxygen and nitrogen species, generation of heat and 

electromagnetic fields) of CAP treatment induced cell permeability (Leduc et al., 2009), 

disruption of cell membrane (Chen, Cheng and Cheng, 2018), enhanced endocytosis (He 

et al., 2018) and cell apoptosis (Tanaka et al., 2015). Therefore, the cancer cells treated 

by CAP could increase their uptake of chemotherapeutic agents and present higher 

sensitivity to chemotherapy. Additive or synergic effects have been described in a number 

of studies and  several mechanisms of action are beginning to emerge (Brullé et al., 2012; 

Kaushik et al., 2015; Conway et al., 2016; Zhu et al., 2016). For instance, Conway GE 

et. al first reported the enhanced ROS-, JNK-, and caspase-independent mechanism of 

cell inactivation in human glioma cell line U373MG by the combination of CAP with 

TMZ (Conway et al., 2016). CAP was observed to overcome chemoresistance of the 

GBM cell line LN18 which has unfavourable MGMT status and displays resistance to 

TMZ. Pre-treatment with CAP induced cytotoxicity and restored cell cycle arrest in G2/M 

Phase when co-treated with TMZ (Köritzer et al., 2013). In a myeloma cell line model, 
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CAP was found to increase bortezomib sensitivity and induce myeloma cell apoptosis (D. 

Xu et al., 2016). Interestingly, low frequency, low intensity alternating current electrical 

stimulation has also been shown to enhance chemotherapeutic efficacy in MDR1 drug 

resistant brain, lung, prostate, ovary, fibrosarcoma and tumour cells (Janigro et al., 2006).  

Due to the alterations of metabolism of cancer cells, a specific microenvironment with 

high reactive species level is created both inside of cancer cells and in the tumour tissues. 

The increased reactive species level provide an attractive target for developing anticancer 

therapy, especially as it seems a common feature among various types of cancer 

(Marzenell et al., 2013). Several anticancer drugs targeting this feature have been 

developed to further increase reactive species level in cancer cells beyond their tolerable 

allowance to trigger cancer cell death, including fenretinide (Sun et al., 1999), nitric 

oxide-donating aspirin (Gao, Liu and Rigas, 2005), imexone (Hersh et al., 1992), 

motexafin gadolinium (Evens et al., 2005), menadione (Beck et al., 2009), β-lapachone 

(Y. Li et al., 2003) and others (Trachootham, Alexandre and Huang, 2009). However, 

those drugs also can increase the reactive species level in healthy cells, which may induce 

secondary malignancies as a dangerous side effect (Marzenell et al., 2013). Therefore, 

prodrugs, which were developed in an alternative strategy against the specific high 

reactive species level in tumours, are only activated to be cytotoxic after exposure to rich 

reactive species, which should lack this side effect and be more specific.  

The majority of prodrugs were developed to be activated in cells by oxidation induced by 

ROS. CAP has been demonstrated to generate ROS and RNS in specific area and treat 

tumour tissues with controllable dose (Welz et al., 2015), therefore it can be a promising 

intervention for combination therapy with ROS-activated pro-drugs, especially, 

increasing the therapeutic efficiency of pro-drugs.  

In this project, we have acquired four types of prodrug candidates, including ferrocene-
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based prodrugs provided by Prof. Andriy Mokhir (Marzenell et al., 2013) and Prof. 

Gérard Jaouen (Jaouen, Vessières and Top, 2015), matrix metalloproteinase pro-

inhibitors and thiazolidinone-based prodrugs provided by Prof. Seth M. Cohen (Perez et 

al., 2015), and pyrazolopyrimidines derivatives provided by Prof. John Stephens (Kelada 

et al., 2018). 

As seen from Appendix V Supplementary Table S1 and S3, ferrocene (C5H5FeC5H5) 

consists of two cyclopentadienyl rings and a central iron atom. Ferrocene itself has high 

stability but reacts with reactive oxygen species which induces alternations of their 

derivatives. Prof. Gérard Jaouen and his group have investigated and reported a series of 

compounds based on ferrocene derivatives, [3] ferrocenophane and ferrocifen derivatives. 

[3] ferrocenophane consists of a central iron atom and two cyclopentadienyl rings linked 

by a three-carbon atom bridge. Ferrocifen is also known as ferrocene derivative 

hydroxyferrocifen. So, based on those ferrocene derivatives and analogues, Prof. 

Jaouen’s group has developed a series of compounds which are capable of being activated 

in cancer cells by their relative high ROS level with the formation of alkylating agents 

and other cytotoxic agents, which inhibit the cellular antioxidative system and induce 

antiproliferative effects against cancer cells (Plazuk et al., 2009; Görmen et al., 2010; 

Top et al., 2013; Jaouen, Vessières and Top, 2015). A series of compounds that have been 

tested and approved to be antiproliferative against MDA‐MB‐231 breast cancer cell line 

were provided to us for investigating the combination treatment with CAP against GBM 

U373MG cell line. Meanwhile, we also received two aminoferrocene-based prodrugs 

from Prof. Andriy Mokhir which are active against primary chronic lymphocytic 

leukemia cells and found to not affect mononuclear cells and representative bacterial cells 

(Marzenell et al., 2013). And those aminoferrocene-based prodrugs also contain boronic 

acid ester residue, which has been well-developed as oxidation trigger group, therefore 
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will be cleaved in the presence of ROS, leading to the formation of two types of anti-

cancer agents: redox-active iron-containing species (aminoferrocenes and iron(II) ions) 

that induce the catalytic generation of ROS and a quinone methide that inhibits the 

cellular antioxidative system (Marzenell et al., 2013).  

The matrix metalloproteinase pro-inhibitors provided by Prof. Cohen contain boronic 

acid esters or benzylic ether as ROS trigger groups which can liberate the active 

compounds while being oxidised by high level of ROS (Rouffet and Cohen, 2011). The 

pro-inhibitors were designed to inhibit matrix metalloproteinase at high ROS level 

therefore could apply for the treatment of ischemic injury whereas increasing level of 

ROS and ROS activated matrix metalloproteinases break down the blood brain barrier 

(Major Jourden and Cohen, 2010; Rouffet and Cohen, 2011). Therefore, they were not 

designed for cancer treatment, but it is interesting to treat brain cancer cells with those 

matrix metalloproteinase pro-inhibitors in combination with CAP treatment. Meanwhile, 

Prof. Cohen provided few thiazolidinone-based prodrugs, in which thiazolidinone group 

can reveal carboxylic acid groups after activation by hydrogen peroxide (Perez et al., 

2015). 

The last group of compounds were provided by Prof. John Stephens, which are 

pyrazolopyrimidine derivates, not usually considered as prodrugs, but have found use as 

various bioactive molecules in the battle against cancer, infections, obesity and cystic 

fibrosis (Kelada et al., 2018). It also has been reported that pyrazolopyrimidines 

derivatives present notable inhibiting effects to the activity or function of several kinases, 

including the PI3 kinase, glycogen synthase kinase -3 (GSK-3) and others, which are 

involved in and even play key roles in a variety of cellular activities including cell 

differentiation, motility, cell growth, proliferation, survival and intracellular trafficking, 

and therefore involved in cancer cells (Peat et al., 2004; Folkes et al., 2008; Venkatesan 
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et al., 2010; Martina Ferrari et al., 2015). Therefore, it is promising to find novel drugs 

in pyrazolopyrimidine derivates for cancer treatment which may possess synergistic anti-

cancer effects in combination with CAP treatment. 

1.7 Aims & Objectives 

GBM neoplasms usually recur and the prognosis is highly dismal. The length of survival 

is commonly 12-15 month, whereas 5-year survival rate is only less than 3%-5% (Gallego, 

2015). Meanwhile, even with aggressive treatment, application of radiosensitizer or many 

chemotherapeutic agents, high amount of GBM tumours present high resistance to 

conventional therapies, and the therapeutic effects of chemotherapeutics are limited when 

they are blocked by the blood-brain barrier.  Novel therapies are urgently needed and the 

understanding of molecular signalling processes of GBM also needs to be further 

investigated. The aim of this project is to investigate novel therapies for glioblastomas by 

combining cold atmospheric plasma, gold nanoparticles and chemotherapy, to enhance 

the knowledge of the reaction of GBM to cold atmospheric plasma and provide the basis 

to further develop efficient novel clinical treatment for GBM tumour. More specifically, 

we aimed to investigate the synergistic anti-cancer effects between low dose CAP 

treatment, AuNPs and discover new prodrug candidates that possess strong synergy with 

CAP treatment. Our research questions are ‘How does low dose CAP treatment accelerate 

the uptake of non-toxic AuNPs into GBM U373MG cells and lead to synergistic 

cytotoxicity?’ and ‘Identify potential leading prodrug candidates that can be activated and 

induce synergistic anti-cancer effects in combination with low dose CAP treatment.’ 

There are 4 Chapters in this PhD thesis. In Chapter 1, the objective is completing a 

literature review, which has been presented above in section 1.1-1.6, to introduce brain 

cancer, especially GBM, therapeutic cold and hot plasma, the intracellular reactive 

species and related signalling pathways, nanoparticles in cancer therapy and 
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chemotherapy agents, especially, prodrugs that have potential synergistic anti-cancer 

effects combined with CAP treatment. The literature review has been published as a book 

chapter. In Chapter 2, the objective was identifying the synergistic cytotoxicity of CAP 

treatment and AuNPs against U373MG cells and investigating the mechanism of CAP-

accelerated uptake of AuNPs, which leads to the synergistic cytotoxicity. For deliverables: 

(1) The study was published (He et al., 2018); (2) We preliminary determined the 

mechanism of the synergistic effects between CAP and AuNPs. The further studies about 

signalling pathway and detailed mechanism of CAP-accelerated uptake is being carrying 

out and is presented in Chapter 3. In Chapter 3, the objective was determining the possible 

endocytosis pathways activated by low dose CAP treatment. For deliverables: (1) The 

study described above was published (He et al., 2020); (2) For the first time, we 

discovered the membrane repairing clathrin-dependent endocytosis was activated after 

being treated with CAP, whereas it increases the accumulation of AuNPs inside cells and 

eventually leads to cell death. This mechanism of RONS-induced endocytosis will also 

be of relevance to other cancer therapies that induce an increase in extracellular RONS. 

In Chapter 4, the objective was screening all prodrug candidates and identify possible 

leading candidates that have significant synergy with CAP treatment. For deliverables: 

(1) Screening of all 47 prodrug candidates was carried out and the alamar blue assay was 

used for all compounds to determin their dose response curves against U373MG cells 

with or with CAP treatment;  (2) The manuscript is in preparation and will be submitted 

for publication soon; (3) We have indentified two leading candidates and the possible 

mechanism of the activation of prodrug JW-04-061 by CAP treatment.
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CHAPTER 2. COLD ATMOSPHERIC PLASMA 

PROMOTE THE UPTAKE AND ACCUMULATION 

OF GOLD NANOPARTICLES IN U373MG CELLS 

 

Part of this Chapter has been published. 

He, Z., Liu, K., Manaloto, E., Casey, A., Cribaro, G.P., Byrne, H.J., Tian, F., Barcia, C., 

Conway, G.E., Cullen, P.J. and Curtin, J.F., 2018. Cold atmospheric plasma induces 

ATP-dependent endocytosis of nanoparticles and synergistic u373mg cancer cell 

death. Scientific reports, 8(1), p.5298.  

DOI: 10.1038/s41598-018-23262-0 

See Appendix I
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2.1  Introduction 

Gold nanoparticles (AuNPs) can be used as diagnostic agents, radiosensitizers and drug 

delivery vehicles, due to their specific physical and chemical properties, such as strong 

surface plasmon resonance effect, high stability and low cytotoxicity (Jain, ElSayed and 

El-Sayed, 2007; Cheng et al., 2011; Joh et al., 2013). AuNPs can be readily manufactured 

in various controllable shapes, sizes and monodispersity. Though non-functionalized 

AuNPs can show selective cytotoxicity to certain cell lines, especially cancer cells (Patra 

et al., 2007), AuNPs are generally considered nontoxic to normal cells (Connor et al., 

2005; Alkilany and Murphy, 2010). Cytotoxicity of AuNPs is size dependent, small 

AuNPs elicit higher cytotoxicity than larger AuNP. AuNPs of ~20 nm diameter elicit 

relatively low cytotoxicity in both normal and cancer cells (Pan et al., 2007) and are 

optimal for traversing the blood brain barrier to enter the brain (Shilo et al., 2015). The 

surface chemistry of AuNPs enables bio-conjugation and bio-modification, for example, 

conjugation of antibodies to assist in targeting or conjugation of chemotherapeutic or 

detection agents (Cheng et al., 2011; Joh et al., 2013). These properties underpin the 

emergence of gold nanoparticles as promising therapeutic and diagnostic administration 

systems to treat neoplasms. 

Plasma, a form of ionized gas, is one of the four fundamental states of matter and by far 

the most common form of matter in the universe. Initially, biomedical applications of 

plasma concentrated on heat and high temperature, i.e. thermal plasmas, for tissue 

removal, sterilization, and cauterization (Fridman et al., 2008). Technological advances 

have allowed researchers to generate plasmas at ambient temperatures and at 

approximately 1.0 atmospheric pressure, allowing safer application to biological samples 

and tissues without risking thermal injury. These are known as non-thermal atmospheric 

plasma (NTAP) or Cold Atmospheric Plasma (CAP). CAP has been investigated as a 
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promising technique for various biomedical applications including tumour therapies, 

sterilization, wound healing and local viral and microbial infection control (Isbary et al., 

2012; Shi et al., 2012; Zelzer et al., 2012; Yan et al., 2015). CAP generates a unique 

physical and chemical environment for exposure of biological tissues, eliciting effects 

such as activation of short and long lived reactive nitrogen species (RNS, e.g. N2
+, NO3 

and NO, etc.) and reactive oxygen species (ROS, e.g. OH•, O and O2•, etc.), photons as 

well as generation of heat, pressure gradients, charged particles, and electrostatic and 

electromagnetic fields (Kong, Keidar and Ostrikov, 2011; Babington et al., 2015), many 

of which are known to induce effective death pathways in cancer cells (Yan et al., 2015). 

Synergistic anti-cancer effects between AuNPs and CAP have emerged as a promising 

potential approach in cancer therapy studies. Kim et al. first reported that cytotoxicity of 

CAP to melanoma cells was significantly increased (near five-fold) by combining with 

antibody-conjugated AuNPs (Kim et al., 2008). Zhu et al. showed that CAP coupled with 

drug loaded core-shell AuNPs led to a significant enhancement in growth inhibition of 

breast cancer cells compared with control groups (Zhu et al., 2016). Other studies have 

also suggested that AuNPs have synergistic cytotoxicity when combined with CAP in 

cancer treatment (Cheng et al., 2014; Irani et al., 2015). However, the effects of CAP and 

AuNPs can vary due to the wide range of different AuNP, CAP-generating devices and 

cell lines. 

The current research uses an experimental dielectric barrier discharge (DBD) plasma 

device, DIT 120, with a maximum voltage output of 120 kV at 50 Hz generated between 

two 15 cm diameter aluminium disk electrodes (Figure 7a, b) (Ziuzina et al., 2013; 

Patange et al., 2017). We have previously characterised biological activities in cancer 

cells that are dependent and independent of reactive species generation using this system 

(Boehm et al., 2016; Conway et al., 2016). We wished to explore the mechanism of CAP 
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and AuNPs induced cytotoxicity in cancer cells using our system. Using various 

analytical chemistry, biochemistry and microscopy to characterise the effects of CAP on 

AuNP, we provide evidence that direct exposure to CAP induces increased AuNPs 

endocytosis and trafficking to lysosomes, which could be the mechanism of the 

synergistic cytotoxic effects observed in GBM U373MG cells.  

Figure 7. CAP demonstrates no significant effect on AuNPs (≤100μg/ml) within 

culture medium or water. 

(a) Schematic of the DIT120 Plasma Device used in this study. (b) A photograph showing 

plasma generation (blue) and treatment on cell samples. (c) 20nm AuNPs were diluted to 

different concentrations with cell culture medium or water. The mixed solutions were 
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treated with CAP (75 kV, 30 s), incubated for 24h, then measured the sizes by Zetasizer. 

(d) AuNPs were diluted in cell culture medium or water to 100μg/ml and treated with 

CAP at 75 kV for 0, 30 s. Zeta potential was then measured by Zetasizer. (e) STEM of 

AuNP, from left to right: mixed with water; mixed with culture media; mixed with culture 

medium then exposed to CAP for 75 kV, 30 s, AuNPs concentrations are 100μg/ml. For 

Fig. 1c and d, Zetasizer measurements were repeated in six replicates. Statistical analysis 

was carried out using one-way ANOVA with Bonferroni’s multiple comparisons post-test. 

2.2  Materials &Methods 

2.2.1 Cell Culture. 

The human brain glioblastoma cancer cell line U-251 MG (formerly known as U-373 

MG) (ECACC 09063001) were obtained from Dr Michael Carty (Trinity College Dublin).  

The stock held as U-373MG in ECACC was found to be identical by STR-PCR profiling 

to U-251, so now has been re-named as ‘U-251 MG (formerly known as U-373 MG)’. 

The new deposit of U-373 MG is named as U-373 MG (Uppsala) (ECACC catalogue 

number 08061901). However, the U-373MG cell line used in this project is considered 

as a subclone of U-251 and has been demonstrated to display variations in phenotypic 

marker expression as well as differences in growth characteristics, which may explain 

that various laboratories reported different results from U-373MG and U251 cell lines 

(Torsvik et al., 2014). Therefore, we used term U373MG in this thesis and only added 

explanation in all Method Sections to distinguish it from the U-251 and U-373MG 

(Uppsala) cell lines. Cells were cultured in Dulbecco’s Modified Eagle’s Media-high 

glucose (Sigma-Aldrich) supplemented with 10% foetal bovine serum (Sigma-Aldrich) 

and 1% penicillin and streptomycin mixture (Thermo Fisher Scientific) in TC flask T25, 

standard for adherent cells (Sarstedt). The cultures were maintained under a condition of 

5% (v/v) CO2 and 37 ℃ in a humidified incubator. Culture medium was changed every 
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2 days until reaching around 80% confluency. Cells were then brought into suspension 

using 0.25% trypsin solution (Thermo Fisher Scientific) and subcultured in new flasks. 

2.2.2 CAP Configuration and Treatment. 

The CAP-DBD device used (Figure 7a, b) is an experimental atmospheric low 

temperature plasma generator (Conway et al., 2016). It consists of two aluminium disc-

electrodes (diameter 15 cm) with a polypropylene sheet in the middle, which is used as 

dielectric barrier and holder for the reactor and cell samples. The thickness of the 

dielectric barrier is 1.2mm, and the distance between the two electrodes was 26.6 mm. 

Samples were placed in a sealed reactor and treated inside or outside the plasma 

discharging area. The CAP was generated between two disc-electrodes when the high 

voltage was applied. Voltage was monitored using an InfiniVision 2000 X-Series 

Oscilloscope (Agilent Technologies Inc., Santa Clara, CA, USA). TC dish 35 standard 

(35x10mm, Sarstedt) was used as the cell container for CAP treatment. U373MG cells 

were seeded into the dishes at a density of 1×105 cells/ml and incubated overnight to 

allow a proper adherence (70-80% confluency). For direct treatment, culture medium was 

removed from the dishes before the CAP treatment, then the cell culture dishes were put 

between the two electrodes and treated at 75 kV for 0-40 s. The fresh culture medium 

containing 100 μg/ml AuNPs or inhibitors was added after exposing to CAP. For CAP-

activated culture medium, the fresh culture medium were contained in TC dish 35, 

standard and treated with CAP at 75 kV for 30 s and stored overnight to remove short-

lived reactive species. AuNPs were added into CAP-activated medium to 100 μg/ml. The 

CAP-untreated cells were then incubated with CAP-activated medium containing AuNPs 

for 24 and 48 h. The indirect CAP treatment was used to determine the role of direct 

physical effects. To indirectly treat cells with CAP, the sample was treated in the reactor 

without the dish lid on it, and culture medium was removed before the treatment. The cell 
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culture dish was placed on the corner of the reactor, outside the plasma discharging area. 

During the treatment (75 kV, 30 s), the reactor was sealed in a high barrier polypropylene 

bag (B2630; Cryovac Sealed Air Ltd, Dunkan, SC, USA) to keep the CAP inside the 

reactor, and to make sure the cells were only affected by the short-lived and long-lived 

reactive species generated in air (Han et al., 2016). Fresh culture medium containing 100 

μg/ml AuNPs was then added after indirect CAP treatment. 

2.2.3 Gold Nanoparticles Synthesis and Characterization. 

20 nm AuNPs used in this study are synthesised by trisodium citrate (Na3C6H5O) 

reduction of auric acid (HAuCl4). The typical method of AuNPs synthesis as follows. 

HAuCl4 was dissolved in water at a concentration of 0.25 mM in a clean glass flask and 

heated with magnetic stirring and brought to boiling. The corresponding amount of 5% 

(w/v) sodium citrate solution was quickly added to final 3.5:1 molar ratio of citrate to 

Au3+ while being keep heating and stirring. The reaction was completed until the colour 

of solution was changed from dark purple to wine red and keep stable. The gold colloid 

was then centrifuged at 10000 g for 10 min to concentrate the AuNPs stock solution to 

2500 μg/ml. The size, absorbance curve and zeta potential of AuNPs was then determined 

by UV-Vis spectrometer (Shimadzu, UV-1800), Zetasizer (Malvern, Nano ZS) and 

scanning transmission electron microscopy (STEM). The AuNPs stock solution was 

diluted in water or culture medium to corresponding concentration as indicated in the 

relevant figures. 

2.2.4 Cell Viability Assays. 

Cell viability was analysed using the Alamar blue assay (Thermo Fisher Scientific), 

which used a redox indicator that can generate fluorescent signal by the metabolic 

reduction. U373MG cells were plated into 96-well plates (Sarstedt) at a density of 1×104 

cells/well (100 μl culture medium per well) and were incubated overnight to allow a 
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proper adherence. The cells were then directly treated with CAP at 75 kV for 0- 30 s at 

70-80% confluency, and culture medium containing 0-100 μg/ml AuNPs was added post 

CAP treatment. Forty-eight hours late, the cells were rinsed once with phosphate buffered 

saline (Sigma-Aldrich), incubated for 3 h at 37 ℃ with a 10% Alamar blue/90% culture 

medium solution. The fluorescence was then measured (excitation, 530 nm; emission, 

595 nm) by a Victor 3V 1420 microplate reader (Perkin Elmer). 

2.2.5 Atomic Absorption Spectroscopy.  

U373MG cells were seeded into 60 mm dishes (Sarstedt) at a density of 1×105 cells/ml 

and incubated for 2 days to achieving 90-100% confluency. The culture medium was 

removed, and cells were directly exposed to CAP at 75 kV for corresponding time. The 

fresh culture medium containing 100 μg/ml AuNPs or 0.1% (w/v) NaN3 was then 

replaced and incubated for 0.5-48 h at 37 ℃ or 4 ℃ as indicated. After treatment, cells 

were washed thrice with phosphate buffered saline to remove the AuNPs outside cells. 

Cells were then dissociated and collected from the culture dish using prewarmed (37 ℃) 

0.25% trypsin solution. The cell suspension was counted using hemocytometer, then 

transferred to 15 ml tube (Sarstedt) to measure the gold atomic absorbance in AAS. To 

verify the Au amount of the samples, five-point standard curve were first established 

using 1-5 ppm standard gold colloid. The concentrations of AuNPs in samples were then 

calibrated by the standard curve as described elsewhere (Trono et al., 2009). 

2.2.6 Inhibitor Studies. 

To determine the uptake of AuNPs, NaN3 was used as metabolic inhibitor to inhibit the 

energy-dependent endocytosis. 20% (w/v) NaN3 stock solution was prepared in 

phosphate buffered saline. The cells were pre-incubated with 0.1% (w/v) NaN3 in 

prewarmed (37 ℃) culture medium for 1h. The culture medium was then removed during 

CAP treatment, then fresh medium containing 0.1% (w/v) NaN3 and 100 μg/ml AuNPs 
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was added into the cell culture and incubated at 37 ℃ as indicated. 4 ℃ incubation was 

used to inhibit endocytosis as a standard experiment. Cells were incubated at 4 ℃ for 1h 

before the CAP treatment, pre-chilled culture medium containing 100 μg/ml AuNPs was 

then replaced post CAP treatment and incubated at 4 ℃ for 0.5-6 h as indicated. N-Acetyl 

Cysteine (NAC) was used as antioxidant to remove long-lived reactive species. 4 M NAC 

stock solution was prepared in water. The cells were pre-incubated with 4 mM NAC in 

culture medium for 1 h at 37 ℃. The culture medium was then removed during CAP 

treatment. Afterward, cells were incubated in fresh medium with 4 mM NAC and 100 

μg/ml AuNPs for 24 and 48 h. 

2.2.7 Fluorescent Dyes and Cell Imaging. 

Lysosomes was demonstrated using the LysoTracker™ Green DND-26 (Thermo Fisher 

Scientific). Cells were seeded in 35 mm glass-bottom dishes (Greiner Bio-One) at a 

density of 1×105 cells/ml overnight and treated with CAP for 0-40 s at 70-80% confluency, 

the fresh medium containing 0-100 μg/ml AuNPs was then replaced and incubated for 

24h or 48 h at 37 ℃ as indicated. After treatment, the cells were rinsed thrice with 

phosphate buffered saline and incubated with prewarmed (37 ℃) LysoTracker-

containing (50 nM) medium for 5 min at 37 ℃. Cells were then washed once with 

phosphate buffered saline and loaded with fresh phosphate buffered saline and observed 

using Zeiss LSM 510 confocal laser scanning microscope fitted with the corresponding 

filter settings as follows. LysoTracker™ Green DND-26, excitation wavelength: 488 nm, 

emission filter: 505-530 nm; AuNPs, excitation wavelength: 633 nm, reflection filter: 

649-799 nm. Plan-Apochromat 63x/1.4 Oil Ph3 was used as objective for all samples. To 

determine the level of AuNPs reflection, around 50 cells were randomly imaged for each 

treatment condition and the levels of reflection was analysed using the ImageJ and 

compared with other groups. 
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2.2.8 Statistical Analysis. 

All data points were from at least triplicate independent samples and are presented and/or 

pooled as mean ± S.E.M unless indicated otherwise. Curve fitting and statistical analysis 

were carried out using Prism 6 (GraphPad Software). The Alpha for all tests is 0.05 and 

two-tailed P values were used. One-way ANOVA and two-way ANOVA was used to 

verify the significance between data points as indicated in figures (*P<0.05, **P<0.01, 

***P<0.001, ****p<0.0001). 

2.3  Results 

2.3.1 The effects of CAP on the physical properties of AuNP.  

CAP has been used to fabricate metal nanoparticles (e.g. gold and silver) without adding 

reducing agents (Tseng et al., 2009). Moreover, AuNPs are known to agglomerate upon 

stresses such as repeated centrifugation, dilution, dialysis, and upon contact with 

biological medium (Articles and Results, 2012). We first explored whether exposure of 

20 nm AuNPs to our experimental plasma device DIT 120 altered their physical 

parameters (size, shape, surface (zeta) potential, or extent of agglomeration) in water and 

biological cell culture medium. A concentration range of AuNPs (20 nm, 50-200 μg/ml) 

in water or culture medium was treated with CAP (75 kV, 30s), or untreated and incubated 

for 24 hours prior to analysis. As evident in Figure 7c, agglomeration was evident at 

higher concentrations (>100 μg/ml) in culture medium and no agglomeration of AuNPs 

was evident even at 200 μg/ml in water. CAP did not induce any significant change in 

particle size and there is no evidence of agglomeration either in water or in culture 

medium (Figure 7c, P=0.1160 in medium group, >0.9999 in water group). We also 

confirmed that dilution of AuNPs in culture medium to 100 μg/ml and exposure to CAP 

(75 kV, 30 s) has no significant change in relation to other physical properties such as 

zeta potential (Figure 7d, P>0.05) or optical absorption (see Figure S1 in the Appendix 
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III). Moreover, no discernible change in physical parameters was evident using Scanning 

Transmission Electron Microscopy, nanoparticles remaining spherical with an average 

diameter of 20 nm and displaying similar degrees of dispersion across the surface of the 

gird (Figure 7e). As AuNPs were not observed to agglomerate in culture medium for 

concentrations AuNPs ≤ 100 μg/ml and no changes in physical parameters were detected 

in response to CAP, culture medium containing up to 100 μg/ml AuNPs were used in 

subsequent experiments exploring uptake kinetics of AuNP. 

2.3.2 Synergistic cytotoxicity when CAP and AuNPs are combined.  

Figure 8. Cytotoxic synergy observed between CAP and AuNP.  

(a) U373MG cells were treated with different concentrations of AuNPs (0-800 μg/ml). 

After incubation for 48 h, cell viability was analysed using the Alamar Blue assay. The 

cell viabilities were divided into two phases (red and green) and non-linear regression 

was carried out. The 95% confidence bands are displayed using dotted lines. Significant 

differences in the slope (p<0.05) are evident using non-toxic AuNPs concentrations (0-

12.5 μg/ml) which was further confirmed using Pearson’s Correlation test (p<0.05). All 

experiments were repeated in five replicates. (b) After CAP treatment (75 kV, 0, 30s) 

U373MG cells were incubated with 100 μg/ml AuNPs for 24 h, 48 h, then observed under 

optical microscope. 

In our previous study, U373MG cells were exposed to CAP for between 3 and 300 s at 

75 kV and the IC50 value of CAP treatment was determined to be 74.26 s (95% confidence 
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range of 47.24–116.8 s) (Conway et al., 2016). The toxicity measured in U373MG cells 

exposed to 30 s CAP is low (18.52%, SEM=5.41%) (see Table S1 in the Appendix III). 

Figure 8a shows the results of non-linear regression analysis used to calculate IC50 values 

and confidence ranges for cells treated with AuNPs alone and AuNPs combined with 

CAP (75 kV, 30 s) (see Table S1 in the Appendix III). The IC50 value for AuNPs alone 

was 2125 μg/ml (95% confidence range: 1294-3491 μg/ml) (Inverse IC50=~0.471 μl/μg), 

which is in agreement with other reports that ~20 nm spherical gold nanoparticles have 

very low cytotoxicity to healthy or cancerous cells (Connor et al., 2005; Pan et al., 2007). 

The IC50 value for AuNPs combined with CAP was 81.71 μg/ml (95% confidence range: 

53.83-124.16 μg/ml) (Inverse IC50=~12.238 μl/μg), ~26 times more toxic by comparing 

their inverse IC50. The dose response curve was divided into two phases of toxicity 

(Figure 8a) to demonstrate synergy between CAP and AuNP. In the first phase, using low 

concentrations of AuNPs (0-12.5 μg/ml), a sharp and significant drop in viability was 

observed only when cells were incubated with both CAP and increasing AuNPs 

concentrations. The 95% confidence intervals of the slope of CAP and AuNPs treated 

cells during first phase (-63.57 to -33.43) was significantly different to AuNPs only 

treated cells (-5.573 to 12.71). We believe this provides evidence that CAP and AuNPs 

have a synergistic cytotoxicity to U373MG cells and the uptake of AuNPs could reach to 

a threshold with increase concentration of AuNP. 

Morphological assessment using bright-field microscopy confirmed the accumulation of 

AuNPs in cells, but this was significantly greater when cells were pretreated with CAP 

(Figure 8b). We therefore hypothesised that CAP can accelerate the uptake and 

accumulation of AuNPs into U373MG cells, thereby causing higher cytotoxicity. To 

explore the mechanism of synergistic cytotoxicity of CAP and AuNPs, we used 100 μg/ml 

AuNPs which is close to the IC50 value, at which no discernible physical changes to 
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AuNPs was observed. 

2.3.3 Role of active (ATP-dependent) and passive (ATP-independent) transport 

mechanisms.  

To confirm the hypothesis that CAP affects enhanced AuNPs uptake, and to investigate 

the mechanisms, Atomic Absorption Spectroscopy (AAS) was used to quantify the total 

amount of gold in cells. Intracellular AuNPs accumulated over time and followed a 

similar overall non-linear relationship for cells with or without exposure to CAP. We 

observed that CAP significantly increased both the initial rate of uptake and total amount 

of AuNPs accumulated in cells (Figure 9a).  

To confirm whether active transport or passive diffusion mechanisms were involved, we 

used the mitochondrial decoupler, NaN3, to identify endocytosis, in which ATP is the rate 

limiting component. Meanwhile, cold temperature incubation (4 ℃) was used to inhibit 

all energy-dependent uptake in cells. NaN3 inhibited AuNPs uptake by about 50% when 

compared with controls (Figure 9a). Interestingly, NaN3 treatment inhibited the uptake of 

AuNPs in both CAP-treated cells and untreated cells. No significant difference was 

observed between these two groups between 4 and 48 hours (Figure 9a), indicating that 

CAP-stimulated uptake of AuNPs is mainly ATP-dependent. On the other hand, NaN3 

can act as a RONS scavenger, which may lead to different conclusions. In Chapter 3, 

AuNPs have been demonstrated to be uptake into cells mainly via endocytosis when the 

cell membrane remains intact. We have demonstrated that the membrane lipids were 

partly peroxidised by the membrane got repaired rapidly and remains intact. Therefore, 

we can confirm that NaN3 mainly inhibited the ATP-dependent endocytosis pathway. 

Cells were then incubated at 4 ℃ for 0.5, 1, 4, 6 h (cell viability was affected at longer 

time points). As expected, uptake of AuNPs was significantly inhibited compared with 

controls (Figure 9a). Together, we believe this provides evidence that an active transport 
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mechanism, most likely endocytosis, is the major route of uptake of AuNPs in cells, 

which occurred between 0 and 16 hours after incubation with AuNP, and which was 

stimulated by CAP exposure. We could not rule out other transport mechanisms playing 

a minor role. For example, we observed a small fraction (i.e. 10%) of CAP-stimulated 

AuNPs accumulation in cells that was not inhibited in either NaN3 or 4 ℃-incubated cells. 

This second, minor CAP-dependent uptake mechanism occurs within 1-hour exposure to 

NaN3 (Figure 9b) and 4 hours of exposure to 4 ℃-incubated cells (Figure 9c). Plasma-

activated culture medium (PAM) containing AuNPs was used to treat cells to determine 

the role of long-lived reactive species (Judée et al., 2016). As seen in Figure 9d, the uptake 

of AuNPs in PAM showed no significant difference when compared with the control after 

24 and 48 h incubation.  

Figure 9. AAS analysis demonstrate the accelerated uptake of AuNPs into cells. 

(a) After CAP treatment (75 kV, 0, 30s), U373MG cells were treated with 100 μg/ml 

AuNPs together with 1% NaN3 or without to inhibit endocytosis, then incubated at 37 ℃ 

or 4 ℃ as indicated before calculating the average amount of Au per cell using AAS. The 
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uptake curves were assessed by non-linear regression analyses. All experiments were 

repeated in six replicates. (b) The short-time effects of CAP with or without 1% NaN3 

were compared. (c) The uptake of AuNPs incubated at 4 ℃ for 0.5, 1, 4, 6 h. (d) The role 

of long-lived ROS generated by CAP on endocytosis in U373MG cells was determined by 

using Plasma activated medium (PAM; 75 kV, 30 s, stored overnight) in place of CAP. 

For Figure 9b-d, all experiments were repeated in six replicates. The statistical 

significances were assessed by two-way ANOVA with Tukey’s multiple comparison post-

test (*P<0.05, **P<0.01, ***P<0.001, ****P<0.0001). 

2.3.4 Subcellular localization of AuNPs endocytosed in response to CAP treatment.  

Despite the accuracy of using AAS to quantify to total amount of Au in a sample, one 

limitation with the technique is the difficulty in differentiating between AuNPs that are 

loosely associated with the plasma membrane compared with intracellular AuNP. To 

verify the uptake of intracellular AuNP, investigate the subcellular location and quantify 

the rate of uptake, we used confocal microscopy (Figure 10). Unlabelled, citrate-capped 

AuNPs were visualised using reflection of laser light from the colloid gold (red dots) and 

lysosomes were counterstained using LysoTracker Green, as shown in Figure 10a. The 

absorption spectrum of 20nm AuNPs confirmed that the absorption peak is around 520 

nm, and that there is minimal absorbance above 600 nm (see Figure S1 in the Appendix 

III). The reflection filter setting for AuNPs was set at 649-799 nm and the emission filter 

for LysoTracker Green was set at 505-530 nm. This allowed us to confirm that the green 

fluorescence signal is from LysoTracker Green (excited with argon laser) and red 

reflection is from AuNPs (reflected light from HeNe laser). A significant fraction of 

intracellular colocalization was evident (yellow), indicating that the lysosomal 

compartment was the major destination of AuNPs following CAP-stimulated uptake 

(Figure 10a). Interestingly, some AuNPs were not located in lysosomes, suggesting that 
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these AuNPs remained in early endosomes or had entered the cytosol, either by passive 

diffusion, transport mechanisms through the cell membrane or released from lysosomes 

subsequent to endocytosis. Significantly higher levels of intracellular AuNPs in cells 

were observed following CAP treatment (Figure 10b), in agreement with our AAS data. 

Moreover, varying the dose of CAP confirmed a significant, strong and positive 

correlation exists between exposure to CAP and subsequent AuNPs uptake (Figure 10c), 

Pearson’s correlation, r=0.9359, P=0.0193. 

Z-stacked images were obtained to ensure that only intracellular AuNPs were quantified. 

Stacked, deconvoluted confocal images were next reconstructed using rendering software 

(Imaris 8.0. Bitplane) to generate 3 dimensional reconstructions of individual cells. The 

presence of AuNPs (red) inside lysosomes (green) was confirmed by rotating and 

sectioning the cells around the three spatial axes and projecting sections from the x, y and 

z planes of the reconstructions (Figure 11a, b. Taken together, our data confirm that CAP 

induces synergistic cytotoxicity while-stimulating the uptake of citrate capped 20nm 

AuNPs through a predominantly endocytic mechanism, leading to trafficking of the 

AuNPs into acidic (lysosomal) compartments of U373MG cells. 
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Figure 10. Uptake and subcellular localization of AuNPs observed by confocal 

microscopy. 
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(a) After CAP treatment (75 kV, 0, 30 s), U373MG cells were incubated with 100 μg/ml 

AuNPs for 24 h. Cell lysosomes were stained using 50 nM LysoTracker™ Green DND-

26. The reflection of AuNPs was measured by confocal microscopy. (b) After CAP 

treatment (75 kV, 0, 30 s), U373MG cells were incubated with 100 μg/ml AuNPs for 24 

h, 48 h. Cells were then measured by confocal microscopy, the level of reflection of 

AuNPs was quantified using ImageJ. The statistical significance was assessed by two-

way ANOVA with Tukey’s multiple comparison post-test (*P<0.05, **P<0.01, 

***P<0.001, ****p<0.0001), n≥20. (c) After exposure to CAP for increasing time (75 

kV, 0-40 s), U373MG cells were incubated with 100 μg/ml AuNPs for 24 h. Cells were 

then measured by confocal microscopy, the level (Integrated Density) of reflection of 

AuNPs was quantified using the software, ImageJ. Statistical analysis was carried out 

using Pearson’s correlation, r=0.9359, *P (two-tailed) =0.0193, n≥20.  

2.3.5 Role of physical and chemical effects of CAP on AuNPs uptake.  

Our data indicated that long-lived reactive species present in plasma activated medium 

(PAM) did not play a major role in enhanced uptake of AuNPs (Figure 9d). We wished 

to further investigate effects of CAP on AuNPs endocytosis. Due to the set-up of the DBD 

plasma device, samples can either be placed directly in the plasma discharging area 

(direct exposure) or outside the plasma-discharging area (indirect exposure). Plasma 

sources for direct or indirect plasma treatment were previously distinguished by Fridman 

et, al. (Fridman et al., 2008) and more recently by Von Woedtke et, al. (2013) (von 

Woedtke et al., 2013). In indirect plasma treatment, the electrodes are part of the plasma-

generating device, only and there is no significant electrical contact to the targeted 

structures, whereas in direct plasma treatment, the biological samples serve as one of the 

two electrodes. In both cases, samples are contained within a sealed reactor. Direct 

exposure results in direct interaction with UV, electric fields, electron beams, charged 
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particles, whereas indirect exposure does not result in any interaction with these physical 

species. However, the sealed reactor system still allows the exposure of reactive species 

to cells. It has been demonstrated that ozone concentration and reactive oxygen species 

generated are not significantly different during direct or indirect CAP exposure (Ziuzina 

et al., 2013; Han et al., 2016). We investigated the difference between direct and indirect 

CAP treatment on AuNPs uptake to differentiate between direct physical effects and 

chemical (oxidation) effects. Our results demonstrated that AuNPs uptake was 

significantly higher when cells were treated with indirect CAP exposure compared with 

untreated cells, suggesting that chemical effects were important in promoting endocytosis 

(Figure 11c, d). The enhanced AuNPs uptake was consistently slightly lower compared 

with direct CAP exposure although we were not able to determine a significant difference, 

suggesting that any physical effects only play a minor role in the increased uptake of 

AuNP. We used N-Acetyl Cysteine (NAC), a synthetic precursor of intracellular cysteine 

and glutathione (GSH) that replenishes intracellular GSH and scavenges reactive species 

as a redox buffer (Deneke, 2001) to remove long-lived ROS in situ during CAP treatment. 

This was ineffective in significantly reducing AuNPs uptake enhanced by CAP (Figure 

11c, d), suggesting that either the oxidising environment generated by CAP overwhelms 

GSH and other intracellular anti-oxidant defences, or that NAC-insensitive chemicals 

produced by both direct and indirect contained CAP fields are the primary cause of 

enhanced AuNPs uptake. 
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Figure 11. AuNPs are incorporated within lysosomes in glioma cells. 

(a) 3D reconstruction of the CAP-treated glioma cells visualized with dichroic channel 

(grey), incorporating AuNPs (red) within lysosomes (LysoTracker green). U373MG cells 

were incubated with 100 μg/ml AuNPs for 24 h, after CAP treatment (75 kV, 0, 30 s) and 

a significant increase of AuNPs was observed in the entire cells but being part located 

inside lysosomes. High magnifications in bottom panel show lysosomes evidenced with 

green isosurface. Vertical and horizontal clipping planes reveal red AuNPs nanoparticles 

inside lysosomes. Boxes at the bottom indicate the orientation of the clipping planes (b) 
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Analogous 3D reconstruction of CAP-untreated cells, demonstrated low incorporation of 

AuNPs inside the cells. High magnification at the bottom panel shows lysosomes rendered 

with green isosurface. Horizontal clipping plane revealed no red material inside 

lysosomes. (c, d) The role of short and long-lived reactive species generated by CAP on 

endocytosis in U373MG cells was determined by pretreating cells with 4 mM anti-oxidant 

N-Acetyl Cysteine (NAC) for 1 h before CAP treatment (75 kV, 30 s) or by indirect CAP 

treatment (see detail in Method). The level of reflection of AuNPs was quantified using 

the ImageJ after incubated for 24 (c) or 48 hours (d). The statistical significance was 

assessed by two-way ANOVA with Tukey ’s multiple comparison post-test (*P<0.05, 

**P<0.01, ***P<0.001), n≥20..  

2.4  Discussion 

AuNPs have been developed as promising theranostic agents for brain cancer therapy in 

diverse applications, such as in vivo tumour imaging, inducing radiosensitization and 

targeted delivery of chemotherapeutics across blood-brain barrier (BBB) to brain cancer 

cells (Joh et al., 2013; Setua et al., 2014). As an emerging platform for drug delivery, the 

toxic effect of AuNPs to normal cells can be minimized or eliminated by altering the size. 

(Pan et al., 2007) However, the proportion of AuNPs that penetrate the BBB is usually 

no more than 1% (Dykman and Khlebtsov, 2012). To date, efforts to enhance AuNPs 

crossing of the BBB have been mainly focused on targeting AuNPs to the surface 

receptors of endothelial cells (Kumar, Zhang and Liang, 2013) and the limited success 

means that there is still need for further studying the mechanisms of crossing BBB and 

blood-tumour barriers, etc. The permeability, targeting capacity and uptake of AuNPs 

into targeted cancer cells are the key to successful clinical application of AuNP. CAP 

treatment has been extensively investigated in cancer therapy, due to its promising 

selective capacity of killing a wide range of cancer cells (Yan et al., 2015), such as 
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carcinomas, glioblastomas, melanomas and hematopoietic malignancies (Kim et al., 2008; 

H. J. Lee et al., 2009; Yan et al., 2012). In recent years, CAP has been successfully and 

safely used in a prospective clinical trial for head and neck cancer treatment and chronic 

wound healing, demonstrating significant benefits and no side-effects. Meanwhile, the 

synergistic anti-cancer effects between AuNPs and CAP were reported in several 

previous studies (Kim et al., 2008; Cheng et al., 2014; Irani et al., 2015; Kaushik et al., 

2016; Zhu et al., 2016). 

Although cancer cells are generally reported to be favourably sensitive to CAP induced 

cytotoxicity when compared with normal cells or tissues (Babington et al., 2015), 

U373MG GBM cells have significantly higher resistance to CAP treatment compared to 

other cancer cell lines (Conway et al., 2016). GBM cells also show high aggressiveness 

and resistance to radiation therapy and most chemotherapies (Candolfi et al., 2007). There 

is evidence in the literature that AuNPs have synergistic cytotoxicity combined with CAP, 

although the mechanisms remain to be elucidated. Therefore, we chose to study the 

mechanism of CAP, combined with AuNP, as a possible future chemotherapy delivery 

vehicle. In this study, we confirmed that combining CAP with AuNPs increased around 

25-fold of U373MG cell death compared to AuNPs only. We also demonstrated that CAP 

treatments accelerate the endocytosis of U373MG cells by temporarily increaseing 

membrane permeabilisation or turnover, thereby increasing uptake and cytotoxicity of 

AuNP. These effects will be useful to induce higher selective cytotoxicity against cancer 

cells while increasing drug delivery efficiency and/or imaging diagnostics for cancer 

therapy. 

In this study, we used 20 nm citrate capped AuNPs, which not only have optimal BBB 

permeability and low toxicity, but also can rapidly enter cells, mostly by receptor-

mediated endocytosis (Gao, Shi and Freund, 2005; Pan et al., 2007; Shilo et al., 2015). 
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Therefore, 20 nm AuNPs can be the optimal candidate for drug delivery across BBB. We 

were able to confirm that the observation of the uptake of 20 nm citrate capped AuNPs 

are consistent with endocytosis and a large proportion of them were trapped in lysosomes 

in both CAP-treated and untreated U373MG cells (Figure 9, 4 and 5). We confirmed that 

CAP did not discernibly alter the physical properties of AuNP, although we did see 

evidence that CAP could stimulate low levels of non-active uptake through an ATP-

independent mechanism, which may indicate some level of surface modification or other 

physical change to AuNPs and/or cell membranes. Although we were unable to detect 

physical changes to AuNPs exposed to CAP, significant alterations in cell membranes 

after exposure to CAP were previously observed by others (Recek et al., 2015). Our 

observation that synergistic cytotoxicity occurs in parallel with enhanced uptake suggests 

the two processes are linked in U373MG cells. Although, there have been no studies 

reported to date on the relative sensitivity of normal and GBM cells to CAP-induced 

endocytosis, it has been demonstrated that the significant alterations in cell membrane of 

GBM cells induced by CAP treatment is maintained, whereas the membrane alteration in 

normal human astrocytes E6/E7 is weaker and reversible (Recek et al., 2015). More 

detailed mechanisms regulating the uptake of nanoparticles in normal and GBM cells will 

be investigated in a follow-on study. A controllable, directable CAP treatment, which is 

directly applied to diseased tissue, also is expected to be included to present the in vivo 

experiment in the follow-on study. At this stage, we provided a likely hypothesis as 

follows. 

It is possible that enhanced uptake of AuNPs may underpin the synergistic cytotoxicity 

observed, in combination with other effects such as the higher load of reactive species 

carried by CAP-treated AuNP. For example, it has been reported that AuNPs are capable 

of trapping reactive species and extending their half-life, and thus helping the delivery of 
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CAP generated reactive species into cancer cells (Kong, Keidar and Ostrikov, 2011). It 

is also likely that the enhanced accumulation of AuNPs is caused by one of three effects 

attributed to CAP, i.e. reactive species, direct physical effects and cellular mechanism 

(mainly endocytosis). 

Considering the potential role of reactive species, hydrogen peroxide (H2O2) was found 

to be capable of facilitating the endocytosis of polyethylenimine /oligonucleotide 

(PEI/ON) complexes, involving a cytoplasmic [Ca2+]-independent activation of 

calcium/calmodulin-dependent protein kinase II (CaMKII), which stimulates 

cytoskeleton contractions and transportation (Ma, Sun and Wang, 2014). It was also 

found that the ROS generated in mitochondria mediate the hypoxia-induced endocytosis 

in alveolar epithelial cells (Dada et al., 2003). It is considered that CAP is capable of 

influencing cell behaviour by generating intracellular ROS and RNS (Conway et al., 

2016). These studies imply that the CAP-generated intracellular ROS could have an 

impact on the enhanced endocytosis. Meanwhile, reactive species are capable of inducing 

membrane damage and increasing the permeability of cell membrane (Djordjević, 2004). 

The reactive species generated in the cytoplasm or in the medium can induce lipid 

peroxidation in membranes by oxidizing the polyunsaturated fatty acids. Reactive species 

are also able to attack membrane proteins, causing the membrane damage (Djordjević, 

2004). It has been found that the membrane lesions are capable of activating rapid 

endocytosis to remove damage parts and preserve and repair the integrity of cell 

membrane (Idone et al., 2008). Therefore, it is possible that the chemical and physical 

membrane damage caused by CAP could activate the membrane repair response, thus 

accelerating the endocytosis of AuNPs. Although we found that long-lived reactive 

species have little effect on the uptake of AuNPs (Figure 9d), the short-lived, highly 

reactive species may play a role in the stimulated uptake, which will need to be further 
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elucidated. 

Considering the direct physical effects, which are mainly electrical factors in DBD CAP 

treatment, Jinno, M et, al. has described the roles of chemical (reactive species) and 

electrical effects of CAP in the CAP gene transfection in L-929, mouse fibroblast cells 

(Jinno et al., 2016). It was found that reactive species alone do not work, but need to be 

combined with electrical effects. Electroporation effects, which can last for a few minutes, 

were also found to play a role in gene transfection (Jinno et al., 2016). Computational 

modelling was used to determine that large pore formation in spherical cell membranes 

(i.e. 15-25 nm) can be induced in strong electric fields in silico (Krassowska and Filev, 

2007), a notion which has since been confirmed for 20 nm AuNPs in vitro (Zu et al., 

2014). Meanwhile, it was observed that the treatment of CAP in GBM cells results in an 

uneven membrane and development of membrane pores (Cheng et al., 2015). Nina Recek 

et. al. have studied the differential effects of CAP on cell membranes of normal human 

astrocytes (E6/E7) and GBM cells by atomic force microscopy. CAP treatment causes a 

temporary disappearance of microvilli in E6/E7, and unrecoverable partial cell 

membranes and cell components damage of GBM cells. The temporary pores created in 

membranes and membrane damage could be the ATP-independent mechanism that 

stimulates low levels of non-active uptake of AuNPs during the first few hours after 

treatment with NaN3 or under low-temperature incubation (Figure 9b, c). Moreover, it is 

also known that CAP is capable of temporarily changing the polarity/potential of the 

membrane, which also could play a role in stimulating endocytosis (Dong, Liu and Xiong, 

2017). As seen in Figure 11c, d, the indirect treatment, which removes the direct physical 

effects caused by CAP, showed only slightly decreased accumulation of AuNPs and no 

significant difference evident compared with direct treatment. It confirmed that the 

temporary direct physical influence caused by DBD CAP treatment plays only a minor 
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role in the increased uptake of AuNP. 

It is considered that the endocyosis of cells can be stimulated by CAP via reactive species 

and other mechanisms such as membrane damage, as indicated above (Idone et al., 2008; 

Ma, Sun and Wang, 2014; Jinno et al., 2016). In gene transfection, the clathrin-dependent 

endocytosis stimulated by CAP was found to be dominant in the uptake, while 

synergistically combining with electrical effects (Jinno et al., 2016). We observed two 

phases to the enhanced uptake of AuNP. Over the first one hour, we observed both 

increased endocytosis and possibly also increased passive diffusion through damaged or 

otherwise permeable membranes (Figure 9b, c). We then observed a second phase, 

between 4 and 18 hours, where AuNPs uptake was further accelerated by CAP primarily 

though endocytosis with no evidence for further passive mechanisms before reaching a 

maximum accumulated threshold (Figure 9a). 

Taken together, we report that the synergistic cytotoxicity of AuNPs and CAP is a result 

of enhanced endocytosis and trafficking to the lysosomal compartment as well as 

temporarily increased membrane permeability, due to CAP treatment. This contributes 

understanding to the mechanisms of synergistic cytotoxic effects between CAP and 

nanotechnologies and identifies strategies that may be employed for the release of drugs 

when used in a drug-delivery capacity. 
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CHAPTER 3. COLD ATMOSPHERIC PLASMA 

STIMULATES CLATHRIN-DEPENDENT ENDOCYTOSIS 

TO REPAIR OXIDISED MEMBRANE AND ENHANCE 

UPTAKE OF NANOMATERIAL IN GLIOBLASTOMA 

MULTIFORME CELLS 

Part of this Chapter has been published. 
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Endocytosis to Repair Oxidised Membrane and Enhance Uptake of Nanomaterial in 

Glioblastoma Multiforme Cells. Sci Rep 10, 6985 (2020).  

DOI: 10.1038/s41598-020-63732-y 

See Appendix I



83 

 

3.1  Introduction 

Cold atmospheric plasma (CAP) is increasingly studied in a growing number of clinical 

trials for cancer treatment (Fridman et al., 2008; Guerrero-Preston et al., 2014) and 

research is ongoing to explore the combination of CAP with other therapies, including 

nanoparticles, radiotherapy and chemotherapy (Kim et al., 2008; Collet et al., 2014; He 

et al., 2020).  

Gold nanoparticles (AuNPs) are known to be weakly-toxic to human cells and be readily 

manufactured and designed for targeting delivery of various therapeutic compounds into 

cells. Citrate-capped cationic AuNPs may adsorb serum proteins onto their surface and 

thereby stimulate receptor-mediated endocytosis(Alkilany and Murphy, 2010). Without 

special surface functionalisation, AuNPs enter cells and become trapped in vesicles 

(Chithrani, Ghazani and Chan, 2006; Alkilany and Murphy, 2010; Freese et al., 2012) or 

enter the nucleus, depending on their size/shape (Tsoli et al., 2005; Ryan et al., 2007). 

Meanwhile, AuNPs with functionalised surface chemistries/ligands can directly penetrate 

the membrane and enter the cytoplasm (Verma et al., 2008).  

Recently, AuNPs have emerged as a promising reagent, combined with CAP, for anti-

cancer therapy (Kim et al., 2008; Irani et al., 2015; Zhu et al., 2016). CAP generates a 

unique physical and chemical environment, including generating short- and long-lived 

reactive nitrogen species (RNS, e.g. excited N2, N2
+, ONOO- and NO•, etc.) and reactive 

oxygen species (ROS, e.g. •OH, O, •O2
- and O3, etc.), photons as well as heat, pressure 

gradients, charged particles, and electrostatic and electromagnetic fields, many of which 

are known to induce biological effects (Stoffels, Kieft and Sladek, 2003; Kong, Keidar 

and Ostrikov, 2011; Babington et al., 2015). Parallels to this can be found in phagocytes 

of the immune system. Enzymatic production of RONS along with various hypohalous 

acids, especially hypochlorite, play a significant role in respiratory bursts, also known as 
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oxidative bursts, which are used in the clearance of tumour cells by phagocytic immune 

cells including neutrophils, macrophages and monocytes (Reuter et al., 2010). Anti-

cancer cytotoxicity induced by respiratory bursts has been shown to induce spontaneous 

regression in mouse tumour models (Chao et al., 1994; Hicks et al., 2006; Zivkovic et al., 

2007).  

Reactive species can induce a free radical chain reaction in membrane lipids leading to 

lipid peroxidation, oxidative degradation of the lipids, disruption of membrane function 

and induced injury and disorder in cells. Peroxidated lipid products can induce further 

propagation of free radical reactions (Halliwell et al., 1992). Several ROS and RNS 

generated by CAP can induce cell injures via lipid peroxidation (Leopold and Loscalzo, 

2009), for instance, hydroxyl radicals (•OH) react with various cellular components, 

including membrane lipid (Adibhatla and Hatcher, 2008) while superoxide (•O2
- ) can 

form peroxynitrite (ONOO-), which is able to initiate lipid peroxidation, after reacting 

with nitric oxide (NO) (Adibhatla and Hatcher, 2008). RNS, such as NO2 and ONOOH, 

also interact with lipids to form nitrated lipids, which have been demonstrated to play 

roles in vascular and inflammatory cellular signalling pathways (Leopold and Loscalzo, 

2009).  

Independent application of AuNPs and CAP for cancer therapy has been widely 

investigated. Recent studies have shown that combination of AuNPs and CAP is 

emerging as a novel and promising therapeutic approach against malignant tumours, 

resulting in synergistic anti-cancer effects. Synergistic cytotoxicity has been 

demonstrated for various AuNPs when combined with CAP against several cancer cell 

lines including melanoma (Kim et al., 2008), breast cancer (Zhu et al., 2016), 

glioblastoma (Cheng et al., 2014), alveolar basal epithelial cancer (Kim et al., 2017) and 

colorectal cancer cells (Irani et al., 2015).  
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In our previous study, we demonstrated CAP in combination with AuNPs shows 

promising synergistic cytotoxicity to U373MG Glioblastoma multiforme (GBM) cells 

and ATP-dependent uptake mechanism (He et al., 2018). Kim et al. demonstrated that 

epidermal growth factor-conjugated AuNPs combined with CAP induced DNA damage 

and selective apoptosis of A549 human cancer cells after uptake via receptor-mediated 

endocytosis (Kim et al., 2017). Shi et al found that CAP treatment can induce iron-

dependent oxidative stress to stimulate fluid-phase endocytosis in in mesothelioma cells 

(Shi et al., 2017). 

 However, the precise route of uptake requires further investigation. Herein, we 

demonstrate, for the first time, that synergistic effects of nonfunctionalised AuNPs 

combined with CAP is via clathrin-mediated endocytosis pathway and is triggered as part 

of the CAP-induced membrane repair process in GBM cells. Numerical modelling of the 

uptake of AuNPs, confirmed that CAP treatment stimulated a new uptake route separate 

from normal cellular processes and in response to lipid peroxidation. Meanwhile, our use 

of CAP as an alternative novel tool to trigger and understand membrane oxidative damage 

and repair mechanisms is outlined.  

3.2  Methods 

3.2.1 Cell Culture and Gold Nanoparticle Treatment.  

U-251 MG (formerly known as U-373 MG) (ECACC 09063001), human brain 

glioblastoma cancer cells (Obtained from Dr Michael Carty, Trinity College Dublin) were 

cultured in DMEM-high glucose medium (Merck, Arklow, Ireland) supplemented with 

10% FBS (Merck) and maintained in a 37 ℃ incubator within a humidified 5% (v/v) CO2 

atmosphere. Gold nanoparticles were synthesised by trisodium citrate reduction of auric 

acid. 20nm sphere citrate-capped AuNPs were used to treat cells whose properties were 

determined in a previous study (He et al., 2018). The gold colloid was concentrated to 
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2500 μg/ml then diluted in culture medium to 100 μg/ml. 

3.2.2 CAP Configuration and Treatment.  

The current research uses an experimental atmospheric dielectric barrier discharge (DBD) 

plasma reactor, which has been described and characterised in detail (Moiseev et al., 2014; 

Conway et al., 2016). Unless otherwise stated, all U373MG cells were treated within 

containers, which were placed in between two electrodes, at a voltage level of 75 kV for 

30 s. The culture medium was removed prior to CAP treatment then replaced with fresh 

culture medium afterwards.   

3.2.3 H2DCFDA Assay and Optical Emission Spectroscopy (OES) and Ozone 

measurement. 

H2DCFDA (Thermo Fisher Scientific, Ballycoolin, Ireland) was used to detect ROS 

induced by CAP treatment. U373MG cells were seeded into the TC dish 35 standard 

(Sarstedt, Belfast, UK) at a density of 2×105 cells/ml and incubated overnight to allow 

adherence. After washing twice with PBS, cells were incubated with 25 μM H2DCFDA 

in serum-free medium for 30 min at 37 ℃. Cells were then washed with PBS twice, 

culture medium once and treated with CAP at 75 kV for 30s. The fluorescence of 

H2DCFDA was measured using flow cytometry 30 minutes later. 

Optical emission spectroscopy was carried out using an Edmund Optics CCD 

spectrometer with a spectral resolution of between 0.6 nm to 1.8 nm. The spectra was 

measured using BWSpecTM software with a spectral range between 200 and 850 nm and 

was acquired every 7.5 s with an integration time of 1500 ms. Total relative intensity of 

each emission line was calculated using the integral of the area under each peak. EEDF 

was calculated using a line ratio method (N2 at 337 nm and N2
+ at 391 nm) (Begum, 

Laroussi and Pervez, 2013). O3 was sampled using a standard Gastec sampling pump in 

conjunction with a Gastec detection tubes immediately after plasma discharge had ceased. 
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3.2.4 Measurement of Hydrogen Peroxide, Nitrite and Nitrate Concentrations.  

The concentrations of hydrogen peroxide, nitrite and nitrate were quantitatively measured 

in CAP-treated culture medium without phenol red. Concentrations of hydrogen peroxide, 

nitrite and nitrate were determined employing the TiSO4 assay, Griess reagent and 2,6-

dimethylphenol assay, respectively. The quantitative methods have been described in 

detail elsewhere (Lu et al., 2017). To eliminate the effect of the culture medium on 

photometrical measurements, the results of CAP-treated groups were standardised with 

untreated culture medium. 

3.2.5 Lipid Peroxidation.  

For TBARS assay, thiobarbituric acid (TBA), trichloroacetic acid, MDA were purchased 

from Merck. U373MG cells were seeded into TC Dish 150 (Sarstedt) at a density of 1×105 

cells/ml and incubated until confluence. After CAP treatment, cells were further 

incubated for 24 h, and collected by trypsinisation, centrifuged (100 g for 5 min), and 

homogenized by sonication. 100 μl homogenate was mixed with 200 μl ice cold 10% 

trichloroacetic acid and incubated on ice for 15 min to precipitate protein, then 

centrifuged (2200 g for 15 min at 4 ℃). 200 μl of each supernatant was then mixed with 

200 μl 0.67% (w/v) TBA and incubate at 100 ℃ for 10 min. After cooling, samples were 

measured at 532 nm for MDA. 

Lipid peroxidation sensor, C11-BODIPY (581/591) (Thermo Fisher Scientific) was used 

for in-situ detection and localization of the lipid peroxidation induced by CAP treatment. 

Cells were incubated in fresh culture medium containing 5 μM of the probe at 37 ℃ for 

30 min in advance. Then the cells were washed with PBS twice and culture medium once.  

After CAP treatment, cells were further incubated with fresh medium for 30 min at 37 ℃ 

and observed using flow cytometry and confocal microscope as described later.  

3.2.6 Flow Cytometry.  
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BD Accuri™ C6 Plus flow cytometry (BD Bioscience, Allschwil, Switzerland) was used 

in this study. Cells were loaded with C11-BODIPY and treated with CAP as described 

above (Lipid peroxidation). To prepare aliquots, all floating and attaching cells were 

collected by trypsinisation and then washed twice with PBS. For the measurement, a 488 

nm laser was used for excitation, and 10,000 gated events were collected. Green 

fluorescence (oxidised dye) and red fluorescence (non-oxidised dye) was measured using 

an FL1 standard filter (533/30 nm) and FL2 standard filter (585/40 nm), respectively. 

For Propidium iodide (PI) staining, cells were exposed to CAP 75kV for 30s and 

incubated at 37 ℃ for 30 minutes afterwards, then collected by trypsinisation, 

resuspended into 1ml PBS. Resuspended cells were stained with 1µg/ml PI for 5 minutes. 

The fluorescence of PI was then measured at FL2 (585/40nm) standard filter. 

3.2.7 Inhibitor Studies.  

To inhibit various endocytic pathways, cells were pre-incubated with Pitstop (12.5 μM, 

5 min) chlorpromazine (10 μg/ml, 10 min), filipin (5 μg/ml, 30 min), genistein (200 μM, 

30 min), amiloride (50 μM, 30 min) and methyl-β-cyclodextrin (10 mM, 30 min) in 

culture medium for the time indicated, at 37 ℃. After inhibiting treatment, the culture 

medium was removed during CAP treatment, prewarmed fresh culture medium 

containing 100 μg/ml AuNPs was then added immediately to the dishes and incubated 

for 3 h before observing using a Zeiss LSM 510 confocal laser scanning microscope.  

Transferrin conjugated with Alexa Fluor™ 546 was used to determine the change of early 

endosomes induced by CAP combining various endocytosis inhibitors. After the 

inhibiting and CAP treatments indicated above, the cells were incubated in prewarmed 

fresh medium for 0 or 3 h, then incubated with 25 μg/ml transferrin in medium for 5 min. 

Afterwards, cells were fixed with 4% PFA and then observed using confocal microscopy. 

The details of the confocal microscope are described in following section. 
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3.2.8 Clathrin Silencing.  

MISSION® esiRNA (human CLTC) and MISSION® siRNA transfection reagents were 

purchase from Merck. 50,000 U373MG cells were seeded into each 35 mm glass-bottom 

dishes (Greiner Bio-One, Lörrach, Germany) and incubated overnight. 1.2 ul esiRNA 

stock was mixed with 20 ul of transfection reagent in 400 μl serum-free medium and 

incubated for 15 minutes at room temperature. In glass-bottom dishes, previous medium 

was replaced with 1 ml of prewarmed fresh medium with serum. The siRNA/transfection 

reagent solution was then added onto the cells and homogenized to final volume of 1.2 

ml. Afterwards, U373MG cells were incubated at 37 ℃ for 24 h and then incubated with 

fresh medium containing 100 μg/ml AuNPs for 3 h before observing using confocal 

microscopy. 

3.2.9 Endocytosis Tracking and Cell Imaging.  

Early endosomes, late endosomes, lysosomes were demonstrated using the CellLight™ 

Early Endosomes-RFP, BacMam 2.0, the CellLight™ Late Endosomes-RFP, BacMam 

2.0 and the LysoTracker™ Green DND-26, respectively (Thermo Fisher Scientific). 35 

mm glass-bottom dishes (Greiner Bio-One) were used as containers for confocal imaging. 

For early and late endosome marker, 2 μl of BacMan 2.0 reagent per 10,000 cells was 

added in fresh medium and incubated with cells at 37 ℃ for 16 h. Then the cells were 

treated with CAP for 30s and incubated with fresh medium containing 100 μg/ml AuNPs 

for 3 h at 37 ℃. Before observing under a Zeiss LSM 510 confocal laser scanning 

microscope, cells were washed twice with PBS and incubated with fresh medium 

containing 50 nM LysoTracker for 5 min at 37 ℃. The corresponding filter settings were 

as follows. AuNPs, excitation 633 nm, reflection 649-799 nm; Transferrin conjugated 

with Alexa Fluor™ 546, excitation 568 nm, emission 580-630 nm; CellLight™ Early 

Endosomes-RFP, BacMam 2.0, excitation 568 nm, emission 580-630 nm; CellLight™ 
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Late Endosomes-RFP, BacMam 2.0, excitation 568 nm, emission 580-630 nm; 

LysoTracker™ Green DND-26, excitation 488 nm, emission 505-530 nm; C11-BODIPY 

(581/591), excitation 1: 488 nm, emission 1: 500-560 nm; excitation 2: 568 nm, emission 

2: 560-620 nm. Plan-Apochromat 63x/1.4 Oil Ph3 was used as objective for all samples. 

The integrated density of fluorescence in the confocal images was quantified using 

ImageJ software. The confocal images were unscaled, the quantified integrated density 

being the sum of the pixel values in the selection, which is the selected fluorescent area.  

3.2.10 Statistical Analysis.  

At least triplicate independent tests were carried out for each data point, unless indicated 

otherwise. Error bars of all figures are presented using the standard error of the mean 

(S.E.M). Prism 6 (GraphPad Software) was used to carry out curve fitting and statistical 

analysis. Two-tailed P values were used and the Alpha for all experiments is 0.05. The 

significance between data points was verified using one-way ANOVA and two-way 

ANOVA with Tukey’s multiple comparison post-test, as indicated in figures (*P<0.05, 

**P<0.01, ***P<0.001, ****p<0.0001). 
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3.3  Results 

3.3.1 Numerical Modelling of the Uptake of AuNPs by GBM Cells  

Figure 12. Modelling uptake of AuNPs. 

Numerical modelling of experimental data from our previous uptake study (He et al., 

2018) (shown with open circles and dashed lines) was carried out for simulated AuNPs 

uptake (green solid line), AuNPs uptake quenched by incubation of the cells with NaN3 

(blue solid line), AuNPs uptake on application of low dose CAP (red solid line). The 

simulated uptake of AuNPs has been normalised to the maximum calculated value. 

The accumulation of AuNPs inside U373MG cells was monitored using atomic 

absorption spectroscopy and the dose response curve of AuNPs with or without CAP 

treatment has been presented in previous study (He et al., 2018). The experimental results 

reproduced in Figure 12 (open circles/dashed lines) were further analysed according to a 

simulated uptake model to better understand the possible mechanism of CAP-stimulated 

AuNPs uptake. Uptake of nanoparticles by cell populations in vitro has previously been 
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modelled according to a phenomenological rate equation approach (Maher et al., 2014; 

Souto et al., 2016; Byrne and Maher, 2019), which was extended here to further 

investigate the role of CAP in AuNPs uptake.  

The rate of uptake of AuNPs into a cell can be described by the equation: 

dNAuNP/dt= (D-NAuNP) *(1+kdoub) *(N1*R1+N2*R2+N3*R3)     (1) 

where NAuNPs is the number of internalised AuNPs, D is the initial dose of AuNPs, (D-

NAuNP) allows for the depletion of the applied AuNPs dose, and kdoub is the doubling time 

of the cells. N1/R1, N2/R2and N3/R3 allow for three different principle uptake pathways, 

with respective limiting capacities of N and rates R. The first two terms describe 

independent active and passive uptake mechanisms, respectively, with limiting cellular 

capacities N1(0) = N1max and N2(0) = N2max, such that: 

dN1dt= -N1*(D-NAuNP) *R1        (2) 

dN2dt= -N2*(D-NAuNP) *R2        (3) 

Figure 12 (solid green line) shows the simulated uptake of AuNPs, normalised to the 

maximum uptake observed for AuNPs + CAP, for the case of R1 = 3 x 10-3 hr-1, R2 = 2.5 

x 10-5 hr-1, R3 =0, which faithfully reproduces the experimentally observed behaviour. 

Quenching of the active uptake of AuNPs by NaN3 is best simulated by addition of a 

further term in equation 2, such that 

dN1dt= -N1*(D-NAuNP) *R1-N1*NaN3*R4      (4) 

where NaN3 is the effective dose of sodium azide, and R4 allows for the rapid depletion 

of the active uptake pathway. The experimentally observed uptake was well simulated 

(solid blue line) by a value of R4 = 3 x 10-5 hr-1, keeping all other rates as before. 

In simulating the increased uptake of AuNPs upon CAP treatment, it was noted that the 

enhancement of a single pathway described by equations (2-4) by CAP treatment, by 

increasing a single uptake rate, did not faithfully reproduce the experimentally observed 
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behaviour, as the uptakes were limited by the parameters N1max and N2max. Rather, faithful 

reproduction of the observed behaviour required the introduction of independent uptake 

mechanisms for untreated and CAP treated AuNPs uptake, an observation which was 

critical to the interpretation of the effects of CAP treatment on the cells. Such a pathway 

can be represented by: 

dN3/dt = -N3*(D-NAuNP) *R3                                                               (5) 

such that N3(0) = N3max. Upon the application of CAP, the enhanced uptake was well 

fitted (solid red line) by R3 = 2.5 x 10-4 hr-1, keeping all other rates as before. 

The modelling process indicates that CAP treatment increases the capacity of the 

U373MG cells to uptake AuNPs by introducing a third uptake route distinct from passive 

uptake and normal active uptake processes. The modelling parameters employed are 

detailed in Table 1. Note that the parameters relating to the limiting cell uptake, Nnmax, 

were determined by the definition of the dose as 100 mg/mL. Furthermore, the process 

was one of simulation, rather than a mathematical fitting, so the parameters should be 

considered within ~10% confidence. 

Table 2: The modelling parameters employed in Figure 12. 

 N1max N2max N3max NaN3 R1 hr-1 R2 hr-1 R3 hr-1 R4 hr-1 

AuNP 75 150 400 8500 3 x 10-3 2.5 x 10-5 0 0 

AuNPs + 

NaN3 

75 150 400 8500 3 x 10-3 2.5 x 10-5 0 3 x 10-5 

AuNPs + CAP 75 150 400 8500 3 x 10-3 2.5 x 10-5 2.5 x 10-4 0 

 

3.3.2 Reactive Species Generated by CAP Treatment.  
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To identify the possible uptake pathways implicated by the numerical modelling of our 

data, ROS generation of 30 s, 75 kV CAP treatment was first investigated. Several RONS 

were measured using optical emission spectroscopy (OES) and Gastec gas detector tubes, 

including N2, N2
+, •OH, and O3. OES emission intensities from the N2 second positive 

system (SPS) were measured at 315, 337, 357, and 377 nm, the N2
+ first negative system 

(FNS) at 391 nm, and •OH at 310 nm were measured. The data demonstrated a relatively 

constant RONS production throughout the 30 s treatment (Figure 13a).  

Figure 13. Measurement of reactive species generated by CAP treatment by OES and 

H2DCFDA, TBARS assay and PI staining. 

(a) Emission intensities of excited N2 molecules, N2
+ and •OH. (b) Concentration of O3 

measured during CAP treatment. (c) The concentrations of hydrogen peroxide, nitrite 

and nitrate were measured in CAP-treated culture medium. (d) Fluorescence level of 

intracellular oxidised H2DCFDA was measured via Flow cytometry, left curve (green, 

untreated cells), right curve (red, CAP-treated cells). (e) U373MG cells were incubated 

for 24 hours after CAP treatment (0-30 s, 75 kV) and then collected and analysed to detect 

cellular MDA level using TABARS assay. (f) 30 mins after CAP treatment, cells were 
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stained with PI for 5 min, then measured with Flow cytometry. 

The electron energy distribution function (EEDF) of the plasma was also determined. As 

seen in Appendix IV Supplementary Figure S1a, EEDF remained close to a ratio of 7 

during CAP treatment, which indicated that the electron energies were distributed more 

so on the lower end of the energy scale (11 - 12 eV) than the higher energy levels (18.8 

eV). The low variability of the EEDF indicated that the electric field was stable, and that 

the formation of the reactive species was in a steady state manner. Using Gastec ozone 

detector tubes, the concentrations of generated O3 in the extracted gas were measured 

post-discharge of CAP treatment (Figure 13b), revealing significantly increasing levels 

of O3 recorded over the discharge time, which became saturated at the maximum labelled 

value of O3 detection tube after 15 s. High levels of ozone generation may give 

explanation why no detectable or low emission of NO, O, NOx (NO2, NO3, N2O2, N2O3, 

and N2O4), •OH and N2
+ were measured in air using OES (Schmidt-Bleker et al., 2015) 

(Appendix IV Supplementary Table S1).  

Hydrogen peroxide (H2O2), nitrite (NO-
2) and nitrate (NO-

3) were measured and detected 

in culture medium (Figure 13c). Comparing with previous results (Tsoukou, Bourke and 

Boehm, 2018), CAP treatment of culture medium for 30 s generated very low amounts 

of H2O2 (~20 μM), NO2-(~5 μM),  and NO3-(~30 μM) which are at least 15-fold and 200-

fold lower than the IC50 cytotoxicity values we measured previously for U373MG cells 

(315 µM, >1200 µM and >600 µM respectively) and therefore are essentially non-toxic 

(Lu et al., 2017). Intracellular H2O2 was significantly elevated 30 minutes after CAP 

treatment when measured using H2DCFDA by flow cytometry (Figure 13d). Mean 

fluorescence was observed to significantly increase by 4-5-fold above untreated controls 

(Appendix IV Supplementary Figure S1b). 

3.3.3 CAP Treatment Induces Lipid Peroxidation.  
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ROS induces lipid peroxidation of the cell membrane (Leutner, Eckert and Müller, 2001; 

Schuessel et al., 2006). The level of the lipid peroxidation indicator malondialdehyde 

(MDA), measured using the Thiobarbituric acid reactive substances (TBARS) assay, was 

significantly higher in U373MG cells 24 h after CAP treatment compared with the control 

group (Figure 13e), indicating a high level of lipid peroxidation is induced by CAP 

treatment. In our previous study, the IC50 of CAP treatment (75 kV) was determined to 

be 74.26 s (95% confidence range of 47.24–116.8 s) for U373MG cells (Conway et al., 

2016) and we demonstrated that 60 s CAP treatment induces rapid permeabilisation of 

U373MG cell membranes (Conway et al., 2019). Here, we confirm that no significant 

increase of PI uptake is evident following 30 s CAP treatment compared to the control 

(Figure 13f), indicating that membrane integrity was not significantly affected by 30 s 

CAP treatment and CAP-induce lipid peroxidation. This is in agreement with our 

previous findings, where 30 s CAP treatment induces very low, non-significant levels of 

toxicity in U373MG cells 48 hours post treatment (18.52%, SEM=5.41%)(He et al., 

2018). 

CAP induced lipid peroxidation was further analysed and visualised using the lipid 

peroxidation fluorescent sensor C11-BODIPY (581/591). C11-BODIPY (581/591) is a 

lipophilic fluorescent dye that remains membrane bound, can react with various RONS 

and oxidation leads to a shift of the emission peak from around 590 nm (Orange) to 

around 510 nm (Green) (Drummen et al., 2004).  To determine the level of lipid 

peroxidation, more than 60 cells were analysed using ImageJ software for each group. A 

significantly stronger emission of the oxidised green fluorescence was observed in CAP-

treated cells compared to the untreated cells (****p<0.0001, Figure 14a, 2nd panel and 

Figure 14b), which was accompanied by a significant decrease in the non-oxidised orange 

fluorescence (Figure 14a, 1st panel and Appendix IV Supplementary Figure S2). 
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Furthermore, Figure 14c demonstrated a 3-fold significantly greater level of the oxidised 

green fluorescence in CAP-treated cells (****p<0.0001) with a focus on green 

fluorescent vesicle-like structures (Figure 14a, 3rd panel), likely caused by concentrated 

oxidised lipid membranes internalised in endosomes or lysosomes. CAP-induced 

oxidation of lipid membranes was confirmed using flow cytometry (Figure 14d). When 

cells were counterstained with LysoTracker™ Deep Red (red), examples of 

colocalization of oxidised membranes and acidic vesicular organelles (such as lysosomes, 

late endosomes, etc.) were clearly evident in CAP treated cells (Appendix IV 

Supplementary Figure S3, middle& right).  

Figure 14. C11-BODIPY (581/591) staining shows lipid peroxidation and membrane 

trafficking inside the cell to lysosomes. 

(a) Confocal imaging of C11-BODIPY loaded cells, from 1st to 4th panel: Orange, 

reduced form of C11-BODIPY; Green, oxidised form of C11-BODIPY; Red, vesicle-like 

structures was highlighted from green fluorescence using high threshold setting in 
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ImageJ; Merged images (orange and green channels). (b) The total fluorescent 

integrated density of oxidised BODIPY was quantified using ImageJ. (c) With high 

threshold setting, the fluorescence integrated density of oxidised BODIPY was quantified 

with a focus on green fluorescent vesicle-like structures. The statistical significance (b, 

c) assessed by unpaired T-test. (*P<0.05, **P<0.01, ***P<0.001, ****p<0.0001), n≥50, 

see Appendix IV Supplementary Table S2 for original data. (d) Fluorescence level of 

intracellular oxidised BODIPY was measured via Flow cytometry, left curve (green, 

untreated cells), right curve (red, CAP-treated cells).  

3.3.4 Effects of CAP Treatment on Endocytosis of AuNPs.  

A membrane repair mechanism has been described where cells can quickly remove 

damaged regions of membranes from the cell surface through rapid endocytosis (Idone, 

Tam and Andrews, 2008; Andrews and Corrotte, 2018). These impaired membranes can 

be trafficked into endosomes and finally into lysosomes. We wished to determine whether 

rapid endocytosis may contribute to the increased uptake of AuNPs and other materials 

into cells following CAP treatment. To test this hypothesis, CellLight™ Early 

Endosomes-RFP, BacMam 2.0 and CellLight™ Late Endosomes-RFP, BacMam 2.0 

were used to further visualise the route of uptake of AuNPs after CAP treatment. Rab5a 

and Rab7a chimeras tagged with RFP were transfected and expressed inside cells. 

Following overnight incubation, Rab5a-RFP and Rab7a-RFP specifically tracked early 

endosomes and late endosomes, respectively (Dolman, Kilgore and Davidson, 2013). 

Cells were then incubated with AuNPs for 3 h after CAP treatment. In Appendix IV 

Supplementary Figure S4, the white arrows identify examples of co-localisation of 

AuNPs (red) with early (left) and late (right) endosomes (orange). Lysosomes (green) 

were also counterstained. We have previously demonstrated that AuNPs accumulate in 

lysosomes 24 hours after 30 s, 75 kV CAP treatment using confocal imaging and 3D-
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image construction (He et al., 2018). We demonstrate here that that AuNPs enter CAP-

treated U373MG cells mainly through endocytosis and colocalise with Rab5a and Rab7a 

chimeras corresponding to early and late endosomes respectively, eventually 

accumulating in lysosomes (Appendix IV Supplementary Figure S4).  

Transferrin conjugated with Alexa Fluor™ 546, is used as an early endosome marker. To 

investigate the immediate uptake route, CAP treated U373MG cells were incubated with 

Alexa546-Transferrin for 5 min, then fixed with 4% PFA. As seen from confocal imaging, 

within 5 mins after CAP treatment, the number of transferrin-containing endosomes was 

greater compared to the control group (Figure 15a). Quantification of transferrin uptake 

confirmed a significant increase of endosomes 5 min after CAP treatment (Figure 15b, 

p<0.0001). 

Endocytosis is typically subdivided into four types, including clathrin-mediated 

endocytosis (CME), caveolae-mediated endocytosis, macropinocytosis and phagocytosis. 

We used a panel of inhibitors (Iversen, Skotland and Sandvig, 2011) to delineate the 

specific endocytic pathway activated by CAP (see Table 2). Clathrin-inhibitors and 

MβCD-induced cholesterol depletion decreased the number of transferrin labelled 

endosomes and AuNP-uptake 3 h following CAP treatment (Figure 15c, d) whereas 

caveolae-specific inhibitors and an inhibitor of micropinocytosis did not lead to any 

significant inhibition of Transferrin or AuNPs endocytosis in cells 3 h after CAP 

treatment (Figure 15e, f). Original data for quantification can be viewed in Appendix IV 

Supplementary Table S4.   

To further confirm that clathrin-mediated endocytosis played the main role in CAP-

accelerated cellular uptake, MISSION® Endoribonuclease-prepared siRNA (esiRNA) 

against human Clathrin heavy chain 1 (CLTC) was used to disrupting endocytosis 

mediated by clathrin coated pit formation. As seen in Figure 16, AuNPs uptake was much 
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lower in clathrin-silenced cells and no increase in AuNPs uptake was observed 3 h after 

CAP treatment (p<0.0001, see Appendix IV Supplementary Table S5 for original data). 

Together, our data confirms that clathrin-mediated endocytosis played an important role 

in AuNPs uptake, and accelerated endocytosis following CAP treatment was clathrin 

dependent. 

Table 3: Inhibitors used to inhibit endocytosis in this research. 

Agent Effect Targeting endocytosis 

Pitstop 
Small molecular that target and disfunction clathrin 

(Robertson et al., 2014) 
Clathrin-mediated endocytosis 

CPZ 
Inhibits Rho GTPase.  

(Wang, Rothberg and Anderson, 1993) 
Clathrin-mediated endocytosis 

MβCD 
Extracts cholesterol from membrane. (Iversen, 

Skotland and Sandvig, 2011) 

CME, caveolae and 

micropinocytosis 

Filipin 
Interacts with cholesterol  

(Iversen, Skotland and Sandvig, 2011) 

A few caveolae and cholesterol-

dependent mechanisms 

Genistein 
Inhibitor of few tyrosine kinases (Pelkmans, 

Püntener and Helenius, 2002) 
Caveolae pinching 

Amiloride 
Lowers the submembraneous pH and blocks Rac1 

and Cdc42 signalling (Koivusalo et al., 2010) 
Micropinocytosis 
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Figure 15. The CAP-induced endocytosis is clathrin-dependent. 

(a) After CAP treatment (0, 30 s), cells were loaded with transferrin-conjugated with 

Alexa Fluor™ 546 (red) for 5 min and fixed before observing with a confocal microscope. 

(b) The fluorescence level of transferrin was quantified using ImageJ, see Appendix IV 

Supplementary Table S3 for original data. (c, d, e, f) After incubation with various 

inhibitors as indicated, U373MG cells were treated with CAP for 0, 30 s at 75 kV and 

then loaded with transferrin for 5 min or 100 μg/ml AuNPs for 3 h respectively before 

observing using confocal microscopy, with the fluorescence integrated densities 

quantified using ImageJ. The statistical significance in (b, c, d, e, f) was assessed by one-

way ANOVA with Tukey’s multiple comparison post-test (*P<0.05, **P<0.01, 

***P<0.001, ****p<0.0001), n≥50. 
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Figure 16. Clathrin silencing inhibits AuNPs uptake and CAP-induced endocytosis. 

After incubation with esiRNA, targeting expression of clathrin heavy chain, U373MG 

cells were treated with CAP for 0, 30 s at 75 kV and then loaded with 100 μg/ml AuNPs 

for 3 h before observation by confocal microscopy, in comparison with unsilenced groups. 

(a) CAP-untreated cells without silencing, (b) CAP-treated cells without silencing, (c) 

CAP-untreated cells with silencing of clathrin heavy chain, (d) CAP-treated cells with 

silencing of clathrin heavy chain. AuNPs are identifiable as red fluorescence inside cells. 

(e) The fluorescence level was quantified using ImageJ and presented as integrated 

density. The statistical significance was assessed by one-way ANOVA with Tukey’s 

multiple comparison post-test (*P<0.05, **P<0.01, ***P<0.001, ****p<0.0001), n≥50. 

3.4  Discussion 

The cytoplasmic membrane separates and protects the cellular interior from the exterior 

environment and provides specific and efficient exchange channels for the remaining 

intracellular balance and cell viability. Therefore, the integrity of the membrane is vital 

for all cells. Mammalian cells have developed efficient membrane repair mechanisms that 

can recover and reseal an injured cytoplasm membrane quickly to retain cell viability. 

Although investigations of the precise membrane repairing mechanisms have been 
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limited, four possible mechanisms, including patch, tension reduction and 

exocytosis/endocytosis and budding repair mechanisms have been proposed (Andrews 

and Corrotte, 2018). The study of cytoplasmic membrane repair usually employs bacterial 

pore-forming toxins, such as Streptolysin O, to create mechanical injuries on membranes 

(Andrews and Corrotte, 2018). Meanwhile, lipid peroxidation is a complex process that 

damages cellular membrane structure and function, which is believed to link to numerous 

human diseases and aging, including Alzheimer diseases, dementia, Huntington, 

Parkinson, and traumatic injuries, under presence of oxidative stress (Stockwell et al., 

2017; Feng and Stockwell, 2018). Many studies have shown that lipid peroxidation have 

various significant effects to cellular membranes, such as increased membrane 

permeability (Goldstein and Weissmann, 1977; Chatterjee and Agarwal, 1988; Van Der 

Paal et al., 2016), alteration of the lipid order and membrane fluidity (Chatterjee and 

Agarwal, 1988; Borchman et al., 1992; Petrescu et al., 2001; Jacob and Mason, 2005) 

and activity change of membrane proteins (Mattson, 1998; Mattson et al., 1999; Sevanian 

and Ursini, 2000; Jacob and Mason, 2005). However, there remains a paucity of literature 

identifying mechanisms of lipid peroxidation-related membrane damage repair, and the 

mechanisms of oxidised membrane repair remain unknown.  

CAP is known to generate reactive species and thereby cause lipid peroxidation of cells. 

In this research, we explored CAP-induced lipid peroxidation using a low, relatively non-

toxic dose of CAP and studied the possible mechanisms of accelerated cellular uptake of 

AuNPs following CAP-induced oxidative membrane damage.  

As seen in Figure 12, the uptake and accumulation of AuNPs into U373MG cells was 

first modelled. To faithfully reproduce the experimentally observed results in our 

mathematical model, a new independent uptake rate was necessary in the model (equation 

5). This numerical model indicates that CAP treatment may introduce a new uptake route. 
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Following a detailed experimental analysis, we can confirm this occurs and is due to a 

CAP-triggered, membrane repairing, clathrin-dependent, pathway of endocytosis.  

As seen in Figure 13, we observed a relatively high level of reactive species generated in 

air during CAP treatment such as •OH, ONOO- and O3. This was also evident in medium, 

cells, and ultimately in lipid membranes with the detection of RONS including hydrogen 

peroxide, nitrite and nitrate and detection of peroxidated lipids and by-products. 

Interestingly, the low doses of CAP treatment used generate non-toxic levels of RONS 

but still are induce significant lipid peroxidation.  

CAP treatment has been shown to alter membrane structures, which may be partly due to 

the reactive species-caused lipid peroxidation (Adibhatla and Hatcher, 2010; Cheng et al., 

2014; Recek et al., 2015; Conway et al., 2019). However, in our study, cell membranes 

remain PI impermeable and therefore intact after exposing to 75 kV CAP for 30 s. 

Interestingly, not only did we observe a significant increase in oxidised lipids using C11-

BODIPY following CAP treatment, but there was also a clear and significant increase in 

vesicle-like structures with high levels of oxidised C11-BODIPY, suggesting that 

peroxidised membrane lipids were trafficked inside cells via endocytosis (Figure 14a). 

An immediate (within 5 minutes) increase in endosomes was also confirmed using 

transferrin conjugated with Alexa Fluor™ 546.  

Therefore, we propose that low, sub-toxic doses of CAP can cause cytoplasmic 

membrane oxidation which triggers a rapid membrane repair system. The increased 

endocytosis induced by membrane repair is initiated within 5 minutes and accelerates the 

uptake of AuNPs into U373MG cells.    

To further explore the route of uptake, AuNPs were tracked in cells counterstained with 

Rab5a-RFP, Rab7a-RFP, and LysoTracker™ Green DND-26. Co-localisation of AuNPs 

with early and late endosomes and lysosomes were observed. AuNPs uptake displayed a 
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tendency to enter the periphery region of the cells through endocytosis, then gather at the 

central zone of the cells via endosome trafficking into lysosomes. This demonstrates that 

CAP treatment of U373MG cells triggers uptake and trafficking of AuNPs through early 

endosomes into late endosomes and ultimately accumulation lysosomes. 

Our inhibitor studies and RNA interference studies demonstrate a primary role for 

clathrin-dependent endocytosis of AuNPs, and no other routes of endocytosis in CAP-

triggered uptake. We compared uptake of AuNPs with Transferrin, an essential iron-

binding protein that facilitate iron-uptake in cells via transferrin receptors. Uptake of 

Transferrin is well characterised and involves Clathrin-mediated, receptor dependent 

endocytosis (Lakadamyali, Rust and Zhuang, 2006). Interestingly, Shi et al found that 

CAP treatment decreased transferrin receptor-1 but could induce iron-dependent 

oxidative stress to stimulate significant increase in fluid-phase endocytosis, lysosome 

biogenesis and autophagy in mesothelioma cells (Shi et al., 2017). In contrast to this, as 

seen in Figure 15a, b, our data demonstrates that the uptake of transferrin was 

significantly increased just 5 min after CAP treatment, which may due to the diversity of 

cell lines or CAP generation devices. Similar to AuNPs, formation of transferrin-

trafficking endosomes was inhibited in both groups with 0 and 30 s CAP treatment, after 

exposure to specific/non-specific clathrin inhibitors, including pitstop, CPZ and MβCD. 

Tracking the accumulation of AuNPs demonstrates the long-term CAP-triggered uptake 

via a single, clathrin-dependent endocytosis route are retained for at least 24 hours post 

CAP treatment. Jinno M et al. demonstrated in a CAP-induced gene transfection model 

using mouse fibroblasts that a  clathrin specific inhibitor showed 60% decrease in the 

gene transfection efficiency and that both clathrin-dependent endocytosis and 

electroporation played a role in enhanced transfection efficiency (Jinno et al., 2016). The 

work of Jinno M et al. supports our investigation that clathrin may play key roles in CAP-



106 

 

induced cellular uptake mechanisms in response to different materials. 

Our data indicate that oxidised lipids can be seen to colocalise with endosomes and 

lysosomes demonstrating the intracellular sites where the repair of peroxidised lipid 

membranes is taking place. Further investigation of these mechanisms and sites of 

membrane repair following CAP-stimulated oxidative damage is ongoing, to identify 

novel therapeutic targets that can augment CAP cytotoxicity and to fully understand the 

cellular mechanisms governing oxidative membrane repair. 

In summary, we report that the enhanced uptake of AuNPs induced by CAP can be as a 

result of ROS-caused lipid peroxidation, leading to rapid plasma membrane repair via 

clathrin-dependent endocytosis. This contributes to our understanding of the cellular 

effects induced by CAP, especially membrane damage and endocytosis activation, which 

can be employed for efficient uptake of nanomaterials and pharmaceuticals into cells 

when combining CAP with cancer therapies. This mechanism of RONS-induced 

endocytosis will also be of relevance to researchers optimizing other cancer therapies that 

induce an increase in extracellular RONS.  
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CHAPTER 4. SYNERGISTIC CYTOTOXICITY BETWEEN 

PRO-DRUGS AND CAP AGAINST GLIOBLASTOMA 

CELLS 

Manuscript in preparation. 
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4.1 Introduction 

Extensive efforts have been made in the war against cancer in the past decades, however, 

the treatment of cancer is challenging due to the tumour heterogeneity and varied patient 

characteristics. Widespread application of advanced stage cancer treatment and early 

diagnosis of cancer are still the highest aspirations.  

Reactive oxygen species (ROS), as natural products generated during normal metabolism 

pathways, play key roles in a variety of cellular activities, but also are considered as 

carcinogenic factors as high levels of ROS are capable of inducing damage and mutation 

of intracellular DNA and therefore cause malignancy (Metelmann et al., 2015). However, 

as understanding deepened, ROS were found to be a double-edged sword to cancer cells 

(von Woedtke et al., 2013).  Evidence showed that higher levels of ROS are generated in 

cancer cells by comparison with normal cells, which is attributed to the higher metabolic 

activities and more rapid proliferation of transformed cells (von Woedtke et al., 2013). 

Hence, the cellular antioxidant system works under heavier load to protect tumour cells 

from oxidative stress, which is a common feature in many types of tumours that can be 

targeted for development of efficient therapies. There have been reported various 

anticancer drugs which can induce extra generation of tumour ROS to kill cancer cells, 

however, they also increase the ROS level in healthy cells, which may induce DNA 

damage and cause secondary malignancies (Peng and Gandhi, 2012). Cold atmospheric 

plasma (CAP) can induce generation of ROS to adjustable levels in controllable area 

(Welz et al., 2015). Meanwhile, prodrugs, which only have cytotoxicity after being 

activated by high level of ROS, have less side effects and are more specific to cancer cells 

(Görmen et al., 2010). Therefore, combining prodrugs with CAP to locally increase 

tumour ROS and activate cytotoxicity only in tumour tissue may provide a novel 

promising combination therapy against most, if not all, cancers.   
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We have acquired in total 47 various types of prodrug candidates from our collaborators, 

who are experts in discovery of novel drugs, including aminoferrocene-based prodrugs 

provided by Prof. Andriy Mokhir (Marzenell et al., 2013), ferrocene, [3] ferrocenophane 

and ferrocifen derivatives provided by Prof. Gérard Jaouen (Jaouen, Vessières and Top, 

2015), matrix metalloproteinase pro-inhibitors and thiazolidinone-based prodrugs 

provided by Prof. Seth M. Cohen (Perez et al., 2015), and a series of pyrazolopyrimidines 

derivatives provided by Prof. John Stephens (Kelada et al., 2018) as described in section 

1.6 (Appendix V Supplementary Table S1, S2, S3, S4 and S5).  

In this chapter, we have screened those 47 candidates for their potential synergistic anti-

cancer effect combined with CAP treatment and identified two leading prodrug 

candidates JW-04-057a and JW-04-061, which were both pyrazolopyrimidine derivates 

provided by Prof. John Stephens. In combination with low dose CAP treatment, which 

had little or no toxicity on cancer cells, the cytotoxicity of leading prodrug candidates 

was synergistically enhanced more than 10 times. The synergistic cytotoxicity between 

JW-04-061 and CAP treatment has been further demonstrated and investigated as 

described in following sections. The ROS generated in culture medium by CAP treatment 

has been determined to play the main role in the activation of prodrug JW-04-061.   

4.2 Methods 

4.2.1 Cell Culture 

U-251 MG (formerly known as U-373 MG) (ECACC 09063001), human brain 

glioblastoma cancer cells (Obtained from Dr Michael Carty, Trinity College Dublin) were 

cultured in DMEM-high glucose medium containing pyruvate (Merck) supplemented 

with 10% FBS (Merck) and maintained in a 37 ℃ incubator within a humidified 5% (v/v) 

CO2 atmosphere. For prodrug treatment, DMEM-high glucose medium without pyruvate 

(Merck) was used to make up culture medium for all groups to avoid the antioxidant 
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effects of pyruvate (O’donnell-Tormey et al., 1987).  

4.2.2 H2DCFDA Assay 

H2DCFDA (Thermo Fisher Scientific, Ballycoolin, Ireland) was used to detect ROS 

induced by CAP treatment. U373MG cells were seeded into the TC dish 35 standard 

(Sarstedt, Belfast, UK) (for flow cytometry) at a density of 2×105 cells/ml, or 35 mm 

glass-bottom dishes (Greiner Bio-One) (for confocal imaging) at a density of 1×105 

cells/ml and incubated overnight to allow adherence. After washing twice with PBS, cells 

were incubated with 25 μM H2DCFDA in serum-free medium for 30 min at 37 ℃. 30 

minutes before measuring the fluorescence of H2DCFDA using flow cytometry, cells 

were then washed with PBS twice, culture medium once and treated with CAP at 75 kV 

for 30s. For confocal imagining, cells were washed with PBS twice, culture medium once 

and treated with CAP at 75 kV for 30s, then were observed under a Zeiss LSM 510 

confocal laser scanning microscope 30 min later (excitation 488 nm, emission 505-530 

nm).  

4.2.3 CAP Configuration and Prodrug Treatment.  

The current research uses an experimental atmospheric dielectric barrier discharge (DBD) 

plasma reactor, which has been described and characterised in detail (Moiseev et al., 2014; 

Conway et al., 2016). Unless otherwise stated, all U373MG cells were treated within 

containers, which were placed in between two electrodes, at a voltage level of 75 kV for 

10-40 s. The culture medium was removed prior to CAP treatment then replaced with 

fresh culture medium afterwards. An optimized prodrug treatment protocol was 

developed and applied in this project as described below. U373MG cells were plated into 

96-well plates (Sarstedt) at a density of 1×104 cells/well (100 μl normal culture medium 

per well) and were incubated overnight to allow a proper adherence. Unless otherwise 

stated, the plating map was 6×10 wells, for 10 different concentrations, negative and 
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positive control groups (5 replicates for each group). All pro-drugs were dissolved and 

prepared in 100% DMSO (Merck) for stock solution, which were then series diluted in 

culture medium to different concentrations as indicated. Afterwards, 10 μl of prodrug 

non-pyruvate culture medium solution was added into each well after fully removing 

previous medium and the rest of prodrug culture medium solution was added into empty 

wells in the plate (300 μl per well). The plate then was treated with CAP at 75 kV for 10-

40 s as indicated. 90 μl of CAP-treated prodrug culture medium solution was then add to 

corresponding wells with cells to final volume 100 μl immediately after CAP treatment. 

Cell viability assays were then carried out after incubation for indicated time.   

4.2.4 Cell Viability Assays. 

Cell viability was analysed using the Alamar blue assay (Thermo Fisher Scientific), 

which used a redox indicator that can generate fluorescent signal by the metabolic 

reduction. After CAP and prodrug treatment, plates were incubated in a 37 ℃ incubator 

within a humidified 5% (v/v) CO2 atmosphere for forty-eight hours. Afterwards, the cells 

were rinsed once with phosphate buffered saline (Sigma-Aldrich), incubated for 3 h at 

37 ℃ with a 10% Alamar blue/90% culture medium solution. The fluorescence was then 

measured (excitation, 530 nm; emission, 595 nm) by a Victor 3V 1420 microplate reader 

(Perkin Elmer). 

4.2.5 CAP-activated medium/prodrug/cells and Inhibitor Study.  

We have investigated the effects of CAP on prodrugs alone to determine the mechanism 

of synergistic cytotoxicity to U373MG cells. Prodrugs were treated with CAP at 75 kV 

for 10 s to 10 min in DMSO stock solution or culture medium solution using 96-well 

plates as container as indicated. The CAP-treated prodrug solution was then added into 

96-well plates to incubate with U373MG cells for 48 hours before cell viability assays. 

For CAP-activated medium, the culture medium was treated with CAP at 75 kV for 30 
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sec in 96-well plate and incubated overnight to remove short-lived reactive species. Then 

prodrug stock solution was series-diluted in the overnight storage CAP-activated medium 

and incubated with U373MG cells in 96-well plates for 48 hours before cell viability 

assays.  

For CAP-activated cells, the U373MG cells were treated with CAP for 30 sec in 96-well 

plates with 10 µl culture medium without pyruvate covered in each well, while culture 

medium was added into empty wells in the plate (300 μl per well). Then the CAP-treated 

culture medium was added to each well to 100 µl. Those CAP-activated cells were then 

incubated in the CAP-activated medium for 0-5 hours as indicated in the figures. 

Afterwards, the previous medium was replaced with fresh medium containing 

corresponding concentrations of prodrugs. The U373MG cells were then further 

incubated for 48 hours before cell viability assays. 

Meanwhile, N-Acetyl Cysteine (NAC) was used as antioxidant to investigate the roles of 

reactive species in activation of prodrugs. 4 M NAC stock solution was prepared in water. 

4 M NAC solution was then diluted in culture medium till final concentration 4 mM 

before adding prodrugs and CAP treatment. The CAP treated culture medium containing 

prodrugs and 4 mM NAC was then added into 96-well plates to incubate with U373MG 

cells for 48 hours before cell viability assays. 

Catalase stock solution (1 mg/ml) was fresh prepared with PBS, then diluted in culture 

medium to 0.1mg/ml for inhibition of H2O2 production. 10 µl of culture medium 

containing 0.1mg/ml catalase and corresponding concentrations of pro-drugs was added 

into each well of 96-well plates to treat U373MG cells with CAP, the rest of culture 

medium containing catalase and pro-drugs was treated in the empty wells of the same 

plates (300 µl per well). After CAP treatment, 90 µl of  CAP-treated culture medium 

containing catalase and  pro-drugs was added into each well and the U373MG cells were 
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then incubated with in total 100 µl of the culture medium containing catalase and pro-

drugs for 48 hours before cell viability assays. 

4.2.6 Statistical Analysis.  

At least triplicate independent tests were carried out for each data point, unless indicated 

otherwise. Error bars of all figures are presented using the standard error of the mean 

(S.E.M). Prism 6 (GraphPad Software) was used to carry out curve fitting and statistical 

analysis. The isobologram and synergistic analysis were carried out using CompuSyn 

software (Available for free download from www.combosyn.com)  according to the detail 

mentioned in Figure 25d legend (Chou and Martin, 2005). Two-tailed P values were used 

and the Alpha for all experiments is 0.05. The significance between data points was 

verified using one-way ANOVA and two-way ANOVA with Tukey’s multiple 

comparison post-test, as indicated in figures (*P<0.05, **P<0.01, ***P<0.001, 

****p<0.0001). 

4.3 Results 

The majority of prodrugs were developed to be activated in cells by oxidation induced by 

ROS. CAP has been well known as inducing generation of ROS (Babington et al., 2015; 

Conway et al., 2016; He et al., 2018). We have demonstrated the generation of ROS by 

CAP in Chapter 3. In Chapter 4, besides flow cytometry, we have used confocal 

microscope and ROS indicator H2DCFDA to demonstrate the ROS generated by 30 s of 

CAP treatment (Figure 17). 

http://www.combosyn.com/
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Figure 17. Measurement of reactive species generated by CAP treatment by H2DCFDA. 

Confocal imaging of H2DCFDA loaded cells: (a) untreated U373MG cells; (b) 30 s CAP 

treated U373MG cells. (c) Fluorescence level of intracellular oxidised H2DCFDA was 

measured via Flow cytometry, left curve (green, untreated cells), right curve (red, 30 s 

CAP treated cells). 

As seen in Figure 13 and 14 in Chapter 3, we have also quantified the ROS generation in 

cells and culture medium after 30 s of CAP treatment and measured the level of lipid 

peroxidation in CAP-treated U373MG cells as well. Therefore, 30 s of CAP treatment 

has been demonstrated to be effective on ROS generation and can be used to test the 

synergistic effects with prodrugs. In total four different types of prodrugs have been tested 

in this Chapter, including ferrocene-based prodrugs, pyrimidone bicycle family 

compounds, matrix metalloproteinase pro-inhibitors and thiazolidinone-based prodrugs. 

Due to high amount of work, and to identify leading candidates as soon as possible, all 

compounds were preliminarily tested in CAP-treated and control groups once to acquire 

dose response curves to determine the synergistic cytotoxicity. The relative IC75 values 

of each compounds have been summarised in Figure 18, except low or non-toxic 

compounds (Cmpd1, Cmpd2 and MK2, as seen in Figure 22 and 23, and Table 7 and 8). 

The IC75 values of control groups were separately normalised to 1 together with 
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corresponding CAP-treated groups. The 95% confident ranges were used to present the 

error bars. As see in Figure 18, the difference between control and CAP-treated groups, 

which presents possible synergistic cytotoxicity, was only significant with compounds 1e, 

PY-2-Benzyl, JW-04-057a and JW-04-061. However, according to corresponding dose 

response curves (Figure 19 and 22), there was no significant synergy effect between CAP 

treatment and compounds 1e, PY-2-Benzyl separately. Therefore, JW-04-057a and JW-

04-061 have been determined as the only two leading candidates after repeating the dose 

response curves for two more times. Furthermore, the investigation of the synergistic 

effects between CAP treatment and JW-04-061 and the mechanisms behind it has been 

carried out and presented. 

 

Figure 18. Summary of relative IC75 values of all available compounds.  

The IC75 values were calculated using IC50 values and corresponding hillslopes, and 

then all control groups were normalised to 1 along with corresponding CAP-treated 

groups and 95% confident interval as error bar.  
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4.3.1 Ferrocene-based Prodrugs.  

Figure 19. Dose response curves of compounds 1e and 2a, provided by Prof. Andriy 

Mokhir, Friedrich Alexander University, Germany. 

We have acquired and received a variety of ferrocene-based prodrugs from Prof. Andriy 

Mokhir and Prof. Gérard Jaouen. Two aminoferrocene-based prodrugs were provided by 

Prof. Andriy Mokhir. As seen in Figure 19, compounds 1e and 2a had no significant 

synergistic cytotoxicity but additive cytotoxicity with 30 s CAP treatment. The CAP 

treatment decreased the IC50 values of 1e and 2a (Table 5), but the cell viabilities 

decreased nearly 20% in all CAP treated groups therefore same trends were presented in 

both dose response curves treated with or without CAP. 

Table 4. IC50 values of compounds 1e and 2a, provided by Prof. Andriy Mokhir. 

 
Control CAP 30s  

IC50 (μM) 95% Confidence Intervals IC50 (μM) 95% Confidence Intervals 

1e 153 121.4 to 192.9 63.9 28.42 to 143.7 

2a 80.07 72.40 to 88.55 44.56 23.46 to 84.62 

 

Meanwhile, a series of ferrocene, [3] ferrocenophane and ferrocifen derivatives provided 

by Prof. Gérard Jaouen were tested with U373MG cells (Figure 20 and 21). There was 

no significant synergy observed between those compounds and CAP treatment. Ferrocene, 

[3] ferrocenophane and ferrocifen derivatives usually present strong reaction to ROS. 

They could be already fully activated by the relatively high ROS level in U373MG cells 

instead of CAP treatment, therefore, leading to no synergistic effects with CAP.  

As seen in Table 6, there were highly toxic candidates, P257 (IC50: 62.64 nM, 95% 
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confidence intervals: 20.05 to 195.7 nM), P286 (IC50: 77.75 nM, 95% confidence 

intervals: 39.15 to 154.4 nM), P686 (IC50: 4.1 nM, 95% confidence intervals: 2.134 to 

8.116 nM), P722 (IC50: 29.06 nM, 95% confidence intervals: 8.561 to 98.65 nM), which 

could be further tested both in cancer cell lines with high ROS levels and health cell lines 

with normal ROS levels for drug discovery for GBM treatment as a future project. It is 

interesting that P686 presented significantly lowed cytotoxicity when combining with 

CAP treatment (Figure 21), which might due to chemical or physical effects generated by 

CAP treatment against the structure of P686, thus deactivating the cytotoxicity of P686. 

Table 5. IC50 values of compounds provided by Prof. Gérard Jaouen. 

 
Control CAP 30s  

IC50 

(μM) 

95% Confidence 

Intervals 

IC50 

(μM) 

95% Confidence 

Intervals 

CG2

0 

0.233 0.1899 to 0.2859 0.1041 0.08296 to 0.1305 

DP1 0.7197 0.5216 to 0.9929 0.8853 0.6660 to 1.177 

DP6 5.772 4.220 to 7.894 6.697 5.556 to 8.071 

P15 3.188 2.754 to 3.691 2.376 1.928 to 2.927 

P208 5.746 4.991 to 6.614 3.001 1.871 to 4.815 

P228 0.486 0.3139 to 0.7523 0.5175 0.3606 to 0.7426 

P240 1.176 0.8729 to 1.583 1.093 0.8713 to 1.370 

P256 1.626 1.180 to 2.240 1.531 1.253 to 1.872 

P257 0.06264 0.02005 to 0.1957 0.09171 0.03351 to 0.2510 

P258 0.5966 0.4794 to 0.7424 0.5094 0.4016 to 0.6462 

P283 5.303 4.802 to 5.857 5.225 4.679 to 5.835 

P284 1.396 1.073 to 1.817 1.403 1.113 to 1.768 

P286 0.07775 0.03915 to 0.1544 0.07017 0.03573 to 0.1378 

P292 14.56 11.28 to 18.79 18.05 13.15 to 24.77 

P316 4.756 3.796 to 5.957 4.491 3.268 to 6.170 

P388 21.16 18.94 to 23.63 17.17 13.92 to 21.17 

P5 1.739 1.304 to 2.320 2.668 2.096 to 3.396 

P53 0.229 0.1782 to 0.2944 0.2526 0.1895 to 0.3368 

P581 6.813 6.099 to 7.611 8.139 6.512 to 10.17 

P686 0.00416 0.002134 to 0.008116 0.3142 0.1376 to 0.7175 

P721 2.104 1.721 to 2.573 0.8811 0.6000 to 1.294 

P722 0.02906 0.008561 to 0.09865 0.01991 0.005744 to 0.06901 

P85 5.389 4.685 to 6.199 5.773 4.893 to 6.810 
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Figure 20. Dose response curves of compounds provided by Prof. Gérard Jaouen, 

Chimie ParisTech, France, Part 1. 

 

 

 

 

 

 

 

 



119 

 

Figure 21. Dose response curves of compounds provided by Prof. Gérard Jaouen, 

Chimie ParisTech, France, Part 2. 

4.3.2 Matrix Metalloproteinase Pro-Inhibitors and Thiazolidinone-Based Prodrugs. 

Several hydrogen peroxides activated matrix metalloproteinase inhibitors and hydrogen 

peroxide responsive thiazolidinone-based compounds were provided by Prof. Seth M. 

Cohen. In our previous study, IC50 value of CAP treatment to U373MG cells was 

determined to be 74.26 s (95% confidence range of 47.24–116.8 s)(Conway et al., 2016). 

The toxicity measured in U373MG cells exposed to 30 s CAP is 18.52%, SEM=5.41% 

(He et al., 2018). As seen from Figure 22, the majority of the compounds presented no 

synergistic effects with CAP treatment. There was only additive decrease of nearly 20% 
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cell viability when U373MG cells were treated with compounds in combination with 30 

s CAP treatment.  

Table 6. IC50 values of compounds provided by Prof. Seth M. Cohen. 

 
Control CAP 30s  

IC50 (μM) 95% Confidence 

Intervals 

IC50 

(μM) 

95% Confidence 

Intervals 

1,2-

HOPO-2 

118.3 93.12 to 150.3 78.11 47.32 to 128.9 

1,2-

HOPO-2-

Boronic 

55.39 49.11 to 62.46 36.67 26.32 to 51.08 

PY-2 1008 497.0 to 2045 489.9 71.38 to 3363 

PY-2-

Benzyl 

51.83 43.88 to 61.21 17.07 8.523 to 34.18 

PY-2-

Boronic 

47.41 40.05 to 56.12 29.19 11.60 to 73.44 

Cmpd1 Not 

converged 

Not converged 203.6 141.4 to 293.3 

Cmpd2 Not 

converged 

Not converged 4391 195.1 to 98790 
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Figure 22. Dose response curves of compounds provided by Prof. Seth M. Cohen, 

University of California San Diego, US. 

4.3.3 Pyrimidone Bicycle Family Compounds  

A series of pyrazolopyrimidines derivatives, also as known as compounds from 

pyrimidone bicycle family, provided by Prof. John Stephens were tested using U373MG 

cell line. As seen in Figure 24, the majority of pyrazolopyrimidines derivatives had no 

synergistic cytotoxicity in combination with CAP treatment, the dose response curves of 
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CAP-treated groups presented high comparability and similar trends with untreated 

groups. The CAP treatment didn’t change the IC50 values of the majority of tested 

compounds (Table 8). 

However, the leading candidates of CAP-activated prodrugs were determined in this 

pyrimidone bicycle family. As seen in Figure 23, JW-04-061 and JW-04-057a presented 

great synergistic cytotoxicity with 30 s of CAP treatment. The CAP treatment induced a 

pronounced descent of dose response curves with the increasing of concentrations of 

prodrugs. As seen in Table 8, CAP treatment induced significant decreases of IC50 values 

of JW-04-061 (from 610.8 μM to 55.37 μM) and JW-04-057a (from 940.6 μM to 62.41 

μM) while presenting low cytotoxicity themselves. 

Therefore, among all 47 candidates of prodrugs, JW-04-061 and JW-04-057a were 

determined as the only two leading candidates of CAP-activated prodrugs. The dose 

response curves of JW-04-061 and JW-04-057a with or without 30 s CAP treatment have 

been repeated to further confirm the synergistic cytotoxicity (Appendix V Supplementary 

Figure S2). JW-04-061 has been chosen to be the research focus to save time and budget 

and lay the foundation for future projects.  

Table 7. IC50 values of compounds provided by Prof. John Stephens. 

 
Control CAP 30s  

IC50 

(μM) 

95% Confidence 

Intervals (μM) 

IC50 

(μM) 

95% Confidence 

Intervals (μM) 

JW-01-

009 

25.51 22.84 to 28.50 12.92 11.53 to 14.48 

JW-01-

033 

11.32 10.09 to 12.70 11.4 10.34 to 12.57 

JW-01-

037 

197 174.3 to 222.7 126.8 113.0 to 142.4 

JW-01-

072 

42.9 37.75 to 48.74 19.04 13.75 to 26.38 

JW-04-

012 

13372 5733 to 31190 5670 1831 to 17555 

JW-04-

017 

77.68 66.55 to 90.67 73.62 60.59 to 89.44 
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JW-04-

037 

366.8 306.1 to 439.5 462.1 197.3 to 1082 

JW-04-

039 

137.2 120.2 to 156.6 86.27 76.20 to 97.68 

JW-04-

057a 

940.6 564.2 to 1568 62.41 49.58 to 78.56 

JW-04-

061 

610.8 523.0 to 713.4 55.37 44.94 to 68.21 

MK2 Not converged Not converged 

MK6 502.2 452.4 to 557.4 608.6 561.0 to 660.2 

MK7 23.34 19.82 to 27.49 38.23 34.96 to 41.80 

MK8 74.59 67.68 to 82.20 44.42 31.39 to 62.85 

MK9 148.1 131.7 to 166.6 86.7 75.02 to 100.2 

Figure 23. Dose response curves of compounds provided by Prof. John Stephens, 

Maynooth University, Ireland, part 1. 

(a) Dose response curves of JW-04-061 with or without CAP treatment. (b) Dose 

response curves of JW-04-057a with or without CAP treatment. 
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Figure 24. Dose response curves of compounds provided by Prof. John Stephens, 

Maynooth University, Ireland, part 2. 

4.3.4 Investigate the Mechanism behind the Synergistic Cytotoxicity Between 

Leading Prodrug Candidate JW-04-061 and CAP Treatment. 

JW-04-061 has been used to further investigate the synergistic anti-cancer effects in 

combination with CAP treatment. To determine the mechanism of CAP activation of JW-

04-061, JW-04-061 was first dissolved in 100% DMSO and then treated with 30 s and 10 

min CAP in DMSO solution. Afterwards, CAP-treated JW-04-061 DMSO solution was 

diluted in culture medium to 1000 μM (DMSO final concentration 1%) and series diluted 

to lower concentrations to incubate with U373MG cells for 48 h before Alamar Blue 
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assay. As seen from Figure 25c, CAP-10 min treated DMSO (series diluted 

concentrations starting from 1%) had no significant cytotoxicity on U373MG cells, and 

untreated JW-04-061, CAP 30s treated JW-04-061 in DMSO, CAP 10 min treated JW-

04-061 in DMSO presented similar dose response curves and IC50 values (Table 9). This 

may due to the lack of ROS generation in 100% DMSO solvent, whereas the generation 

of reactive species relies on the present of reactants in treated liquid (Tanaka et al., 2011), 

and the DMSO may function as scavenger of OH radicals (Eberhardt and Colina, 1988).  

Hence, 30 s and 10 min CAP-treated JW-04-061 DMSO solution demonstrated likely non 

or weak synergistic cytotoxicity in combination with CAP treatment.  

To further confirm the synergistic effects between JW-04-061 and CAP, JW-04-061 was 

diluted in culture medium in different concentration then treated with CAP for 0-40 s. 

The CAP-treated JW-04-61 culture medium solution was subsequently incubated with 

U373MG cells for 48 h before Alamar Blue assay. As seen in Figure 25a, b, CAP 10-40 

s treated JW-04-061 culture medium solution induced a pronounced decreasing of cell 

viability with concentrations higher than 10 μM compared with CAP untreated group, 

when CAP treatment alone had low cytotoxicity (~20% decrease of cell viability). 

Table 8. IC50 values of JW-04-061 treated by CAP 0-30s in DMSO solution. 

 
Untreated 

JW-04-061 

CAP 30s 

treated JW-04-

061 in DMSO 

CAP 10 min 

treated JW-04-

061 in DMSO 

CAP 10 min 

treated 

DMSO 

IC50 (μM) 120.3 107.6 123 2279 

95% 

Confidence 

Intervals 

(μM) 

85.37 to 169.4 84.72 to 136.8 117.7 to 128.5 1228 to 4233 

 

Meanwhile, NAC was applied as antioxidant to further investigate the mechanism. 4 M 

NAC solution was diluted in culture medium till final concentration 4 mM before adding 

JW-04-061 and 40 s CAP treatment. As seen in Figure 25a, b, the NAC treated group 
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presented much higher cell viability and relatively gentle decrease of dose response curve 

compared to CAP treated group, which demonstrated that ROS generated by CAP 

treatment played key roles in the activation of anti-cancer effects of JW-04-061. The 

normalized isobologram also have been analysed and presented in Figure 25d, which 

further confirm the synergistic effects between CAP treatment and JW-04-061 treated in 

culture medium. Using CompuSyn software, the synergistic analysis was carried out and 

combination index (CI) values have been calculated. The CI values of JW-04-061 with 

10 s CAP were 0.31099, 0.33520 with 20s, 0.47561 with 30s, and 0.57796 with 40 s, 

which were all less than 1.00 and confirmed the significant synergistic cytotoxicity 

between CAP treatment and JW-04-061 (Figure 25d). 

Taken together, we have demonstrated that JW-04-061 was mainly activated by the 

reactive species generated during CAP treatment, therefore presented significant 

synergistic cytotoxicity to U373MG cells in combination with CAP treatment.  

Before the COVID-19 situation and closure of the research buildings, we acquired 

additional preliminary results which have been included in Appendix V, which can be 

used to further determine the detailed mechanism behind the synergistic cytotoxicity 

between CAP treatment and prodrug JW-04-061. Overnight storage CAP-activated 

medium, CAP-activated cells and catalase (hydrogen peroxide decomposition) have been 

used to study the dose response of U373MG cells to JW-04-061. 

As seen in Appendix V Supplementary Figure S3a, when cells were treated with 

overnight storage CAP-activated medium and prodrug, no synergistic cytotoxicity was 

observed. Meanwhile, the U373MG cells have been activated and incubated for 0-5 hours 

after CAP treatment, then incubated with fresh medium containing prodrug. There was 

no significant synergistic cytotoxicity observed between CAP-activated cells and prodrug 

comparing to direct combination of CAP treatment and prodrug, but the CAP-activated 
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cells presented relative lower cell viability at low prodrug concentration comparing to 

direct combination of CAP treatment and prodrug (as seen in Appendix V Supplementary 

Figure S3b). On the other hand, as seen in Appendix V Supplementary Figure S3c, there 

was no significant synergistic effects between CAP treatment and prodrug JW-04-061 to 

catalase treated cells.  

Table 9. IC50 values of JW-04-061 treated by CAP 0-40s in culture medium solution. 

 
IC50 

(μM) 

95% Confidence 

Intervals (μM) 

JW-04-061 Control 270.9 218.6 to 335.6 

JW-04-061 CAP10s treated medium +drug 54.37 47.56 to 62.15 

JW-04-061 CAP20s treated medium +drug 31.05 26.71 to 36.10 

JW-04-061 CAP30s treated medium +drug 39.21 31.27 to 49.16 

JW-04-061 CAP40s treated medium +drug 37.06 31.18 to 44.04 

JW-04-061 CAP40s treated medium +drug 

+NAC 

95.65 79.08 to 115.7 
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Figure 25. Dose responses of U373MG cells to JW-04-061 treated by CAP in culture 

medium solution or DMSO stock solution. 
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JW-04-061 has been added into culture medium to corresponding concentrations then 

treated with CAP for 0-40 s with or without NAC. Then the CAP treated medium 

containing JW-04-061 was added in 96-well plates to incubate with U373MG cells for 

48 hours and the dose response was presented using nonlinear regression (a) and bar 

chart (b). (c) JW-04-061 was prepared in DMSO stock solution and treated with CAP for 

30s and 10 min, then series diluted in fresh culture medium and incubated with U373MG 

cells for 48 hours and compared with control groups (Untreated JW-04-061 and vehicle 

(equivalent volume of pure DMSO) treated with CAP for 10 min).(d) Isobologram 

analysis of the combinational effect of JW-04-061 and CAP. The single doses CAP on y-

axis and JW-04061 on x-axis were used to draw the line of additivity. Four combination 

points were indicated in the isobologram (CAP 10-40s and corresponding IC50 values 

of CAP-treated JW-04-061). The localisation of combined JW-04-061 and CAP at 

different time exposures can be translated to synergism CI＜1, additivity CI=1 or 

antagonism CI>1. 

4.4 Discussion 

With development of technique and revolution of knowledge, we are capable of 

performing precise surgery, targeted and focused chemotherapy and radiotherapy after 

quick and accurate diagnosis of tumours. However, current treatments still present several 

side effects, including poor patient experience, secondary malignancy and a variety of 

long-term sequelae (Triesscheijn et al., 2006; Tachibana, Feril and Ikeda-Dantsuji, 2008; 

von Woedtke et al., 2013; Murray and Robinson, 2016). Meanwhile, researchers are 

exploring novel therapies based on different techniques, including sonodynamic therapy 

(Maeda et al., 2017), photodynamic therapy (Kawczyk-Krupka et al., 2015), CAP therapy 

(Ratovitski et al., 2014), gene therapy (Naldini, 2015) and immunotherapy (Pardoll, 2012) 

and some of them have achieved great outcome in clinical trials and even been 
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successfully applied in practice. However, novel therapies are also very limited with the 

high requirement of technique, expensive cost and unknow side effects. In this case, 

combination therapy has been considered as a promising way to solve the problem in a 

short time while generating less side effects. Usually patients are treated with 

combination of surgery, radiotherapy and chemotherapy based on the type and progress 

of the tumours. However, those treatments usually present no synergistic therapeutic 

effects but increase additive anti-cancer effects to improve the survival of patients along 

with more side effects. The purpose of investigating combination therapy in this chapter 

is to improve the anti-cancer effects synergistically and therefore to reduce the dose and 

side effects of the treatment.  

We have tested a total of 47 prodrug candidates from 4 collaborators, including 

aminoferrocene-based prodrugs provided by Prof. Andriy Mokhir (Marzenell et al., 

2013), ferrocene, [3] ferrocenophane and ferrocifen derivatives provided by Prof. Gérard 

Jaouen (Jaouen, Vessières and Top, 2015), matrix metalloproteinase pro-inhibitors and 

thiazolidinone-based prodrugs provided by Prof. Seth M. Cohen (Perez et al., 2015), and 

a series of pyrazolopyrimidines derivatives provided by Prof. John Stephens (Kelada et 

al., 2018), in combination with low dose CAP treatment using culture medium without 

pyruvate. We have identified only two leading candidates with synergistic cytotoxicity in 

combination with CAP treatment, which are JW-04-061 and JW-04-057a provided by 

Prof. Stephens.  

As seen in Figure 19, 20, 21 and 22, all candidates provided by Prof. Andriy Mokhir, Prof. 

Gérard Jaouen and Prof. Seth M. Cohen which contain typical ROS-trigger groups 

presented no significant synergistic cytotoxicity in combination with low dose CAP 

treatment. However, there were few prodrug candidates which presented significant anti-

cancer effects just themselves. This might be due to the relatively high ROS level in 
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U373MG cancer cells caused by their rapid proliferation and altered metabolism. 

Subsequently, the relatively high cellular ROS level in U373MG cells was already rich 

enough to trigger the activation of those prodrug candidates without extra ROS generated 

by low dose CAP treatment. Therefore, the CAP treatment didn't activate those prodrug 

candidates in U373MG cells and thus presented no synergistic cytotoxicity in 

combination with those prodrugs. However, those high cytotoxic prodrug candidates, 

including P286, P686, P53, P722, P258, P257 (as seen IC50 values in Table 6, dose 

response curves in Figure 20 and 21), can be used in future projects to test their 

cytotoxicity and specificity in healthy cells and cancer cells, which may contribute to the 

discovery of novel efficient anti-cancer prodrugs. 

Furthermore, as seen in Figure 25, we have investigated the synergistic effects between 

JW-04-061 and CAP treatment. To distinguish the effects induced by CAP to cells and to 

prodrugs, we have investigated the cytotoxicity of CAP-treated prodrugs without direct 

and immediate effects from CAP treatment to cells. 

To remove the direct and immediate effects from CAP to U373MG cells, we first treated 

JW-04-061 in DMSO for 30 sec or 10 min then series diluted the CAP-treated JW-04-

061 DMSO solution in fresh medium to corresponding final concentrations, subsequently, 

U373MG cells were incubated with CAP treated JW-04-061 culture medium solution 

(from CAP-treated DMSO solution) to investigate if the CAP treatment induced direct 

changes to prodrugs in DMSO solution. However, there's no significant synergistic 

cytotoxicity observed when the CAP treatment was performed to prodrug DMSO solution 

(Figure 25c). We have realized that 100% DMSO contains no H2O in the solution, 

therefore it could be one of the reasons that the CAP treatment could not induce enough 

generation of ROS in JW-04-061 DMSO solution without substrate (Lu et al., 2017). 

DMSO has been demonstrated to be a scavenger of OH radicals (Eberhardt and Colina, 
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1988). Therefore, alternatively, JW-04-061 was first diluted in fresh culture medium to 

corresponding concentrations, then was exposed to CAP treatment for 10-40 s at 75 kV. 

The CAP-treated JW-04-061 culture medium solution was subsequently incubated with 

U373MG cells for 48 h before Alamar Blue assay. As seen in Figure 25a, b, significant 

synergistic effects were observed in combination of CAP treatment and JW-04-061 

treated in culture medium solution. The synergistic cytotoxicity was also analysed using 

isobologram (Figure 25d). Meanwhile, we have applied NAC as antioxidant to 

investigate the roles of ROS. As seen from Figure 25a, b, with protection from NAC, the 

cytotoxicity of CAP-treated JW-04-061 in culture medium was significantly decreased. 

Although, the NAC may decrease the intracellular ROS level of U373MG cells then lead 

to the decreased cytotoxicity. The lower dose of CAP treatment induced less increasement 

of cytotoxicity of JW-04-061, which supported that the ROS generated in culture medium 

played the main role in the activation of drug. Taken together, we can determine that, 

without direct and immediate effects from CAP to U373MG cells, JW-04-061 still has 

significant synergistic cytotoxicity in combination with CAP treatment when there is 

normal generation of ROS in culture medium. However, we could not fully determine the 

roles of CAP-induced ROS played in the synergistic effects yet. The high level of ROS 

in culture medium may affect U373MG cells via a variety of activities, including lipid 

peroxidation, oxidation of protein/DNA/RNA, and intracellular ROS signalling pathways, 

then trigger the synergistic cytotoxicity with JW-04-061. We acquired additional 

preliminary results which may explain more mechanism behind the synergistic 

cytotoxicity between JW-04-061 and CAP treatment. 

Overnight storage CAP-activated medium, CAP-activated cells and catalase (hydrogen 

peroxide decomposition) have been used to study the dose response of U373MG cells to 

JW-04-061 and investigate the mechanism behind the synergistic cytotoxicity between 
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JW-04-06 and CAP treatment. As seen in Appendix V Supplementary Figure S3a, JW-

04-061 was added into overnight storage CAP-activated medium just before incubation 

with cells, no synergistic cytotoxicity was observed when cells were treated with 

overnight storage CAP-activated medium containing JW-04-061 compared to control 

groups. Yan et al. reported that short-lived reactive species were removed by overnight 

storage as well as most of long-lived reactive species, such as hydrogen peroxides in the 

CAP-activated medium (Yan et al., 2016). However, the DIT-120 system investigated in 

this project has been shown to generate high concentrations of hydrogen peroxides which 

were stable in various liquids over storage time (Boehm et al., 2017). Therefore, this is 

yet to be further determined for prodrug treatment. So far, we can determine that the 

oxidised components in CAP-activated medium have no effect on the synergistic 

cytotoxicity between CAP-treatment and prodrug JW-04-061. For the record, the fresh 

CAP-activated medium should have been used to compare with the overnight storage 

CAP-activated medium for prodrug series dilutions and treatment. As seen in Figure 25, 

the fresh CAP-treated medium containing prodrugs presented significant synergy, which 

may be comparable with overnight storage CAP-activated medium. Meanwhile, as seen 

from Appendix V Supplementary Figure S3c, catalase has been used to decompose 

hydrogen peroxides, and the prodrug only has been exposed to other reactive species 

generated by CAP, which demonstrated no significant synergistic cytotoxicity. It 

demonstrated that the hydrogen peroxides generated by CAP in culture medium may play 

a main role in the activation of JW-04-061 during and after CAP treatment. 

On the other hand, CAP-activated U373MG cells have been applied to investigate the 

possible synergy between prodrugs and cellular responses to CAP treatment, such as 

peroxidised cellular membrane, accelerated cellular uptake and oxidation stress response 

(He et al., 2020). U373MG cells were activated together with medium by CAP for 30 sec 
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and then incubated for 0-5 hours. Afterwards, fresh medium containing prodrug JW-04-

061 was used to test cellular dose response and the possible synergistic effects. As we 

can see in Appendix V Supplementary Figure S3b, there was no significant synergistic 

cytotoxicity observed between CAP-activated cells and JW-04-061 compared to direct 

combination of CAP treatment and prodrug. However, it presented lower cell viability 

(around 25% decrease) in CAP-activated cells, which may be due to changing of culture 

medium 0-5 hours after CAP treatment causing extra loss of cells. However, it 

demonstrated that the synergistic cytotoxicity is mainly from CAP-activated prodrug 

instead of CAP-activated cells. The experiments discussed above, including treating cells 

with CAP only, incubating cells with prodrugs only, treating cells and prodrugs with CAP 

at the same time, incubating CAP-untreated cells with CAP-treated prodrugs (prodrugs 

were treated with CPA in culture medium solution or DMSO stock solution), incubating 

CAP-untreated cells with prodrugs dissolved in overnight storage CAP-activated medium, 

incubating CAP-treated cells with CAP-untreated prodrugs, were performed with same 

volumes, same concentrations of prodrugs and same types of culture medium without 

pyruvate. NAC and catalase were used as scavengers of reactive species in inhibiting 

study. The preliminary conclusion is that the JW-04-061 presents significant synergistic 

cytotoxicity against U373MG cells after being activated by low doses of CAP treatment 

in culture medium, whereas the ROS, specifically hydrogen peroxides, may play a main 

role in the activation of JW-04-061. 

All in all, investigating combination therapy is a promising way to develop efficient anti-

cancer therapies with as little as possible side effects, especially if there are significant 

synergistic anti-cancer effects which can be specifically and precisely targeted to tumour 

tissue. Various compounds and nanoparticles were investigated as sensitizers for 

radiotherapy, photodynamic therapy and others. However, the majority of sensitizers only 
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promote the efficiency of the therapy itself or present extra diagnosis function but have 

no extra therapeutic effect. Therefore, in this chapter, we discovered and demonstrated 

new compounds that can synergistically kill cancer cells in combination with low dose 

CAP treatment, which have not been reported before. The JW-04-061 and JW-04-057a 

can be further investigate for future trials. This research has contributed to the foundation 

of CAP/ROS-trigger prodrugs research and will inspire the development of more efficient 

prodrugs that can be combined with targeted and precise CAP treatment for cancer 

therapy.  
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5. GENERAL DISCUSSION 
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In the development of successful interventions to cure cancer, nanomaterials have played 

key roles. In last two decades, a variety of nanomaterials have been greatly expanded as 

well as highly diversified and multi-functionalized. Some of these nanomaterials were 

determined as lead candidates to delivery chemotherapeutics to tumours and have passed 

preclinical trials and successfully applied to the clinic. Enhanced permeation and 

retention-based tumour targeting and then, especially, active targeting was introduced, 

which highly increased the efficiency and specificity of drug delivery into tumours. Due 

to the excellent loading capacity of nanocarriers and multifunctionality of their ligand or 

themselves, nanoparticles can be applied in cancer treatments, as both carriers, sensitisers 

and imaging agents, which can provide advanced diagnosis as well as diversified 

treatments.  

AuNPs, as one of the most commonly investigated and used nanomaterials for cancer 

treatment, can be readily manufactured in a variety of specific shapes, size and 

monodispersity with different functions, therefore can be used as diagnostic agents, 

carriers and/or sensitizers for cancer therapy. The AuNPs we used in this project were 

synthesised by trisodium citrate (Na3C6H5O) reduction of auric acid (HAuCl4) and 

therefore were not functionalized and only capped with citrate and manufactured in 

spherical shape and ~20 nm diameter by controlling the ratio between Na3C6H5O and 

HAuCl4. Non-functionalized AuNPs have shown selective cytotoxicity to cancer cells, 

are generally consider nontoxic to healthy cells whereas small AuNPs usually elicit 

higher cytotoxicity than larger AuNPs (Connor et al., 2005; Patra et al., 2007; Alkilany 

and Murphy, 2010). The AuNPs of ~20 nm diameter we used have been demonstrated to 

have elicit relatively low cytotoxicity in both normal and cancer cells and are optimal for 

permitting BBB compared with non-functionalized AuNPs of other sizes (Pan et al., 2007; 

Shilo et al., 2015). Therefore, 20 nm citrated capped spherical AuNPs were applied in 
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this study for investigation of the combination therapy with CAP treatment, which also 

can be the optimal candidate for drug delivery across BBB. 

As emerging technology, it has been clinically shown that cold atmospheric plasma can 

be safely and directly applied on patients for disinfection and promoting the healing of 

wounds and ulcerations (Weltmann et al., 2008; von Woedtke et al., 2013; Mai-Prochnow 

et al., 2014; O’Connor et al., 2014). CAP is showing strong potential in cancer treatment 

as well. Recently, it has been repetitively demonstrated that CAP have significant and 

selective cytotoxicity to multiple tumour lines in vitro and in animal models (Walk et al., 

2013; Ratovitski et al., 2014; Park et al., 2015; Recek et al., 2015; Yan et al., 2015; 

Conway et al., 2016; Zhu et al., 2016). Moreover, as additional treatment, a prospective 

clinical trial for head and neck cancer treatment has been carried out, Metelmann et al. 

presented that CAP treatment not only reduced contamination of ulcerations caused by 

head and neck cancer and may have inhibited tumour growth and caused visible local 

destruction after two weeks of treatment. Meanwhile, during the trial, CAP treatments 

presented low side effects and benefits to patients in various aspects, such as easy to 

handle treatment, easing cancer pain, gain of weight and likely prolonged survival. 

(Metelmann et al., 2015). Most recently, for the first time, a CAP device, Canady 

HeliosTM Cold Plasma Scalpel, has been approved for human clinical cancer treatment 

trials by the FDA to evaluate its safety in patients with solid tumours with carcinomatosis 

scheduled to undergo surgical resection for cytoreduction (‘Canady Helios Cold Plasma 

Scalpel Treatment at the Surgical Margin and Macroscopic Tumor Sites’, 2020). In this 

study, cold plasma is sprayed in the area of the resected tumour margins after removing 

gross solid tumour via surgery (‘Canady Helios Cold Plasma Scalpel Treatment at the 

Surgical Margin and Macroscopic Tumor Sites’, 2020). Cold plasma also has been 

successfully evaluated in many non-cancer related trials (e.g. Chronic wounds treatment 
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(Isbary et al., 2012), symptomatic knee osteoarthritis treatment (Sánchez et al., 2012), 

herpes treatment (Isbary et al., 2014), treatment of lesions in Hailey-Hailey disease 

(Isbary et al., 2011)). For instance, for chronic wounds treatment, a randomized 

controlled trial presented a significant reduction in bacterial load in plasma-treated 

wounds (Isbary et al., 2012). The CAP treatment for patient with chronic wounds was 

well tolerated and no side-effects occurred (Isbary et al., 2012). 

A promising synergistic anti-cancer effect between CAP and AuNPs which we observed 

was that the uptake of AuNPs into U373MG cells was significantly enhanced with CAP 

treatment, and the cytotoxicity of the AuNPs to U373MG cells was also significantly 

increased combined with CAP treatment. There have been reports that CAP treatment can 

induce pore formation on cell membrane that may increase delivery of agents into cells, 

and had synergistic cytotoxicity combined with nanoparticles especially gold 

nanoparticles. Jinno et al. has described that the electrical effects of CAP combined with 

reactive species helped the gene transfection into L-929, mouse fibroblast cells (Jinno et 

al., 2016). Krassowska et al., simulated that strong electric fields, which exist during CAP 

treatment, can induce formation of large pore in  spherical cell membranes (i.e. 15-25 nm) 

(Krassowska and Filev, 2007). Cheng et al., observed that uneven membrane and 

membrane pores were induced in U87 cells after treatment of CAP (Cheng et al., 2015). 

Nina et al., also described the unrecoverable partial cell membranes and cell components 

damage induced by CAP treatment in U87 cells. The direct membrane damage and pore 

formation induced by CAP treatment described in these studies may explain that we 

observed low levels of non-active uptake of AuNPs during the first few hours after CAP 

treatment, which was not inhibited by NaN3 or low-temperature (4 ℃) incubation. NaN3 

was used as metabolic inhibitor to inhibit the energy-dependent endocytosis, and low-

temperature incubation was used to inhibit endocytosis as a standard experiment. 
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However, we mainly observed that active uptake of AuNPs was stimulated after low dose 

CAP treatment which was inhibited by NaN3 and low-temperature incubation. This has 

not been reported before. Furthermore, we also observed the significant enhancement of 

AuNPs uptake with indirect CAP treatment which removes the direct physical effects. It 

confirmed that pore formation and direct membrane damage plays only a minor role in 

the increased uptake of AuNPs induced by low dose CAP treatment compared to previous 

studies. It should be noted that each of these studies were carried out using different 

cancer cell lines and various dose of CAP generated by different devices with distinct 

input voltage, frequent, current and therefore cause different response of cancer cells to 

CAP treatment.  

On the other hand, several studies to date have reported the synergistic anti-cancer effect 

between CAP treatment and AuNPs. Kim et al., first demonstrated that cytotoxicity of 

CAP to G361 human melanoma skin cancer cells was significantly increased (near five-

fold) by combining with anti-FAK antibody-conjugated AuNPs (FAK-AuNPs) (Kim et 

al., 2008). In this study, the adopted 30nm AuNPs didn’t present any observable cytotoxic 

effect on the proliferation of G361 cells while applied alone, but increased the cell death 

rate from 14% (CAP only) to 36% (CAP and unconjugated AuNPs) and 74% (CAP and 

FAK-AuNPs) (Kim et al., 2008). It is interesting that Kim et al., noted that the cell 

morphology was maintained, even in dead cells, after combination treatment of CAP and 

FAK-AuNPs, whereas cells dying from CAP usually undergo anoikis. (Kim et al., 2008). 

In another study, fluorouracil, a DNA synthesis inhibitor chemotherapeutic that has been 

widely used in clinical treatment of breast, gastrointestinal and gynaecological cancers, 

was loaded in core (gold)-shell (PLGA) nanoparticles for combination treatment with 

CAP against human breast cancer MDA-MB-231 cell line (Zhu et al., 2016). Synergistic 

cytotoxicity between the drug loaded core-shell AuNPs and CAP treatment and enhanced 
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cellular internalization of the drug loaded core-shell AuNPs by CAP treatment were 

observed (Zhu et al., 2016). Similarly, X. Cheng et al., described that 100 nm uncoated 

AuNPs presented synergistic cytotoxicity to U87 cells combined with CAP treatment, 

which was also dose dependent (Cheng et al., 2014). At the optimal concentration, AuNPs 

induced U87 cell death up to a 30% overall increase compared to the control group with 

the same plasma dosage only (Cheng et al., 2014). Highest intracellular ROS intensity 

induced by CAP was measured at this optimal concentration as well (Cheng et al., 2014). 

The exact mechanism has yet to be discovered but they concluded that the AuNPs in the 

medium may accelerate the absorption of exogenous ROS and RNS generated by CAP 

into cells (Cheng et al., 2014). A study was carried out by Irani et al. which demonstrated 

that the cell death of HCT-116 cells (human colorectal cancer cells) was increased 

significantly by CAP treatment in the present of ~55 nm citrate-capped AuNPs (Irani et 

al., 2015). However, despite all the evidences for the synergistic anti-cancer effects 

between CAP treatment and AuNPs, the underlying mechanism of this synergistic 

cytotoxicity was yet to be well understood.  

To date and to the best of our knowledge we are the first to demonstrate the detailed 

mechanism behind the synergistic anti-cancer effects between CAP treatment and AuNPs 

and gave a strong hypothesis with regards to CAP facilitated permeability of drugs. As 

described in Chapter 2, we have successfully determined that CAP treatment promotes 

the uptake of AuNPs into U373MG cells via ATP-dependent active pathway and 

eventually accumulated in lysosomes, and published a peer-reviewed paper based on this 

work (He et al., 2018). The enhanced accumulation of AuNPs in U373MG cells was first 

observed under optical microscope. Then we have tracked the accumulation and uptake 

of AuNPs into cells with or without CAP treatment using a variety of technique and 

devices, including AAS, confocal microscope, flow cytometry, electron microscope and 
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Zetasizer, combined with a panel of inhibitors and fluorescent probes, including ATP 

inhibitor sodium azide, antioxidant NAC, lysosomes tracker. Using AAS, we have 

successfully tracked the accumulation of AuNPs inside U373MG cells and demonstrated 

that the uptake of AuNPs enhanced by CAP treatment was an active pathway. Using 

confocal microscope, the majority of intracellular AuNPs has been confirmed to located 

in lysosomes which presented significant greater accumulation with CAP treatment. It 

should be noted that antioxidant NAC didn’t significantly decrease the stimulated uptake 

of AuNPs by CAP, which may demonstrate that short-lived species or NAC-insensitive 

reactive species played the main role in the stimulation of cellular uptake. Using indirect 

CAP treatment also demonstrated that physical effects induced by CAP also didn’t play 

main role in the increased uptake of AuNPs into U373MG cells. 

However, we didn’t fully answer the questions behind the synergistic cytotoxicity 

between CAP treatment and AuNPs. It is worth to understand the mechanism behind the 

synergy which will be useful for developing more efficient deliveries of nanoparticles 

and pharmaceuticals into cancer cells for tumour therapy and diagnosis and other relevant 

cancer therapies that induce an increase in extracellular ROS. Therefore, we continued 

the investigation of the synergistic effects between CAP treatment and AuNPs and tried 

to precisely identify the CAP-affected cellular pathways involved in the enhanced uptake 

of AuNPs.  

The current study of Chapter 3 demonstrated, for the first time, that the synergistic effects 

of nonfunctionalised AuNPs combined with CAP, to glioblastoma cancer cells, is via the 

clathrin-mediated endocytosis stimulated by CAP-induced membrane repair processes. 

In Chapter 3, numerical modelling of the uptake of gold nanoparticles into U373MG 

glioma cells predicted that CAP may introduce a new uptake route. We have 

demonstrated that cell membrane repair pathways play the main role in the stimulated 
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new uptake route, following non-toxic doses of CAP treatment (30 s, 75 kV). CAP 

treatment induced cellular membrane damage, mainly via lipid peroxidation as a result of 

ROS and RNS generation. Membranes rich in peroxidised lipids were then trafficked into 

cells via membrane repairing endocytosis. We confirmed that the enhanced uptake of 

nanomaterials is clathrin-dependent using a batch of specific chemical inhibitors and 

silencing of gene expression. Therefore, we have hypothesised that CAP-stimulated 

membrane repair increases endocytosis and accelerates the uptake of gold nanoparticles 

into U373MG cells after CAP treatment. In Chapter 3, our data has demonstrated the 

utility of CAP to model membrane oxidative damage in cells and characterised a 

previously unreported mechanism of membrane repair to trigger nanomaterial uptake. 

This research article has been published in the peer-reviewed journal ‘Scientific Report’  

(He et al., 2020). 

Although there has been study hypothesis that after uptake via receptor-mediated 

endocytosis, epidermal growth factor (EGF)-conjugated AuNPs combined with CAP 

induced DNA damage and selective apoptosis of A549 human alveolar basal epithelial 

cancer cells (Kim et al., 2017). This hypothesis was based on the decreased uptake of the 

EGF-conjugated AuNPs when incubated at 29.5 ℃ compared to 37 ℃, and that the EGF 

ligand usually triggers recruitment of the EGF receptor to clathrin-coated pits which has 

been demonstrated to be the endocytosis pathway of uptake of EGFR-ligand complex, as 

well as that AuNPs are mainly internalized via clathrin/ caveolar-mediated endocytosis, 

phagocytosis, macropinocytosis, and pinocytosis (Kim et al., 2017). However, this study 

didn’t directly demonstrate that the increased uptake of AuNPs was via receptor-media 

endocytosis and also used ligand-conjugated nanoparticles which is different compared 

to our study. There is another study demonstrating that iron-dependent cold plasma-

induced oxidative stress can stimulate significant increase in fluid-phase endocytosis, 
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lysosome biogenesis and autophagy, therefore inducing highly selective anti-proliferative 

activity against rat SM2 (sarcomatoid subtype) malignant mesothelioma cells (Shi et al., 

2017). However, the study presented that the CAP treatment decreased transferrin 

receptor-1 which is in contrast with our study. We used transferrin conjugated with Alexa 

Fluor™ 546, an early endosome marker, and confocal microscope to investigate the 

endocytosis enhanced by CAP treatment and demonstrated that the quantification of 

transferrin uptake was significantly increased within 5 min after CAP treatment compared 

to control group. The contrast may be due to the variety of different cell lines and different 

dose of CAP generated from distinct devices. 

As seen in Chapter 2 and 3, the ROS and RNS induced lipid peroxidation played an 

important role in the CAP-induced endocytosis and oxidization stress. It should be noted 

that ROS and RNS play important roles in many other anti-cancer interventions, including  

phototherapy (Zhou et al., 2016), ultrasonic therapy (Yu, Wang and Mason, 2004), as 

well as some types of chemotherapy (Kasiappan and Safe, 2016), as especially in this 

most common cancer treatment, radiotherapy (RT) (Manda, Nechifor and Neagu, 2009). 

As mentioned in Chapter 1, the reactive species is a double-edged sword for cancer cells 

and can be utilised for developing efficient therapeutic strateges against cancer cells. 

ROS-inducing chemotherapy agents and radiation therapy are now the most common 

anti-cancer innovation involved with reactive species. 

Radiation therapy is one of the primary treatments for neoplasm using high-energy 

ionizing radiation (IR). The acting mechanisms of RT include the generation of free 

radicals or the direct deposition of energy by IR. Due to photoelectric effects and 

Compton effects, the energy track of IR is composed by electrons in matters, which 

induce ionization and excitation (Rehman et al., 2015). In cells, the electrons interact with 

water and generate free radicals, including ROS and RNS (Mikkelsen and Wardman, 



145 

 

2003). Damage is induced by the ROS/RNS-caused oxidative stress and lesions of 

cellular macromolecules, including DNA, protein and lipids (Nikitaki et al., 2016). 

Meanwhile, the cell killing effect is also related to the direct deposition of energy by IR, 

which is highly penetrating and able to cause irreparable damage to genetic materials 

even at low dose (Rothkamm and Löbrich, 2003). However, due to the high cytotoxicity 

and non-targeted effects of radiation, the radiation must be accurately delivered to tumour 

tissue while sparing normal tissue to improve PFS, OS and life quality of patients 

(Nikitaki et al., 2016). Although ionizing radiation induces the generation of intracellular 

ROS and free radicals (Magné et al., 2006; Graves, 2012), the cytotoxicity of radiation is 

mainly owing to the photons-directly-caused DNA damage (Mikkelsen and Wardman, 

2003; Graves, 2012), even at low doses, resulting in irreparable damage to cellular genetic 

material and cell death (Rothkamm and Löbrich, 2003). Compared to radiation, CAP can 

produce longer lived reactive species, selectively inducing apoptosis to cancer cells 

through signalling pathways, generating low-energy species which is relatively low-toxic 

to normal cells. Due to the regular ROS level in normal cells, the antioxidant system in 

normal cells present higher resistant to CAP treatment compared with cancer cells. 

However, it has been demonstrated that CAP treatment can induce proliferation arrest, 

DNA damage and a senescence phenotype to healthy cells without killing them. 

Therefore, the dose of CAP treatment should be carefully controlled on targeted 

cancerous tissue. 

CAP devices are low cost, easy to control and the field is undergoing a rapid pace of 

innovation and advancement (Ishaq, Evans and Ostrikov, 2014). Therefore, the potential 

of CAP for developing more efficient and lower side-effects human healthcare is 

significant and promising. On the other side, there are many research questions related 

with CAP treatment awaiting to be solved for the clinical application of CAP for cancer 
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therapy. For instance, there are a variety of CAP devices which have been investigated in 

research. Due to high diversity (voltage, currency, frequency, gas types, various 

components and designs of devices),  the comparability between CAP devices is yet to 

be further improved. Meanwhile, the doses of CAP generated from disparate devices are 

difficult to be precisely identified by time of treatment. The identification of exact 

reactive species, especially short-lived reactive species, have not been solved yet. CAP 

only has been investigated for cancer therapy recently, thus the long-term effects of CAP 

treatment are yet to be fully explored. Those are the challenges facing the field of plasma 

medicine and require more efforts to eventually implement the CAP therapy in the clinic.   

In Chapter 2 and 3, the focus of the project was investigation of the synergy between 

AuNPs and CAP to understand the mechanism behind CAP and AuNPs synergy. In 

Chapter 4, the focus was brought to prodrugs and CAP treatment. We first screened all 

prodrug candidates using culture medium with pyruvate but didn’t observed leading 

candidates with significant synergistic cytotoxicity. We have realized that pyruvate, a 

common component of culture medium, may present negative effects in our experiments 

as antioxidant (Ramos-Ibeas et al., 2017). Therefore, in Chapter 4, we screened all 47 

prodrug candidates again and successfully identified that two compounds, JW-04-061 

and JW-04-057a, provided by Prof. John Stephen, have significant synergistic 

cytotoxicity in combination with low dose CAP treatment, using culture medium without 

pyruvate. The synergistic effects between JW-04-061 and CAP treatment was further 

investigated and will be published as peer-reviewed article in collaboration with Prof. 

John Stephen. Other prodrugs, provided by Prof. Andriy Mokhir, Prof. Gérard Jaouen 

and Prof. Seth M. Cohen, all contain typical ROS-trigger groups but presented no 

significant synergistic cytotoxicity in combination with low dose CAP treatment, which 

may be due to  the natural ROS level in U373MG cancer cells being high enough for 
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prodrug activation without CAP treatment. But we still have identified that few prodrug 

candidates, including P286, P686, P53, P722, P258, P257, present high anti-cancer 

effects on their own. Thus, those candidates can be used in future research to test their 

cytotoxicity and specificity in healthy cells and cancer cells to discover new prodrugs.  

In conclusion, we investigated the mechanism behind the synergistic anti-cancer effect 

between CAP and AuNPs and provided solid evidence that the membrane oxidation 

damage induced clathrin-dependent endocytosis played main role in the accelerated 

uptake of AuNPs into U373MG cells by CAP treatment. In Chapter 4, we screened all 

prodrug candidates and have identified two leading candidates that possess most 

significant synergistic cytotoxicity to U373MG cells in combination with CAP treatment. 

We also have provided preliminary evidence that reactive species generated in CAP-

treated culture medium did play the main role in the activation of the leading prodrug 

candidate JW-04-061, which leads to the synergistic cytotoxicity. This thesis provides 

evidence to understand how CAP treatment induces a variety of responses of glioma cells, 

especially stimulated endocytosis, which can be also applied in enhancing permeability 

and tumour accumulation of other therapeutic and diagnostic agents for development of 

efficient cancer therapies and diagnosis. Meanwhile, two novel prodrugs that have 

synergy with CAP treatment have been identified and investigated. However, new 

research questions have been brought to light by this study. Further studies are required 

to fully elucidate what cell death pathways are involved in the synergistic cytotoxicity of 

AuNPs and CAP. Investigation of this novel combination therapy using prodrug-loaded 

AuNPs and CAP treatment in vitro, in 3-dementional cancer sphere model, and in vivo 

also can be investigated in future projects for development of practical innovations in 

clinical therapy. For in vivo treatment, alternative CAP devices, such as plasma jet or 

plasma needle, are required to deliver CAP to targeted area. The cell death pathways 
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involved in the anti-cancer effects of prodrug leading candidates combined with CAP 

have yet to be explored.   
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7.3 Appendix III Supplementary Information for Chapter 2 

Figure S1. UV-vis absorption spectrum of 100 μg/ml AuNPs dispersed in water. The 

AuNPs solutions were treated with CAP at 75 kV for 30 s, or untreated. 

 

Table S1. Raw dataset of the Alamar Blue assay. U373MG cells were treated with 

different concentrations of AuNPs (0-800 μg/ml). After incubated for 48 h, cell viability 

was analysed using the Alamar Blue assay. The table presented the raw date produced by 

the Microplate Reader, Synergy HT (BioTek). 

Raw dataset of the Alamar Blue assay 

AuNPs 

Concentration 
Treatment：AuNPs only 

Treatment：AuNPs+CAP 30s,75 

kV 

800 μg/ml 
22

3 

20

9 

28

9 

28

3 

30

1 
113 86 79 81 103 

400 μg/ml 
29

2 

28

7 

31

2 

32

1 

33

6 
175 122 172 171 183 

200 μg/ml 
30

7 

32

5 

33

4 

33

1 

32

0 
177 140 219 206 219 

100 μg/ml 
30

0 

33

6 

33

7 

33

6 

34

4 
164 136 150 184 178 

50 μg/ml 33 35 35 35 34 232 210 206 207 238 
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5 1 3 2 9 

25 μg/ml 
32

9 

34

6 

35

2 

35

2 

34

6 
182 200 198 192 177 

12.5 μg/ml 
35

8 

35

6 

34

7 

36

6 

37

4 
167 192 210 186 200 

6.75 μg/ml 
33

0 

35

6 

36

3 

36

5 

37

9 
204 246 277 247 276 

3.375 μg/ml 
33

8 

34

8 

36

3 

35

8 

36

0 
284 299 269 292 280 

0 
33

5 

35

4 

35

2 

35

6 

36

0 
242 280 354 292 276 

Negative control 13 14 13 14 13           
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7.4 Appendix IV Supplementary Information for Chapter 3 

Supplementary Figure S1. (a) Electro energy distribution function (EEDF) of CAP; (b) 

Fluorescence level of intracellular oxidised H2DCFDA was measured via Flow cytometry, 

the analysed average of mean FL1-A value. 

Supplementary Figure S2. The fluorescent integrated density of non-oxidised BODIPY 

was quantified using ImageJ. The statistical significance was assessed by one-way 

ANOVA with Tukey’s multiple comparison post-test (*P<0.05, **P<0.01, ***P<0.001, 

****p<0.0001), n≥50, see Appendix IV Supplementary Table S1 for original data 
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Supplementary Figure S3. The U373MG cells were loaded with C11-BODIPY (green), 

then co-stained with and LysoTracker™ Deep Red (red) after CAP treatment (30 s, 75 

kV) and observed under confocal microscope, three images are presented in the figure. 

White arrows point out examples of co-localisation between oxidised C11-BODIPY and 

lysosomes. 

 

Supplementary Figure S4. After incubation with various inhibitors as indicated, 

U373MG cells were treated CAP for 0, 30 s at 75 kV and then loaded with transferrin for 

5 min or 100 μg/ml AuNPs for 3 h respectively before observing under confocal 

microscope, then the fluorescence integrated densities were quantified using ImageJ. The 

statistical significance was assessed by one-way ANOVA with Tukey’s multiple 
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comparison post-test (*P<0.05, **P<0.01, ***P<0.001, ****p<0.0001), n≥50. 

 

Supplementary Figure S5. Oxidized C11-BODIPY emission was measured with same 

threshold to highlight vesicle-like condensed area. (a) Sample of CAP treated cells; (b) 

Sample of untreated cells; (c) With same threshold, the fluorescence integrated densities 

were quantified using ImageJ. The statistical significance was assessed by unpaired T-

test. (*P<0.05, **P<0.01, ***P<0.001, ****p<0.0001), n≥50.   
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Supplementary Discussion: 

The intensity of O3 production may explain why there was no detectable emission of NO, 

O, NOx and low intensities of •OH and N2
+ in Figure 12a, as the free electrons were likely 

quenched before reaching higher energetic states by the interaction and formation of O3. 

Reaction mechanisms (1-4) can further explain how the formation of NO, NOx, and O 

was hindered. In these reactions, M is a third body atom or molecule that, in this case, 

may be N2
* or O2. 

O + O2 +  M∗  → O3 +  M    (1) 

M∗ + NO → M + N + O    (2) 

O + H2O → 2 OH•      (3) 

2N + M → N2 +  M     (4) 
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Supplementary Figure S6. Uptake and subcellular localization of AuNPs observed by 

confocal microscopy. After CAP treatment (0, 30 s), U373MG cells were incubated with 

100 μg/ml AuNPs for 3 h. Early, late endosomes and lysosomes were stained using 

CellLight™ Early/Late Endosomes-RFP (Marked as orange channel in images) and 
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LysoTracker™ Green DND-26, respectively. The far-red emission of AuNPs (Red) was 

excited using 633 nm laser. 

Supplementary Table S1. 

Integrated Density of BODIPY 

Control. 

Non-oxidized (Supplementary 

Figure 2) 

CAP 30s. 

Non-oxidized 

(Supplementary 

Figure 2) 

Control. Oxidized (Figure 

13b) 

CAP 30s. 

Oxidized 

(Figure 3b) 
825441 764257 232430 417629 

998949 760580 310618 342874 

1060462 665879 327636 495228 

859260 1089862 179182 477016 

530275 765581 307326 426428 

829356 360915 176954 448261 

665668 551518 499637 293395 

1278050 264406 510195 325466 

2038367 596517 356545 273752 

936308 760052 292490 464481 

1259645 332197 407417 167146 

1573896 866259 281113 394278 

1019896 499450 227051 302926 

963641 296252 181733 221856 

862036 846493 189916 454239 

812204 881837 248568 374735 

1113481 861837 300329 373363 

748271 778087 273441 505987 

1165023 524382 211968 292939 

764072 867958 282522 388750 

1232175 508610 317893 597744 

1007005 595270 161873 295272 

982070 610424 155628 306654 

1320705 445595 458594 390399 

946150 1463426 399135 890896 

1342500 708723 462811 741382 

653886 888079 196388 524934 

499775 373856 190853 306468 

875556 1477152 153302 390161 

1037540 653049 163432 651081 

906223 1078557 142877 187065 

1097569 675892 206789 906811 

1207059 402444 37404 312273 

718964 1083730 109317 617780 

559771 930197 236604 468648 

475472 898191 142135 296259 

747381 331716 270552 389688 

807312 532198 82436 195602 

707968 817839 84652 506283 

840742 414865 168778 451699 

777642 749632 364207 303635 

1022745 879071 100734 431292 

1228769 1084756 114519 701205 

2064986 412708 49002 444981 

697882 884861 273032 223330 

1220345 566726 58729 423576 

775782 667011 169249 569403 

1182171 895365 184585 660069 

812884 497905 198073 227918 

940440 603690 154684 478087 

555395 684168 441372 254274 
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1327438 371186 274210 362961 

718786 502118 245082 398478 

642920 415450 228162 325251 

1050097 1489285 437520 346672 

834466 250668 350830 479690 
 247114 199513 1122291 
 460969 184087 191401 
 345379 260743 335414 
 325823 234688 346672 
 342280  303883 
 694899  306629 
 607436  1149608 
 821919  150280 
 1413574  456893 
 729336  283002 
   269830 
   234559 
   524097 
   372300 
   626520 
   889340 
   691489 

 

Supplementary Table S2. 

Integrated Density of Transferrin 

Untreated CAP30s 

110807 57027 
66999 112562 

125539 86679 
25907 97764 
18663 210017 
36431 151799 
55003 82789 
58136 180386 

108838 219322 
203364 120825 
38237 109507 
106023 181812 
153065 232475 
46973 103867 

231021 165690 
126260 189547 
58261 145942 
53516 216243 
28616 175271 
169818 79758 

119425 197285 
69592 173238 
24623 207385 
126382 137586 
109035 103140 

251395 55164 
90739 287846 
76501 49045 
76803 75313 
71061 76832 
70167 89317 

71700 116572 
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29972 81825 
28606 205643 
87132 134411 

33269 101051 
95125 355132 
80060 57270 
64769 73021 
106737 108349 
74147 88346 

79054 56330 
25151 115220 
40603 109490 
72073 124859 
124198 218535 
77852 134532 

103302 71167 
109488 71050 
58064 60830 
75705 58081 
27911 63689 
86282 181942 

117192 170011 
32705 89790 
120661 71784 
129909 163049 
106761 107358 
90118 132343 

39569  
164849  
84330  

 

Supplementary Table S3  

Integrated Density of Transferrin  

Untreated CAP30s 

only 

Pitstop Pitstop+CAP CPZ CPZ+CAP 

108598 295322 64736 100433 38802 56788 

43443 108782 38572 31750 24310 83128 

77433 251156 47517 76352 39598 45220 

94477 84583 25591 100240 294486 19690 

86584 65841 35782 71304 68324 13416 

98793 91549 39735 28401 51158 9444 

102070 163102 100772 44936 53180 16446 

129770 156221 40368 22378 72708 29576 

112724 81989 30864 12836 68844 5404 

60643 207294 74733 17119 131656 7596 

70525 80463 76017 26816 72856 4568 

110091 86986 75272 97123 62814 21856 

139093 145578 91199 43380 119252 2280 

98220 63260 29856 83012 26884 7814 

133442 69745 115762 17713 51452 129394 

143649 110816 105188 49522 28458 117634 

75022 123363 43457 54983 71198 30926 

123196 134115 50026 18278 74608 77612 

70338 228112 7877 59622 26936 68470 

55592 140503 69660 29797 3384 88596 

71972 121850 99571 77787 7454 30684 

168227 158303 62211 74743 34034 75958 

93020 121401 89301 78765 19250 95484 

129316 70365 98921 47823 15276 103746 
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110653 146501 86540 32383 49392 9158 

88591 129369 84316 42288 15354 4520 

122648 82011 80932 52147 19722 25244 

75639 98961 76763 42159 51914 17308 

131539 112977 188739 101745 54704 50974 

157044 76354 30436 28371 41096 16284 

163738 94709 46748 63526 36212 5584 

78925 51942 34317 91475 23016 19136 

111987 177314 59776 41096 19956 7634 

125506 94675 35976 56949 17996 30856 

125495 129185 57772 69132 31342 84574 

120301 127507 56559 99148 19040 30892 

105738 90869 90776 41119 56680 9672 

48458 119518 32429 59855 24088 12082 

68317 113258 58616 47787 42838 37932 

36999 247984 18765 73103 18410 4872 

72117 277862 67164 27352 9752 61354 

89229 184301 72684 37608 22664 29434 

45164 167793 38795 41806 21144 36554 

77146 317787 49816 72871 63528 27876 

88215 213580 12847 87006 15258 69646 

91529 72160 56799 66654 18400 59842 

80253 60324 26547 49931 64260 23916 

63880 97864 15265 46675 20094 14374 

120907 156754 56795 29802 18770 79040 

86245 125687 23657 64467 27556 61076 

   12833 17776 14866 

   28102 69252 85876 

   38183 19000 15354 

   29502 34386 8102 

   37891 8592 38704 

   61498 11670 34414 

   51505 37184 78286 

   35668 8968 16564 

   24266 21180 71468 

   51119 90982 10220 

    22680 19342 

    42116 16544 

    7278 9582 

    6646 77040 

    59824 30404 

    8114 54566 

    19838 48010 

     7918 

     16944 

     6710 

     7116 

     34934 

     7930 

     67322 

     8512 

     5804 

     8342 

     26376 

     33834 

     2612 

     17928 

     20240 

     9364 

     22084 

     53872 
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     38896 

     26456 

     15434 

     43858 

     11738 

      

      

      

      

      

      

      

      

      

      

      

      

      

      

      

      

      

      

      

      

      

      

      

      

      
 

Integrated Density of Transferrin 

MβCD MβCD+C

AP 

Filipin Filipin 

+CAP 

Genistei

n 

Genistein 

+CAP 

Amilori

de 

Amiloride 

+CAP 131419 66932 97900 163871 101792 133841 196235 124569 

124614 93007 129504 187302 133971 118480 138704 135077 

69503 97275 110897 280194 65462 127431 29079 51297 

75277 46598 90356 105230 147728 283770 72203 88474 

76750 77640 104776 76422 147365 103548 64304 112269 

18178 92103 73574 85766 68864 51402 72146 45995 

81444 24984 159303 113291 72395 55713 83737 14594 

88041 95210 124298 90004 101640 94243 54808 47209 

57794 98855 108271 232008 96453 244560 33708 144728 

51151 89031 72235 76414 174993 104571 31934 49935 

76552 75078 33351 137916 271282 93475 64961 123415 

86342 85701 30163 116268 221595 142366 56665 114787 

40633 59098 62316 77831 83503 113373 48094 163106 

97243 91913 65030 77608 145251 94037 30674 99006 

36007 93666 109848 134224 99669 83792 97877 104122 

79613 93835 95871 82976 72559 161527 99403 145760 

79863 73324 106984 164104 202898 247658 60424 131902 

115776 69286 157208 74697 51052 82664 76203 117916 

47129 35314 109433 78977 58917 65763 37386 43884 

36055 46718 27594 83753 112259 87005 81334 139639 

87390 83701 79618 146374 140919 179148 29538 137618 

62452 56757 89721 152046 163308 75257 65159 73523 

93547 68512 194085 135891 67768 260961 79248 115470 

74815 43701 36909 127681 69400 94462 34570 38530 

65652 38500 50967 92144 52293 252478 101412 214459 

90255 46948 159055 91692 74286 71411 40862 55017 

71303 102306 165479 64158 119649 159244 30034 72765 
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50020 90653 48369 143926 121836 167913 78864 82769 

76361 105447 39814 83297 157275 103238 21499 145664 

61373 48421 82143 93936 100709 117632 87521 103887 

72042 14139 117174 100813 268448 56085 32872 96235 

89546 27184 96452 101386 96458 122851 86774 107471 

94135 58249 61675 144732 200374 244874 108724 73740 

70875 29039 152249 50729 133156 172584 99005 138795 

46285 118411 51630 72558 123251 93479 91400 109758 

74820 60569 178335 116879 66756 99088 162496 97441 

64908 69129 58091 92915 148409 156027 59966 55005 

49964 19395 109739 150147 156027 139595 83504 122417 

25266 97511 122864 126267 116189 127740 79816 96430 

12030 99651 62501 88480 131616 188948 70233 105109 

68275 94682 115067 70907 145548 247489 54977 82412 

24230 53849 89403 87317 64925 129827 20755 137153 

48315 77480 144868 91462 99657 129957 87959 62907 

56293 124595 133432 158029 129320 108170 113851 62485 

46775 125449 143229  126041 113664 9751 139596 

53149 67036 50177  113392 224130 195704  
61754 101836 60733  69885 249655 205460  
18804 127051 147230  81771 112130 71758  
23564 78954 74873  256252 137488 60650  
46598 56597 64963  185763 246213 102646  

  173794  90235 99266 104360  

    87308 88875 72262  

    34485 121148 62646  

    64651 215831 106858  

    116152    

    160153    
 

Integrated Density of AuNPs 

Untreated CAP 30s Pitstop Pitstop+CAP CPZ CPZ+CAP 

5516 22261 6083 3792 7990 8366 

3581 12306 4177 6099 1863 1957 

27847 10762 1746 2099 1486 8966 

15965 3480 3011 1812 1434 6266 

2647 10667 4032 1975 5801 1452 

3198 4966 4808 6106 4778 3468 

6305 8758 3805 2532 7212 2421 

5788 20948 7747 1728 5556 2566 

3919 8903 7417 3160 5631 3101 

17942 10360 1322 3273 4089 4259 

4457 17401 2229 2863 2949 2871 

18099 50518 4509 4671 4297 3558 

5395 21642 5231 5348 2607 3562 

10992 9222 2962 2937 5111 7809 

16843 11587 2971 4733 2967 7133 

7621 14788 2567 3325 8772 4191 

17892 13311 6843 5923 5787 3747 

21501 20808 1608 7813 5110 8074 

2455 12197 10176 2810 3289 5436 

8796 8593 6170 2574 2880 3060 

11688 10932 1970 9692 7444 2601 

3500 15539 3286 2373 9698 3402 

13317 20754 8646 4150 3923 3123 

4841 8846 2766 8823 5399 2857 

2679 4831 1331 4191 2188 5444 

17626 16624 5692 1857 5285 6896 

1669 10846 4185 3482 4443 3207 

8186 16627 5613 4884 4856 4577 
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9202 19013 6779 10185 3336 3296 

9836 18567 5571 4395 7300 3899 

8877 12700 3958 2648 2034 3728 

10929 10548 3951 1977 2889 2222 

8565 6980 2132 4485 5657 3424 

7736 12991 2702 5126 3539 6041 

2356 15723 1284 4665 3242 3298 

2851 29901 2677 5481 7771 8405 

23594 7900 5960 2430 3372 4964 

14115 24781 4984 4714  4473 

5866 12827 7586 3752  1527 

25137 11509 4864 4573  3776 

11108 31897 9875 1779  4807 

9864 4429 5750 2711  2822 

16203 5919 6359 4560  4205 

11111 7653 6231 3132  3023 

9532 14639 4619 1628  10408 

8395 13590 1388 6677   

11415 8222 4931 12145   

11279 15100 2072 22026   

11099 26498 3939 5527   

13153 14704 3847 2204   

12553 5136 2878 2964   

13217 17050 5958 3948   

17633 9468 6171 7410   

4742 7312 9188 2197   

11052 4848 3643 1465   

15608 13345 1471 5365   

5281 10442 8934 4764   

15270 17738 7551 1713   

12153 10179 2156 2552   

14067 7909 9601 2816   

13005 12894 15586 1916   

6557 10555 7303 6227   

14369 29626 3134 7636   

28194 9385 3070 16947   

4478 13564 6450 2184   

7769 26029 4504 5572   

15100 18355 1676 2971   

14411 8849  4198   

5912 6822  3081   

9159 10362  8244   

10064 12428  6451   

22400 9474  2825   

15100   733   

3145      

5178      

16426      

27029      

8473      

6730      

4345      

9773      

 

Integrated Density of AuNPs 

Filipin Filipin 

+CAP 

Genistein Genistein 

+CAP 

+CAP 

MβCD MβCD 

+CAP 

Amilori

de 

Amiloride+C

AP 
 

14925 45932 7861 8525 10364 5563 4919 12384 

13177 6400 3124 8659 3826 6803 6343 8314 

6253 6224 7004 17234 5294 2748 8187 5489 
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4841 21801 8737 11437 8912 3850 3139 4808 

17947 15017 12423 6792 14276 17048 5059 13403 

4950 6373 6463 11330 9686 4090 1863 8839 

5319 9478 6621 12569 8051 8453 4450 13091 

11753 17365 9855 29753 8871 4153 2650 24387 

8816 10640 9297 5810 5919 5268 2781 14911 

3601 12295 15754 9558 4132 5229 13092 6714 

4623 5898 2416 10012 29822 13267 1360 11432 

14331 6364 8974 12247 9759 8702 1107 7042 

3477 26822 26687 4487 12254 6550 2166 8005 

10509 18101 13251 11413 10175 8515 3635 7039 

6237 15876 3005 24979 4763 9959 5746 10338 

7240 13389 3677 26444 20656 8809 12468 5008 

7500 33586 1610 20449 5935 4552 7872 8225 

3569 10446 21888 11668 8371 3501 2171 8509 

3443 12871 16131 9829 11152 7595 4149 5992 

17505 6565 12798 22269 4376 10268 13666 8063 

11009 10467 10002 7997 12687 6862 4572 9861 

14142 5683 20026 21671 7365 5081 9826 11328 

12541 14049 4944 4504 5930 12182 8787 11552 

10120 17180 8411 10937 17596 7779 5460 13135 

6846 7140 17666 14563 8740 6003 14653 9408 

7556 13706 7391 14822 15900 5778 16330 5093 

8475 14675 9217 19264 4593 18306 7051 12713 

15018 18780 14439 39774 2451 13608 28750 7968 

24729 9029 10800 12115 3554 17698 12822 4766 

6180 9180 10289 9980 3791 2271 7980 5260 

8662 7303 4240 10558 13315 8238 2636 8735 

16450 17269 5030 10707 5436 6113 4535 12229 

9587 5057 5329 7643 10356 3952 4568 7559 

11228 14892 4067 18347 1700 8427 2574 13070 

11317 11273 27835 10790 5436 5052 2969 12427 

5662 3751 21257 9966 3554 11620 2219 15870 

16028 6097 5817 10412 2462 6685 3242 8116 

9972 7096 5579 11849 15179 5245 2159 13472 

9829 14357 19417 11330 6384 5810 5537 6946 

13112 5305 1497 7456 6338  20414 7951 

14690 4870 5149 10368 10377  4421 19438 

14599 6517 6111 8107 4391  9412 9825 

3840 6081 9586 12417 9562  11953 5042 

8961 10141 8745 16088   5431 8533 

7528 14356 9156 18577   2471 24524 

5024 10728 14895 25898   34529  

10471 4837 10299 16529     

4401 12326 10661 9265     

9953 11511 3269 13413     

 8079 3960 7929     

 20982 6973 9668     

 9719 11519 10979     

 6663 6567      

 16067 3955      

 9929       

 26445       

 13543       

 13793       

 12121       

 13008       

 7982       
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Supplementary Table S4. 

Integrated Density of AuNPs 

CAP30s Control CAP 0s 

Control 

CAP 0s 

Clathrin Silenced 

CAP 30s 

Clathrin Silenced 
540329 172547 71657 81386 

317286 431535 52885 26174 

366683 78334 50113 83853 

118864 227289 98205 62198 

389856 182028 58882 113274 

260748 95261 213664 176140 

255370 67797 32246 90214 

143714 155367 84077 155663 

254835 143994 18060 167904 

241522 409060 130518 52593 

173393 91173 82556 22219 

437882 98606 20741 19181 

301708 372871 42321 16830 

283998 42174 50000 36912 

529897 192966 22797 11897 

132739 43429 32307 67489 

325045 171486 111229 22481 

256487 155863 165385 45392 

225093 218957 243576 12669 

459960 332020 115717 14759 

242832 163495 32769 59857 

102314 178575 134059 29691 

274004 43099 91085 36894 

319820 116779 96918 46448 

144878 33679 42816 24724 

313094 281964 92220 41174 

215681 474462 163157 12320 

426863 78871 107430 42693 

169499 25139 78092 54199 

449778 157231 44965 26720 

207286 25451 46103 68806 

600642 105195 99071 50186 

191247 124412 169342 18736 

175692 128267 80229 16030 

167735 312896 36048 55855 

195195 129867 76657 106951 

195351 127963 117916 17979 

131726 352128 22666 39283 

328548 257630 66817 17452 

212497 116701 53062 34551 

453971 134485 35270 10871 

318022 113204 33485 43176 

335974 203686 37665 6543 

135597 81301 39651 20391 

226104 258075 18179 9906 

136796 117997 56467 43154 

168061 189202 26238 33298 

530325 354143 16544 6978 

310895 179360 42583 10313 

156015 249807 10222 7391 

118700 104282 19974 18762 

122974 189066 53493 56664 

133195 84785 27174 8288 

267536 141462 21953 72528 

200762 345977 148609 24130 

299249 77114 73347 13301 
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94514 47361 62139 18333 

293151 43665 54334 20520 

176776 9389 4625 17705 
 270307 6653 38519 
 31190 46708 28687 
 257884 50733 15938 
 155736 49224  

 345060 17503  

 43585 15541  

 81386 3876  

 23622   

 75993   

 65180   

 568575   

 318601   

 174400   

 52373   

 23718   

 59279   

 38939   

 75419   

 98606   

 24077   

 75776   

 41710   

 22592   

 70125   

 45832   

 98998   

 114681   

 126842   

 72896   

 161663   

 

  



226 

 

7.5 Appendix V Supplementary Information for Chapter 4 

Supplementary Figure S1. The average reading of Alamar Blue assay performed within 

the plates treated with CAP and Cmpd 6. The control and CAP 30s treated groups 

presented in this figure were incubated with just culture medium without compounds for 

48 h before Alamar Blue assay, demonstrated that this CAP treatment decreased around 

50% of cell viability.  

 

Supplementary Figure S2. The dose response curves of JW-04-061 and JW-04-057a 

with or without 30 s CAP treatment have been repeated to further confirm the synergistic 

cytotoxicity. 
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Supplementary Figure S3. Determine the synergistic cytotoxicity between CAP 

treatment and prodrug JW-04-061. 

(a) The culture medium was treated with CAP for 30 s and storage overnight. The 

U373MG cells were then incubated with prodrug JW-04-61 in overnight storage CAP-

activated medium for 48 hours. (b) U373MG cells were treated with CAP and then 

incubated in the culture medium that has CAP-treated together for 0-5 h, and then 

incubate with fresh medium containing prodrug JW-04-061. (c) The culture medium was 



228 

 

supplemented with 0.1 mg/ml catalase and then added into the 96-well plate during CAP 

treatment and incubated with U373MG cells for 48 hours. 

Supplementary Table S1. Structures of compunds provided by Prof. Andriy Mokhir, 

Friedrich Alexander University, Germany (Marzenell et al., 2013). 

1e 

 

2a 
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Supplementary Table S2. Structures of compunds provided by Prof. Seth M. Cohen, 

University of California San Diego, US (Perez et al., 2015). 

1,2-

HOPO-2 

 

PY-2 

 

1,2-

HOPO-2-

Boronic 

 

PY-2-

Benzyl 

 

Cmpd1 

 

PY-2-

Boronic 

 

Cmpd2 
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Supplementary Table S3. Structures of compunds provided by Prof. Gérard Jaouen, 

Chimie ParisTech, France (Gormen et al., 2010; Görmen et al., 2010). 

P5 

 

P581 

 

DP1 

 

P686 

 

 

P286 

 

P722  

 

DP6 

 

P721 
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P240 

 

P292 

 

P284  

 

P283 

 

P15 

 

P256 

 

P257 

 

P208 

 

 

P258 

 

P85 
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P53 

 

P388 

 

CG20 

 

P228 

 

  P316 
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Supplementary Table S4. Structures of compunds provided by Prof. John Stephens, 

Maynooth University, Ireland (Kelada et al., 2018). 

MK2 

 

JW-

04-

061 

 

MK6 

 

JW-

04-

057a  

 
 

MK7 

 

JW-

01-

072  

 

MK8 

 

JW-

01-

009 
 

MK9 

 

JW-

01-

037 
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JW-

04-

037  

 

JW-

01-

033 
 

JW-

04-

039 
 

JW-

04-

017 
 

  

JW-

04-

012 
 

 

Supplementary Table S5. List of compounds that have been published. 

Code Publication Source 

P5 
1. Metal carbonyl tracers and the ferrocifen family: Two facets 

of bioorganometallic chemistry  

Prof. 

Gérard 

Jaouen 

DP1 
moiety on the expression of a cytotoxic effect on breast cancer 

cells 

Prof. 

Gérard 

Jaouen 

P286 

Synthesis, Cytotoxicity, and COMPARE Analysis of Ferrocene 

and [3] Ferrocenophane Tetrasubstituted Olefin Derivatives 

against Human Cancer Cells 

Prof. 

Gérard 

Jaouen 

DP6 
Comparative toxicity of [3] ferrocenophane and ferrocene 

moieties on breast cancer cells 

Prof. 

Gérard 

Jaouen 

P284 

Synthesis, Cytotoxicity, and COMPARE Analysis of Ferrocene 

and [3] Ferrocenophane Tetrasubstituted Olefin Derivatives 

against Human Cancer Cells 

Prof. 

Gérard 

Jaouen 

P15 

A ferrocenyl derivative of hydroxytamoxifen elicits an estrogen 

receptor-independent mechanism of action in breast cancer cell 

lines 

Prof. 

Gérard 

Jaouen 

P257 

Synthesis, Cytotoxicity, and COMPARE Analysis of Ferrocene 

and [3] Ferrocenophane Tetrasubstituted Olefin Derivatives 

against Human Cancer Cells 

Prof. 

Gérard 

Jaouen 
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P258 
Comparative toxicity of [3] ferrocenophane and ferrocene 

moieties on breast cancer cells 

Prof. 

Gérard 

Jaouen 

P53 Ferrocifen type anti-cancer drugs 

Prof. 

Gérard 

Jaouen 

CG20 
A new series of ferrocifen derivatives, bearing two aminoalkyl 

chains, with strong antiproliferative effects on breast cancer cells 

Prof. 

Gérard 

Jaouen 

P686 
Phthalimido–ferrocidiphenol cyclodextrin complexes: 

Characterization and anticancer activity 

Prof. 

Gérard 

Jaouen 

P292 

Synthesis, Cytotoxicity, and COMPARE Analysis of Ferrocene 

and [3] Ferrocenophane Tetrasubstituted Olefin Derivatives 

against Human Cancer Cells 

Prof. 

Gérard 

Jaouen 

P283 
A new series of ferrocifen derivatives, bearing two aminoalkyl 

chains, with strong antiproliferative effects on breast cancer cells 

Prof. 

Gérard 

Jaouen 

P256 
Comparative toxicity of [3] ferrocenophane and ferrocene 

moieties on breast cancer cells 

Prof. 

Gérard 

Jaouen 

P85 
Comparative toxicity of [3] ferrocenophane and ferrocene 

moieties on breast cancer cells 

Prof. 

Gérard 

Jaouen 

P388 

THE FERROCIFEN FAMILY AS POTENT AND SELECTIVE 

ANTITUMOUR COMPOUNDS: MECHANISMS OF 

ACTION 

Prof. 

Gérard 

Jaouen 

P228 

Atypical McMurry Cross-Coupling Reactions Leading to a New 

Series of Potent Antiproliferative Compounds Bearing the Key 

[Ferrocenyl-Ene-Phenol] Motif 

Prof. 

Gérard 

Jaouen 

P316 
Comparative toxicity of [3] ferrocenophane and ferrocene 

moieties on breast cancer cells 

Prof. 

Seth M. 

Cohen 

1,2-

HOPO-

2 

Emerging Trends in Metalloprotein Inhibition 

Prof. 

Seth M. 

Cohen 

1,2-

HOPO-

2-

Boronic 

Emerging Trends in Metalloprotein Inhibition 

Prof. 

Seth M. 

Cohen 

PY-2 
Hydrogen Peroxide Activated Matrix Metalloproteinase 

Inhibitors: A Prodrug Approach 

Prof. 

Seth M. 

Cohen 

PY-2-

Benzyl 
Emerging Trends in Metalloprotein Inhibition 

Prof. 

Seth M. 

Cohen 

PY-2-

Boronic 

Hydrogen Peroxide Activated Matrix Metalloproteinase 

Inhibitors: A Prodrug Approach 

Prof. 

Seth M. 

Cohen 
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Cmpd1 
Exploring hydrogen peroxide responsive thiazolidinone-based 

prodrugs 

Prof. 

Seth M. 

Cohen 

Cmpd2 
Exploring hydrogen peroxide responsive thiazolidinone-based 

prodrugs 

Prof. 

Seth M. 

Cohen 

1e 
Aminoferrocene-based prodrugs and their effects on human 

normal and cancer cells as well as bacterial cells 

Prof. 

Andriy 

Mokhir 

2a 
Aminoferrocene-based prodrugs and their effects on human 

normal and cancer cells as well as bacterial cells 

Prof. 

Andriy 

Mokhir 

MK2 
Synthesis of pyrazolopyrimidinones using a “one-pot” approach 

under microwave irradiation 

Prof. 

John 

Stephen

s 

MK6 
Synthesis of pyrazolopyrimidinones using a “one-pot” approach 

under microwave irradiation 

Prof. 

John 

Stephen

s 

MK7 
Synthesis of pyrazolopyrimidinones using a “one-pot” approach 

under microwave irradiation 

Prof. 

John 

Stephen

s 

MK8 
Synthesis of pyrazolopyrimidinones using a “one-pot” approach 

under microwave irradiation 

Prof. 

John 

Stephen

s 

MK9 
Synthesis of pyrazolopyrimidinones using a “one-pot” approach 

under microwave irradiation 

Prof. 

John 

Stephen

s 

JW-04-

037  

Synthesis of pyrazolopyrimidinones using a “one-pot” approach 

under microwave irradiation 

Prof. 

John 

Stephen

s 

JW-04-

039 

Synthesis of pyrazolopyrimidinones using a “one-pot” approach 

under microwave irradiation 

Prof. 

John 

Stephen

s 

JW-04-

061 

Synthesis of pyrazolopyrimidinones using a “one-pot” approach 

under microwave irradiation 

Prof. 

John 

Stephen

s 

JW-04-

057a  

Synthesis of pyrazolopyrimidinones using a “one-pot” approach 

under microwave irradiation 

Prof. 

John 

Stephen

s 
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Synthesis of pyrazolopyrimidinones using a “one-pot” approach 

under microwave irradiation 

Prof. 

John 

Stephen

s 

JW-01-

072  

Synthesis of pyrazolopyrimidinones using a “one-pot” approach 

under microwave irradiation 

Prof. 

John 

Stephen

s 

JW-01-

009 

Synthesis of pyrazolopyrimidinones using a “one-pot” approach 

under microwave irradiation 

Prof. 

John 

Stephen

s 

JW-01-

037 

Synthesis of pyrazolopyrimidinones using a “one-pot” approach 

under microwave irradiation 

Prof. 

John 

Stephen

s 

JW-01-

033 

Synthesis of pyrazolopyrimidinones using a “one-pot” approach 

under microwave irradiation 

Prof. 

John 

Stephen

s 

JW-04-

017 

Synthesis of pyrazolopyrimidinones using a “one-pot” approach 

under microwave irradiation 

Prof. 

John 

Stephen

s 

JW-04-

012 

Synthesis of pyrazolopyrimidinones using a “one-pot” approach 

under microwave irradiation 

Prof. 

John 

Stephen

s 
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Modules 

EC

TS 
Reasons for choosing  

Discipline 

Specific 

Modules 

BIOL 9223: Research 

Methods and Biostatistics 
10 

This module introduced knowledge 

in research methods and especially 

statistical analysis of data, which 

benefited my research work. 

BIOL 9220: Advanced 

Diagnostic Methods and 

Bioinformatics 

10 

This module provided many 

knowledges of biological advanced 

diagnostic methods, which will be 

beneficial for my future research 

carrier. 

Employabi

lity Skills 

Modules 

MECH 9002: Innovation 

and Knowledge 

Management 

5 

This module provided me great 

concept about knowledge 

management and innovation which 

benefited for my PhD carrier and 

will be useful for my future work. 

CRDI Techniques & 

Strategies in Molecular 

Medicine 

5 

I’m highly interested in molecular 

medicine, which wasn’t highly 

related with my current project but 

can be helpful for research work in 

near future. 

AFGDP Hot Topics 5 

Food science is as important as 

medicine, and this module inspired 

me a lot with the variety of the hot 

topics in food science and 

healthcare fields. 

GRSO 1012 Research 

Integrity 
5 

Research integrity is necessary for 

every researcher. By taking this 

module, I understood the integrity 

better, as a research, and keep it in 

my mind all the time to not make 

mistake. 
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