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Abstract

This dissertation proposes LightGWAS, a novel machine learning procedure for genome-

wide association study (GWAS) based on LightGBM and k-fold cross-validation. The

conducted literature review identified that the currently available GWAS implementa-

tions rely on massive manual quality control steps to address statistical issues, such as

controlling for false-positive inflation and power reduction. It also showed they demand

a specific GWAS method for each type of genomic dataset morphology, which conse-

quently increases the human dependency and open margins for misleadings. Light-

GWAS is a potential single, resilient, autonomous and scalable solution to address

such concerns. Through this research, LightGWAS was contrasted against the cur-

rent state-of-the-art for GWAS throughout secondary research method. It has been

compared with a GWAS implementation based on general linear model (GLM) with

support to Firth regularisation. Quantitative empirical tests and deductive reasoning

have been employed to reach and evaluate the results. The models were submitted

to balanced (case : control = 1 : 1), imbalanced (case : control = 1 : 10), and high-

imbalanced (case : control = 1 : 100) genomic datasets of binary phenotypes. The

results from statistical tests denoted that LightGWAS performs equivalently to the

compared GLM method for balanced dataset scenarios, and outperforms for imbal-

anced and high-imbalanced datasets. The assessed metrics were weighted average of

the precision and recall (F1), recall, average precision score (APS), receiver operating

characteristic (ROC)/area under the curve (AUC), accuracy, and precision.

Keywords: LightGWAS, LightGBM, Genome-wide association study (GWAS),

Machine Learning (ML).
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Chapter 1

Introduction

Living organisms of the same species are distinguished from each other by their de-

oxyribonucleic acid (DNA). The most common type of genetic variant among humans

is the single-nucleotide polymorphism (SNP) (Sebastiani et al., 2009). SNPs are re-

sponsible for physical trait differences. For example, the SNP rs12913832, causes a

phenotype (trait) change from brown to blue eyes, respectively (White & Rabago-

Smith, 2010). Besides mutations, SNPs also account for many of the known complex

diseases, such as Type-2 diabetes or Coronary Heart Disease (Mills & Rahal, 2019).

Whenever a SNP is responsible for a phenotype, it is denominated as a causal-SNP.

Therefore, identifying causal-SNPs is an effective way to understand, prevent, or treat

illnesses.

There are many methods to identify causal-SNPs, including genome-wide associ-

ation study (GWAS). GWAS is an essential technique due to its achievements since

the completion of the human genome sequence in 2003 (Mills & Rahal, 2019). For

example, it contributed to the identification of the age-related macular degeneration

(AMD) gene, called Factor H (Bush & Moore, 2012), an eye disease that may become

worse over time. According to Pearson (2008), and Mills & Rahal (2019), about 3, 700

GWASs contributed to discovering thousands of genetic risk causal-SNPs and their

biological function over the last decade.

GWAS is roughly analogue to, or a type of feature selection: each SNP is a feature

(independent variable), and the phenotype is the class (target, or outcome variable).

2



CHAPTER 1. INTRODUCTION

It also extracts principal components (PCs) (typically from principal component anal-

ysis (PCA)) as part of its procedure, and use them as covariants for the underlying

association model (Price et al., 2006). There are many GWAS implementations (Bush

& Moore, 2012; Jiang et al., 2019). The state-of-the-art is based on the following sta-

tistical association models: general linear model (GLM), linear mixed model (LMM),

and scalable and accurate implementation of generalized mixed model (SAIGE) (Loh

et al., 2018). Their applicability depends on the phenotype type, sample size, and class

distribution across the genomic dataset. However, all of them share the same primarily

goal: to calculate the probability of association between each SNP and the underly-

ing phenotype (evaluated through a p-value score interpretation). Consequently, they

disclose which SNPs are likely to cause the investigated trait. A commonly used data

visualisation in GWAS is the Manhattan Plot. Such a chart is a derivation of scatter

plots, which depicts the p-values in log10 scale, highlighting the potential causal-SNP.

Figure 1.1 exemplifies it.

Figure 1.1: Manhattan Plot. Each dot is a SNP.

Although GWAS has proven to be an efficient method to discover causal-SNPs,

the state-of-the-art begins to face inevitable bottlenecks that demand evolvements to

stick with its relevance for such an end. For example, the costs with DNA sequencing

3



CHAPTER 1. INTRODUCTION

have reduced over the years, causing an exponential growth of the underlying genomic

datasets (Pérez-Enciso & Zingaretti, 2019). Such a fact created a computational-

cost increase. On top of that, genomic datasets have morphological aspects that make

GWAS more challenging. The expansion of SNP’s dataset contributes to overwhelming

the data sparsity, with millions of SNPs (variables), and a few patients (samples)

(Lubke et al., 2013). Another point of concern is the imbalanced distribution between

rare cases and several controls (Zhou et al., 2018). Such challenges rely on cumbersome

manual approaches, performed by analysts through several quality control (QC) steps,

in an attempt to reduce the false-positives (Bush & Moore, 2012) caused by such

scenarios.

Machine learning (ML) has non-parametric algorithms that, potentially, address

GWAS issues better than the current state-of-the-art. They can self-adapt to differ-

ent data structures by adding bias and controlling variance over the training process

(Schratz et al., 2019). Consequently, it would improve precision, and increase statisti-

cal power, independently of human intervention. Therefore, this dissertation proposes

a novel procedure for GWAS. It is assembled over decision tree (DT) bosted by gra-

dient boosting machine (GBM), whose implementation comes from the LightGBM

framework (Ke et al., 2017). It also employes k-fold cross-validation (CV) for hyper-

parameter selection, ensuring adaptability to the most diverse genomic data structures.

Such a proposed method has been named LightGWAS.

LightGWAS conducts the SNP and phenotype association through the gradient

boosted decision trees (GBDT) implementation available in the LightGBM frame-

work. It replaces the need for covariants made of PCs when using one of the GWAS

state-of-the-art models because it has an inbuilt feature-extraction algorithm, called

exclusive feature bundling (EFB). EFB reduces the data dimension, diminishing the

sparsity of the genomic dataset. Also, LightGWAS employes CV to obtain the opti-

mal model’s parameter (hyperparameters), which ensures it will self-adapt for different

data structures. Once the hyperparameters are found, the GBDT is trained with a

relevant portion of the genomic dataset. Subsequently, the model is fitted, and the

importance of the features are scored. The sub-set of features with higher importance

4



CHAPTER 1. INTRODUCTION

scores are actually the set of potential causal-SNPs, just identified by the outlined

procedure.

Besides an innovative alternative to GWAS implementations, LightGWAS also

aims to be a scalable solution by reducing human intervention over the analysis, al-

lowing the process to be fully automated through a computational pipeline if desired.

According to Bush & Moore (2012), SNPs datasets tend to be replaced by whole-

genome sequencing data (due to the earlier mentioned cost reduction with DNA se-

quencing). It means the datasets will be composed by billions of nucleotides (structural

units of DNA) instead of only the SNPs (each SNP, or in this case, nucleotides, is a

column in the genomic dataset), turning manual QC unfeasible. Therefore, a method

capable of handling genomic’s big data adaptively is vital.

1.1 Background

The following section covers in details what GWAS and LightGBM is. It makes a

connection between the available GWAS methods with feature selection and feature

extraction techniques. Moreover, it also explains LightGBM, the ML framework em-

ployed in the proposed novel procedure for GWAS, the LightGWAS. Such points are

the baseline of this study. Accordingly, sufficient perception of them is essential to the

progress and understanding of this dissertation.

1.1.1 What is Genome-Wide Association Study

GWAS is a hypothesis-free (or discovery-driven research) investigative technique to

catalogue SNPs across populations and to identify genetic markers associated with a

trait in a genetic region (locus) or on multiple regions (loci) (Bush & Moore, 2012;

Farrell, 2017). When applied to human populations, GWAS aims to identify SNPs

associated with one or more phenotypes (also known as (aka) causal-SNPs).

A phenotype is any observable characteristic or trait in a cohort (Hill et al., 2017).

It can be a qualitative (binary) phenotype, such as eye colour, curly hair, or most

commonly for GWAS analysis, a disease status (e.g., affected or not by Type-2 dia-

5



CHAPTER 1. INTRODUCTION

betes, COVID-19, coronary heart disease, and among others). Alternatively, it can be

a quantitative (numeric) trait, for example, people’s height, weight, body mass index,

blood pressure, and so on.

SNP, on the other hand, is the name given to the genetic variation. They are

single base-pair changes (alleles) in the DNA sequence that occur with high minor

allele frequency (MAF) in the human genome (Bush & Moore, 2012). The convention

threshold to qualify a DNA base-pair as a SNP variates from study by study. Usually,

the adopted outset is MAF ≥ 0.01 or MAF ≥ 0.05 (Fadista et al., 2016). The “A

haplotype map of the human genome” (2005) project, for instance, employed MAF ≥

0.05. The human DNA is composed of two strands held together by bonds between

the bases adenine (A) to thymine (T) (or vice-versa), and cytosine (C) to guanine (G)

(or vice-versa). Whenever those bonds vary in a specific locus, which means they are

alleles in the DNA sequence (e.g., expected A as the dominant population hold, but

found C in the examined sample), such allele (variant) is labelled as an SNP 1.

GWAS involves the comparison of two cohorts, one containing the phenotype object

of the study, and another that do not have the trait. In a GWAS framework, such

groups are called cases, and controls, respectively. They are analogue to the class label

in a ML classification model (e.g., Y = y; y ∈ {0, 1}).

GWAS investigates how significantly an SNP is associated with the trait in the

cases cohort, against how insignificant, or perhaps even null, is the same SNP in the

controls cohort. With that, it is possible to presume that the found correlated SNP are

the underlying phenotype’s causal-SNP. As introduced in the begging of this chapter,

the probability of association is calculated through a given statistical model. The

returned scores (p-values) contribute to infer the existence of an association between

the variance and trait, whenever they are below a specific threshold of significance

(p < α). The convention for GWAS is a threshold of α ≈ 5× 10−8 (Fadista et

al., 2016; Mills & Rahal, 2019). Therefore, an SNP is told to be associated with a

phenotype whenever its p-value is lower than the predefined α. In other words, an SNP

1The definitions presented above are the minimum and high−level information needed to interpret

this computing science material. Further biological details are beyond its scope.
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is statistically significantly correlated with a phenotype whether p ≤ α|α ≈ 5× 10−8,

thus such an SNP is a causal-SNP.

GWAS is a crucial tool in the combat of diseases. It favours the development of

drugs focused on a particular genetic aspect. Sometimes it even discovers that an

existent drug assists in treating a new disease, just because the investigated disease

has its causal-SNP associated with the same phenotype (illness, in this case) which

already have a treatment developed. It implies that GWAS offers excellent potential to

both help identify new therapeutic targets, and support the stratification of patients

who would gain the most significant benefit from specific, and already existent, drug

classes (Hill et al., 2017).

Figure 1.2 depicts the content approached in this section. It shows how a base-pair

of DNA is labelled as SNPs by giving a MAF threshold, the cohorts division, the

association analysis of SNPs with higher frequency in cases cohort than in controls,

and the identification of potential causal-SNPs given a α cut-off.

Figure 1.2: Annotated Manhattan plot, depicting a GWAS analysis. Adapted from

EMBL-EBI, European Bioinformatics Institute (2020), and Sukhumsirichart (2018).
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1.1.2 Feature Selection Vs. GWAS

GWAS process has similarities with feature selection techniques: Let each SNP be an

independent variable, and the phenotype the dependent variable (target, or class) in a

dataset. GWAS will select the features that could be seen as causal-SNPs since they

can better predict the class variable (phenotypes).

Feature selection is a well-known pre-processing step of most of the ML or statis-

tical regression models. It encompasses the process of deciding what are the relevant

variables from a dataset, in terms of outcome class explanation (e.g., features abler

to predict a target variable). In a classification model, for example, it aims to find

the minimum set of non-redundant features that better predicts one or more outcome

variables (Shah & Kusiak, 2004).

There are many different approaches and algorithms grounding feature selection

(Guo et al., 2002). They can be univariate based methods, like chi-squared (χ2) score

(Liu & Setiono, 1995), and Fisher Score (Duda et al., 2012), or regression model-based,

such as linear model penalized, and tree-based feature selection (Shah & Kusiak, 2004).

The first implementations of GWAS have been designed over univariate based

feature selection methods. Examples include the popular PLINK1.7 tool (Purcell et

al., 2007), MACH2qtl/dat, SNPTEST, ProbABEL, Beagle, BIMBAM, SNPMStat,

and others (Pei et al., 2010). Still, the latest versions such as PLINK2 (Hill et al.,

2017), Fast-GWAS (Yang et al., 2011), and others are grounded on regression model-

based.

1.1.3 Feature Extraction for GWAS

The term “feature extraction” sometimes is confused with “feature selection”. Al-

though the terms are sometimes used interchangeably, they do not represent the same

thing. As outlined by Li et al. (2018), feature extraction accounts for dimension-

reduction, which means transforming a set of high-dimensional features into a small

set of new low-dimensional variables. An example of feature extraction is PCA. In

GWAS procedures, PC’s extraction is one of the manual steps encompassed by the
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underlying QC process. They are used as covariates for the association model. An-

other example is EFB (Ke et al., 2017), the embedded feature extraction algorithm

of the LightGBM framework. It bundles mutually exclusive features to reduce dimen-

sionality, throughout an algorithm with a continuous approximation ratio.

1.1.4 What is LightGBM

LightGBM is a GBM framework, that implements a GBDT algorithm. It applies

histogram-based algorithms to find the best split point of a tree. The information

gain is estimated through what Ke et al. (2017) have called gradient-based one-side

sampling (GOSS). GOSS is an algorithm that downsamples data instances, focusing

on the accuracy of information gain estimation. It randomly drops instances with

small gradients, yet, retaining the native data distribution.

LightGBM additionally encompasses a feature extraction technique called EFB,

also designed by Ke et al. (2017). According to the authors, on large and sparse data

structures, many features are regularly exclusive. Hence, EFB identify such variables

and safely bundle them together. It fits a Graph Coloring algorithm-based and regular

approximation ratio for the dimension reduction: Features become vertices, and for

every two of them, non-mutually exclusive, edges are attached.

Three main characteristics distinguishing LightGBM’s implementation from the

other GBDT algorithms: (1) It grows trees leaf-wise instead of depth-wise as most of

the DT algorithms. Figure 1.3 depicts it. (2) It uses GOSS to reduce the histogram

building coast by sub-sampling the data without much intervention in the actual distri-

bution, and (3) It employes EFB as feature extraction for dimension reduction, which

in turn reduces the computational cost of finding the best split-points of the trees.

......

Figure 1.3: LightGBM Leaf-wise tree growth.
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LightGBM has been created to address the main bottleneck of conventional GBDT

algorithms: The accuracy, efficiency, and scalability when the feature dimension is

high, and data size is large (Ke et al., 2017).

1.2 Research Problem

With the continuous costs reduction for DNA sequencing over the years, the genomic

datasets have grown exponentially (Pérez-Enciso & Zingaretti, 2019), which in turn

created a computational-cost increase for GWAS. Also, genomic datasets often have

aspects that turn GWAS harder to correlate phenotypes with causal-SNPs, such as

high-sparse data due to millions of SNPs, with a few samples (Lubke et al., 2013).

Another point of concern with GWAS implementations is dealing with imbalanced

data. It is a quite common scenario for GWAS to be applied on datasets composed of

many cases, and a few controls. Whenever the case-control ratio are imbalanced (case :

control = 1 : 10) or high-imbalanced (case : control = 1 : 100) (Zhou et al., 2018),

current state-state-of-the-art GWAS algorithms often introduces bias that inflates the

false-positive rate (FPR), implying on statistical power reduction (Sebastiani et al.,

2009; Lee et al., 2010; Price et al., 2006; Reed et al., 2015; Spencer et al., 2009). Such a

scenario causes Type 1 error (it rejects the hypothesis that states no association when

de facto there is none). To address such an issue, the analysts usually employ some

imputation method, to either rebalance the samples and increase statistical power.

However, this is another manual step, that is part of the QC process. It relies on

professional skills, which in turn, opens margins for human mistakes. Imputation

methods also increase computational coast and often inflates false-positives (Spencer

et al., 2009). The data comes from external sources, such as the 1,000 Genomes

project (Auton et al., 2015), which in turn, is beyond the cases and controls pre-

filtered cohorts.

Statistical power is also affected by a high degree of homogeneity (e.g., when MAF

is too low (e.g., MAF < 1%) (Reed et al., 2015) at SNPs across records. Alternatively,

when within a given population, the alleles are more correlated than would be expected
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whether by chance, meaning the data is in linkage disequilibrium (LD) (Grinberg et

al., 2019), which also implies on type 1 error.

Population stratification is another point of concern in GWAS. For example, allele

frequency differences between cases and controls due to systematic ancestry differences

can cause spurious associations with traits (Price et al., 2006).

And last but not least, cloud computing has enabled affordable hardware access so

that working with a whole-genome through the entire DNA sequence will soon become

a reality. It means that manual QC steps will no longer be possible (Bush & Moore,

2012), forcing GWAS to evolve towards autonomous systems.

For all of those reasons, current state-of-the-art for GWAS has struggled to ensure

acceptable precision on causal-SNPs selection. They depend on meticulous manual QC

steps, which are compromised by data scale, human mistakes, and lack of automation.

As can be perceived, GWAS shares from most of the same challenges as the GBDT

implementations, now addressed by LightGBM framework. Such a perception has mo-

tivated to employ LightGBM as a potential solution for the aforementioned problems.

Therefore, this dissertation proposes the LightGWAS, a new procedure for GWAS,

based on LightGBM and CV. By this mean, it aims to answer the following research

question:

• Can LightGWAS be an alternative method to the state-of-the-art for genome-wide

association studies, by increasing statistical power on causal-SNP detection, and

reduction of manual quality control steps?

The figure 1.4 illustrates the components’ differences between the current state-of-

the-art for GWAS and LightGWAS. Each independent box represents a human in-

tervention. The boxes “GLM”, “LMM”, and “SAIGE” are mutually exclusive. The

analyst must decide which one to apply, depending on the underlying data structure.

LightGWAS aims to be a self-contained and autonomous ML framework for GWAS.
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SAIGELMMGLM

Cohort selection

PCA QC

QC

Cohort selection

LightGWAS

Causal-SNPs report Causal-SNPs report

GWAS

CV

Dissertation proposalState-of-the-art

Figure 1.4: State-of-the-art for GWAS Vs. LightGWAS.

1.3 Research Objectives

This work is aimed at initiating what may become a new GWAS framework. It

endeavours to assemble a novel GWAS procedure based on LightGBM and CV. As

previously stated, such a proof-of-concept has been named LightGWAS. Subsequently,

to validate its relevance, LightGWAS has been compared with one of the current state-

of-the-art implementations. Therefore, two objectives are defined:

1. To evaluate whether LightGWAS is a suitable GWAS method.

2. To assess if LightGWAS outperforms the compared state-of-the-art method.

1.4 Research Methodologies

This dissertation has been built through a secondary research method. Quantitative

empirical experiments, examined through deductive reasoning, have been proposed in

order to achieve the previously defined objectives. Hence, according to the “research
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onion methodology” (Saunders et al., 2009) (see figure 1.5 below), this study could be

classified as follows:

• Philosophical stance: Positivism. The research encompasses a research question

with testable hypotheses.

• Approach: Deductive. The study has been driven by the search for the answer

to the research question.

• Strategy: Experiment. A set of reproducible technical tests have been employed

to reach the established objectives of this research.

• Choice: Mono method. The research works with quantitative data only.

• Time horizon: Cross-sectional. The utilized data originated from a specific group

of individuals, at a single point in time.

• Technique and procedure: Data collection and data analysis - The research in-

volves genomic datasets and statistical tests.

Cross-sectional

Experiment

Deductive

Positivism

Philosophical stance

Mono method

Approach

Strategy Choice

Time horizon

Technique and procedure

Data collection

Data analysis

Figure 1.5: The research onion. Adapted from Saunders et al. (2009) diagram. The

image displays only the employed items from each layer of the research onion diagram.

1.5 Scope and Limitations

The present research conducts a literature review about the state-of-the-art for GWAS.

It provides an understanding of the current and likely future limitations surrounding
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the available methods. From that point, LightGWAS has been designed, implemented,

and assessed whether a potential solution to address the identified gaps. Given the

time limitation to conclude this research, the experiments have been restricted to

synthetic datasets, over three different genomic data structures (balanced, imbalanced,

and high-imbalanced class) for qualitative phenotypes only. The study also embraces

a comparison of the proposed LightGWAS with one of the GWAS’s implementations

available in the market. Such an implementation is an instance of the considered

state-of-the-art for the data structures and phenotype category above-mentioned.

1.6 Document Outline

Chapter 2 brings in details the state-of-the-art for GWAS. It explores each of the lead-

ing methods available to address each of the known GWAS’s scenarios. It also explains

how LightGBM works, the GBDT implementation employed in the LightGWAS pro-

cedure, and how similar problems across other research areas have also been addressed

through such a ML framework. Definitions surrounding the statistical techniques to

either assemble LightGWAS and test it against the state-of-the-art is also given over

this chapter.

In chapter 3, the design and methodology applied is detailed as much as the hy-

potheses aimed to be tested. Details about how LightWAS has been developed and

applied are disclosed. It also explains how the involved datasets and models were

prepared, fitted, tested, compared, and evaluated.

Chapter 4, in turn, carries over the outcomes from the experiments. Three main

scenarios have been explored; therefore, such a section is composed of three result sets,

followed by their underlying evaluations and discussions.

Chapter 5 concludes the dissertation. Firstly, an overview concerning the entire

research is given. Secondly, a summary of the identified problems with GWAS’s state-

of-the-art is discussed, followed by the evaluation of the proposed design to address

them. Thirdly the contributions and impact of this work are reviewed, and lastly, a

list of suggested future studies is recommended.
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Chapter 2

Literature Review and Related

Work

In this chapter, the literature review grounding this dissertation is presented. Each

of the methods that compose the current state-of-the-art for GWAS is examined.

LightGBM framework and k-fold CV are also explored. They are the core of the

proposed method for GWAS, the LightGWAS. Moreover, every statistical approach to

execute the experiments have been outlined. Their definitions are elementary to base

the decisions taken upon the dissertation.

2.1 The State-of-the-art for GWAS

Three main methods compose the GWAS’s state-of-the-art: GLM with Firth support

(Ma et al., 2013), LMM (Loh et al., 2018), and SAIGE (Zhou et al., 2018). According

to Loh et al. (2018), the applicability of these methods should consider the following

criteria: (a) LMM (e.g., BOLT-LMM implementation) for datasets bigger than five

thousand samples and quantitative traits type. Whether qualitative phenotype, the

dataset should be in a normal distribution; otherwise, the SNP’s probability scores

can become miscalibrated. (b) GLM (e.g., GCTA-fastGWAS (Jiang et al., 2019) or

Plink (version > 1.9) implementations (Hill et al., 2017)) for quantitative traits, up

to five thousand samples. When qualitative phenotypes, the logistic regression (LR)

15



CHAPTER 2. LITERATURE REVIEW AND RELATED WORK

implementation should include Firth regularisation support for cases where minor allele

count (MAC)< 400; otherwise the results may suffer type 1 error (caused by false-

positive inflation), and consequently, statistical power reduction (Ma et al., 2013). (c)

SAIGE for high-imbalanced case : control ratio of qualitative traits.

For all the cases, PCs (from PCA, for instance) should be utilised as covariants

in the association model (Price et al., 2006). The convention is to use the first ten

eigenvalues when using PCA (Price et al., 2006; Chen & Ishwaran, 2012). The following

subsections will detail what is and how each of the listed GWAS methods work.

2.1.1 Linear Mixed Model

LMM is an algorithm derivated from the traditional linear models. In GWAS context,

it allows the fusion of either fixed effect and random effect to estimate the correla-

tion between classes (phenotypes) and features (SNPs). According to Fitzmaurice

& Laird (2015), mixed model-based algorithms offers flexibility over the correlation

analysis, outstanding its parent linear model, mainly for unbalanced regression stud-

ies. The BOLT-LMM, for example, is a GWAS method based on mixed models.

According to its creators Loh et al. (2018), BOLT-LMM differentiates from its pre-

decessors by assuming a Bayesian mixture-of-normals prior to the random effect as-

sociated with the SNPs. It infers the standard “infinitesimal” mixed model employed

by previous mixed-model association methods. So that it increases power while con-

trolling for false-positives. The authors also demonstrated that BOLT-LMM is faster

than eigendecomposition-based methods (eigenvalues), either when using the Bayesian

mixture model or specialised to LMM association. BOLT-LMM is state-of-the-art for

GWAS across datasets bigger than five thousand samples of quantitative trait type.

It can also be used against qualitative traits, as long as the distribution is Gaussian

(Loh et al., 2018).
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2.1.2 Scalable and Accurate Implementation of Generalized

Mixed Model

SAIGE is the state-of-the-art for GWAS for imbalanced genomic datasets of qualita-

tive phenotypes. It has been developed over LMM along with saddlepoint approxi-

mation (SPA) to score the association probabilities. According to Zhou et al. (2018),

SAIGE’s authors, SPA can calibrate imbalanced case-control proportions across associ-

ation tests, which accounts for statistical power increment. It addresses false-positives

and reduces type-1 errors. The authors have provided statistical evidence that SAIGE

results in accurate probabilities even when case-control ratios are extremely imbal-

anced (case : control ≤ 1 : 100).

2.1.3 General Linear Model

GLM grounds many of the known statistical tests (Urso et al., 2019), such as ANOVA,

logistic regression, and linear regression. They all derivate from the same structure as

Data = Model + Error. GLM can be represented as follow:

General linear model.

Ŷ = β0 + β1X (2.1)

where Ŷ is the class (dependent variable), β0 is the constant intercept, β1 is the slope

or weight that get stimulated to fit the model, and X is an independent (feature)

variable.

The LR algorithm with Firth, for instance, when applied for GWAS, is a category

of Sparse-Learning-Based feature selection methods. According to Guo et al. (2002),

such a method category aims to “minimize the fitting errors along with some sparse

regularisation terms”, such as least absolute shrinkage and selection operator (aka l1)

(LASSO), ridge regularisation (L2), or Firth (Heinze, 2006) for rare feature variance.

Equation 2.2 is the mathematical representation of sparse learning-based methods.
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Sparse Learning Based Method.

‖W‖p =
(∑d

i=1 ‖W‖P
) 1
P

minw = loss(w;X, y) + α‖W‖p
(2.2)

Where ‖W‖p is a sparse regularisation term, loss(•) is a loss function, such as logis-

tic loss, and α is a regularisation parameter to balance the contribution of the loss

function, and also the sparse regularisation term for feature selection.

LR applicability, as explained in Heinze (2006), can be observed in equation 2.3:

Logistic regression.

Pr(Y = 1) = π =
[
1 + e(−Xβ)

]−1
(2.3)

Where e(β) = Pr(Y=1|X=x0+1)/Pr(Y=0|X=x0+1)
Pr(Y=1|X=x0)/Pr(Y=0|X=x0)

Likelihood: L(β|X) =
∏n

i=1 π̂
yi
i (1− π̂i)1−yi . (See equation 2.4 below)

Penalized Likelihood Regression.

logL∗(β) = logL(β) + A(β) (2.4)

where A(β) imposes prior on model coefficients, such as Firth-type, Jeffereys prior

(FIRTH, 1993).

Firth type penalization: A(β) = 1
2

log det(I(β)).

With that, the equation 2.4 represents Firth-Jeffreys plugged for invariant before

the likelihood regression equation:

Logistic regression with Firth penalization.

L∗(θ) = L(θ) det(I(θ))
1
2 (2.5)

Where I(θ) is the Fisher information matrix.
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PLINK2 GLM1 is one of the state-of-the-art for GWAS implementations that apply

GLM with Firth regularization as above explained. Hence, it has been selected to

compare with the LightGWAS over this study.

2.2 LightGBM Inference

LightGBM is a GBDT framework based on histogram algorithms that grows decision

trees leaf-wise, and uses GOSS, and EFB as outlined below. It was designed three

years ago by Ke et al. (2017), aiming to offer a highly efficient GBDT, in terms of

accuracy, computational resources (such as reduction of memory consumption), and

faster training for data in large-scale.

GBDT Histogram based algorithms costsO(#data·#feature) for histogram build-

ing and O(#bin ·#feature) for split point finding (see equation 2.6). Computational

complexity became higher as bin � data. LightGBM addresses it by downsampling

data and reducing feature dimension with GOSS and EFB, respectively.

Gradient Boosted Decision Trees model from LightGBM.

F (x;w) =
T∑
t=0

α1ht(x;w) (2.6)

Where function ht(•) represents the tth decision tree model, function F (•) denotes

the predictive values of the GBDT model, x is the input samples, w is the parameter

of the decision tree, and α is the weight of each tree.

By minimizing the loss function L(•) for mapping space x to space y, the optimal

model is solved through the equation 2.7:

Loss function minimization in LightGBM.

F ∗ = arg min
F

N∑
i=0

L(y, F (x;w)) (2.7)

1https://www.cog-genomics.org/plink/2.0/assoc#glm
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GOSS retains large gradients samples, while samples with small gradient are ran-

domly selected, given constant weights. With that, GOSS concentrates on under-

trained samples without altering the distribution of raw data. The equation 2.8 defines

the variance gain of splitting the instances over subsets A’s and B’s features.

Variance gain over split subsets in LightGBM.

Ṽj(d) =
1

2

((∑
xi∈Al gi + 1−a

b

∑
xi∈Bl gi

)2
njl (d)

+

(∑
xi∈Ar gi + 1−a

b

∑
xi∈Br gi

)2
njr(d)

)
(2.8)

Where Al = {xi ∈ A : xij 6 d}, Ar = {xi ∈ A : xij > d}, Bl = {xi ∈ B : xij 6 d},

Br = {xi ∈ B : xij > d}, n is the dimension of the characteristic x, a, b, and d are

constants. In each iteration of gradient boosting, the negative gradients of the loss

function concerning the output of the GBDT model denote as gi. Subset A consists

of the topa× 100% samples with the large gradients. Ac represents the (1− a)× 100%

samples, and subset B is discretionarily selected with size b×|Ac| (Wang et al., 2019).

EFB, in turn, is a feature extraction technique, based on graph coloring problem,

which also contributes to reducing the histogram building complexity. It deals with

the sparsity of the data, where #bundle� #feature, by grouping many independent

features to the dense features, avoiding unnecessary computation with features that do

not account for the outcome variable (the variables with zero gain score). Therefore,

the complexity O(#data) becomes O(#non zero data). The pseudocode in figure 2.1

represents an abstract implementation of EFB for LightGWAS.
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Figure 2.1: Exclusive feature bundling pseudocode. Created by Ke et al. (2017).

LightGBM is a young framework, thereupon, there are no many publications yet

exploring its features. However, from the few published studies available, it’s possible

to see how efficient has been LightGBM inference over big datasets with sparse features

in the most diverse fields of science. For example, Mo & Li (2019) have proposed an

efficient model based on Auto-Encoder and LightGBM to classify network traffics,

aiming to address some of the cybersecurity-related issues, such as the challenges with

intrusion detection systems (IDSs) that continuously suffer from the network criminals

renovating their attack means. The involved datasets are composed of many data

sources, which causes sparse data with many features, and a vast amount of irrelevant

dimensions that harm the available models’ accuracy. The authors identified that

LightGBM would be the right choice, given the morphology of their datasets. With

LightGBM, they managed to address the feature selection by consuming low memory,

and satisfactory accuracy ratio, through a fast training process.

In another paper, Wang et al. (2019) designed a transient stability assessment

method based on LightGBM. The research addresses the challenges involving large-

scale and high dimension of data in the involved datasets for artificial intelligence (AI)

grounded on transient stability assessment systems. They adopted LightGBM mainly

as a feature selector, that allowed the proposed model to work with only the relevant

variables and dimensions. Such a model has applicability to reduce physical risks with
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renewable power systems like wind and photovoltaic that face challenges regarding

volatility, randomness, and low-inertia introduced by renewable generation resources.

Song et al. (2019), in turn, presents a regression model based on LightGBM to

predict the probability of diseases such as cardiovascular and cerebrovascular, through

double-high biochemical indicators. The dataset involves the user’s physical exami-

nation information and five biochemical signs. The research demonstrated that the

proposed model has higher stability and better generalization performance compared

to other available approaches for the same end.

To conclude this section, Singh et al. (2020) have proposed a prediction model

based on LightGBM to identify potential applicants who are likely to take admission

in a university. The research reported 95% accuracy with the LightGBM model, while

the other compared models reached 82.4% using logistics regression, and 86.5% with

neural networks model.

2.3 K-Fold Cross-Validation

Cross-validation (CV) is a technique of model evaluation based on subsampling with

no replacements (Shao, 1993). Folds in this context represents the equally (or ap-

proximately equal) size division of the dataset into k subsets that do not overlap.

The disjoint into k folds is the product of a random selection, which means that the

dataset is firstly shuffled to then be split. The model is trained with all the folds, but

one (k − 1), which in turn is employed as a validation set. The left-out set is utilised

to test the trained model and generate the metric to measure its effectiveness. The

whole process is repeated until every fold had a chance to be out as a validation set.

Therefore, when the CV concludes, a metric result set is generated composed of k

score records. The mean of such a score set is the performance of the operated CV.

Figure 2.2 illustrates a 10-folds CV process.
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Train

Test

Fold #1

Fold #2

Fold #10

Figure 2.2: K-fold Cross-Validation. Adapted from Berrar (2019).

Given that k = 10, each iteration will have a train composed of 90% of the data

and test with the 10% left behind. Over each fold, a different subset is separated to

be the validation sample. At the end of the k iterations (10 folds), every subset has

been once a test group and k − 1 times part of the training group.

An important point about fold sampling (sometimes is overlooked) is ensuring

stratification of the outcome variable. Stratified random sampling is the process to

assuring the test fold will have the same proportion of cases-controls of the model’s

class. Consider a dataset with 100 samples and a binary class variable. Let this class

variable has 20 1s and 80 0s. If no stratification is employed during the sampling, there

is a risk that the test set will contain samples of only one case (or control), which will

result on inaccurate model results. Stratification sampling, in turn, will ensure the

test sets will be composed of 20% of 1s for this example. In other words, the test sets

will have 2 1s and 8 0s over each fold. Therefore, each subsample will comply with

the whole class’ dataset distribution.

Last but not least is the number of folds to be used. According to Kohavi (1995),

stratified 10-fold CV is a reasonable fit for most of the real-world datasets. They

demonstrated that as higher is the k, lower is the bias, and higher is the variance.

K = 10 is the best fit for general purposes, as it saves 10% of the dataset for validation,

given margin enough to calculate the average of the folds result sets. Kuhn & Johnson

(2013) aggress with that. They also add that k = 5 may also be a good fit, leaving
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20% of the data for validation over each fold. However, some other studies have

contested it (Bengio & Grandvalet, 2003; Zhang & Yang, 2015), and claimed through

empirical tests that the variation on the choice of k may depend on the underlying

model and dataset structure. Bengio & Grandvalet (2003) explains that whether CV

was employed to calculate the mean of independent estimates, k = N , where N is

the total number of samples in the whole dataset (Aso known as Leave one out CV

(LOOCV)) will reduce the variance significantly, and increase the bias. However, they

have also proved through empirical tests that this is not true when the training set is

highly correlated. Commonly 5-folds is applied for hyperparameter tunning, 10-folds

for model’s evaluation score (eg., Accuracy), and k > 10, such as LOOCV (k = n)

for model’s selection (eg., comparing multiple models to figure out which one has the

best performance against a common dataset).

2.3.1 Cross-Validation for Hyperparameters Tuning

ML models depend on parameters that control their learning process. Such param-

eters are identified as hyperparameters. Hyperparameters are not learnt within the

estimators; they are the arguments to trigger the learning process. Some models rely

on dozens of parameters, whose which can receive infinity variation of information

(e.g. (fraction of) numbers, ranges, categories, etc.), and be combined among each

other for different ends. Hence, finding out the best combination with the best values

of each parameter is a vital step to build a model that optimally generalises a specific

problem. CV for hyperparameters tunning involves nested loops over the k-folds. The

process to find the optimal parameters are costly from the computational point of

view. Each parameter is cross-validated against each provided value (depending on

the implementation, it may be a random sample instead all of them), usually iter-

ated over nested loops across each fold, and validated in the hold-off validation subset

(Cawley & Talbot, 2010). For example, in a k-folds scenario, each of the folds will

be composed of another l-folds, where l = k − 1. The inner folds are cross-validated,

and the average result is employed to determine the best combination of hyperparam-

eters trained over that outer fold. The process repeats over each k-fold (outer loop),
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which in turn, also averages the final result to find the set of parameters that better

generalised the model.

2.3.2 Cross-Validation for Model Selection

Model selection in ML is the process of identifying which model provides higher statis-

tical power in the generalisation of a problem. For example, in a classification scenario,

many models can be used to predict a class, such as logistic regression, decision trees,

support vector machine, among others. Depending on the dataset morphology, size,

and context, a specific model may perform significantly better than another, and iden-

tifying such a model is a crucial step. According to Cox (2006), neglecting the process

of finding the correct model to a specific problem is a majority mistake in statistical

inference. K-fold CV is a reasonable method for that.

K-fold will be created for each given model. After the cross-validation, the averages

are compared, and the one with a higher score is usually the best model for the

underlying problem. For this context, sometimes it is also a good practice to test how

significant is the performance of each model. It may help to decide whether worth the

effort of a specific model over another for a specific problem. Depending on the purpose

of a model, insignificant statistical differences between a soft-learning and a deep-

learning option might not compensate for the tread-off of timing and computational

consumption. Therefore, statistical tests to measure the means of each result set group

can be applied (Berrar, 2019), ensuring the differences are statistically significant. For

instance, in a scenario where three different models have been cross-validated over 30

folds, each 30-folds CV will result in a result set with the chosen metric to measure

their performance (e.g., accuracy). Next, those three distributions of accuracy scores

can be submitted to a paired t-test (whether in a normal distribution) to find out how

significantly is the measured differences.
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2.4 Bootstrap to Find Confidence Intervals

The confidence interval (CI) is the range between a lower limit (LL) and upper limit

(UL) of a data distribuition, given an specific α (usually 5%). The estimation of value

to be within a CI depends on the probability of LL be lower than such a value, which

in turn, is lower than the UL. For example, let α be the likelihood desired for CI and θ

be the measured value. Therefore, the probability that the interval contains the true

value is at least 1− α for LL ≤ θ ≤ UL (Snijders, 2001).

Bootstrap is a statistical method derivated from the “jackknife resampling” tech-

nique. Similar to CV, it is useful for variance and bias estimation. It performs multiple

estimations upon a predefined number of bootstraps (analogue to the k from the CV,

however with replacement sampling) and averages the result set. Bootstrap applied to

CI evaluation plays the rule of computing the before mentioned result variation, and

check whether they fall within the CI (Cameron et al., 2005). In a ML classification

problem, for example, it may determine that a model has 95% likelihood of classifi-

cation accuracy between 82% and 93% (assuming that the calculated LL = 0.82 and

LL = 0.93 for α = 0.05). As exemplified in Dekking et al. (2006), consider the data:

x1, x2, ..., xn. Assuming this data has been extracted from N(µ, σ2), where µ is the

unknown mean of the data, and σ2 is a known variance. Given that, the 95% CI of

the mean can be calculated through the equation below (2.9).

95% CI representation.[
x− 1.96

σ√
n
, x+ 1.96

σ√
n

]
(2.9)

Where x is the sample mean, σ2 is the variance, and n is the sample size.

However, if the data has been sampled from an unknown distribution, it is still

possible to use the sample mean x to estimate µ but to find the CI surrounding µ will

demand multiple iterations through subsamples. For such an achievement, bootstrap

is employed.
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Calculating the CI of one or more metrics from of a ML model is done as follows:

First, the number of bootstraps, or resamplings (BS) is defined. It is analogue to the k

from the k-fold CV. It is also a stratified subsample, but it allows replacements. There-

fore, the number of bootstraps can be as large as computational capacity supports.

Wilcox (2010) has proven through empirical experiments that BS = 599 is a reason-

able number. Davidson & MacKinnon (2000) has clarified that such a specific number

originated from the Monte Carlo tests, over the following scenario: in an exact test,

let α be the significance level, and β the number of samples, then α · (1+β) = integer.

Considering the commonly significance levels α1 = 0.01, or α2 = 0.05, the number of

boostraps will be as per equation 2.10:

Number of bootstraps equation.

β1 =
integer

0.01
− 1, β2 =

interger

0.05
− 1 (2.10)

The −1 in the equation causes the number of bootstraps to be such as the “599”,

instead of 600, for example. The book Hair et al. (2017) advises to use about 500

samplings for initial analysis. When α = 0.05, at least 1500, and for final analysis

with α = 0.01, at least 5000 subsamples.

Once the number of bootstraps is defined, the next step is to define the size of each

bootstrap. Usually, the sampling is composed of 50% (sometimes 80%) of the data.

As mentioned earlier, the subsampling is with replacements. Therefore it does not

matter how many times it happens. Naturally, the rule of stratification also applies to

bootstrap. It is essential to ensure that the class distribution reflects the distribution

existent in the parent dataset. The third step is the iteration over each sample. The

subsampling is once again split into train and test; the model is refit, trained, and

validated. The outcome result is persisted in a separated array, then the loop repeats.

Fourth and last step, already out of the loop, the LL and UL are calculated from the

result set, against the pre-defined α. Such a range is, in fact, the confidence interval

for 1− α.
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2.5 Test of Normality

Whenever it is desired to measure how significant is the difference between the means

of two or more datasets, a statistical test is applied. A crucial step is to identify

what statistical test is the most appropriated to a specific problem. One of the first

decisions to be made is whether the test will be parametric or nonparametric. Such

a decision is based on the distribution of the data. Whenever the data structure

holds a normal distribution (e.g., Gaussian form), parametric tests should be used,

and nonparametric otherwise. There are many techniques to identify whether a data

distribution attends the requirements of normality. A common approach is a visual

evaluation of histograms, Q-Q plots, or box-plots. As explained in Yap & Sim (2011),

such a strategy offers reasonable information for a deductive conclusion. However, it

is not possible to measure the accuracy of such a decision. Sometimes it may lead

to misinterpretation, depending on how the images have been displayed. To address

this problem, the employment of statistical tests to measure the level of normality

is also recommended. It helps to interpret the graphical representation throughout

measurable evidence to support the decision. The tests of normality work over the

null hypothesis that states the data was drawn from a Gaussian distribution; therefore,

it is normal. The statistical test must define a cut-off α, and whenever the test results

in a p-value whose p ≤ α, it should reject such a hypothesis as it was found evidence

that the data distribution does not comply with normality. Some of the statistical tests

available to measure whether the data deviates from a Gaussian distribution are the

Anderson-Darling test, Shapiro-Wilk through Kolmogorov-Smirnov (aka Goodness-

Of-Fit) algorithm and D’Agostino-Pearson normality test.

Anderson-Darling test uses the cumulative distribution of the dataset upon the

ideal cumulative distribution of a normal distribution to calculate the probability of

the data not be within Gaussian form.

Shapiro-Wilk normality test (through Kolmogorov-Smirnov implementation), in

turn, has some limitations. It does work well when values are unique across the data

because the p-value is computed from a single value: the most significant discrepancy
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between the cumulative distribution of the data and the cumulative normal distribu-

tion. Hence, it is not a practical way to assess normality. According to D’Agostino

(1986), “The Kolmogorov-Smirnov test is only a historical curiosity. It should never

be used.”

Last but not least, D’Agostino-Pearson normality test. This technique is based

on skewness and kurtosis analysis. Skew quantifies how much of the data is in one

of the sides of the data (left or right). The kurtosis, in turn, is the quantification of

the distribution in the tail. Such a test calculates how far a normal distribution is, in

terms of symmetry and shape. The most used implementation is the omnibus K2 test.

Such a test is well recommended over the literatures, as it takes into consideration

the graphical format of the data. Some “rules of thumb” have also been derivated

from skewness and kurtosis analysis to determine whether the data holds a normal

distribution or not. For example, Darren George (2011) suggest the distribution can be

assumed as normal whether the relevant standardised scores for skewness and kurtosis

fall within the range ±2. Also, Andy Field (2012) advises a distribution is normal

whether 95% of the scores fall within the bounds of ±3.29, for datasets larger than 80

cases.

2.6 Power Transformation (the Box-Cox)

Power transformation is applied whenever a more Gaussian-like distribution is desired.

Usually, power transformation is employed before choosing to use a nonparametric

statistical tests. It gives a chance to the data to fit into a normal distribution, and

whenever it is the case, a parametric statistical test can safely be applied. There are

many data transformation algorithm groups available, and Box and Cox (Box & Cox,

1964) (also known as Box-Cox transformation) is one of the most relevant groups of

algorithms (Ruppert, 2001). The famous log transformation is part of the Box-Cox

family of algorithms for power transformation. The Box-Cox is applied over positive

outcome variables. Its mathematical definition can be observed below (equation 2.11):
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Box-Cox transformation.

y(λ) =


yλ−1
λ

if λ 6= 0

log(y) if λ = 0

(2.11)

Where λ varies from -5 to 5.

The λ range is usually determined through maximum likelihood estimation, which

depends on the underlying implementation. For example, some implementations may

consider a fraction range such as λ = [...− 1.5,−1, 0.5, 0, 0.5, 1, 1.5...] All of the inner

values are iterated over the formula until an optimal value is discovered. The optimal

value is the one that put the data distribution closer to a normal distribution.

2.7 Test of Paired Mean Differences

Among the statistical tests to compare populations are the dependent tests. They

are applied whenever the samples are originated from the same population. There

are many statistical tests for such an end, like the Dependent Student’s T-test and

Wilcoxon signed-rank test. Those mentioned tests should be employed whenever two

dependent populations need to be compared. The T-test is applied for parametric

data and Wilcoxon for nonparametric data. Next two subsections approach how each

of them works, and how should they be interpreted. The theory presented in this

section has been extracted from Gauthier & Hawley (2015).

2.7.1 Dependent Student’s T-test

The Dependent Student’s T-test, also known as paired t-test is a parametric statistical

test to compare the mean of the differences between samples of dataset pairs. It works

upon the null hypothesis (H0) that states that the population mean of the differences

between each data pair is equal to zero. So that, H0 : µd = 0. The statistic (t) is

calculated as per equation 2.12.
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Paired t-test.

t =
d
Sd√
n

(2.12)

Where Sd =
√∑

(di−d)2
n−1

Where di is the difference between the ith data pair and d is the sample mean

of the differences between each data pair. The paired t-test assumes that the values

of di are normally distributed. Given that, the t statistic can be compared with a

tabular t value (α) with degrees of freedom of n − 1. The table will give the range

of the probability falls, given the t and the degrees of freedom. With that, the null

hypothesis can be rejected if the t exceeds the tabular value (or p ≤ α).

2.7.2 Wilcoxon Signed-Rank Test

The Wilcoxon signed-rank test (Wilcoxon, 1945) (also known as Wilcoxon Matched

Pairs Signed Rank Test) is the nonparametric equivalent to the parametric paired

student’s t-test. It means that such a statistical test is appropriated to test two groups

of data from the same population, whether they do not comply with the thresholds that

qualify a normal distribution. Wilcoxon signed-rank test tests the null hypothesis that

states that the difference between the groups follows a symmetric distribution around

zero. Its statistic is calculated as per equation 2.13 below.

Wilcoxon Matched Pairs Signed Rank Test.

W =
Nr∑
i=1

[sng(x2,i − x1,i)·Ri] (2.13)

Similar to the t-test, a reference table gives critical values to interpret W statistic.

The null hypothesis is rejected whether |W | is higher than the underlying critical

value. Another way to interpret it is through the p-value score. The null hypothesis

is rejected whether p ≤ α, where α is a pre-determined threshold, usually 1% or 5%.
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Chapter 3

Experiment Design and

Methodology

This chapter covers how the research was conducted. It goes over every technical

step taken to execute the experiments and achieve the objectives previously listed in

section 1.3 (page 12). The chapter has been divided into five main sections: The first

one (3.1) provides a context regarding the proposed design, which is a preparation for

the hypothesis statement. The second section (3.2) contains the hypotheses aimed to

be tested in order to answer the research question stated in section 1.2 (page 10). The

third section (3.3) carries the steps to acquire and prepare the involved datasets. The

fourth section (3.4) presents the technical details about the data modelling for each

GWAS model, as much as the dataset’s attributes. The fifth section (3.5) discloses

the technical design and the steps taken to execute the models, collect the results, and

evaluate the outcomes. The diagram below (figure 3.1) has a graphical representation

of its content.
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Model Selection (LGBM vs. PLINK)

Common Classifier

LGBM Feature Selection

(train=80%, test=20%)

Dataset groups creation (DNA variances & Phenotype)

∗PLINK (α < 5× 10−8)

LR & Firth

GLM for GWAS

Hyperparameters

Randomized Search CV 5-Folds

ds1 1, ds1 10, ds1 100

LR with L2-penalty

Fit model

X ⊂ LGBM(SNPs)

Fit model

y = pheno : pheno ∈ {0, 1}
X ⊂ PLINK(SNPs)

Cross-validation based

k = 50

α = 5% ∧ α = 1%

Statistical testing

s = stratified(k)
cv(LGBM, splits)

cv(PLINK, splits)

1

2

4

3

Effect size
Cohen’s d

.bed, .bim, .fam .raw

y = pheno : pheno ∈ {0, 1}

causal-SNPs causal-SNPs

F1, Recall, APS, ROC, Accuracy, PrecisionMetrics:

CI(α) = 95%

s = N ∗ 0.5

Bootstrap CI based

with replacements

Figure 3.1: Design and implementation workflow diagram. Each step depicted at this

image has been detailed below, in section 3.5 (page 41).
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3.1 Design Context

A GWAS relies on two different data groups: the genomic data that contains the

DNA variances, and the traits to be associated with the SNPs between the cases and

controls cohorts. Usually, the traits to be investigated are human phenotypes, such

as diseases status, that can be retrieved from the patients’ electronic health records

(EHR) (Zhou et al., 2018). This work encompasses the comparison of two GWAS

techniques, over three different dataset scenarios, of qualitative traits. Therefore six

models have been utilised, combined into three data groups named as ds1 1, ds1 10

and ds1 100. The given names represents the class (phenotype status) distribution:

case : control = 1 : 1, case : control = 1 : 10, and case : control = 1 : 100 respectively.

The compared procedures are the PLINK2 GLM, a GWAS implementation based on

GLM that employes Firth when the underlying phenotype is a qualitative type, and

the proposed novel of this dissertation, the LightGWAS, a potential GWAS procedure

based on LightGBM and CV.

LightGWAS aims to address limitations of the state-of-the-art, such as the prob-

lems related to big and sparse data. It increases the statistical power on the causal-

SNPs selection, through GOSS and EFB (section 2.2, page 19). CV is also part of

the solution. It is employed to select the optimal values of the GBDT hyperparame-

ters. It allows the model to adapt to the underlying genomic data structures, reducing

human intervention by dismissing QC steps. Consequently, it favours scalability, and

even automation of the entire process. Accordingly, this research aims to accomplish

two primary goals, which are listed below, in table 3.1, along with their respective

experiments/tasks.
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Research

objectives

Data

sources

Experiments/Tasks

O1 - To test if

LightGWAS can be

used for GWAS.

ds1 1

ds1 10

ds1 100

E1 - Setup a LightGBM with hyperparameters

selected from a CV process.

E2 - Fit the model from E1 with each dataset.

E3 - Evaluate if LightGWAS exposes the ex-

pected causal-SNPs.

O2 - To test if

LightGWAS

outperforms a GWAS

based on GLM

implementation for

each dataset.

ds1 1
E4 - Run LightGWAS and a GLM models,

against the dataset ds1 1.

E5 - Test if outcomes from E4 are statistically

significant.

ds1 10
E6 - Run LightGWAS and a GLM models,

against the dataset ds1 10.

E7 - Test if outcomes from E6 are statistically

significant.

ds1 10
E8 - Run LightGWAS and a GLM models,

against the dataset ds1 100.

E9 - Test if outcomes from E8 are statistically

significant.

Table 3.1: Research objectives and experiments/tasks.

The equations below are the metrics employed to evaluate the differences between

LightGWAS and PLINK2 GLM:
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Metrics to evaluate the GWAS models applied to binary phenotype.

Accuracy = TP+TN
TP+TN+FP+FN

Precision = TP
TP+FP

Recall = TP
(TP+FN)

F1 = 2 · (precision·recall)
(precision+recall)

APS =
∑

n(Rn −Rn−1) Pn

(3.1)

Where TP, TN, FP, and FN are the sum of true-positives, true-negatives, false-

positives, and false-negatives, respectively. Pn and Rn are the precision and recall

at the nth threshold, respectively. APS stands for average precision score, and F1 is

the weighted average of the precision and recall. Recall is also known as sensitivity,

hit rate, or true-positive rate (TPR).

The area under the curve (AUC) for the receiver operating characteristic (ROC) has

also been used to evaluate the efficiency of the models. It is calculated by plotting TPR

against the FPR. The Scikit-learn implementation1 have been adopted to measure it.

Caveat: Whenever a random data generation/selection was required over this

study, the number 13 has been adopted as the initialisation state of the pseudo-

random number for the underlying algorithm. It ensures the reproducibility of the

experiments. Therefore, to reproduce the results of this research, such seed must be

applied.

1https://bit.ly/scikit-learn-roc-auc
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3.2 Hypotheses

The main challenge of the current state-of-the-art methods for GWAS is controlling the

FPR, which means holding sufficient statistical power to avoid Type 1 error. Therefore,

this study makes use of metrics surrounding the precision scores of models’ result sets.

Accuracy metric is also taken into account, however only for the balanced dataset,

as such a rate becomes misleading for imbalanced datasets. Hence, the following

hypotheses have been set:

• Null Hypothesis 1 (H01): LightGWAS do not outperform GLM based on

LR with Firth regularisation for GWAS, across genomic datasets of balanced

(case : control = 1 : 1) qualitative phenotypes, in terms of accuracy, precision,

F1 score, and ROC/AUC.

Alternative Hypothesis 1 (HA1): LightGWAS outperforms GLM based on

LR with Firth regularisation for GWAS, across genomic datasets of balanced

(case : control = 1 : 1) qualitative phenotypes, in terms of accuracy, precision,

F1 score, and ROC/AUC.

• Null Hypothesis 2 (H02): LightGWAS do not outperform GLM based on

LR with Firth regularisation for GWAS, across genomic datasets of imbalanced

(case : control = 1 : 10) qualitative phenotypes, in terms of precision, F1 score,

and ROC/AUC.

Alternative Hypothesis 2 (HA2): LightGWAS outperforms GLM based on

LR with Firth regularisation for GWAS, across genomic datasets of imbalanced

(case : control = 1 : 10) qualitative phenotypes, in terms of precision, F1 score,

and ROC/AUC.

• Null Hypothesis 3 (H03): LightGWAS do not outperform GLM based on LR

with Firth regularisation for GWAS, across genomic datasets of high-imbalanced

(case : control = 1 : 100) qualitative phenotypes, in terms of precision, F1 score,

and ROC/AUC.

Alternative Hypothesis 3 (HA3): LightGWAS outperforms GLM based
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on LR with Firth regularisation for GWAS, across genomic datasets of high-

imbalanced (case : control = 1 : 100) qualitative phenotypes, in terms of preci-

sion, F1 score, and ROC/AUC.

3.3 Participants

A fully synthetic dataset for either genomic data and traits has been simulated. Such

an approach was required to track the outcomes based on FPR and statistical power.

Otherwise, it would not be possible to distinguish what are the causal-SNPs expected

to be exposed by the underlying GWAS models. Therefore, a controlled dataset is

vital. The same could be achieved through a phenotype labelled real data. However,

the workflow to request and pass by the authorization process of most of the genomic

and EHR database institutes would take longer than the expected time to conclude

this research. Nonetheless, it is still recommended as a future avenue of research to

make sure LightGWAS is as relevant as expected for real-world GWAS challenges.

Three fictitious cohorts have been created. Table 3.2 displays the phenotype (class)

distributions of each of them. All the three cohorts had the same variance ratios to

determine the (non-)causal-SNPs.

Dataset name case:control distribution cases controls

ds1 1 1 : 1 2500 2500

ds1 10 1 : 10 400 4000

ds1 100 1 : 100 50 5000

Table 3.2: Cohorts’ phenotype distribution.

Below is presented the parameters employed to create the synthetic datasets. They

have been based on the PLINK SNP simulation tutorial. Naturally, they do not

accurately represent realistic genetic data. However, they are relevant enough to

test and validate GWAS methods in a controlled environment as per PLINK SNP
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simulation tool documentation2.

Ten thousand one hundred SNPs (features) compose each dataset group, where

100 of them had the population odds ratio set to 2.00, making them the causal-SNPs

of the datasets. A prefix name has been employed to facilitate the traceability of each

SNP during the analysis: “d” for causal-SNPs, and “n” for all the others. The MAF

ratio was set to variate between 0.00 and 1.00, which ensures a high exposure of SNP

among the genetic dataset.

SNPs datasets are usually formed by genes with two different alleles (heterozygous)

or two identical alleles (homozygous) within a given ratio dimension. Given that, as

per documentation earlier mentioned, the heterozygotes odds ratio has been set to 2.00

for cases and 1.00 for controls. The homozygotes odds ratio, in turn, received 4.00

and 1.00 respectively. Additional understanding of the mentioned biological terms is

recommended, but not required. In the computational context of the models, they

are merely adding the needed variances to spread the dataset as expected. Therefore

beyond the scope of this dissertation. Table 3.3 consolidates the setup above described.

no.

SNPs
SNP Prefix

Lower allele

frequency

Upper allele

frequency

range

Odds ratio for

heterozygotes

Odds ratio for

homozyygotes

10000 n 0.00 1.00 1.00 1.00

100 d 0.00 1.00 2.00 4.00

Table 3.3: Phenotype ratios for genetic dataset build-up.

3.4 Datasets and Variables of Interest

The GWAS method based on LR with Firth applied in this research to compare

against the LightGWAS is the PLINK2 GLM3 implementation. PLINK2 accepts the

genomic datasets in a set of specific formats, such as variant call format (VCF), or

2http://zzz.bwh.harvard.edu/plink/simulate.shtml
3https://www.cog-genomics.org/plink/2.0/assoc#glm
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their own designed file set, composed of the file formats: ∗.bed, ∗.bim, and ∗.fam.

As PLINK Simulation tool has been used to generate the synthetic datasets, the data

was automatically created in its formats, facilitating the process. LightGWAS, in turn,

depends on a tab-separated values (TSV) format. Therefore, once the datasets were

simulated, the PLINK files have been converted to a tabular view, as described below.

The ∗.bed file contains the genetic variates (SNPs) in a binary (non-human read-

able) format. It consists of the primary representation of genotype calls at biallelic

variants. Analog to other ordinary ML data, they are the features of a dataset.

The ∗.bim, and ∗.fam files complement the data required for the GWAS imple-

mentations that support PLINK files. Those files contain the phenotype, patients

identification (ID’s), and SNP list. Once again, analogue to a relational database, the

∗.fam file is an intermediate table that contains the patient ID and the outcome vari-

able (or class in ML classification models). It matches to the SNP table, represented

by the ∗.bim file in this analogy, throughout the binary ∗.bed file. Tables 3.4 and 3.5

contains the variables of interest in the ∗.fam and ∗.bim files, respectively.

Variable Type Range Sample

ID Nominal Alphanumeric per13

Phenotype Numeric 1=control, 2=case 2

Table 3.4: Variables of interest in the *.fam files.

Variable Type Range Sample

SNP Nominal Alphanumeric d 1312

Allele 1 Nominal Category [G,C, T or A] G

Allele 2 Nominal Category [G,C, T or A] C

Table 3.5: Variables of interest in the *.bim files.

The ∗.raw file, in turn, is a tabular representation of all the others together. Among

other columns, it contains the patient ID, phenotype status, and the SNPs extracted

from the DNA. As mentioned before, the designed GWAS procedure evaluated at this
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moment (LightGWAS) does not support the PLINK formats, nor VCFs, and this is

why a TSV file format was required.

The ∗.raw files are composed of 6 + V variables each, where V is the number

of SNPs, which means 10106 columns form each dataset group. From the six first

columns, only the individual ID and the phenotype (class) variables are relevant to

the experiments, so that, the other four have been discarded. The additional 10100

columns that compose each SNP respects the following pattern: The column name

contains the SNP identification (e.g., d 9935 ), appended to the counted allele (e.g., T ),

and its alternate allele code in parentheses (e.g., (/A)). The value of each column is the

SNP allelic dosage, which can be 0, 1, or 2. Once again, the biological understanding is

recommended, but not required for the computing science context inferred. As can be

seen, this is analogue to a large dataset, composed mostly of categorical variables and

a binary class. The table 3.6 describes the file’s morphology along with the variables

of interest.

Variable Type Range Sample

Individual ID Nominal Alphanumeric per13

Phenotype Numeric 1=control, 2=case 2

...

Numeric [0, 1 or 2] 2
n 1351 T(/A)

d 13 G(/T)

...

Table 3.6: Variables of interest in the *.raw files.

3.5 Procedure

Figure 3.1 (page 33) depicts the procedure executed to test the alternative hypotheses

earlier stated. The procedure is composed of four layers, as outlined below:

1. Dataset creation: Details about the dataset has already been provided over the

section 3.4 (page 39).
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2. GWAS models:

(a) PLINK2 GLM was used to conduct GWAS through LR with support to

Firth. Firth aims to minimize the fitting errors through sparse regularisa-

tion terms. PLINK2 ensures that Firth regularisation is applied whenever

LR algorithm fails due to low-count variants (MAC < 400). Once the as-

sociation is completed, the causal-SNPs are extracted by filtering out those

with standard cut-off p ≤ 5× 10−8 (Fadista et al., 2016). There is a caveat

here: the dataset ds1 100 demanded a cut-off of p ≤ 5× 10−4 because,

within the first setup, no SNP was found by the model. Such a decision has

been grounded on Ma et al. (2013). They also adopted a higher threshold

on their tests due to a similar situation regarding the dataset balance.

(b) The LightGWAS model, in turn, selects the causal-SNPs on model’s fitting-

time, which is the instant when the features of importance became available

by the underlying GBDT algorithm. Therefore, finding out the best param-

eters to fit the model is the crucial step of the proposed solution. With that,

to ensure the most relevant SNPs are correctly selected, a CV to pick the

hyperparameters was proposed and employed. It makes sure the arguments

to shape the model will be tested over multiple combinations until it finds

the best-fit, as much as the most relevant features (the causal-SNPs) that

better predicts the underlying phenotype (class of the model) for the given

dataset group. In this experiment, a 5-folds through 200 iterations has

been adopted. The RandomizedSearchCV 4 implementation has been used

to test each light gradient boosting machine (aka lightgbm) (LGBM) pa-

rameter’s rages. The chosen ranges have been set arbitrarily surrounding

default-values available in the LightGBM documentation5, and they can be

found in the supplementary material, at the code-block A.1, of section A

(page 83). Table 3.7 below contains the elected optimal hyperparameters

for each dataset group. The pre-processing for the CV execution embraced

4https://bit.ly/Sciskit-learn-RandomizedSearchCV
5https://lightgbm.readthedocs.io/en/latest/Parameters.html
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three stages: Firstly the unnecessary variables have been dropped, remain-

ing only the ones outlined over the section 3.4. Secondly, the categorical

variables have been factorized. Thirdly, the whole dataset has been split

between a train (80%) and test (20%) subsample. Stratification has been

adopted to ensure proportional distribution of cases and controls over each

subsample.

ds1 1 ds1 10 ds1 100

colsample bytree 0.47328041 0.47328041 0.866621446

learning rate 0.03 0.03 0.01

max depth 1 1 6

min child samples 147 147 454

min child weight 1.0 1.0 1.0

min split gain 0 0 0

n estimators 2000 2000 2000

num leaves 35 35 41

reg alpha 0.1 0.1 5

reg lambda 0.1 0.1 50

subsample 0.995930118 0.995930118 0.820421212

subsample for bin 200000 200000 200000

Table 3.7: LightGBM’s hyperparameters selected through 5-folds cross-validation.

Where the colsample bytree represents the feature fraction. For example, a col-

sample of 0.7 means LightGBM will select 70% of feature before training each

tree. learning rate is the bias rate employed to restrict the influence of each

tree on the final result. It controls the magnitude of the variance in the esti-

mates. The max depth controls overfitting by determining the depth of the tree

splits. min child samples is the minimal number of information in one leaf of

a tree. min child weight is the tree leaf minimal sum hessian. min split gain is

the minimal number of splits/gain of a tree. n estimators represents the number
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of boosting iterations. reg alpha and reg lambda is the ratio applied to a L1

and L2 regularization, respectively. subsample is a randomly selection without

resampling. subsample for bin is the number of data that sampled to construct

histogram bins.

3. Common classifier.

(a) Once both employed GWAS models were concluded, the selected SNPs

could be used as input features for a common classification model, allowing

a comparison between them. The Scikit Learn LogisticRegression6 imple-

mentation has been chosen for such a common model. It is a LR with a

L2-Penalty model. No customizations have been applied to such a common

model, as the main goal is to verify how well a simple classification model

could predict the phenotypes throughout the selected causal-SNPs of each

evaluated model. The default parameters applied are listed below, in table

3.8.

LR parameters Values

C 1

fit intercept TRUE

max iter 200

multi class ’auto’

penalty L2’

solver ’lbfgs’

tol 0.0001

warm start FALSE

Table 3.8: Parameters for the logistic regression common classifier.

Where C represents the inverse of regularization strength. fit intercept

specify whether bias or intercept should be added to the decision function.

6https://bit.ly/scikit-learn-LogisticRegression
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max iter is the maximum number of iterations until the solvers converge.

multi class automatically identify if this is a multinominal problem. The

current scenario is not a multinominal. Therefore, it is interpreted as a bi-

nary classification problem. penalty is the employed regularization method.

solver is the optimization algorithm. tol accounts for the tolerance for stop-

ping criteria. warm start For learning transfer purposes. When set to True,

it reuses the solution of the previous call to fit as initialization.

(b) The common classifier has been executed six times (each time means 50-

fold CV and 5000 bootstraps to calculate the CI of each metric): Three

times with the features (SNPs) selected by the LightGWAS and another

three times with the PLINK2 picked SNPs. Three iterations each because

the experiment is composed of three data groups as previously detailed in

section 3.4 (page 39). An important caveat is, as per table 3.3 in section

3.3 (page 38), 100 SNPs were simulated as causal-SNPs. Therefore, as a

preparation for the common classifier (model’s pre-processing), only the

top-100 most relevant selected features from each model have been used,

avoiding unfair bias in the classification results. For LightGWAS model, the

GBDT algorithm selects the features of importance based on gain scores.

With that, the causal-SNPs extraction has been made by sorting the tree

split gain scores descending, and then picked up the top-100 features. For

PLINK2, in turn, the lower-100 SNPs from the cut-off SNP’s p-value ≤

5× 10−8 have been selected. Except for the dataset ds1 100, where a cut-off

of p-value ≤ 5× 10−4 was required, as above explained. Once parameters

and features were set, the models were trained with 80% of the datasets

and tested with the other 20%. It was ensured that the train sub-sample

does not contain the test sub-sample, avoiding overfitting in this matter.

4. The model selection layer generates quantitative data results that provide ev-

idence to support or reject the null hypotheses of this research. They have

been originated from a 50-folds CV for ML model selection, which has been
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applied against each GWAS models. Moreover, to ensure the scores evaluated

had representativeness, 5000 bootstraps have also been employed to calculate

the confidence interval of each score. Each bootstrap iteration had 50% of

the data, which in turn has been randomly selected through subsampling with

replacements. Stratification of the phenotype (class) has been applied for ei-

ther the 50-folds CV and in the subsamples of the 5k bootstraps. A CI of

95%(LL = 0.025, UL = 0.975) has been take into consideration (α = 0.05).

Also, dependent (paired) sample Student’s t-test and Wilcoxon signed-rank test

have been implemented to test how significant were the differences between each

measured metric against each model. The decision about which one to report de-

pends on the distribution normality analysis that, in turn, relies on the skewness

and kurtosis scores from each metric. According to Darren George (2011), the

distribution can be assumed as normal whether the relevant standardised scores

for skewness and kurtosis fall within the range ±2. Also, Andy Field (2012)

advises a distribution is normal if 95% of the scores fall within the bounds of

±3.29, for datasets larger than 80 cases. Analysis of histogram plots along with

D’Agostino-Pearson normality test (D’Agostino, 1986) has been applied for such

an end. Whenever the data distribution did not comply with the thresholds

of normality, Box-Cox transformation (Box & Cox, 1964) has been applied, in

an attempt to set the data into a Gaussian form, before opting for a nonpara-

metric approach. Therefore, t-test has been considered when the results held

a normal distribution, and Wilcoxon otherwise. Either α = 1% and α = 5%

cut-offs were evaluated, along with Cohen’s d test (Cohen & Press, 1977) and

Wilcoxon r score to measure the effect differences among each compared metric.

The evaluated metrics were: weighted average of the precision and recall (F1),

recall, average precision score (APS), ROC/AUC, accuracy, and precision.

(a) 50-folds CV procedure: Firstly two instances of the common classifiers

were setup. One with the causal-SNPs selected by the LightGWAS model,

and the other with the causal-SNPs selected by PLINK2 model. Secondly,

the dataset was split into 50 stratified folds. It is important to mention
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that the same folds have been used for both common classifiers, making

sure they were tested with the same samples across each iteration. Thirdly,

the CV has been executed for each common model, resulting in two new

datasets, containing 50 records each, whose each column was one of the

earlier mentioned statistical metrics. Finally, each metric pair (one from

the LightGWAS common model, and the other from the PLINK common

model) has been submitted to statistical tests, to evaluate how significantly

was the measured differences. Also, tests of normality, based on histogram

plotting analysis, kurtosis score, and skewness score have been executed to

evaluate whether the distributions were in a Gaussian shape.

5k Bootstraps 95% CI: For each of the 5000 bootstraps, a resample

(with replacement) containing 50% of the dataset has been applied. From

this amount, 10% has been separated for test and the rest for the training.

It was ensured that no test sample was included in the training sample

(test /∈ training). Over each iteration, both the common models have been

refit with the same subsamples above mentioned, and the outcome trained

models have been utilised to predict the test sample data. The predictions

result sets were composed of five thousand records each, having the metrics

as the variables of the dataset. Then they have been used to calculate the

confidence interval. The lower limit has been fixed to 0.025 and upper limit

to 0.975 in order to satisfy the 95% of CI (α = 0.05).
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Results, Evaluation and Discussion

In this chapter, the research’s results and evaluations are disclosed (section 4.1). It

also counts with a discussion section (4.2), where the outcomes are debated concerning

the approaches taken, the statistical significance of the results, and the relevance in

scientifical perspectives.

As outlined in section 3.5 (page 41), the comparison between PLINK2 GLM1 (Hill

et al., 2017) and LightGWAS models have been done through 50-folds CV, and the CI

of the results calculated through 5, 000 bootstraps (Wilcox, 2010; Hair et al., 2017).

Tests of normality (Darren George, 2011; Andy Field, 2012) based on histogram anal-

ysis, kurtosis and skewness (D’Agostino-Pearson normality test (D’Agostino, 1986))

have been employed, followed by Box-Cox transformation (Box & Cox, 1964) when-

ever the data did not comply with normality thresholds. They aim to decide when

a metric result distribution is Gaussian. Whenever a metric fits into the normality

ranges, paired student’s t-test is used. Wilcoxon signed-rank test otherwise. Also,

Cohen’s d and Wilcoxon r score have been applied to measure the models’ differences

effect, assisting on the evaluation analysis regarding scientifical relevance of the results

(Greenland et al., 2016), besides their statistical significance.

1For the readability sake of this chapter, the model PLINK2 GLM will be called simply PLINK.
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4.1 Results and Evaluation

The executed experiments for each dataset are disclosed and evaluated over this sec-

tion. The raw results have been consolidated and appended to the supplementary

material of this research (appendix A, from page 84).

4.1.1 Dataset ds1 1: Normality Test

Analysis of normality through histogram plots (see figure 4.1 below) suggests that

APS and ROC/AUC hold a relevant degree of negative skewness for both PLINK

and LightGWAS results. accuracy, F1, precision, and recall seems to have the dis-

tribuitions closer to the normality, however some of the scores have clustered the

majority frequency of the values.

Figure 4.1: ds1 1 histograms.

D’Agostino’s K2 Normality Test has been conducted for a more accurate evaluation

of the score’s distribution. It tests the null hypothesis that states the data is in normal

distribuition. The results are listed below:

• F1: LightGWAS (skewness = −0.255, kurtosis = −0.648, SE = 0.002, z =

1.651, p = .438). Plink (skewness = −0.19, kurtosis = −0.754, SE = 0.002,

z = 2.134, p = .344).
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• recall: LightGWAS (skewness = −0.474, kurtosis = 0.048, SE = 0.003, z =

2.425, p = .298). Plink (skewness = −0.438, kurtosis = −0.122, SE = 0.003,

z = 1.916, p = .384).

• APS: LightGWAS (skewness = −1.431, kurtosis = 2.208, SE = 0.001, z =

20.182, p < .001). Plink (skewness = −1.387, kurtosis = 2.036, SE = 0.0,

z = 19.078, p < .001).

• ROC / AUC: LightGWAS (skewness = −1.11, kurtosis = 0.671, SE = 0.001,

z = 11.21, p = .004). Plink (skewness = −1.107, kurtosis = 0.726, SE = 0.0,

z = 11.335, p = .003).

• accuracy: LightGWAS (skewness = −0.291, kurtosis = −0.611, SE = 0.002,

z = 1.649, p = .439). Plink (skewness = −0.217, kurtosis = −0.732, SE =

0.002, z = 2.064, p = .356).

• precision: LightGWAS (skewness = −0.7, kurtosis = 0.034, SE = 0.003, z =

4.638, p = .098). Plink (skewness = −0.611, kurtosis = −0.007, SE = 0.003,

z = 3.626, p = .163).

According to the results above, all of the metrics satisfied the Gaussian distribution,

but APS and ROC / AUC. The results from the D’Agostino’s normality test for both

of them returned evidence on α = 0.01 to reject the null hypothesis that states the

data is normally distributed. Therefore, Box-Cox transformation has been applied to

them, and a new iteration of D’Agostino’s K2 Normality Test resulted in a successful

normalization of the data:

• APS: LightGWAS (skewness = −0.172, kurtosis = −0.738, SE = 0.0, z =

1.933, p = .380). Plink (skewness = −0.144, kurtosis = −0.674, SE = 0.0,

z = 1.371, p = .504).

• ROC / AUC: LightGWAS (skewness = −0.17, kurtosis = −0.794, SE = 0.0,

z = 2.45, p = .294). Plink (skewness = −0.153, kurtosis = −0.759, SE = 0.0,

z = 2.055, p = .358).
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4.1.2 Dataset ds1 1: Mean/Median Test

LightGWAS outperformed PLINK on metrics F1, recall, and ROC/AUC, while PLINK

outperformed LightGWAS on APS, and precision. Both models reached out the same

mean value for accuracy so that zero mean absolute difference (MD) in this metric.

Once every metric held into the thresholds of a Gaussian distribution, a parametric test

to measure how significant the observed differences between PLINK and LightGWAS

could be applied. The paired t-test has been employed for such an end, and the results

are listed below.

• F1: LightGWAS (M = 0.967, SD = 0.017, 95% CI [0.962, 0.982]) vs. PLINK

(M = 0.967, SD = 0.017, 95% CI [0.962, 0.984]). t(49) = 0.029, p = .977,

MD < .001, d = 0.001 (small effect).

• recall: LightGWAS (M = 0.967, SD = 0.02, 95% CI [0.952, 0.984]) vs. PLINK

(M = 0.966, SD = 0.02, 95% CI [0.952, 0.984]). t(49) = 0.375, p = .709,

MD < .001, d = 0.02 (small effect).

• APS: LightGWAS (M = −0.003, SD = 0.002, 95% CI [−0.003,−0.001]) vs.

PLINK (M = −0.003, SD = 0.002, 95% CI [−0.002,−0.001]). t(49) = 0.56,

p = .578, MD < .001, d = 0.021 (small effect).

• ROC/AUC: LightGWAS (M = −0.003, SD = 0.002, 95% CI [−0.003,−0.001])

vs. PLINK (M = −0.003, SD = 0.002, 95% CI [−0.003,−0.001]). t(49) = 0.745,

p = .460, MD < .001, d = 0.027 (small effect).

• accuracy: LightGWAS (M = 0.967, SD = 0.017, 95% CI [0.962, 0.982]) vs.

PLINK (M = 0.967, SD = 0.017, 95% CI [0.962, 0.984]). t(49) = 0.0, p = 1.000,

MD = 0, d < .001 (small effect).

• precision: LightGWAS (M = 0.969, SD = 0.025, 95% CI [0.964, 0.988]) vs.

PLINK (M = 0.969, SD = 0.024, 95% CI [0.964, 0.992]). t(49) = −0.45, p =

.655, MD < .001, d = 0.016 (small effect).
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The t-tests indicated no statistical significance on α = 0.05 for any of the measured

metrics. The standardized difference between the means resulted in a small effect for

all of the metrics (d < 0.5). Also, there is 95% of a likelihood the reported LL and

UL represent the confidence intervals of the true metrics’ performance. The kernel

density estimation (KDE) plot originated from the 5000 bootstraps to calculate such

a CI has been appended to the supplementary material. It can be consulted at figure

A.1 (page 81).

4.1.3 Dataset ds1 1: Discovery of Causal-SNPs

In terms of causal-SNP selection, LightGWAS selected 86 SNPs, while PLINK selected

90 SNPs. PLINK managed to pick all SNPs selected by LightGWAS, plus other four

causal-SNPs.

4.1.4 Dataset ds1 10: Normality Test

Analysis of normality through histogram plots (see figure 4.2 below) suggests that

all of the metrics have a relevant degree of negative skewness for both PLINK and

LightGWAS results. The accuracy and F1 seems closer to a normal distribution,

but the image does not allow a conclusive judgment as the scores have clustered the

majority frequency of the values.

Figure 4.2: ds1 10 histograms.
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D’Agostino’s K2 Normality Test has been conducted for a more accurate evaluation

of the score’s distribution. It tests the null hypothesis that states the data is in normal

distribuition. The results are listed below:

• F1: LightGWAS (skewness = −0.437, kurtosis = −0.762, SE = 0.001, z =

3.703, p = .157). Plink (skewness = −0.56, kurtosis = −0.661, SE = 0.001,

z = 4.03, p = .133).

• recall: LightGWAS (skewness = −1.4, kurtosis = 1.423, SE = 0.001, z =

17.398, p < .001). Plink (skewness = −1.205, kurtosis = 1.044, SE = 0.001,

z = 13.586, p = .001).

• APS: LightGWAS (skewness = −1.691, kurtosis = 2.118, SE = 0.0, z =

23.472, p < .001). Plink (skewness = −2.064, kurtosis = 4.797, SE = 0.0,

z = 35.251, p < .001).

• ROC/AUC: LightGWAS (skewness = −1.684, kurtosis = 2.117, SE = 0.0,

z = 23.383, p < .001). Plink (skewness = −1.892, kurtosis = 3.654, SE =

0.001, z = 30.331, p < .001).

• accuracy: LightGWAS (skewness = −0.428, kurtosis = −0.78, SE = 0.002,

z = 3.804, p = .149). Plink (skewness = −0.554, kurtosis = −0.699, SE =

0.002, z = 4.223, p = .121).

• precision: LightGWAS (skewness = −0.762, kurtosis = −0.659, SE = 0.001,

z = 6.169, p = .046). Plink (skewness = −0.729, kurtosis = −0.109, SE =

0.001, z = 4.787, p = .091).

According to the results above, only the F1 and accuracy satisfied the Gaussian

distribuition. PLINK’s precision also satisfied the thresholds of normality. The re-

sults from the D’Agostino’s normality test for all the others returned evidence on

α = 0.05 to reject the null hypothesis that states the data is normally distributed.

Therefore, Box-Cox transformation has been attempted to them, but a new iteration

of D’Agostino’s K2 Normality Test also resulted in a non-Gaussian distribution. The
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PLINK’s accuracy was the only distribution normalized by Box-Cox transformation.

In conclusion, only the F1 and accuracy (non-transformed) can be validated through

parametric tests. All the others will demand a nonparametric approach.

4.1.5 Dataset ds1 10: Mean/Median Test

LightGWAS outperformed PLINK for every measured metrics. Given that the metrics

recall, APS, ROC/AUC, and precision did not comply with the thresholds of a normal

distribution, a nonparametric test to measure how significant the observed differences

between PLINK and LightGWAS had to be applied. The Wilcoxon signed-rank test

has been employed for such an end. The metrics F1 and accuracy, in turn, held the

Gaussian distribution, so that paired t-test was applied for them. The results are

listed below.

• F1: LightGWAS (M = 0.993, SD = 0.006, 95% CI [0.988, 0.996]) vs. PLINK

(M = 0.991, SD = 0.007, 95% CI [0.985, 0.994]). t(49) = 2.365, p = .022,

MD = 0.002, d = 0.292 (small effect).

• recall: LightGWAS (Mdn = 1.0, M = 0.994, SD = 0.009, 95% CI [0.99, 1.0])

vs. PLINK (Mdn = 1.0, M = 0.993, SD = 0.009, 95% CI [0.985, 0.998]).

z = 113.5, p = .662, MdnD = 0, MD = 0.001, r = 16.051 (large effect),

d = 0.082 (small effect).

• APS: LightGWAS (Mdn = 1.0, M = 1.0, SD = 0.0, 95% CI [0.999, 1.0]) vs.

PLINK (Mdn = 1.0, M = 1.0, SD = 0.0, 95% CI [0.999, 1.0]). z = 54.0,

p = .002, MdnD < .001, MD < .001, r = 7.637 (large effect), d = 0.403 (small

effect).

• ROC/AUC: LightGWAS (Mdn = 1.0, M = 0.998, SD = 0.003, 95% CI

[0.995, 0.999]) vs. PLINK (Mdn = 0.998, M = 0.997, SD = 0.005, 95% CI

[0.992, 0.999]). z = 48.5, p = .006, MdnD = 0.002, MD = 0.002, r = 6.859

(large effect), d = 0.403 (small effect).
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• accuracy: LightGWAS (M = 0.988, SD = 0.011, 95% CI [0.977, 0.993]) vs.

PLINK (M = 0.984, SD = 0.012, 95% CI [0.973, 0.989]). t(49) = 2.393, p =

.021, MD = 0.003, d = 0.295 (small effect).

• precision: LightGWAS (Mdn = 1.0, M = 0.993, SD = 0.009, 95% CI [0.98, 0.995])

vs. PLINK (Mdn = 0.988, M = 0.99, SD = 0.01, 95% CI [0.98, 0.993]).

z = 37.5, p = .007, MdnD = 0.012, MD = 0.003, r = 5.303 (large effect),

d = 0.315 (small effect).

The t-tests indicated statistical significance on α = 0.05 for both F1 and accuracy.

The Wilcoxon test indicated statistical significance on α = 0.01 for APS, ROC/AUC

and precision. No statistical significance on α = 0.05 has been observed for recall.

The standardized difference between the means resulted in a small effect for all of

the metrics (d < 0.5). Also, there is 95% of a likelihood the reported LL and UL

represent the confidence intervals of the true metrics’ performance. The KDE plot

originated from the 5000 bootstraps to calculate such a CI has been appended to the

supplementary material. It can be consulted at figure A.2 (page 82).

4.1.6 Dataset ds1 10: Discovery of Causal-SNPs

In terms of causal-SNP selection, LightGWAS selected 80 SNPs, while PLINK selected

76 SNPs. LightGWAS managed to pick all SNPs selected by PLINK, plus other four

causal-SNPs.

4.1.7 Dataset ds1 100: Normality Test

Analysis of normality through histogram plots (see figure 4.3 below) are not conclusive.

The scores have clustered the majority frequency of the values. No decision regarding

normality can be made without a statistical test.
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Figure 4.3: ds1 100 histograms.

D’Agostino’s K2 Normality Test has been conducted for a more accurate evaluation

of the score’s distribution. It tests the null hypothesis that states the data is in normal

distribuition. The results are listed below:

• F1: LightGWAS (skewness = −1.506, kurtosis = 2.257, SE = 0.001, z =

21.348, p < .001). Plink (skewness = −0.262, kurtosis = −0.642, SE = 0.0,

z = 1.655, p = .437).

• recall: LightGWAS (skewness = −3.267, kurtosis = 9.747, SE = 0.001, z =

58.331, p < .001). Plink (skewness = −3.705, kurtosis = 11.73, SE = 0.0,

z = 65.602, p < .001).

• APS: LightGWAS (skewness = −5.735, kurtosis = 33.536, SE = 0.0, z =

99.223, p < .001). Plink (skewness = −2.296, kurtosis = 4.998, SE = 0.0,

z = 38.701, p < .001).

• ROC/AUC: LightGWAS (skewness = −5.506, kurtosis = 31.148, SE =

0.007, z = 96.246, p < .001). Plink (skewness = −2.219, kurtosis = 4.598,

SE = 0.004, z = 36.85, p < .001).

• accuracy: LightGWAS (skewness = −1.485, kurtosis = 2.169, SE = 0.001,

z = 20.807, p < .001). Plink (skewness = −0.25, kurtosis = −0.668, SE =

0.001, z = 1.756, p = .416).

56



CHAPTER 4. RESULTS, EVALUATION AND DISCUSSION

• precision: LightGWAS (skewness = −0.324, kurtosis = −1.894, SE = 0.001,

z = 1461.396, p < .001). Plink (skewness = 0.408, kurtosis = −1.833, SE =

0.001, z = 4711.908, p < .001).

According to the results above, only PLINK’s F1 and accuracy satisfied the Gaus-

sian distribuition. The results from the D’Agostino’s normality test for all the others

returned evidence on α = 0.05 to reject the null hypothesis that states the data is nor-

mally distributed. Therefore, Box-Cox transformation has been attempted to them,

but a new iteration of D’Agostino’s K2 Normality Test also resulted in a non-Gaussian

distribution. Consequently, nonparametric method must be used to validate all of the

metrics, as no one satisfied the thresholds of normality.

4.1.8 Dataset ds1 100: Mean/Median Test

LightGWAS outperformed PLINK for every measured metrics. Given that no metrics

complied with the thresholds of a normal distribution, a nonparametric test to measure

how significant the observed differences between PLINK and LightGWAS had to be

applied. The Wilcoxon signed-rank test has been employed for such an end. The

results are listed below.

• F1: LightGWAS (Mdn = 1.0, M = 0.997, SD = 0.004, 95% CI [0.994, 0.997])

vs. PLINK (Mdn = 0.995, M = 0.997, SD = 0.003, 95% CI [0.994, 0.997]).

z = 183.0, p = .431, MdnD = 0.005, MD < .001, r = 25.88 (large effect),

d = 0.144 (small effect).

• recall: LightGWAS (Mdn = 1.0, M = 0.999, SD = 0.005, 95% CI [0.996, 1.0])

vs. PLINK (Mdn = 1.0, M = 0.999, SD = 0.002, 95% CI [0.994, 1.0]). z = 5.0,

p = .234, MdnD = 0, MD = 0.001, r = 0.707 (medium effect), d = 0.221 (small

effect).

• APS: LightGWAS (Mdn = 1.0, M = 1.0, SD = 0.001, 95% CI [1.0, 1.0]) vs.

PLINK (Mdn = 1.0, M = 1.0, SD = 0.0, 95% CI [0.999, 1.0]). z = 163.5,
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p = .096, MdnD = 0, MD < .001, r = 23.122 (large effect), d = 0.076 (small

effect).

• ROC/AUC: LightGWAS (Mdn = 1.0, M = 0.987, SD = 0.048, 95% CI

[0.964, 0.998]) vs. PLINK (Mdn = 1.0, M = 0.983, SD = 0.029, 95% CI

[0.938, 0.985]). z = 166.5, p = .107, MdnD = 0, MD = 0.004, r = 23.547 (large

effect), d = 0.11 (small effect).

• accuracy: LightGWAS (Mdn = 1.0, M = 0.994, SD = 0.008, 95% CI [0.988, 0.994])

vs. PLINK (Mdn = 0.99, M = 0.993, SD = 0.006, 95% CI [0.988, 0.994]).

z = 180.0, p = .388, MdnD = 0.01, MD = 0.001, r = 25.456 (large effect),

d = 0.147 (small effect).

• precision: LightGWAS (Mdn = 1.0, M = 0.996, SD = 0.005, 95% CI [0.99, 0.996])

vs. PLINK (Mdn = 0.99, M = 0.994, SD = 0.005, 95% CI [0.99, 0.994]).

z = 176.0, p = .343, MdnD = 0.01, MD = 0.002, r = 24.89 (large effect),

d = 0.36 (small effect).

The Wilcoxon test indicated no statistical significance on α = 0.05 for any of the

measured metrics. The standardized difference between the means resulted in a small

effect for all of the metrics (d < 0.5). Also, there is 95% of a likelihood the reported LL

and UL represent the confidence intervals of the true metrics’ performance. The KDE

plot originated from the 5000 bootstraps to calculate such a CI has been appended to

the supplementary material. It can be consulted at figure A.3 (page 83).

4.1.9 Dataset ds1 100: Discovery of Causal-SNPs

In terms of causal-SNP selection, LightGWAS selected 28 out of 100 SNPs, while

PLINK selected 19 SNPs out of 100. LightGWAS managed to pick 14 SNPs missed

by PLINK, and PLINK, in turn, managed to select 5 SNPs missed by LightGWAS.

As mentioned in section 3.5 (page 41), PLINK cut-off for causal-SNPs in this dataset

demanded p ≤ 5× 10−4 cut-off, as the cut-off p ≤ 5× 10−8 did not selected any SNP.
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4.2 Discussion

LightGWAS performed as good as PLINK for GWAS over balanced datasets (case :

control = 1 : 1). Although the slightly better performance of LightGWAS over

PLINK, the statistical tests disclosed in section 4.1.2 (page 51) showed that none

of the measured differences are statistically significant on cut-off α = 0.01. Also, the

measured effects through Cohen’s d presented a small standardised effect between all

the metrics’ means. In terms of causal-SNP selection, PLINK outperformed LightG-

WAS in four units. LightGWAS managed to identify 86 causal-SNPs, while PLINK

managed to identify 90 causal-SNPs. Both out of 100 causal-SNPs. Although the small

difference, it is believed that a few more iterations in the CV employed to select the

model’s hyperparameter could address it better for LightGWAS. Such results demon-

strate the effectiveness of LightGWAS as a GWAS method for balanced datasets, of

qualitative phenotypes.

The experiments involving an imbalanced dataset (case : control = 1 : 10) as

outlined in section 4.1.5 (page 54) brought evidences that support the alternative hy-

pothesis HA2. LightGWAS outperforms PLINK for such a scenario. Although recall

did not reach statistical significance on α = 0.01 (therefore as good as PLINK), all

the other metrics had relevant results on α = 0.01 (accuracy on α = 0.05). Further-

more, the metrics measured through non-parametric tests (recall, APS, ROC/AUC

and precision) resulted in a large effect (r ≥ 0.8). LightGWAS also selected four

more causal-SNPs than PLINK. LightGWAS identified 80 causal-SNPs while PLINK

76 SNPs.

When the models were submitted to a high-imbalanced dataset (case : control = 1 :

100), LightGWAS outperformed PLINK over every metric. Although the differences

did not reach statistical significance (α = 0.05), LightGWAS opened a medium effect

margin for recall (r ≥ 0.5 ∧ r < 0.8) and a large effect to the others (r ≥ 0.8) against

PLINK. Moreover, LightGBM selected fourteen causal-SNPs missed by PLINK, and

also outperformed it in nine units. LightGBM discovered 28 causal-SNPs and plink

19 causal-SNPs.
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Given the analysed results above, the proposed hypotheses of this dissertation are

concluded as follows:

The null hypothesis H01 that states: “LightGWAS do not outperform GLM based

on LR with Firth regularisation for GWAS, across genomic datasets of balanced (case :

control = 1 : 1) qualitative phenotypes, in terms of accuracy, precision, F1 score, and

ROC/AUC.” was maintained. LightGWAS performed as good as PLINK. There is no

sufficient evidence to reject such a null hypothesis based on the performed statistical

tests.

The null hypothesis H02 that states: “LightGWAS do not outperform GLM based

on LR with Firth regularisation for GWAS, across genomic datasets of imbalanced

(case : control = 1 : 10) qualitative phenotypes, in terms of precision, F1 score, and

ROC/AUC.” was rejected. LightGWAS outperformed PLINK for every measured

metric, having F1 and accuracy statistically significant on α = 0.05, APS, ROC/AUC

and precision statistically significant on α = 0.01.

The null hypothesis H03 that states: “LightGWAS do not outperform GLM based

on LR with Firth regularisation for GWAS, across genomic datasets of high-imbalanced

(case : control = 1 : 100) qualitative phenotypes, in terms of precision, F1 score, and

ROC/AUC.” was maintained. Although LightGWAS outperformed PLINK for every

measured metric, the results are not statistically significant on α = 0.05.

An important caveat is that statistical significance should not be the exclusive ap-

proach to evaluate how relevant is a GWAS model. As per Greenland et al. (2016), the

scientific perspective (or significance) of the problem should also be taken into consid-

eration. Although some metrics did not reach statistical significance, it is notorious

how satisfactory did LightGWAS to select causal-SNPs, while controlling by false-

positives and statistical power. Such an interpretation is especially correct within the

tests involving (high-)imbalanced datasets. The results from the experiments over the

ds1 100 dataset, for example (aimed to test the null hypothesis H03), had a medium

effect (r ≥ 0.5 ∧ d < 0.8) observed in the recall and and a large effect (r ≥ 0.8)

for the other measured metrics. Moreover, LightGWAS managed to select nine ex-

tra causal-SNPs over PLINK. Therefore, although the results were not statistically
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significant (which maintained the exemplified null hypothesis), they are scientifically

meaningful. By all the means, as earlier mentioned, the section 5.5 (page 69) present

recommendations for future studies. It is possible that increasing the CV iterations of

the LightGWAS design, to select the hyperparameters more accurately, will potentially

improve the results, and the outcomes may also become statistically significant.

To conclude this chapter, the research question “Can LightGWAS be an alternative

method to the state-of-the-art for genome-wide association studies, by increasing statis-

tical power on causal-SNP detection, and reduction of manual quality control steps?”

can be answered positively. The evidence collected from the tested hypotheses sup-

ports the theory that LightGWAS is a potential GWAS method, which performs as

good as the current state-of-the-art for balanced datasets, and relatively better for

imbalanced datasets.
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Conclusion

This dissertation has proposed the LightGWAS, a novel machine learning (ML) pro-

cedure for genome-wide association study (GWAS) based on LightGBM and k-fold

cross-validation (CV). Its effectiveness has been assessed throughout a comparison

with one of the available state-of-the-art implementations for GWAS, the PLINK2

(Hill et al., 2017). The experiments were designed and executed upon three different

datasets of qualitative phenotypes: (1) balanced (case : control = 1 : 1), (2) imbal-

anced (case : control = 1 : 10) and (3) high-imbalanced (case : control = 1 : 100)

class distribuitions. The results from statistical tests denoted that LightGWAS per-

forms equivalently to PLINK2 method for balanced dataset scenarios, and outperforms

for imbalanced and high-imbalanced datasets. The conducted literature review iden-

tified that the currently available GWAS implementations rely on massive manual

steps to address statistical problems, such as controlling for false-positive inflation

and power reduction (challenges increase as the data grows or become imbalanced).

It also showed they demand a particular GWAS method for each type of genomic

data structure, which increases human dependency. This research, thereupon, has

presented evidence that LightGWAS is a potential single, resilient, autonomous and

scalable solution to address such concerns.
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5.1 Research Overview

GWAS is a crucial method to identify genetic risk factors of living beings (Bush &

Moore, 2012). It aims to expose single-nucleotide polymorphisms (SNPs) (genetic

variants) correlated to phenotypes (genetic traits). Analogue to an ordinary model’s

dataset, the SNPs represent the features (or dependent variables), and the phenotype

the class (or independent variable). Therefore, GWAS allows the identification of ge-

netic variants associated with specific traits. Such variants are the causal-SNPs of a

phenotype (e.g., a disease). In this dissertation, LightGWAS has been presented as

an alternative to the state-of-the-art for GWAS implementations. LightGWAS is a

potential autonomous and self-contained GWAS method based on LightGBM: a leaf-

wise growth gradient boosted decision trees (GBDT) implementation, with gradient-

based one-side sampling (GOSS) and exclusive feature bundling (EFB). K-fold CV is

also part of the proposed architecture, which is employed to find the best hyperpa-

rameters for the gradient boosting machine (GBM) model, ensuring it will adapt to

different phenotype and genotype datasets’ morphology. LightGWAS is a potential

single-solution and scalable GWAS implementation that reduces human intervention.

In this dissertation, LightGWAS has been confronted against PLINK2 general linear

model (GLM) (Hill et al., 2017) implementation, one of the available state-of-the-art

for GWAS. The comparisons have been conducted with three different genomic data

structures of qualitative phenotype: balanced (case : control = 1 : 1), imbalanced

(case : control = 1 : 10), and high-imbalanced (case : control = 1 : 100) datasets.

Each model returned a set of causal-SNPs for each dataset. The models’ effectiveness

has been evaluated throughout the amounts of discovered causal-SNPs, as well as the

overlaps between them. A common ML classifier (based on logistic regression (LR)

with L1 regularization) was implemented to evaluate which GWAS method discov-

ered the most relevant causal-SNPs. It has been fit once with the SNPs selected by

LightGWAS, and another time with the SNPs returned by PLINK. Such a model se-

lection process was conducted through 50-folds CV. The measured metrics’ confidence

interval were calculated through 5000 bootstraps 95% CI technique.
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5.2 Problem Definition

The main problems surrounding the current state-of-the-art for GWAS implementa-

tions are related to maintaining statistical power by controlling false-positives through

quality control (QC) steps. The QC actions rely on multiple manual approaches, such

as choosing the correct statistical model depending on the phenotype and genomic

data structure, tunning the features through principal component (PC) extracted from

principal component analysis (PCA), and handling scaliness issues through external

genomic data sources for data imputation purposes. The available GWAS methods

also demands manual intervention whenever the minor allele frequency (MAF) differs

between cases and controls due to regular ancestry deviations. Such a scenario de-

nominates population stratification, and manual adjustments are required. Another

issue is the exponential growth of genomic datasets due to cheaper technologies for de-

oxyribonucleic acid (DNA) sequencing. Besides the size of the datasets, false-positives

tend to increase due to datasets too sparse, caused by the imbalanced distribution of

case-control phenotypes, and a large number of features (SNPs) with a few samples.

According to Bush & Moore (2012), SNPs datasets tend to be replaced by whole-

genome in the near term. This is a realistic prediction considering that computational

processing and storage capacity has increased at the same time their costs have re-

duced. It means that, instead of datasets with a few millions of SNPs, GWAS methods

will have to handle about 3 billion nucleotides (features in the datasets). The available

GWAS models, based exclusively on linear algorithms, are becoming obsolete for all

these reasons. The manual tasks nowadays applied to address the problems mentioned

above will be challenging across such scenarios, whether not impossible of execution.

5.3 Design/Experiments, Evaluation & Results

This research aimed to accomplish two main objectives: (a) To test if LightGWAS

can be used for GWAS. (b) To test if LightGWAS outperforms one of the GWAS im-

plementations that compose the current state-of-the-art. Since this research has been

conducted with genomic datasets of qualitative phenotypes, with about five thousand
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samples, the chosen GWAS method to compare with LightGWAS had to be an imple-

mentation based on GLM, which supports Firth regularisation, as per state-of-the-art

definitions. The chosen method, thereupon, was PLINK2 GLM (Hill et al., 2017).

Both LightGWAS and PLINK2 have been employed to discover the causal-SNPs. The

extracted SNPs have been utilized as independent variables over the common classifier.

The design has been grounded on literature reviews conducted through a secondary

research method, and the hypotheses examined through deductive reasoning.

Firstly, the involved datasets had to be gathered. Three qualitative phenotype

datasets have been simulated: ds1 1 (N = 5000, cases = 2500, controls = 2500),

ds1 10 (N = 4400, cases = 4000, controls = 400), and ds1 100 (N = 5050, cases =

5000, controls = 50). They represent, respectively, the following examined scenar-

ios: balance (case : control = 1 : 1), imbalanced (case : control = 1 : 10), and

high-imbalanced (case : control = 1 : 100) genomic datasets. Secondly, LightGWAS

was assembled. It is composed of a GBDT implementation called LightGBM frame-

work, along with k-fold CV for optimal parameters selection. Such a framework is

the state-of-the-art for GBM based on decision trees. The CV, in turn, ensures the

framework adapts to any genomic data structure, reducing human dependency and

allowing resilience and scalability of the model. Five folds over two hundred iterations

have been employed for such an end. Thirdly, both LightGWAS and PLINK were

utilised to perform GWAS across the early mentioned datasets. PLINK’s outcome is a

file with every SNPs accompanied by a p-value. The causal-SNPs filtering is reached

by assuming a cut-off (α) for such a p-value. For the datasets ds1 1 and ds1 10, the

cut-off p ≤ α|α = 5× 10−8 was assumed. In turn, for the dataset ds1 100, the cut-off

had to be α =≤ 5× 10−4 because no SNP was selected with the first one. Those

thresholds are the baseline for GWAS (Fadista et al., 2016; Mills & Rahal, 2019). The

LightGWAS, on the other hand, scores each SNP with the gain score of the decision

tree (DT) splits. Therefore, the extraction of the causal-SNPs selected by LightG-

WAS was, in fact, the list of features of importance generated right after the model’s

training.

Up to here, GWAS has been accomplished (causal-SNPs have been discovered).
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However, it is also in the scope of this research to compare how effective is LightGWAS

in comparison to PLINK. For this purpose, a third model has been employed (the

earlier mentioned common classifier): A ML model based on LR with support to L1

regularisation. It was fit upon two conditions: once the features were the causal-SNPs

collected by LightGWAS, and another with causal-SNPs selected by PLINK. The

class (or target), in turn, was the phenotype variable. As a result, a set of comparable

metrics was generated, allowing a contrast between LightGWAS and PLINK outcomes,

in statistical terms. The employed metrics were: weighted average of the precision

and recall (F1), recall, average precision score (APS), receiver operating characteristic

(ROC)/area under the curve (AUC), accuracy, and precision. The model selection

was done through 50-folds CV technique, which generated a separated dataset with

50 result samples of each metric. Also, each metric result had its confidence interval

(CI) set to 95% and validated through 5000 bootstraps’ samples. The evaluation was

performed through statistical tests. Dependent (paired) sample Student’s t-test has

been used for the metric result sets that held a normal distribution, and Wilcoxon

signed-rank test otherwise. Tests to assess whether the metrics were in a Gaussian

distribution were conducted with D’Agostino’s K2 Normality Test, analysing skewness

scores, kurtosis scores, and histogram plots. The effect of the observed mean differences

was calculated through Cohen’s d test, and Wilcoxon r score.

It has been observed that LightGWAS performed as good as PLINK for GWAS ap-

plied upon balanced datasets. LightGWAS had the best performance when measured

by F1, recall, and ROC/AUC, and PLINK outperformed on APS and precision. Al-

though such results, none of them reached statistical significance on α = 0.05, and the

measured differences in the means returned a small effect (d < 0.5) for every evaluated

metric. Also, LightGWAS discovered 86 causal-SNPs, while PLINK selected 90 causal-

SNPs. With that, the null hypothesis H01 that states “LightGWAS do not outperform

GLM based on LR with Firth regularisation for GWAS, across genomic datasets of

balanced (case : control = 1 : 1) qualitative phenotypes, in terms of accuracy, preci-

sion, F1 score, and ROC/AUC.” was maintained. There was no sufficient statistical

evidence to support that LightGWAS outperforms PLINK on balanced datasets of
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qualitative phenotypes.

In turn, the experiments over the imbalanced dataset resulted that LightGWAS

outperforms PLINK for every measured metric. Furtheremore, F1 and accuracy were

statistically significant on α = 0.05, and APS and ROC/AUC on α = 0.01. Recall

was the only one with no statistical significance (α = 0.05). However, it did reach a

large effect (r ≥ 0.8), along with APS, ROC/AUC, and precision. LightGWAS also

outperformed PLINK on the causal-SNPs selection. It discovered 80 causal-SNPs,

while PLINK did 76. Given these results, the null hypothesis H02 that states “Light-

GWAS do not outperform GLM based on LR with Firth regularisation for GWAS,

across genomic datasets of imbalanced (case : control = 1 : 10) qualitative phenotypes,

in terms of precision, F1 score, and ROC/AUC.” was rejected. It was found statistical

evidence that LightGWAS outperforms PLINK for GWAS with imbalanced datasets

of qualitative phenotypes.

Last but not least, the results from the experiments with a high-imbalanced dataset

disclosed that LightGWAS outperformed PLINK with a large effect (r ≥ 0.8) across

all the measured metrics. However, with no statistical significance on α = 0.5 for

any of them. LightGWAS also selected more causal-SNPs (28 units) than plink (19

units). Hence, the H03 that states “LightGWAS do not outperform GLM based on

LR with Firth regularisation for GWAS, across genomic datasets of high-imbalanced

(case : control = 1 : 100) qualitative phenotypes, in terms of precision, F1 score, and

ROC/AUC.” was maintained. Although the large effect over the measured metrics,

they did not reach statistical significance, thus, there is no enough statistical evidence

that LightGWAS outperform PLINK for such a scenario.

There is a crucial point about the results aforementioned: As advised by Greenland

et al. (2016), statistical significance should not be taken as the unique and final way

to assess the relevance of a model. The scientific perspective (or significance) should

also be considered. For example, although the results on high-imbalanced dataset did

not reach statistical significance, the large effect observed for every metric are rea-

sons of concern. The nonparametric approach provided by LightGWAS demonstrated

to be more efficient than PLINK when the datasets are (high-)imbalanced. Since
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LightGWAS outperformed PLINK consistently for such scenarios (95% of confidence

interval has been ensured for every measured metric), it is reasonable to conclude that,

although some outcomes did not reach statistical significance, they are scientifically

meaningful for GWAS context.

5.4 Contributions and Impact

The proposed GWAS technique in this dissertation, LightGWAS, is a potential single-

solution for every GWAS scenario. It reduces human dependency by employing ML

techniques to eliminate manual QC steps often required by current state-of-the-art

implementations. It has been validated with genomic datasets composed by quali-

tative phenotypes, with about 5,000 samples, in a balanced, imbalanced, and high-

imbalanced trait distribution.

LightGWAS is based on LightGBM, the state-of-the-art for GBDT implementa-

tions. LighGBM is a framework designed to be highly efficient, with low memory con-

sumption, capable of handling large and high-sparse data. It also supports graphics

processing unit (GPU) technology, which reduces the models’ training time signifi-

cantly. Hence, this dissertation shows originality by taking a specific technique and

applying it in a new domain. K-fold CV is also part of LightGWAS architecture. It

is used for optimal parameters selection, which, in turn, ensures the underlying GBM

model will adapt to any genomic data structure. It helps to reduce (possibly dismiss)

human intervention, as QC steps to address statistical power is automatically han-

dled through the model’s adaptability. Therefore, LightGWAS can scale, following

the growth of genomic datasets. As it eliminates manual interactions, it could even

be automated through a computational pipeline.

This research has presented statistical evidence from empirical tests that Light-

GWAS can be used as a GWAS alternative procedure to the current state-of-the-art

available methods. For all these reasons, LightGWAS is a new contribution from data

science towards the evolvement of molecular biology science.
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5.5 Future Work

This research has compared LightGWAS with PLINK2 GLM (Hill et al., 2017) asso-

ciation model. However, the current state-of-the-art for GWAS is composed of three

methods: GLM with a regularisation function (such as the mentioned PLINK2 GLM),

linear mixed model (LMM) (eg., BOLT-LMM), and scalable and accurate implementa-

tion of generalized mixed model (SAIGE). Depending on the phenotype representation

(quantitative or qualitative), the size of the data, and the distribution, one of them

should be employed. Therefore, for future studies, it is recommended to test LightG-

WAS against LMM, and SAIGE as well.

This research has been conducted with synthetic qualitative phenotype datasets.

Hence, it should also be replicated with real data, of either qualitative and quantitative

traits, so that LightGWAS can be evaluated against different data structures of real-

world genomic datasets.

The causal-SNPs selected by LightGWAS are the products of a randomised search

on hyperparameters with 5-fold CV 200 iterations. It is suggested for future studies

to explore different numbers of iterations as much as the CV techniques, such as using

grid search instead of randomised search CV.

Last but not least, it is recommended a research to develop a mechanism to identify

causal-SNPs from DT’s gain score, as no p-values exist in such a context for GWAS.

It is crucial to develop a system analogue to the cut-off employed by the current

state-of-the-art regression models for GWAS to filter causal-SNPs (p ≤ α).
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Appendix A

Suplementary Material

Parameters Ranges

learning rate [0.01, 0.02, 0.03, 0.04, 0.05, 0.08, 0.1, 0.2, 0.3, 0.4]

n estimators [100, 200, 300, 400, 500, 600, 800, 1000, 1500, 2000, 3000, 5000]

num leaves sp randint(6, 50)

min child samples sp randint(100, 500)

min child weight [1e− 5, 1e− 3, 1e− 2, 1e− 1, 1, 1e1, 1e2, 1e3, 1e4]

subsample sp uniform(loc = 0.2, scale = 0.8)

max depth [−1, 1, 2, 3, 4, 5, 6, 7]

colsample bytree sp uniform(loc = 0.4, scale = 0.6)

reg alpha [0, 1e− 1, 1, 2, 5, 7, 10, 50, 100]

reg lambda [0, 1e− 1, 1, 5, 10, 20, 50, 100]

Table A.1: LightGBM hyperparameters’ ranges for the 5-fold CV.
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APPENDIX A. SUPLEMENTARY MATERIAL

Figure A.1: ds1 1 5k bootstraps: pairwise KDE relationships.
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Figure A.2: ds1 10 5k bootstraps: pairwise KDE relationships.
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APPENDIX A. SUPLEMENTARY MATERIAL

Figure A.3: ds1 100 5k bootstraps: pairwise KDE relationships. Note: Omitted recall

because its data did not satisfy a KDE plot.
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APPENDIX A. SUPLEMENTARY MATERIAL

50-folds Cross-Validation f1 recall average precision roc auc accuracy precision

LightGWAS mean 0.967 436 0.9668 0.995 725 0.995 664 0.9674 0.968 505

LightGWAS std 0.017 298 0.020 045 0.003 669 0.003 572 0.017 474 18 0.024 702

LightGWAS Mdn 0.969 697 0.96 0.996 973 0.9968 0.97 0.978 945

LightGWAS skew −0.254 781 −0.474 451 −1.430 597 −1.109 939 −0.291 389 1 −0.700 194

LightGWAS kurtosis −0.647 515 0.048 439 2.2084 0.671 16 −0.610 907 6 0.033 728

LightGWAS SE 0.002 446 0.002 835 0.000 519 0.000 505 0.002 471 222 0.003 493

PLINK mean 0.967 416 0.9664 0.995 748 0.995 648 0.9674 0.968 896

PLINK std 0.016 862 0.020 38 0.003 506 0.003 49 0.017 000 6 0.024 434

PLINK Mdn 0.969 997 0.96 0.996 767 0.9968 0.97 0.970 131

PLINK skew −0.189 643 −0.438 049 −1.386 734 −1.107 475 −0.216 736 6 −0.610 631

PLINK kurtosis −0.753 602 −0.122 315 2.036 149 0.725 61 −0.732 358 5 −0.006 701

PLINK SE 0.002 385 0.002 882 0.000 496 0.000 494 0.002 404 248 0.003 456

LightGWAS Agostino stats 1.650 727 2.424 599 20.182 116 11.210 152 1.648 631 4.638 44

LightGWAS Agostino p-val 0.438 076 0.297 512 0.000 041 0.003 679 0.438 535 2 0.098 35

LightGWAS Agostino sig 5%? 0 0 1 1 0 0

LightGWAS Agostino sig 1%? 0 0 1 1 0 0

PLINK Agostino stats 2.133 753 1.915 882 19.077 826 11.335 082 2.063 66 3.626 191

PLINK Agostino p-val 0.344 082 0.383 682 0.000 072 0.003 456 0.356 354 2 0.163 148

PLINK Agostino sig 5%? 0 0 1 1 0 0

PLINK Agostino sig 1%? 0 0 1 1 0 0

LightGWAS ≥ PLINK (M)? 1 1 0 1 1 0

MD 0.000 02 0.0004 0.000 022 0.000 016 0 0.000 39

LightGWAS ≥ PLINK (Mdn)? 0 1 1 1 1 1

MdnD 0.0003 0 0.000 206 0 0 0.008 814

LightGWAS 5k BS 95% (0.025) 0.961 616 0.952 0.996 011 0.995 76 0.962 0.963 563

LightGWAS 5k BS 95% (0.975) 0.981 966 0.984 0.998 711 0.998 672 0.982 0.987 904

LightGWAS M 95% CI? 1 1 0 0 1 1

LightGWAS Mdn 95% CI? 1 1 1 1 1 1

PLINK 5k BS 95% (0.025) 0.961 767 0.952 0.996 256 0.996 08 0.962 0.963 71

PLINK 5k BS 95% (0.975) 0.983 936 0.984 0.998 87 0.998 848 0.984 0.991 701

PLINK M 95% CI? 1 1 0 0 1 1

PLINK Mdn 95% CI? 1 1 1 1 1 1

t test paired stats 0.028 797 0.374 701 −0.211 063 0.156 564 3.172 73× 10−15 −0.449 793

t test pvalues 0.977 144 0.709 499 0.833 713 0.876 232 1 0.654 843

t test sig 5%? 0 0 0 0 0 0

t test sig 1%? 0 0 0 0 0 0

wilcoxon paired stats 33.5 11.5 312 306.5 36 28.5

wilcoxon pvalues 0.665 775 0.660 39 0.741 455 0.888 696 0.796 253 4 0.688 646

wilcoxon sig 5%? 0 0 0 0 0 0

wilcoxon sig 1%? 0 0 0 0 0 0

wilcoxon effect (r) 4.737 615 1.626 346 44.123 463 43.345 646 5.091 169 4.030 509

Cohen’s d 0.001 191 0.019 789 0.006 192 0.004 531 0 0.015 893

Table A.2: 50-folds CV: Raw results from dataset ds1 1.
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50-folds Cross-Validation f1 recall average precision roc auc accuracy precision

LightGWAS mean −0.028 533 −0.027 714 −0.002 709 −0.002 796 −0.028 102 −0.024 036

LightGWAS std 0.013 84 0.014 812 0.001 61 0.001 666 0.013 58 0.016 216

LightGWAS Mdn −0.027 483 −0.033 957 −0.002 428 −0.002 561 −0.026 918 −0.018 685

LightGWAS skew −0.031 128 −0.018 228 −0.171 534 −0.169 555 −0.033 926 −0.076 465

LightGWAS kurtosis −0.673 704 −0.263 189 −0.737 99 −0.794 309 −0.649 081 −0.704 379

LightGWAS SE 0.001 957 0.002 095 0.000 228 0.000 236 0.001 92 0.002 293

PLINK mean −0.029 364 −0.028 182 −0.002 743 −0.002 841 −0.028 986 −0.024 584

PLINK std 0.014 162 0.015 22 0.001 577 0.001 65 0.013 948 0.017 135

PLINK Mdn −0.027 791 −0.034 186 −0.002 564 −0.002 571 −0.027 518 −0.025 516

PLINK skew −0.026 962 −0.024 677 −0.144 426 −0.152 787 −0.029 652 −0.065 971

PLINK kurtosis −0.737 852 −0.368 035 −0.673 915 −0.759 156 −0.721 024 −0.745 655

PLINK SE 0.002 003 0.002 152 0.000 223 0.000 233 0.001 973 0.002 423

LightGWAS Agostino stats 1.164 581 0.006 975 1.932 952 2.450 383 1.013 517 1.427 66

LightGWAS Agostino p-val 0.558 617 0.996 518 0.380 421 0.293 701 0.602 445 0.489 765

LightGWAS Agostino sig 5%? 0 0 0 0 0 0

LightGWAS Agostino sig 1%? 0 0 0 0 0 0

PLINK Agostino stats 1.637 456 0.085 853 1.370 528 2.055 321 1.502 753 1.741 151

PLINK Agostino p-val 0.440 992 0.957 982 0.503 957 0.357 843 0.471 717 0.418 711

PLINK Agostino sig 5%? 0 0 0 0 0 0

PLINK Agostino sig 1%? 0 0 0 0 0 0

LightGWAS ≥ PLINK (M) 1 1 1 1 1 1

MD 0.000 831 0.000 468 0.000 034 0.000 045 0.000 884 0.000 548

LightGWAS ≥ PLINK (Mdn) 1 1 1 1 1 1

MdnD 0.000 308 0.000 229 0.000 136 0.000 009 0.0006 0.006 831

LightGWAS 5k BS 95% (0.025) −0.030 646 −0.043 222 −0.002 617 −0.002 733 −0.030 386 −0.030 964

LightGWAS 5k BS 95% (0.975) −0.016 198 −0.015 45 −0.001 117 −0.001 148 −0.016 166 −0.011 452

LightGWAS M 95% CI? 1 1 0 0 1 1

LightGWAS Mdn 95% CI? 1 1 1 1 1 1

PLINK 5k BS 95% (0.025) −0.033 055 −0.043 506 −0.002 457 −0.002 526 −0.032 977 −0.031 637

PLINK 5k BS 95% (0.975) −0.015 104 −0.015 484 −0.000 988 −0.001 005 −0.015 066 −0.008 04

PLINK M 95% CI? 1 1 0 0 1 1

PLINK Mdn 95% CI? 1 1 0 0 1 1

t test paired stats 1.498 461 0.618 888 0.559 679 0.744 993 1.656 281 0.915 925

t test pvalues 0.140 429 0.538 857 0.578 248 0.459 835 0.104 056 0.364 192

t test sig 5%? 0 0 0 0 0 0

t test sig 1%? 0 0 0 0 0 0

wilcoxon paired stats 237 124 511 486 237 114

wilcoxon pvalues 0.000 316 0.000 007 0.574 894 0.409 13 0.000 307 0.000 068

wilcoxon sig 5%? 1 1 0 0 1 1

wilcoxon sig 1%? 1 1 0 0 1 1

wilcoxon sig 1%? 33.516 861 17.536 248 72.266 313 68.730 779 33.516 861 16.122 035

Cohen’s d 0.059 381 0.031 137 0.021 258 0.027 091 0.064 197 0.032 854

Table A.3: 50-folds CV: Transformed (Box-Cox) raw results from dataset ds1 1.
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50-folds Cross-Validation f1 recall average precision roc auc accuracy precision

LightGWAS mean 0.993 251 0.993 75 0.999 829 6 0.998 281 3 0.987 727 0.992 842

LightGWAS std 0.005 909 0.009 193 0.000 272 074 0.002 738 358 0.010 729 0.008 637

LightGWAS Mdn 0.993 789 1 1 1 0.988 636 1

LightGWAS skew −0.437 164 −1.399 523 −1.690 604 −1.684 362 −0.428 431 −0.761 914

LightGWAS kurtosis −0.761 655 1.423 282 2.118 442 2.117 041 −0.779 717 −0.658 681

LightGWAS SE 0.000 836 0.0013 0.000 038 477 0.000 387 262 0.001 517 0.001 221

PLINK mean 0.991 394 0.993 0.999 671 0.996 718 8 0.984 318 0.989 887

PLINK std 0.006 772 0.009 161 0.000 485 632 0.004 748 225 0.012 34 0.010 093

PLINK Mdn 0.993 75 1 0.999 845 7 0.998 437 5 0.988 636 0.987 654

PLINK skew −0.560 334 −1.204 521 −2.064 277 −1.891 769 −0.553 625 −0.728 877

PLINK kurtosis −0.660 631 1.044 466 4.797 388 3.653 708 −0.699 161 −0.109 119

PLINK SE 0.000 958 0.001 296 6.867 87× 10−5 0.000 671 5 0.001 745 0.001 427

LightGWAS Agostino stats 3.702 605 17.397 629 23.4721 23.382 98 3.803 618 6.169 216

LightGWAS Agostino p-val 0.157 032 0.000 167 8.000 17× 10−6 8.3647× 10−6 0.149 298 0.045 748

LightGWAS Agostino sig 5%? 0 1 1 1 0 1

LightGWAS Agostino sig 1%? 0 1 1 1 0 0

PLINK Agostino stats 4.029 561 13.585 975 35.251 48 30.331 43 4.222 832 4.786 879

PLINK Agostino p-val 0.133 35 0.001 122 2.214 31× 10−8 2.591 88× 10−7 0.121 066 0.091 315

PLINK Agostino sig 5%? 0 1 1 1 0 0

PLINK Agostino sig 1%? 0 1 1 1 0 0

LightGWAS ≥ PLINK (M)? 1 1 1 1 1 1

MD 0.001 857 0.000 75 0.000 158 663 0.001 562 5 0.003 409 0.002 955

LightGWAS ≥ PLINK (Mdn)? 1 1 1 1 1 1

MdnD 0.000 039 0 0.000 154 321 0.001 562 5 0 0.012 346

LightGWAS 5k BS 95% (0.025) 0.987 562 0.99 0.999 461 7 0.994 75 0.977 273 0.980 344

LightGWAS 5k BS 95% (0.975) 0.996 255 1 0.999 925 5 0.999 25 0.993 182 0.995

LightGWAS M 95% CI? 1 1 1 1 1 1

LightGWAS Mdn 95% CI? 1 1 0 0 1 0

PLINK 5k BS 95% (0.025) 0.985 0.985 0.999 182 7 0.991 937 5 0.972 727 0.980 247

PLINK 5k BS 95% (0.975) 0.993 789 0.9975 0.999 863 0.998 625 0.988 636 0.992 537

PLINK M 95% CI? 1 1 1 1 1 1

PLINK Mdn 95% CI? 1 0 1 1 1 1

t test paired stats 2.364 684 0.596 12 2.786 933 2.829 582 2.393 172 3.060 335

t test pvalues 0.022 051 0.553 839 0.007 549 595 0.006 737 659 0.020 579 0.003 581

t test sig 5%? 1 0 1 1 1 1

t test sig 1%? 0 0 1 1 0 1

wilcoxon paired stats 183.5 113.5 54 48.5 141.5 37.5

wilcoxon pvalues 0.131 427 0.662 096 0.002 023 744 0.006 190 166 0.022 961 0.006 574

wilcoxon sig 5%? 0 0 1 1 1 1

wilcoxon sig 1%? 0 0 1 1 0 1

wilcoxon effect (r) 25.950 819 16.051 324 7.636 753 6.858 936 20.011 122 5.303 301

Cohen’s d 0.292 229 0.081 727 0.403 093 2 0.403 138 6 0.294 84 0.314 576

Table A.4: 50-folds CV: Raw results from dataset ds1 10.
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50-folds Cross-Validation f1 recall average precision roc auc accuracy precision

LightGWAS mean −0.005 377 −0.002 948 878 −0.000 071 −0.000 721 −0.009 824 −0.004 344 802

LightGWAS std 0.004 365 0.003 852 838 0.000 093 0.000 942 0.007 978 0.004 881 851

LightGWAS Mdn −0.005 485 0 0 0 −0.010 055 0

LightGWAS skew −0.093 928 −0.576 890 2 −0.690 782 −0.689 184 −0.094 276 −0.328 988 1

LightGWAS kurtosis −1.157 434 −1.540 471 −1.255 568 −1.260 038 −1.160 249 −1.643 616

LightGWAS SE 0.000 617 0.000 544 874 0.000 013 0.000 133 0.001 128 0.000 690 398

PLINK mean −0.006 505 −0.003 917 629 −0.000 159 −0.001 601 −0.011 875 −0.007 297 474

PLINK std 0.004 438 0.004 569 232 0.000 174 0.001 741 0.008 109 0.006 578 759

PLINK Mdn −0.005 463 0 −0.000 133 −0.001 342 −0.009 947 −0.009 968 196

PLINK skew −0.100 787 −0.395 724 −0.531 144 −0.522 888 −0.103 597 −0.147 752 6

PLINK kurtosis −0.912 839 −1.600 168 −1.230 784 −1.242 435 −0.918 638 −1.233 779

PLINK SE 0.000 628 0.000 646 187 0.000 025 0.000 246 0.001 147 0.000 930 377

LightGWAS Agostino stats 10.038 052 54.890 58 18.980 926 19.228 235 10.149 779 96.399 34

LightGWAS Agostino p-val 0.006 611 1.2041× 10−12 0.000 076 0.000 067 0.006 252 1.167 21× 10−21

LightGWAS Agostino sig 5%? 1 1 1 1 1 1

LightGWAS Agostino sig 1%? 1 1 1 1 1 1

PLINK Agostino stats 3.787 901 73.781 37 15.974 62 16.529 008 3.886 607 13.676 95

PLINK Agostino p-val 0.150 476 9.518 72× 10−17 0.000 34 0.000 257 0.143 23 0.001 071 735

PLINK Agostino sig 5%? 0 1 1 1 0 1

PLINK Agostino sig 1%? 0 1 1 1 0 1

LightGWAS ≥ PLINK (M) 1 1 1 1 1 1

MD 0.001 128 0.000 968 751 0.000 088 0.000 88 0.002 05 0.002 952 672

LightGWAS ≥ PLINK (Mdn) 0 1 1 1 0 1

MdnD 0.000 022 0 0.000 133 0.001 342 0.000 108 0.009 968 196

LightGWAS 5k BS 95% (0.025) −0.010 322 −0.007 261 454 −0.000 277 −0.002 834 −0.018 81 −0.015 558 13

LightGWAS 5k BS 95% (0.975) −0.003 537 0 −0.000 067 −0.000 68 −0.006 435 −0.004 703 822

LightGWAS M 95% CI? 1 1 1 1 1 0

LightGWAS Mdn 95% CI? 1 1 0 0 1 0

PLINK 5k BS 95% (0.025) −0.012 207 −0.011 131 11 −0.000 405 −0.004 112 −0.022 255 −0.015 367 45

PLINK 5k BS 95% (0.975) −0.005 694 −0.002 373 796 −0.000 12 −0.001 209 −0.010 426 −0.006 771 662

PLINK M 95% CI? 1 1 1 1 1 1

PLINK Mdn 95% CI? 0 0 1 1 0 1

t test paired stats 2.078 324 1.536 095 4.483 247 4.467 655 2.073 969 4.600 788

t test pvalues 0.042 939 0.130 947 6 0.000 044 0.000 047 0.043 359 2.995 36× 10−5

t test sig 5%? 1 0 1 1 1 1

t test sig 1%? 0 0 1 1 0 1

wilcoxon paired stats 355 129 38 38 360 37

wilcoxon pvalues 0.153 842 0.090 138 26 0.000 103 0.000 103 0.171 386 3.440 88× 10−5

wilcoxon sig 5%? 0 0 1 1 0 1

wilcoxon sig 1%? 0 0 1 1 0 1

wilcoxon effect (r) 50.204 581 18.243 355 5.374 012 5.374 012 50.911 688 5.232 59

Cohen’s d 0.256 334 0.229 222 8 0.633 073 0.628 972 0.254 902 0.509 716 2

Table A.5: 50-folds CV: Transformed (Box-Cox) raw results from dataset ds1 10.
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50-folds Cross-Validation f1 recall average precision roc auc accuracy precision

LightGWAS mean 0.997 205 0.9986 0.999 857 0.987 0.994 455 0.995 83

LightGWAS std 0.003 806 0.004 522 055 0.000 564 904 0.048 497 84 0.007 527 0.004 951

LightGWAS Mdn 1 1 1 1 1 1

LightGWAS skew −1.505 589 −3.267 018 −5.734 615 −5.505 747 −1.484 58 −0.324 387

LightGWAS kurtosis 2.256 867 9.746 949 33.536 16 31.148 27 2.169 348 −1.894 484

LightGWAS SE 0.000 538 0.000 639 515 7.988 94× 10−5 0.006 858 631 0.001 064 0.0007

PLINK mean 0.996 713 0.9994 0.999 822 7 0.9826 0.993 465 0.994 053

PLINK std 0.002 956 0.002 398 979 0.000 303 524 0.029 263 75 0.005 869 0.004 905

PLINK Mdn 0.995 025 1 1 1 0.990 099 0.990 099

PLINK skew −0.261 505 −3.705 468 −2.295 627 −2.218 764 −0.250 315 0.408 179

PLINK kurtosis −0.642 297 11.7305 4.997 979 4.598 109 −0.668 302 −1.833 295

PLINK SE 0.000 418 0.000 339 267 4.292 48× 10−5 0.004 138 52 0.000 83 0.000 694

LightGWAS Agostino stats 21.348 364 58.330 86 99.222 67 96.246 02 20.806 61 1461.396 217

LightGWAS Agostino p-val 0.000 023 2.155 83× 10−13 2.844 93× 10−22 1.260 21× 10−21 0.000 03 0

LightGWAS Agostino sig 5%? 1 1 1 1 1 1

LightGWAS Agostino sig 1%? 1 1 1 1 1 1

PLINK Agostino stats 1.654 855 65.6021 38.701 19 36.850 01 1.755 615 4711.908 093

PLINK Agostino p-val 0.437 172 5.6844× 10−15 3.945 87× 10−9 9.956 84× 10−9 0.415 693 0

PLINK Agostino sig 5%? 0 1 1 1 0 1

PLINK Agostino sig 1%? 0 1 1 1 0 1

LightGWAS ≥ PLINK (M)? 1 0 1 1 1 1

MD 0.000 492 0.0008 3.432 68× 10−5 0.0044 0.000 99 0.001 776

LightGWAS ≥ PLINK (Mdn)? 1 1 1 1 1 1

MdnD 0.004 975 0 0 0 0.009 901 0.009 901

LightGWAS 5k BS 95% (0.025) 0.994 024 0.996 0.999 624 0.964 0.988 119 0.990 079

LightGWAS 5k BS 95% (0.975) 0.997 009 1 0.999 984 0.9984 0.994 059 0.996 008

LightGWAS M 95% CI? 0 1 1 1 0 1

LightGWAS Mdn 95% CI? 0 1 0 0 0 0

PLINK 5k BS 95% (0.025) 0.994 0.994 0.999 329 8 0.9376 0.988 119 0.990 079

PLINK 5k BS 95% (0.975) 0.997 009 1 0.999 851 4 0.9852 0.994 059 0.994 036

PLINK M 95% CI? 1 1 1 1 1 0

PLINK Mdn 95% CI? 1 1 0 0 1 1

t test paired stats 0.647 493 −1.158 648 0.378 819 2 0.549 943 9 0.658 505 1.691

t test pvalues 0.520 335 0.252 215 4 0.706 458 6 0.584 856 0.513 296 0.097 189

t test sig 5%? 0 0 0 0 0 0

t test sig 1%? 0 0 0 0 0 0

wilcoxon paired stats 183 5 163.5 166.5 180 176

wilcoxon pvalues 0.430 596 0.234 194 3 0.095 637 79 0.107 380 9 0.387 66 0.342 925

wilcoxon sig 5%? 0 0 0 0 0 0

wilcoxon sig 1%? 0 0 0 0 0 0

wilcoxon effect (r) 25.880 108 0.707 107 23.122 392 23.546 656 25.455 844 24.890 159

Cohen’s d 0.144 224 0.221 014 4 0.075 700 46 0.109 855 8 0.146 695 0.360 441

Table A.6: 50-folds CV: Raw results from dataset ds1 100.
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50-folds Cross-Validation f1 recall average precision roc auc accuracy precision

LightGWAS mean −0.001 527 229 −0.000 141 542 −0.000 034 −0.003 485 −0.003 044 371 −0.002 676 829

LightGWAS std 0.001 782 568 0.000 428 937 0.000 065 0.006 621 0.003 552 989 0.003 177 622

LightGWAS Mdn 0 0 0 0 0 0

LightGWAS skew −0.406 215 6 −2.666 668 −1.592 403 −1.592 973 −0.405 472 7 −0.324 249 4

LightGWAS kurtosis −1.558 453 5.111 118 1.109 876 1.112 696 −1.560 344 −1.894 763

LightGWAS SE 0.000 252 093 6.066 09× 10−5 0.000 009 0.000 936 0.000 502 469 0.000 449 384

PLINK mean −0.002 896 239 −3.618 12× 10−5 −0.000 076 −0.007 666 −0.005 787 792 −0.011 760 04

PLINK std 0.002 534 869 0.000 144 663 0.000 092 0.009 325 0.005 065 214 0.009 699 853

PLINK Mdn −0.004 465 761 0 0 0 −0.008 924 837 −0.019 565 7

PLINK skew −0.045 691 42 −3.705 468 −0.680 763 −0.680 856 −0.045 028 59 0.408 034 6

PLINK kurtosis −1.116 007 11.7305 −1.072 171 −1.071 976 −1.117 365 −1.833 212

PLINK SE 0.000 358 485 2.045 85× 10−5 0.000 013 0.001 319 0.000 716 329 0.001 371 766

LightGWAS Agostino stats 58.598 32 43.626 26 19.070 126 19.086 572 59.181 44 1457.907

LightGWAS Agostino p-val 1.885 98× 10−13 3.362 62× 10−10 0.000 072 0.000 072 1.409 01× 10−13 0

LightGWAS Agostino sig 5%? 1 1 1 1 1 1

LightGWAS Agostino sig 1%? 1 1 1 1 1 1

PLINK Agostino stats 8.467 788 65.6021 11.295 258 11.290 75 8.512 637 4611.49

PLINK Agostino p-val 0.014 495 83 5.6844× 10−15 0.003 526 0.003 534 0.014 174 39 0

PLINK Agostino sig 5%? 1 1 1 1 1 1

PLINK Agostino sig 1%? 0 1 1 1 0 1

LightGWAS ≥ PLINK (M) 1 0 1 1 1 1

MD 0.001 369 009 0.000 105 361 0.000 041 0.004 181 0.002 743 421 0.009 083 211

LightGWAS ≥ PLINK (Mdn) 1 1 1 1 1 1

MdnD 0.004 465 761 0 0 0 0.008 924 837 0.019 565 7

LightGWAS 5k BS 95% (0.025) −0.008 252 685 −0.001 627 458 −0.000 144 −0.014 33 −0.016 492 93 −0.035 706 38

LightGWAS 5k BS 95% (0.975) −0.003 501 117 0 −0.000 015 −0.001 523 −0.006 968 625 −0.006 382 508

LightGWAS M 95% CI? 0 1 1 1 0 0

LightGWAS Mdn 95% CI? 0 1 0 0 0 0

PLINK 5k BS 95% (0.025) −0.003 949 765 −0.004 090 314 −0.000 293 −0.029 099 −0.007 831 213 −0.001 817 311

PLINK 5k BS 95% (0.975) −0.002 408 406 0 −0.000 12 −0.012 098 −0.004 784 587 −0.001 756 223

PLINK M 95% CI? 1 1 0 0 1 0

PLINK Mdn 95% CI? 0 1 0 0 0 0

t test paired stats 2.899 631 −1.753 387 2.517 852 2.516 754 2.910 195 6.054 518

t test pvalues 0.005 577 558 0.085 789 48 0.015 125 0.015 167 0.005 419 658 1.928 75× 10−7

t test sig 5%? 1 0 1 1 1 1

t test sig 1%? 1 0 0 0 1 1

wilcoxon paired stats 199 3 123 123 199 55

wilcoxon pvalues 0.004 148 562 0.061 569 84 0.014 121 0.014 121 0.004 148 562 1.412 84× 10−6

wilcoxon sig 5%? 1 0 1 1 1 1

wilcoxon sig 1%? 1 0 0 0 1 1

wilcoxon effect (r) 28.142 85 0.424 264 17.394 827 17.394 827 28.142 85 7.778 175

Cohen’s d 0.624 763 4 0.329 160 4 0.517 258 0.517 021 0.627 076 9 1.258 499

Table A.7: 50-folds CV: Transformed (Box-Cox) raw results from dataset ds1 100.
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