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Abstract

The Computational Haemodynamics Research Group (CHRG) in Technological

University Dublin is developing a computational fluid dynamics (CFD) software

package aimed specifically at physiologically-realistic modelling of blood flow. A

physiologically-realistic model of blood flow involves calculating the deformation

of individual red blood cells (RBCs) and the contribution of this deformation to

the overall blood flow. The CHRG has developed an enhanced spring-particle

RBC structural model that is capable of modelling the full stomatocyte-discocyte-

echinocyte (SDE) transformation. This RBC model, incorporated into a fluid

dynamics solver, will provide a physiologically-realistic blood flow model. In this

work the overall plasma flow is modelled using a novel technique: the lattice Boltz-

mann flux solver (LBFS). This is an innovative approach to solving the Navier-

Stokes (N-S) equations for fluid flow. It involves solving the macroscopic equations

using the finite volume method (FVM) and calculating the flux across the cell in-

terfaces via a local reconstruction of the lattice Boltzmann equation (LBE). Fluid-

struture interaction between the RBC and the plasma is captured by coupling the

RBC solver to the LBFS via the immersed boundary method (IBM). Numerical

experiments investigating RBC dynamics are performed using non-uniform grids

and validated against existing experimental data in the literature. Finally all nu-

merical solvers are developed using general purpose GPU programming (GPGPU)

and this is shown to accelerate simulation runtimes significantly.
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Chapter 1

Introduction and Literature

Review

1.1 Introduction

In this chapter, the underlying research motivation of this thesis is introduced

along with the different areas of the research problem. These areas include the rhe-

ology and haemodynamics of blood flow, the structure of red blood cells (RBCs),

the various existing approaches to structural modelling of RBCs, the various ex-

isting approaches to the two-phase modelling of blood flow, the various existing

approaches to modelling fluid flow and runtime acceleration of numerical solvers.

The aims of the research are then presented and the original contributions of

the research are then discussed. The structure of the thesis is described and the

publications derived from the research are noted.

1.2 Research Motivation

The circulatory system is a key organ system that allows blood to circulate and

transport oxygen, nutrients, waste products, molecules and cells critical to the

function of an organism. Cardiovascular diseases are the biggest cause of death

in the world [13]. As a result there is significant interest and research into under-

standing the circulatory system and developing more sophisticated approaches to

combating cardiovascular diseases. A key element of this research is creating a full
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understanding of blood flow that can then be used in real world applications such

as biomedical device design and drug delivery. Empirical indices, in-vitro and in-

vivo experimental tests have all been developed to create a better understanding

of blood flow to aid real world biomedical design applications [14]. However these

approaches all have deficiencies, empirical indices lack generality outside of labo-

ratory conditions and in-vitro and in-vivo methods are very expensive and time

consuming especially in the context of the multiple design iterations involved in

modern day engineering design processes. As a result there is a demand to develop

accurate in-silico models of blood flow which would enable bespoke modelling of

real world problems and reduce the need for costly and time-consuming in-vivo

and in-vitro models.

Computational fluid dynamics (CFD) simulations are increasingly being used to

model blood flow in real world applications such as deployed stents and heart

valves. CFD packages such as ANSYS CFX [15], OpenFoam [16] [17] and Star-CD

[18] have all been used to model macro-scale problems. However these packages use

the assumption that blood is a non-Newtonian, incompressible and homogenous

fluid. Blood is far from homogeneous in nature with 37-54% of its volume con-

sisting of suspended RBCs in plasma [19]. This assumption of homogeneity leads

to very questionable conclusions when existing commercial packages are used to

model the physiological behaviour of blood. This assumption ignores that RBCs

are deformable objects that are free to move through the plasma. RBC location

and velocities can have a key role in the development of certain cardiovascular

diseases e.g. thrombosis [20]. However tracking and calculating the deformation

of individual RBCs is an extremely computationally expensive process. The de-

velopment of a numerical blood flow model which captures the deformations of

individual RBCs with the computational efficiency to model real world problems

would be a major advancement to combatting cardiovascular diseases.

1.3 Rheology and Haemodynamics of Blood Flow

As mentioned above, blood is a suspension of cellular elements in plasma. These

cellular elements include RBCs (erythrocytes), white blood cells (leukocytes) and

platelets. RBCs account for approximately 99.9% of blood cells [19]. Plasma is

the suspending phase of the cellular elements and can be considered to behave as

a Newtonian fluid [21] and accounts for roughly 45-63% of the volume of blood.
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The viscosity of plasma changes with temperature but is in the range of 1.16 - 1.35

mPa s at 37 ◦C [22]. However the viscosity of blood behaves in a non-Newtonian

fashion. Experimental data from rotational viscometers shows blood having a high

apparent viscosity at low shear rates and low apparent viscosity at high shear rates

[23] [24]. At high shear rates of 100 - 200 s−1, the viscosity approaches a minimum

of 4-5 mPa s at 37 ◦C. The viscosity of blood is also shown to be highly dependent

on hematocrit with increasing amounts of RBCs increasingly disturbing the flow

lines [25]. At medium to high shear rates this effect is more pronounced with a unit

increase in hematocrit (the ratio of the volume of red blood cells to the total volume

of blood) ,e.g 43 to 44%, increasing blood viscosity by 4% [21]. The rheological

properties of the RBCs also influences the viscosity of blood. RBCs are highly

deformable bodies and exhibit different behaviours at varying shear rates. At high

shear rates, RBCs deform and tank tread (RBC membrane revolves around RBC

centroid with constant orientation) in shear flow. This has the effect of producing

a comparatively low viscosity for blood flow at high shear rates when compared to

other suspensions of similar concentrations [26]. Aggregation is another influencing

factor on blood viscosity. At lower shear rates, lower levels of deformation take

place and at levels under 50 s−1 RBCs tend to aggregate into linear stacks called

rouleaux. The effect of the stacks is to create a higher drag surface than individual

isolated RBCS, which has the effect of increasing the viscosity of blood [26]. The

literature shows that the viscosity of blood is highly dependent on the hematocrit

and rheological properties of RBCs such as deformability and aggregation. This

supports the need for a numerical blood flow solver which captures the deformation

and tracking of individual RBCs.

1.4 Red Blood Cell Structure

A normal RBC is a nucleus free cell that is biconcave in shape (see Figure 1.1).

It has diameter of approximately 8.0 µm and a thickness of approximately 2.0

µm [27]. Structurally it is a membrane bounded capsule with a liquid core. This

liquid core consists of cytosol which is a mixture of haemoglobin and enzymes

and is considered to be a Newtonian fluid [28]. The cytosol has a viscosity that

is approximately five times larger than that of plasma [29]. This low viscosity

ratio of haemoglobin to plasma enables a highly responsive deformation of the

RBC in response to external loading. The membrane consists of an outer layer of
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plasma membrane (PM) and an inner layer of cytoskeleton (see Figure 1.1). Each

of these structural features have distinct properties that need to be captured when

predicting the biomechanics of a RBC.

Figure 1.1: Illustrations of a healthy RBC and the RBC membrane. The
main structural feature of the PM is the lipid bilayer, while the cytoskeleton
is a hyper-elastic-behaving network attached to the PM via anchoring proteins.

[1]

A more detailed schematic of the PM can be seen in Figure 1.2. The PM acts

as the main barrier between the extracellular and intracellular fluids. The fluid

mosaic model is the most commonly accepted approach to describe the structure

of the PM [30]. This model states that the PM is a mosaic comprised of phos-

pholipids, proteins, cholesterol and carbohydrates. These components are all free

to move around each other and exhibit great fluidity [31]. The phospholipids

and cholesterol are the main constituent of the lipid bilayer. The bilayer forms

the basic structure of the membrane and acts as semi-permeable barrier to the

extracellular environment. Dispersed within the bilayer are then transmembrane

proteins and carbohydrates. The formation of the bilayer is due to the amphi-

pathic nature of the lipids. The lipid heads are hydrophilic while the lipid tails are

hydrophobic, resulting in the lipid bilayer structure. Of structural significance is

that constituents of the PM, while tightly attached, lack physical inter-constituent

connections. Hence the PM lacks a constraint against in-plane deformation due to

loading and the PM exhibits surface-area incompressibility [32]. Also of structural

significance is the fact that the lipid bilayer exhibits high compression resistance

in thickness [33]. The consequence of this is that the removal, insertion or ex-

change of the constituents of the bilayer results in volume changes of the lipid

bilayer and changes in membrane area difference (MAD), i.e area difference be-

tween the inner and outer layers of the bilayer. In general constituents of both

layers of the lipid bilayer are considered to be approximately the same. Therefore

the MAD of the bilayer is preferable to be zero. The cytoskeleton is another layer
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Figure 1.2: A schematic representation of RBC membrane structure with
major functional components. The RBC membrane consists of three basic com-
ponents: a lipid bilayer, transmembrane proteins, and a cytoskeletal network

[2].

that exists between the PM and penetrates the cytosol interior [33]. It consists

of a mesh-like network of mainly synthetic spectrin dimers. The spectrin dimers

consist of α and β spectrin which are intertwined in parallel creating hetrodimers

(see Figure 1.2). One end of the dimer is anchored to the PM via cytoskeleton

proteins, while the other end is inter-connected to other dimers. This creates a

hyper-elastic network which provides structural integrity to the RBC membrane.

Of structural significance is that the relaxed shape of the cytoskeleton is consid-

ered to be a quasi-sphere and experiments indicate that the cytoskeleton tends to

a near-spherical shape upon removal of the PM [34].

In summary the low viscosity ratio of the cytosol to the plasma, the lack of phys-

ical inter-constituent connections in the PM and the hyper-elastic network of the

cytoskeleton are key aspects of the structure of a RBC. These properties enable

the RBC to be a highly deformable and any RBC structural model should account

for these properties.

1.5 Structural Modelling of a Red Blood Cell

There are different approaches to modelling the structural behaviour of a RBC with

the main approaches being continuum approaches and discrete particle approaches

(see Figure 1.3). What they have in common is the treatment of the membrane as

a surface. The composite membrane of a RBC has a thickness of approximately
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9-10 nm; this is orders of magnitude lower than the length scale of microns for a

RBC. This allows the membrane to be treated as a two-dimensional (2D) surface

embedded in three-dimensional (3D) space.

(a) (b)

Figure 1.3: Comparison of two RBC structural modelling approaches. (A)
shows the continuum approach where the solid is modelled as a continuous
surface. (B) shows the discrete particle approach where the solid is modelled

by a network of particles interconnected with springs.

1.5.1 Continuum Red Blood Cell Models

The continuum approach predicts the structural mechanics of a solid by applying

constitutive laws which define energy-strain relationships. Many laws have been

suggested to model the in-plane mechanics of biological membrane. Skalak et al.

[35] proposed a relationship where the material can deform in shear but conserves

membrane surface area by specifying a very high area-dilation modulus. In com-

parison the Mooney-Rivlin approach considers the membrane to be a hyper-elastic

incompressible solid [36]. This approach assumes an incompressible surface thick-

ness which preserves the surface area of the membrane. A special-case of the

Mooney-Rivlin approach is the neo-hookean law. The neo-hookean membrane is

analogous to a Mooney-Rivlin membrane that has a negligible surface thickness

[37]. Skalak’s membrane is a strain-hardening material where as the Mooney-

Rivlin and the neo-hookean membrane are strain-softening materials. However

when deformations are considered to be small, all three membranes behave as

Hooke’s law which can be used to implement a Hookean membrane [38]. There is

also a range of laws which have been proposed to model the out-of-plane bending

resistance of the RBC membrane. The classical approaches of Canham [39] and

Helfrich [40] proposed a resistance to local bending in a solid. Further proposals

were made to account for non-local bending resistance due to the area-difference
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between the outer and inner layer of the lipid bilayer. These include the “strict

bilayer couple” model [41, 42] and the area-difference-energy model [43–45].

Continuum RBC models have been successfully implemented in two-phase blood

flow problems to model a variety of RBC dynamic behaviours. These include

tank-treading, tumbling, and swinging dynamics in simple shear flows [46–51].

Continuum approaches have also shown the slipper and parachute shapes encoun-

tered in capillary flow [52, 53]. They can also predict multi-cell behaviours such

as the formation of rouleaux aggregates and cell free layers [49, 54]. More recent

efforts have modelled the flow of RBCs in a Coulter counter [55]. However despite

the accuracy of the continuum RBC approach, there are some limitations. As a

large area dilation modulus is required to conserve membrane surface area, this

can lead to significant numerical instabilities [56, 57]. Efforts have been made to

remove this limitation such as implicit time integration; however this can only

be used if cell lysis does not occur [58, 59]. Other efforts to resolve this limita-

tion include the ad-hoc surface area dilation method of Pozrikidis [53] and using

a Lagrange multiplier to enforce membrane incompressibility[60]. This effort to

mitigate the numerical instability comes at a cost of computational expense [61].

A further limitations include an inability to capture the thermal fluctuations on

the RBC membrane [62, 63].

1.5.2 Spring-Particle Red Blood Cell Models

Spring-network models can be used to model the solid mechanics of a surface.

Boal [34] first suggested their application to model the solid mechanics of a RBC

membrane. This approach involves discretising the surface into particles which

are interconnected with springs. The mechanical properties of these springs then

directly influence the behaviour of the model. The most common type of spring

used in biological membranes are worm like chains (WLC) to model the in-plane

shear resistance of the membrane [64]. Similar to the continuum approach, there

are also differing approaches to modelling the out-of-plane bending resistance of the

RBC. These include the spontaneous curvature model [64] and the area-difference-

energy approach [65], with the latter accounting for non-local bending resistance

due to the area-difference between the outer and inner layer of the lipid bilayer.

The earliest attempts at modelling RBC membrane mechanics looked at spring-

networks at the spectrin level [64, 66, 67]. This resulted in accurate predictions
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that compared favourably with experimental data and predictions of continuum

structural solvers. However this approach is extremely computationally expen-

sive with upwards of 20,000 vertices required to model individual spectrin dimers

and tetramers. More recently coarse grained spring-particle (CG-SP) models have

been developed where particles in the spring-network represent spectrin oligomers

and the springs representing actin junction complexes [68–72]. This vastly reduces

the computational effort while maintaining accuracy of the RBC mechanics with

some studies using under 1,000 vertices [63]. Similar to the continuum models, the

CG-SP approach has successfully modelled the RBC mechanics in two-phase flow.

This includes tank-treading, tumbling, and swinging dynamics in simple shear

flows [63, 69]. Slipper and parachute shapes encountered in capillary flow were

also accurately modelled [63, 69, 73, 74]. Multi-cell behaviours such as the forma-

tion of rouleaux aggregates [75] and cell free layers [61] have also being modelled

successfully. An advantage of the CG-SP methods over continuum methods is the

ability to implement thermal fluctuations and diseased RBC dynamics [76–78].

1.5.3 Summary

The continuum and spring-particle methods are both proven approaches to mod-

elling the behaviour of RBCs and two-phase blood flow. However the CG-SP

approach has demonstrated enhanced modelling capabilities with its ability to

thermal fluctuations and diseased RBC dynamics. The area-difference-energy ap-

proach to bending resistance is shown to account for the non-local bending resis-

tance of the lipid bilayer. Most crucial is that the work of Chen and Boyle [65] is

fully available and is adopted in this work to reduce development time.

1.6 Two-Phase Modelling of Blood Flow

The structural mechanics of RBCs have been described in the previous section.

To model blood flow, both the RBC and the hydrodynamics of plasma need to

be modelled. Plasma behaves like a Newtonian fluid and its behaviour can be

predicted by solving the Navier-Stokes (N-S) equations. To fully model the be-

haviour of blood flow, the fluid-structure-interaction (FSI) between the plasma

and the RBC needs to be modelled too. There are many approaches in the lit-

erature but the prominent approaches can be put into three groups: Boundary
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Element Methods (BEM), unified plasma/RBC solvers and separate plasma/RBC

solvers. These are discussed in the following sections.

1.6.1 Boundary Element Methods

The BEM approach utilises a boundary integral formation to create an analytical

solution for the velocity field in the fluid [79]. The RBC is treated like a Lagrangian

object in the fluid and from the boundary integral formation, the velocities at each

of the nodes on the membrane are known. However the BEM can only be utilised

when the effects of inertia are considered negligible. This reduces the N-S equations

to the Stokes equations for this problem and this has many advantages, i.e no

mesh is required to model the plasma and the computational expense required

to calculate the velocity field is much reduced from a full N-S solver. The BEM

has successfully been used to model two-phase blood flow including modelling the

deformation of a RBC in shear flow [80–82] and pressure driven flow of RBCs in

microcapillaries [53]. However further applications are limited by its Stokesian

flow requirement.

1.6.2 Unified Plasma/RBC Solvers

Unified plasma/RBC solvers for predicting blood flow behaviour involve modelling

the fluid and the RBC as a collection of particles that impart forces on each

other as they move. At the heart of this family of methods is the idea that

each particle represents a base object on the microscopic or mesoscopic level.

Depending on the method, the particle can represent an atom, molecule or a

portion of the fluid/RBC. RBCs structural mechanics are then modelled by adding

interconnecting springs between the designated RBC particles. The lowest level

approach of this family of methods is a molecular dynamics simulation where

each particle represents a molecule or an atom [83]. However modelling at this

scale is computationally impractical when real world hydrodynamic problems are

considered. This lead to the development of mesoscopic and macroscopic level

particle methods including dissipative particle dynamics (DPD), multi-particle

collision dynamics (MPCD), smoothed particle hydrodynamics (SPH) and moving

particle semi-implicit (MPSI) approach. A summary of these methods is provided
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below. The reader is referred to Ye [84] for an in depth review of particle methods

used to model blood flow.

The DPD method, first proposed by Hoogerbrugge and Koelmen [85], is essentially

a coarse grained version of molecular dynamics. Here particles represent clusters

of molecules and particles interact via conservative, dissipative and random forces.

This approach has successfully been used to model a variety of blood flow prob-

lems including tank-treading, tumbling, and swinging dynamics in simple shear

flows [63]. Slipper and parachute shapes encountered in capillary flow are also

accurately modelled [63, 73, 74]. Multi-cell behaviours such as the formation of

rouleaux aggregates [75] and cell free layers [61] have also been successfully mod-

elled. Membrane viscosity, thermal fluctuations and diseased RBC dynamics have

also been modelled [76–78].

The MPCD method again involves modelling the fluid and solid as coarse meso-

scopic level particles. In this method mass, momentum and energy are conserved

locally and flow is developed through alternating collision and streaming steps

between the particles. An attractive feature of this method for modelling suspen-

sions is that immersed particles can be coupled directly with the fluid by letting

them participate in the streaming and collision steps [86]. It has been succesfully

applied to model RBCs in shear and capillary flow and also the sedimentation of

RBCs [69, 87, 88].

The SPH method discretises the N-S equations into a series of particles. A value

of a parameter, e.g. velocity, is then calculated at a position by interpolating

values of this parameter from neighbouring particles using a kernel function. Each

particle moves in time according to Newton’s second law. Hosseini and Feng [89]

provide a detailed explanation of the forces acting on the particles. The SPH has

been used to model RBCs in shear and capillary flow, and also to model malaria

infected RBCs [89–91].

The MPSI method is very similar to the SPH method but uses implicit meth-

ods to integrate the position of each particle in time. It has been successfully

used to model multi cellular flow in microvessels [92], malaria infected RBCs[93],

margination of RBCs [94] and interaction between platelets and RBCs [95].
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1.6.3 Separate Fluid/RBC Solvers

The third general approach to modelling two-phase blood flow is to use a general

purpose N-S solver such as the Finite Volume Method (FVM), Finite Difference

Method (FDM), Finite Element Methods (FEM) or Lattice Boltzmann Method

(LBM) to predict the plasma flow and a structural solver to model the deformations

of the RBC. The challenge then is to be able to model the FSI between the plasma

and the RBC. All of these methods require that the velocity on the surface of the

immersed object equals the velocity of the fluid at the same location and that the

force on the surface is transferred to the fluid.

A simple approach is to use an arbitrary lagrangian-eulerian FEM [96] where

the mesh continually adapts to changes in the geometry of the immersed object.

However this leads to distinct challenges when complex geometries are involved

and when immersed objects experience large deformations [97]. This approach

also involves very costly remeshing and interpolation as the mesh is adapted on

a continuous basis. A similar approach was also applied to the LBM [98] and

used to model multi-cellular blood flow in micro vessels and platelet deposition

[99, 100]. This approach involves finding links between lattice fluid nodes and the

surface and applying standard bounce back conditions on these links to ensure the

velocity at the surface equals the plasma velocity.

There are also a range of methods that don’t require continuous adaptation of

the mesh. These include the immersed boundary method (IBM), immersed finite

element method (IFEM) and the fictitious domain method (FDM). The IBM was

originally introduced by Peskin [101] for solving FSI problems with deformable

objects and has been succesfully applied to blood flow. It includes modelling multi-

cellular flow [71], arteriolar bifurcation [102], platelet margination [103], RBCs in

Coulter counters [55], RBCs in shear flow [51] and malaria infected RBCs [104].

The IFEM was introduced by Zhang [105] and follows the same approach as the

IBM while enabling the use of an unstructured FEM for modelling plasma. It has

been used to model the aggregation of RBCs [106]. The FDM is again very similar

but distributes a Lagrangian multiplier back to the fluid instead of a force [107].

It has also been used to model multi-cellular blood flow [108].
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1.6.4 Summary

In summary there are a significant number of approaches to modelling two-phase

blood flow which have been successfully applied to a range of applied blood flow

problems. From the review above it can be concluded that the most mature

approaches are the BEM, DPD and IBM. As the research motivation for this

project is to investigate methods that are suitable for blood flow applications

outside the microvasculature, the BEM is discounted due to its Stokesian flow

requirement. It is also expected that one day this research could be utilised for

biomedical device applications. These devices usually involve complex geometries

such as heart valve leaflets. These devices also tend to have higher Reynolds

number flows than in the circulatory system [109]. As a result unstructured grids

are desirable to both capture the complex geometry of the devices and also provide

refinement in the boundary layer of near-wall regions of the device. While efforts

of introducing refinement [110] and arbitrary complex geometries [111] to DPD are

documented in the literature, there is no successful application of both approaches

together or evidence that these techniques have been succesfully applied to two-

phase blood flow problems. In contrast the IBM has been succesfully used with a

FVM approach on unstructured grids to a two-phase blood flow problem [51, 55,

112]. For this reason the IBM was adopted in this work.

1.7 Fluid Modelling Approaches

As the IBM has been chosen to couple the fluid and structure in the plasma, this

allows the use of any N-S solver. A discussion of different approaches is given in

the following sections:

1.7.1 Conventional Navier-Stokes Solvers

Conventional N-S solvers employ the FDM, FVM and FEM. They involve dis-

cretising a fluid into nodes, volumes and elements respectively and then predicting

changes in macroscopic variables by approximating the N-S equations. The FDM

approximates the derivative form of the N-S equations by calculating the differ-

ences between neighbouring nodes. The FVM approximates the integral form of
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the N-S equations by calculating the flux of macroscopic properties between neigh-

bouring cells. The FEM involves discretising a fluid into elements or cells. Then

a parametric representation of unknown variables is calculated based on interpo-

lation or shape functions defined across each element. Finally a weak formulation

of the N-S equations is then solved using the parametric representation of the

unknowns as inputs. Of the above methods only the FVM is fully conservative

by default. It is also the method of choice in well established CFD codes such as

Ansys Fluent and OpenFoam. For a detailed explanation on the FDM, FVM and

FEM, the reader is referred to the following range of textbooks [113–116].

Further considerations are required when modelling incompressible flow using the

FVM. The N-S equations solvers for incompressible flow can be split into two main

categories: density based methods and pressure based methods. Both approaches

require additional functionality to couple the density and velocity compared to

compressible flow. Density based methods can be applied to incompressible flow by

incorporating artificial compressibility techniques [117, 118]. Steady-state prob-

lems are solved by iterating to a steady-state solution with constant boundary

conditions. Density based methods can be accelerated by using techniques such

as Jacobian pre-conditioning, multigrid and residual smoothing [119]. Transient

problems using artificial compressibility require the use of dual timestepping [120]

where a solution is iterated in artificial time steps to steady state for each phys-

ical time step. Pressure based methods such as SIMPLE [121], SIMPLEC [122],

PRIME [123] and PISO [124] involve an iterative procedure for solving the Poisson

equation to calculate the pressure at each time step [115]. While both approaches

allow an efficient approach to solving steady problems, the iterative procedure for

each time step make both approaches computationally expensive for transient flow

calculations [125].

1.7.2 Lattice Boltzmann Methods

In recent years the LBM has become a well established alternative for solving CFD

problems [126–128]. It involves calculating the change in the density distribution

of discrete particles at the mesoscopic level. The change in density distribution is

due to the collision of the discrete particles and the subsequent streaming of the

particles. Using a Chapman-Enskog expansion, it can be shown that the lattice

Boltzmann equation (LBE) applied at a mesoscopic level is equivalent to the N-S
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equations at a macroscopic level [129]. The LBM has many advantages compared

with traditional N-S equations solvers when solving transient problems as it does

not involve the solution of the expensive Poisson equation for pressure or itera-

tive dual timestepping and uses a highly algebraic and parrellisable approach to

calculating densities and velocities in a flow problem. Limitations of the standard

LBM include the necessary use of a uniform Cartesian grid and the restriction of

its use to flow problems with low Mach numbers. The required use of a uniform

Cartesian grid is a major restriction when it comes to the modelling of real life

engineering problems such as the haemodynamics of biomedical devices. Issues

encountered include approximating curved boundaries using a staircase approx-

imation and domain wide refinement of the grid to resolve boundary layer fluid

dynamics. Using a staircase approximation introduces a geometrical discretisation

error while domain wide refinement of the grid leads to excessive computational

effort. This has resulted in much research into fully unstructured LBMs which

would enable the use of body fitted grids with complex geometries and have local

refinement near boundaries.

1.7.3 Unstructured Lattice Boltzmann Methods

The first attempt at an unstructured LBM was by Peng and Xi [130, 131]. This

approach involved the integration of the differential form of the LBE in control

volumes around the grid points. However it was found that the method suffered

from significant instability issues. Over the years improvements to the stability of

finite volume - lattice Boltzmann methods (FVLBM) have been made. Stiebler

[132] introduced a least squares, linear reconstruction based upwind discretization

scheme for the FVLBM. A total variation diminishing approach to the FVLBM

was introduced by Patil [133] whereas Ubertini et al. [134] used a memory term to

increase stability thresholds of the method. More recently Zarghami et al. [135]

used upwind second-order pressure biasing factors as flux correctors to improve

stability.

An alternative innovative approach was proposed by Wang et al. [136] and Shu et

al. [137] when they developed the lattice Boltzmann flux solver (LBFS). This in-

volves discretising the domain into cells and calculating the macroscopic fluxes at

the cell interface using a local reconstruction of the LBE. Unlike in the FVLBMs

14



discussed above, the LBFS involves solving conservation equations for the macro-

scopic variables whereas the FVLBM involves solving conservation equations of the

particle distributions. While the original method was implemented on non-uniform

orthogonal meshes, lately it has been applied to fully unstructured tetrahedral

meshes by Pellerin et al. [138] and Wu et al. [139]. It has also been extended to

model FSIs on 3D geometries through the use of the immersed-boundary method

by Wang et al. [140].

The LBFS shares many traits with the family of artificial compressibility methods

(ACM) which was initially introduced by Chorin [117]. In the ACM an artificial

relationship is introduced between pressure and density variables. This changes

the nature of the governing equations from mixed elliptic/parabolic to hyperbol-

ic/parabolic. This enables the use of efficient time-marching schemes in calculating

the steady state solution of incompressible flows. The LBFS differs from the ACM

in that the relationship between pressure and density is set by an arbitrary param-

eter in the ACM [117]. More recently efforts by Turkel [141] and Malan [142] have

provided a means of calculating the optimum value of the arbitrary parameter. In

the LBFS the relationship between pressure and density is defined by the lattice

discretisation and there is no need to optimise the arbitrary parameter required

in the ACM. The ACM and LBFS both solve the N-S equations, with the ACM

using either a finite difference [143] or finite volume [142] spatial discretisation.

The LBFS uses a finite volume approach. The ACM solves the N-S equations but

uses a perturbed continuity equation and, as described by He et al [144], this has

no physical meaning in incompressible flow. In contrast the LBFS is a “weakly”

compressible method and its continuity equation has a physical meaning. There

is also a difference in the stencils used in the calculation of the fluxes; the original

ACM proposed a central differencing or leapfrog scheme [117] and more recently

3rd order upwind scheme and 4th order central compact schemes have been used

[145]. In comparison the LBFS uses a local reconstruction of the LBE to calculate

the fluxes. Further differences arise in that the ACM requires the use of artificial

dissipation whereas the LBFS does not [143][142]. Also for unsteady flows the

ACM is shown to require dual timestepping or similar implicit methods to effect

real time accuracy [120] whereas the LBFS can effect real time accuracy using

explicit and implicit methods. Finally while the original ACM can be thought

of as a preconditioning approach to the continuity equation, this has also been

extended to introduce preconditioning to the momentum equations [146]. This

has the impact of improving convergence and robustness of the ACM approach.

15



1.7.4 Summary

The LBFS was adopted in this work due to its advantages over the FVLBM with

regards to stability and the implementation of boundary conditions. The LBFS

does not require the use of pressure biasing factors or other such schemes to achieve

stability at higher Reynolds numbers. The LBFS also allows the direct implemen-

tation of physical boundary conditions whereas the FVLBM relies on the standard

LBM family of boundary conditions which are more difficult to implement. It also

retains advantages of the LBM of not requiring the solution of the Poisson equa-

tion or artificial time steps in transient flow, and having a localised computation

which makes it highly parallelisable.

1.8 Runtime Acceleration

Blood flow is a very computationally expensive problem to model, with the number

of RBCs per mm3 of order O(106) [147]. In practical engineering problems it is

required to find a steady state solution as initial conditions for transient flow

problems. The LBFS/LBM does not perform well in steady state calculations and

as a result, methods of accelerating runtimes is required. Similarly to solve large

scale blood flow problems it will be required to build a parrallisable and scalable

code that makes use of modern day hardware. Both of these topics are discussed

in the next two sections.

1.8.1 Preconditioning

A key characteristic of the standard LBM is the grid independent “compressibil-

ity” error which is directly proportional to the Mach number [148]. As a result

LBM simulations limit this error by keeping the Mach number small; typically

this involves keeping the Mach number less than 0.4 [128]. Reducing the Mach

number has the knock on effect of increasing the disparity between the acoustic

and convective wave speeds [149]. As the standard LBM typically employs explicit

timestepping, the Courant-Friedrichs-Levy (CFL) condition should be satisfied to

ensure stability. At low Mach numbers this requires a time step inversely propor-

tional to the largest eigenvalue in the system which is approximately the speed of

sound. However the convective wave propagates information through the domain
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at the much lower fluid speed. As a result a large amount of time steps are required

to reach steady-state convergence.

In recent years many researchers have made attempts to accelerate convergence of

the standard LBM to steady-state convergence. A time independent formulation of

the LBM has been proposed by Bernaschi et al. [150]. The steady-state solution is

solved through iterative methods and this approach has also been implemented by

Verberg [151] and Noble [152]. Tolke et al. [153] expanded on the time independent

approach by using a multigrid approach to solve an implicit second-order finite

difference scheme. An alternative approach for accelerating convergence of the

LBM to steady-state is using implicit schemes to discretise the time-dependent

equation. This allows larger time steps to be used and has been implemented by

Lee [154], Seta [155] and Tolke et al. [156]. Further to this Mavriplis [157] proposed

a non-linear form of multigrid solver with a non-linear LBE timestepping scheme.

These methods all accelerate convergence of the LBM to steady-state but at the

cost of increased complexity compared to the standard LBM.

Preconditioning is another time-dependent steady-state acceleration technique

which was successfully applied to the LBM by Guo [158] originally. This ap-

proach follows the same principle as the preconditioning method developed by

Turkel [149] to solve the incompressible and low speed compressible N-S equa-

tions. As mentioned above, at low Mach numbers there is a disparity between

the acoustic and convective wave speeds. The ratio between these wave speeds

is known as the condition number. The lower the condition number, the faster

that a solution will converge to the steady-state solution. Preconditioning involves

altering the eigenvalues of the N-S equations to reduce the condition number. Guo

implemented preconditioning in the LBM by applying a single preconditioning fac-

tor (γ-preconditioner) to the equilibrium distribution function. For steady flows

this results in an equivalent form of the N-S equations with a reduced condition

number, which reduces the number of iterations required to reach steady-state.

There have been many additions to Guo’s original work. Premnath et al. [159]

extended the preconditioning approach to allow for forcing terms in force-driven

fluid flow problems. Izquierdo et al. [160] extended it to the generalised form

of the LBM including the multiple-relaxation time LBM. In this work a second

preconditioning factor (β-preconditioner) was also used to improve the efficacy

of preconditioning. They also investigated optimal values of the preconditioning

values for the LBM and gave apriori guidelines for such values [161]. More recently
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the approach has been extended to a noncascaded central moments LBM [162],

a cascaded LBM [163] and a Galilean invariant cascaded LBM [164]. Meng et

al. have also used an improved preconditioned multiple-relaxation time LBM to

model flow through porous media [165].

In this work the γ-preconditioning approach of Guo’s work was adopted as it has

similar performance to the β-preconditioning approach of Izquierdo’s work whilst

being more efficient and also simpler to implement.

1.8.2 General Purpose Graphics Processing Unit Program-

ming

Moore’s law is widely interpreted as “the number of transistors on an integrated

circuit would double every few years” [166]. Until approximately the year 2000,

this has resulted in the 1.5x speed up in single threaded performance year on year

(see Figure 1.4). However in recent years, the year-on-year gain in single threaded

performance has decreased to approximately 1.1x speedup and the maximum fre-

quency of chips has flat-lined. While the transistor count on microprocessors are

still following exponential growth, the benefit in this is seen in a proportional

increase in the number of cores in a microprocessor. The consequence of this is

that any high performance code looking to take advantage of future advances in

hardware must incorporate parallel computing [167].

Modern hardware that utilises many cores includes graphics processing unit (GPU)

and many integrated core (MIC) chips. Both take advantage of having multiple

cores with multiple threads running on each core but at lower clock speeds than

high end central processing units (CPUs). This allows them to perform far more

computations than single CPUs. An example of a GPU manufacturer is NVIDIA

(Santa Clara, California, United States) who manufacture the Tesla GPUs for high

performance computing (HPC). The flagship HPC is the Tesla Volta V100 which

has a double precision processing power of 7.5 tera floating point operations per

second (TFLOPS). GPUs tend to have host code which operates on the CPU and

device code which is then run on the GPU. This requires an architecture to enable

this host-device realationship. NVIDIA cards can be programmed for example

using OpenCL, an open-source framework for programming GPUs, or CUDA,

NVIDIA’s proprietary API for programming NVIDIA GPUs. An example of MIC
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Figure 1.4: 42 years of microprocessor trends data. [3]

chip is Intels Xeon Phi series of chips. The Xeon Phi 7290 can achieve double

precision processing power of 3.4 TFLOPS. The benefits of MIC is that there is

no requirement for additional framework and architectures to produce code for

the MIC. However an extensive knowledge of optimisations is required to fully

utilise MIC [168]. While there is evidence in the literature of both GPUs and

MICS being more advantageous than the other in certain scenarios, Teodoro et al.

[169] provide evidence that GPUs perform better on operations with random data

access and atomic operations. These are both characteristics of algorithms that

involve unstructured grids like that encountered in LBFS N-S solvers and RBC

spring-networks. For this reason and the increased maturity of NVIDIA GPUs,

CUDA GPU programming was adopted in this work to parallelise the workflow.

1.9 Aim of Research

The aim of this research is to create the foundations of a blood flow solver that

can handle the complex geometries required by biomedical applications. This

involves using the LBFS to model plasma, an enhanced area-difference-energy

spring-particle (ADE-SP) RBC model and the IBM to couple the fluid-structure
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interactions. It will also aim to accelerate the runtime of the problem by util-

ising preconditioning in steady state fluid problems and utilise CUDA graphics

processing units programming to parallelise the workflow.

1.10 Areas of Novelty

This research makes the following novel contributions to the literature:

• Development of a LBFS that utilises unstructured hexahedrals in 3D. Recent

works have only extended the LBFS to non-uniform grids or 2D unstructured

tetrahedral meshes.

• Development of a GPU accelerated LBFS.

• Implementation and investigation of preconditioning in a 3D unstructured

LBFS.

• Implementation of IBM with a LBFS on non-uniform grids. Recent works

have used the IBM with the LBFS exclusively with uniform meshes.

• Implementation, verification and validation of ADE-SP RBC model with a

LBFS. SP RBC models have never been combined with the LBFS before.

• Development of a GPU accelerated ADE-SP LBFS blood flow model.

1.11 Outline of Dissertation

This chapter has outlined the existing state of the art in blood flow modelling

in the literature. It has also presented the rationale behind key decisions made

during this work and the objectives of this project. The rest of the dissertation

presents the following work:

• Chapter 2 will introduce the governing equations related to the LBFS. This

project did not have a LBFS code base to begin with and it was required to

develop code in house. This process involves running numerical simulations

of benchmark flow problems of increasing complexity. It can be verified that
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the LBFS is correctly coded by comparing the results of the numerical sim-

ulations performed against benchmark results in the literature or analytical

solutions. Each flow problem challenged a different aspect of the code and

increased the confidence in the code developed to date.

• Chapter 3 contains the numerical experiments performed in 2D to verify the

LBFS.

• Chapter 4 contains numerical experiments in 3D on unstructured hexahedral

grids; it contains results to demonstrate the efficacy of preconditioning when

applied to the LBFS.

• Chapter 5 introduces different approaches for implementing the IBM and also

contains numerical experiments to verify the efficacy of the IBM approach

adopted in this work.

• Chapter 6 contains the governing equations of the ADE-SP RBC structural

model and the configurations adopted in this work.

• Chapter 7 contains numerical experiments which verify the RBC code is

correctly implemented. The numerical predictions are validated against ex-

perimental measurements in the literature.

• Chapter 8 describes the key design decisions in implementing the ADE-SP

LBFS blood flow model on the GPUs and also provides benchmarks for the

runtime acceleration achieved.

• Finally, conclusions and recommendations for future work are presented in

Chapter 9.

1.12 Publications

To date the work has led to publications in two peer-reviewed journals:

“A Preconditioned Lattice Boltzmann Flux Solver for Steady Flows on Unstruc-

tured Hexahedral Grids Computers and Fluids”, Walsh B., Boyle F., Computers

and Fluids

“Red Blood Cell Dynamics on Non-Uniform Grids Using the Lattice Boltzmann

Flux Solver”, Walsh B., Boyle F., TBD
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The work of this project was also presented at the following conferences:

• Sir Bernard Crossland Symposium 2017.

• INSPIRE Conference - TU Dublin 2019.
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Chapter 2

Lattice Boltzmann Flux Solver

2.1 Introduction

This chapter will provide a brief introduction to the governing equations of fluid

flow using the LBFS. This includes the 3D N-S equations, the method of spatial

discretisation and the evaluation of fluxes using the LBE. It will also introduce

the non-dimensionalisation procedure, time-integration approach and a stability

analysis.

2.2 Governing Equations

2.2.1 Navier-Stokes Equations

If body forces are neglected, the 3D unsteady N-S equations can be written in

conservative form for a finite control volume in a Cartesian coordinate system as:

∂

∂t

∫
V

(QdV ) +

∫
S

F · n dS = 0 (2.1)

where t is time, V is the cell volume, S is the cell surface, n is the outward normal

to element of area dS, Q is the vector of conserved variables [ρ, ρu, ρv, ρw], ρ is

the density, and u, v and w are the components of the velocity vector V in the x,

y and z directions respectively. Assuming a Newtonian, isotropic, isothermal fluid
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allows the flux tensor F to be defined as follows:

F =


ρu ρv ρw

ρu2 + p− µ
(
2∂u
∂x

)
ρuv − µ

(
∂u
∂y

+ ∂v
∂x

)
ρuw − µ

(
∂u
∂z

+ ∂w
∂x

)
ρvu− µ

(
∂u
∂y

+ ∂v
∂x

)
ρv2 + p− µ

(
2∂v
∂y

)
ρvw − µ

(
∂v
∂z

+ ∂w
∂y

)
ρwu− µ

(
∂u
∂z

+ ∂w
∂x

)
ρwv − µ

(
∂v
∂z

+ ∂w
∂y

)
ρw2 + p− µ

(
2∂w
∂z

)

 (2.2)

where p is the static pressure and µ is the dynamic viscosity. The above equations

can be used to simulate incompressible flow, when the Mach number is low and

density variation is small.

Using a cell-centred finite volume approach for spatial discretisation, Equation (2.1)

is applied to every cell in the computational domain yielding a set of semi-discrete

equations:

dQi

dt
+

1

Vi

Nfaces∑
n=1

Fi,n · ni,nSi,n = 0 (2.3)

where for cell i, Qi is the vector of conserved variables, Vi is the cell volume, Nfaces

is the number of cell faces, ni,n is the outward normal of face n, Si,n is the area of

face n, and Fi,n is the flux tensor at the centroid of face n.

2.2.2 Lattice Boltzmann Flux Solver

In the LBFS the flux tensor at each cell interface is evaluated from a local recon-

struction of the lattice Boltzmann solution (LBS) at the cell interface. The cell

interface is defined as the centroid of the shared face between the two adjoining

cells. In this work the single relaxation time Bhatnagar-Gross-Krook (BGK) col-

lision model is employed [170]. This leads to the following formulation for the flux

tensor F:

F =
N∑
α=0

f eqα


eα,x eα,y eα,z

eα,xeα,x eα,yeα,x eα,zeα,x

eα,xeα,y eα,yeα,y eα,zeα,y

eα,xeα,z eα,yeα,z eα,zeα,z



+
N∑
α=0

[
1− 1

2τs

]
fneqα


0 0 0

eα,xeα,x eα,yeα,x eα,zeα,x

eα,xeα,y eα,yeα,y eα,zeα,y

eα,xeα,z eα,yeα,z eα,zeα,z


(2.4)

24



where eα,x, eα,y and eα,z are the x, y and z components respectively of the particle

velocity vector eα in the α direction, τs is the standard relaxation factor, fα is

the density distribution function in the α direction, f eqα is the equilibrium density

distribution function in the α direction, fneqα is the non-equilibrium density distri-

bution function in the α direction and is equal to fα − f eqα , and N is the number

of velocities in the lattice model.

To implement the LBS at the cell interface, one must first choose a lattice velocity

set to define eα. Velocity sets are usually denoted in DdQq form where d denotes

the number of spatial dimensions covered by the velocity set and q is the number

of velocities in the set. In this work the D3Q15 velocity set is chosen due to its

computational efficiency and is shown in Table 2.1. i, j and k are the unit vectors

α 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

eα

c · i 0 1 -1 0 0 0 0 1 -1 1 -1 1 -1 -1 1
c · j 0 0 0 1 -1 0 0 1 -1 1 -1 -1 1 1 -1
c · k 0 0 0 0 0 1 -1 1 -1 -1 1 1 -1 1 -1

Table 2.1: Explicit representation of the D3Q15 velocity set.

in the x, y and z directions respectively, c = δx/δt, δx is the lattice spacing along

each Cartesian axis and δt is the streaming time step. Typically δx is set equal

to δt giving c equal to 1 and this approach is adopted in this work. In physical

terms c is considered to be the lattice velocity. When the D3Q15 lattice velocity

set is applied to the cell interface, the lattice is formed by 15 nodes. The Cartesian

coordinates of these lattice nodes can be represented in terms of lattice velocities.

A 3D illustration of the D3Q15 lattice velocity set implemented at a cell interface

is shown in Figure 2.1. In this figure the Cartesian coordinates of the two cell

centres are referred to as ri and ri+1 respectively. The cell interface is referred to

as r.

The LBE with the BGK collision model [170] can be applied to model a Newtonian

fluid at the cell interface. This enables the finding of the equilibrium and non-

equilibrium density distribution functions required to calculate the flux tensor.

The LBE is given by:

fα (r, t) =fα (r− eαδt, t− δt) +

f eqα (r− eαδt, t− δt)− fα (r− eαδt, t− δt)
τs

for α = 0, 1...N
(2.5)
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Figure 2.1: Local reconstruction of the LBS at a cell interface implementing
a D3Q15 lattice velocity set.

where the standard relaxation factor τs is related to the viscosity and controls the

influence of the viscous fluxes on the momentum equation. In physical terms it

is the rate at which fα tends to the equilibrium density distribution function f eqα

and is given by:

τs =
ν

c2
sδt

+ 0.5 (2.6)

where ν is the kinematic viscosity and, as per the literature, cs is the speed of sound

in the lattice grid equalling c/
√

3 for a D3Q15 lattice model. The equilibrium

density distribution function f eqα is given by a Hermite series expansion of the

Maxwell-Boltzmann distribution:

f eqα (r, t) = ρwα

[
1 +

eα ·V
c2
s

+
(eα ·V)2 − (cs|V|)2

2c4
s

]
+O(V3) (2.7)

where the weights wα are given as:

wα =


2/9

1/9

1/72


α = 0

α = 1− 6

α = 7− 14

(2.8)

As shown by Shu et al. [140], by using the Chapman-Enskog expansion and

the linear Taylor series expansion of f eqα , the non-equilibrium density distribution
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function fneqα can be calculated as follows:

fneqα (r, t) = −τs [f eqα (r, t)− f eqα (r− eαδt, t− δt)] (2.9)

In the localised reconstruction of the LBE at the cell interface, the flux tensor

is now dependent on the post-streaming and pre-streaming equilibrium density

distribution functions f eqα (r, t) and f eqα (r− eαδt, t− δt) respectively. These in turn

are dependent on the density and velocity values at each lattice node. As fα is a

density distribution function, the density can be calculated by summing fα up over

all lattice velocities and similarly the momentum can be calculated by summing

up the first moment of fα, i.e:

ρ =
N∑
α=0

fα

ρV =
N∑
α=0

fαeα

(2.10)

From the equation of state, calculated through the Chapman-Enskog expansion,

the pressure can be found using:

p = ρc2
s (2.11)

When a gas has been left alone for a sufficiently long period of time, it is as-

sumed that fα will reach an equilibrium which is defined by f eqα . We can make

this assumption as collisions tend to even out the angular distribution of particle

velocities in a gas around a mean velocity. As this convergence to equilibrium

must conserve mass and momentum at all locations, equilibrium values can also

be used to calculate the macroscopic density and momentum at any location as

follows:

ρ =
N∑
α=0

f eqα

ρV =
N∑
α=0

f eqα eα

(2.12)

The pre-streaming equilibrium density distribution function f eqα (r−eαδt, t− δt) is

simply calculated by interpolating the macroscopic values from neighbouring cells
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at time t− δt:

ρ(r− eαδt) ={
ρ(ri) + (r− eαδt− ri) · ∇ρ(ri)

ρ(ri+1) + (r− eαδt− ri+1) · ∇ρ(ri+1)

}
when r− eαδt in cell i

when r− eαδt in cell i+ 1

(2.13)

V(r− eαδt) ={
V(ri) + (r− eαδt− ri) · ∇V(ri)

V(ri+1) + (r− eαδt− ri+1) · ∇V(ri+1)

}
when r− eαδt in cell i

when r− eαδt in cell i+ 1

(2.14)

Inputting these values into Equation (2.7) gives f eqα (r−eαδt, t−δt). The next step

is to find a value for f eqα (r, t). This is simply done by finding ρ(r, t) and V (r, t).

As mass and momentum are conserved ρ(r, t) and V (r, t) can be calculated at the

cell interface by summing the pre-streaming equilibrium distribution functions,

i.e.:

ρ (r, t) =
N∑
α=0

f eqα (r− eαδt, t− δt)

ρ (r, t) V (r, t) =
N∑
α=0

f eqα (r− eαδt, t− δt)eα

(2.15)

Inputting these values of ρ (r, t) and V (r, t) into Equation (2.7) will give f eqα (r, t).

Once f eqα (r, t) and f eqα (r−eαδt, t−δt) have been found, fneqα (r, t) can be calculated

and the fluxes at the cell interface calculated using Equation (2.4).

2.2.3 Boundary Conditions

In this work, the ’ghost cells’ approach is adopted [113, 171]. This involves gen-

erating a fictitious neighbouring cell on all boundary faces in the computational

domain. At the start of every time step the macroscopic variables are updated

in the ghost cell dependent on the boundary condition. The macroscopic vari-

ables are chosen such that the required physical values at the boundary hold. For

Dirichlet boundary conditions this means an explicit value of density or velocity

at the boundary. For Neumann boundary conditions this means the specification

of a gradient across the boundary. In contrast Shu et al. [137] explicitly cal-

culate the boundary fluxes from the N-S equations. On unstructured grids, the
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approach described by Moukallad [115] is required to remove error introduced by

non-Cartesian boundary faces. Once the macroscopic value of the ’ghost cell’ is

specified, the flux across the boundary can be calculated the same as any other

face in the computational domain.

2.2.4 Gradient Calculation

A key element of the LBFS is the accurate calculation of the gradient of the

macroscopic variables at each cell centre as these gradients are then used in Equa-

tion (2.13) and Equation (2.14) to initialise the local LBS at the cell interface. An

inaccurate calculation of the gradient will lead to a local LBS that does not reflect

the flow field correctly. Two prominent methods used to calculate gradients on

unstructured grids are the Green-Gauss and Least-Squares methods. Shima et al.

[172] note how the Green-Gauss method is only fully accurate on uniform and sym-

metric grids but performs better on the thin and curved meshes with high aspect

ratio cells that often exist within boundary layers for high Reynolds number flow

calculations. Shima proposed a new hybrid Green-Gauss/Weighted-Least-Squares

(GLSQ) approach for calculating the gradient. The GLSQ involves a geometry-

dependent switch which applies the Green-Gauss method to those cells with a high

aspect ratio and the Least-Squares method to cells with a low aspect ratio. This

approach also has the benefits of ensuring monotonicity at cell interfaces, increas-

ing the robustness of the solver, and allowing the accurate handling of hanging

nodes in the gradient calculation. This is for a small increase in computational cost

compared to the Least-Squares method. For these reasons the GLSQ approach is

adopted in this work and is explained in detail in A.4.

2.3 Non-Dimensionalisation Procedure

The LBM is predominantly solved in terms of “lattice units”. This is where the

physical variables in the simulation are represented by dimensionless numbers in

terms of the lattice units. The process involves converting the physical variables

into non-dimensional form and then discretising these parameters in terms of the

lattice units in the lattice velocity model chosen. A detailed analysis and proof

of the non-dimensionalisation procedure is given in Appendix A.3. This section
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will summarise the non-dimensionalisation procedure used in the LBFS and also

provide a brief note on variable selection for incompressible flow modelling.

2.3.1 Non-Dimensionalisation Procedure for LBFS

Let * indicate a non-dimensional variable. The following is the non-dimensionalisation

procedure for the LBFS approach:

1. First it is decided that the non-dimensional lattice spacing δx∗ and streaming

step δt∗ are equal to one. The justification for this is that it reduces the

number of calculations required in the stream and collision process.

2. Next the following non-dimensional procedure is implemented:

x∗ =
x

δx
y∗ =

y

δx
z∗ =

z

δx

u∗ =
u

δx/δt
v∗ =

v

δx/δt
w∗ =

w

δx/δt

ρ∗ =
ρ

ρref
t∗ =

t

δt

where δx is the lattice spacing in the physical problem, δt is the streaming

time step in the physical problem, and ρref is the reference density.

3. Applying this procedure to the N-S equations leads to the following form of

the equation:

d

dt∗

∫ ∫
V ∗

(Q∗dV ∗) +

∫
S∗

F∗I · n dS∗ +

∫
S∗

F∗V · n dS∗ = 0 (2.16)

See Appendix A.3 for details of the proof.

4. F∗I and F∗V are the inviscid and viscous flux contributions respectively pop-

ulated by non-dimensional parameters:

F∗I =
N∑
α=0

f eqα
∗


e∗α,x e∗α,y e∗α,z

e∗α,xe
∗
α,x e∗α,ye

∗
α,x e∗α,ze

∗
α,x

e∗α,xe
∗
α,y e∗α,ye

∗
α,y e∗α,ze

∗
α,y

e∗α,xe
∗
α,z e∗α,ye

∗
α,z e∗α,ze

∗
α,z

 (2.17)
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F∗V =
N∑
α=0

[
1− 1

2τs

]
fneqα

∗


0 0 0

e∗α,xe
∗
α,x e∗α,ye

∗
α,x e∗α,ze

∗
α,x

e∗α,xe
∗
α,y e∗α,ye

∗
α,y e∗α,ze

∗
α,y

e∗α,xe
∗
α,z e∗α,ye

∗
α,z e∗α,ze

∗
α,z

 (2.18)

5. The next step is to discretise the non-dimensional form of the N-S equations

in terms of the lattice grid in the LBM. The lattice velocities can be calcu-

lated from Table 2.1, f eq∗α can be calculated from Equation (2.7) and fneq∗α

can be calculated from Equation (2.9) using non-dimensional forms of time,

position and density. All that remains to be calculated is the relaxation

factor τ ∗.

6. The law of similarity as explained by Landau and Lifshitz [173] states:

For incompressible flow, two flow systems are dynamically similar

so long as the geometry and Reynolds number are the same.

This means that:

Re∗ = Re (2.19)

7. Assuming a uniform grid, as shown in Appendix A.3, the relaxation factor

τ ∗ can be calculated as:

τ ∗ = 0.5 +
3
√

3Ma∗NCells∆x
∗

Re∗
(2.20)

where Ma∗ is the Mach number of the lattice model, NCells is the number

of cell volumes along the reference length, ∆x∗ is the length of each cell and

Re∗ is the Reynolds number of the lattice model. Ma∗ and Re∗ are given

by:

Ma∗ =
V∗max
c∗s

(2.21)

Re∗ =
ρ∗V∗maxD

∗

µ∗
(2.22)

where V∗max is the maximum velocity in the lattice model and D∗ is the

reference length of the simulated problem in terms of lattice units.

8. For completeness the non-dimensional viscosity can be calculated as:

ν∗ = (τ ∗ − 0.5)[c∗s]
2δt =

√
3Ma∗NCells∆x

∗

Re∗
(2.23)
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NOTE: For the rest of the thesis, the non-dimensional notation is dropped and all

variables are considered to be in their non-dimensional form.

2.3.2 Guidance on Parameter Selection for Incompressible

Flow on Uniform Grids

It is also required for incompressible flow to perform diffusive scaling when re-

fining the mesh density. Dropping the non-dimensional notation and using non-

dimensional variables. This means that δt scales ∝ δx2. Without this scaling,

it has been shown that incompressible flow calculations will not converge [174].

This is due to compressibility errors generated by the lack of third order term

in the equilibrium distribution function (see Equation (2.7)). This error is of the

order O(V3). This is in comparison to the spatial discretisation error and the time

discretisation error which have errors of O(δx2) and O(δt2) respectively. Without

diffusive scaling, the compressibility error remains constant and drowns out the

solution, resulting in instability. The main points are summarised above but a

more in depth discussion is provided in Appendix A.3.

2.4 Time Integration of the Navier-Stokes Equa-

tions

One advantage of the LBFS is that it allows a decoupling of the lattice streaming

time step and the time integration of the N-S equations. This enables the use of

many different integration methods for time-integration of the N-S equations in

the LBFS.

There are many time integration techniques available. These can be mainly cate-

gorised into implicit and explicit methods. Implicit methods have the advantage

of being unconditionally stable and allow large time steps to be applied. While

the allowable time step size is theoretically infinite, it is limited by the order of

accuracy required of the time integration method. However, this comes at a com-

putational cost as the CPU cost per iteration is significantly higher than explicit

methods. Generally speaking this is due to the need for matrices to be inverted

at each time step for implicit methods. Explicit methods on the other hand are
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conditionally stable and tend to have very small allowable time steps due to sta-

bility criteria. As no matrices are required to be inverted with explicit methods,

the CPU cost per time step is lower than with implicit methods.

When choosing a method, it is important to look at the time scales of the physical

problem that is being modelled. If this is of the order of the stability limit of an

explicit method, then it is advisable to use explicit methods as the computational

cost per time step is lower. As this research is investigating transient blood flow

with individual deformations of RBCs, there is a requirement of integrating in

time using small time steps to ensure a high order of accuracy. Therefore, it was

decided that an explicit scheme should be used.

One family of methods is the Runge-Kutta explicit integration schemes. These

allow an arbitrarily high order of accuracy in time and higher order methods are

well adapted to the stability criteria of centrally discretised convection problems

[113]. As shown by Jameson et al. [175], the fourth-order Runge-Kutta (RK4)

scheme is shown to be a very efficient and robust time integration approach for a

finite volume discretisation. For these reasons the RK4 scheme was chosen as the

time integration method for the LBFS.

The rest of this section will describe the RK4 scheme, its stability region and the

associated stability criteria.

2.4.1 Four Stage Runge-Kutta Scheme

Assuming the area of cells in a problem remain independent of time, partitioning

the computational domain into contiguous cells and applying Equation (2.1) to

each cell gives:

dQ

dt
+

1

V

Nfaces∑
n=1

Fn · nnSn = 0 (2.24)

Equation (2.24) can be rewritten as:

dQ

dt
+ R(Q) = 0 (2.25)

where R(Q) is the residual function defined by:

R(Q) =
1

V
(LI + LV )Q (2.26)
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LI is the inviscid flux spatial discretisation operator and LV is the viscous flux

spatial discretisation operator defined as follows:

LI =

∫
S

FI · n dS (2.27)

LV =

∫
S

FV · n dS (2.28)

A RK4 integration scheme can be typically described as:

Q(0) = Q(t)

Q(1) = Q(0) − ∆t

2
R(0)

Q(2) = Q(0) − ∆t

2
R(1)

Q(3) = Q(0) −∆tR(2)

Q(t+1) = Q(0) − ∆t

6
(R(0) + 2R(1) + 2R(2) + R(3))

(2.29)

where R(q) = R(Q(q)) for q = 0 to 4, ∆t is the time integration time step and t

denotes the tth time step in the simulation.

2.4.2 RK4 Stability Region

When looking to predict the stability of a numerical scheme, there will be stability

criteria driven by the spatial discretisation and also stability criteria driven by the

time integration method. For an overall numerical scheme to be stable, the time

integration method must be compatible with the spatial discretisation. In this

section the stability zone of the RK4 method will be discussed.

First rewrite Equation (2.29) in terms of a numerical amplification factor g:

Q(t+1) = gQ(t) (2.30)

This allows any solution for a given time step t to be rewritten in terms of the

initial solution Q(0) at t = 0 as:

Q(t+1) = g(t+1)Q(0) (2.31)
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g is a constant which is dependent on a single parameter ∆tλ where λ is an

unknown variable for now. The stability of the solution requires Q(t) to remain

bounded. This will occur if gt remains bounded for all t and ∆t. This gives the

requirement that |g| < 1 for t −→ ∞ and for all values of ∆t. The residuals in

Equation (2.29) can be rewritten in terms of the parameter ∆tλ:

R(0) = ∆tλQ(t)

R(1) = ∆tλ

(
Q(t) +

∆tλQ(t)

2

)

R(2) = ∆tλ

Q(t) +
∆tλ

(
Q(t) + ∆tλQ(t)

2

)
2



R(3) = ∆tλ

Q(t) +

∆tλ

(
Q(t) +

∆tλ

(
Q(t)+ ∆tλQ(t)

2

)
2

)
2



(2.32)

After much algebra [176], Equation (2.32) can be shown to be:

Q(t+1) =

(
1 + ∆tλ+

∆tλ2

2
+

∆tλ3

6
+

∆tλ4

24

)
Q(t) (2.33)

This gives g as:

g =

(
1 + ∆tλ+

∆tλ2

2
+

∆tλ3

6
+

∆tλ4

24

)
(2.34)

For a RK4 scheme to converge |g| must be less than 1. Letting λ be a complex

number a + bi where i =
√
−1 and substituting into Equation (2.34) gives g in

complex form. After a substantial amount of algebra the real and imaginary parts

of g can be calculated as:

Real(g) = 1 + b+
b2 − a2

2
+
b3 − 3a2b

6
+
a4 + b4 − 6a2b2

24
(2.35)

Img(g) = ai+ abi+
3b2ai− a3i

6
+

4b3ai− a3i

6
+

4a3ai− 4a3bi

24
(2.36)

. The complementary values of Real(g) and Img(g) for which |g| < 1 were calcu-

lated numerically. See Appendix A.6 for the code that calculated the contour plot

where |g| < 1. The resulting stability region is shown in Figure 2.2.
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Figure 2.2: RK4 stability region.

2.4.3 RK4 Stability Criteria

With this stability region, the stability criteria for RK4 schemes can now be cal-

culated. The stability criteria are that the real and imaginary parts of ∆tλ must

lie within the stability region shown in Figure 2.2. This results in:

−2.78 < Real(∆tλ) < 0

−2.83i < Img(∆tλ) < 2.83i
(2.37)

But what is λ? As described by Sowa [177] Real(λ) are the eigenvalues of the

viscous flux Jacobian and Img(λ) are the eigenvalues of the inviscid flux Jacobian.

How to calculate these eigenvalues will be discussed in Section 2.5.
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2.5 Stability Analysis of the Navier-Stokes Equa-

tions

It has been shown in Section 2.4 that the stability and time step of the LBFS is

dependent on the stability region of the RK4 method and the Jacobians of the

viscous and inviscid fluxes of the N-S equations. This section will show the values

of these eigenvalues and hence show how to calculate the allowable time step for

the LBFS.

2.5.1 Non-Conservative form of Navier-Stokes Equations

For the purposes of the stability analysis, the non-dimensional N-S equations in

Equation (2.16) can be rewritten in non-conservative, symmetric, partial differen-

tial equation form [178] as:

∂Q

∂t
+ A

∂Q

∂x
+B

∂Q

∂y
+ J

∂Q

∂z
=

+ C
∂2Q

∂2x
+D

∂2Q

∂2y
+K

∂2Q

∂2z
+ Exy

∂2Q

∂x∂y
+ Eyz

∂2Q

∂y∂z
+ Ezx

∂2Q

∂z∂x

(2.38)

where

Q =


ρ

u

v

w

 (2.39)

See Appendix A.5, Equations (A.38) to (A.44) for details of the symmetric coef-

ficients A to Ezx in Equation (2.38). From Sowa [177], the Fourier transform of

Equation 2.38 in 3D yields:
∂Qω

∂t
= PωQω (2.40)

where Pω is the Fourier form of the numerical amplification operator and is given

by:

Pω = −
(
iAξx + iBξy + iJξz + Cξ2

x +Dξ2
y +Kξ2

z + Exyξxξy + Eyzξyξz + Ezxξzξx
)

(2.41)

where ξj = sin(ω∆j)
∆j

, j ∈ x, y, z for the discrete case and i is the imaginary i.
sin(ω∆j)

∆j
is bounded by 1

∆j
in the discrete case. The inviscid part of Equation 2.41
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for the discrete case is then given by:

Pω,Inviscid = − (iAξx + iBξy) + iJξz

= −i



u

∆x
+

v

∆y
+

w

∆z

cs
∆x

cs
∆y

cs
∆z

cs
∆x

u

∆x
+

v

∆y
+

w

∆z
0 0

cs
∆y

0
u

∆x
+

v

∆y
+

w

∆z
0

cs
∆z

0 0
u

∆x
+

v

∆y
+

w

∆z


(2.42)

The eigenvalues of Pω,Inviscid (see Equation (2.42)) are:

λInviscid = i



(
1

∆x

)(
|u|+ |v|∆x

∆y
+ |w|∆x

∆z

)
(

1

∆x

)(
|u|+ |v|∆x

∆y
+ |w|∆x

∆z

)
(

1

∆x

)(
|u|+ |v|∆x

∆y
+ |w|∆x

∆z

)
+ c2

s

√
1

∆x2
+

1

∆y2
+

1

∆z2(
1

∆x

)(
|u|+ |v|∆x

∆y
+ |w|∆x

∆z

)
− c2

s

√
1

∆x2
+

1

∆y2
+

1

∆z2


(2.43)

The viscous part of Equation (2.41) for the discrete case is then given by:

Pω,V iscous = −
(
Cξ2

x +Dξ2
y +Kξ2

z + Exyξxξy + Eyzξyξz + Ezxξzξx
)

=

− i



0 0 0 0

0
µ

ρ

[
2

∆x2
+

1

∆y2
+

1

∆z2

]
µ

ρ

[
1

∆x∆y

]
µ

ρ

[
1

∆x∆z

]
0

µ

ρ

[
1

∆x∆y

]
µ

ρ

[
1

∆x2
+

2

∆y2
+

1

∆z2

]
µ

ρ

[
1

∆y∆z

]
0

µ

ρ

[
1

∆x∆z

]
µ

ρ

[
1

∆y∆z

]
µ

ρ

[
1

∆x2
+

1

∆y2
+

2

∆z2

]


(2.44)
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The eigenvalues of Pω,V iscous (see Equation (2.44)) are:

λV iscous = −
[

1

∆x2
+

1

∆y2
+

1

∆z2

]


2µ

ρ
µ

ρ
µ

ρ

0


(2.45)

2.5.2 Timestepping using Eigenvalues from Viscous and

Inviscid Flux Vectors

As shown in Equation (2.37), the real and imaginary parts of the eigenvalues

must lie within the RK4 stability region. The inviscid eigenvalues are strictly

imaginary so they must comply with the constraint on the imaginary part of the

RK4 stability region. The viscous eigenvalues are strictly real so they must comply

with the constraint on the real part of the RK4 stability region. This results in

the following constraints:

−2.83i < λInviscid∆t < 2.83i

−2.78 < λV iscous∆t < 0
(2.46)

Substituting the largest eigenvalues from Equation (2.43) and Equation (2.45) into

Equation (2.46) gives the following timestepping criteria for RK4 stability:

λInviscid,Max = i

(
1

∆x

)(
|u|+ |v|∆x

∆y
+ |w|∆x

∆z

)
+ c2

s

√
1

∆x2
+

1

∆y2
+

1

∆z2

(2.47)

−2.83 <

((
1

∆x

)(
|u|+ |v|∆x

∆y
+ |w|∆x

∆z

)
+ c2

s

√
1

∆x2
+

1

∆y2
+

1

∆z2

)
∆t < 2.83

(2.48)

λV iscous,Max = −
(

2µ

ρ

[
1

∆x2
+

1

∆y2
+

1

∆z2

])
(2.49)

− 2.78 < −
(

2µ

ρ

[
1

∆x2
+

1

∆y2
+

1

∆z2

])
∆t < 0 (2.50)

In the case of a uniform grid where ∆x = ∆y, λV iscous,Max becomes:

λV iscous,Max = −
(

3

∆x2
2ν

)
(2.51)
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Substituting the LBM form of viscosity from Equation (2.23) into Equation (2.50)

for a uniform grid gives:

λV iscous,Max = −

(
2

∆x2
2

√
3Ma∗NCells∆x

Re∗

)

= −

(
4
√

3Ma∗NCells

Re∗∆x

) (2.52)

Similarly, λInviscid,Max becomes:

λInviscid,Max = i

(
1

∆x

)
(|u|+ |v|+ |w|) + c2

s

√
3

∆x2
(2.53)

The first thing to note is that all the terms in Equation (2.52) and Equation (2.47)

are in non-dimensional form. Secondly, note that the above limits only apply

where the flow is strictly convective or diffusive. In cases where both convective

and diffusive behaviour occurs, the real and imaginary parts of the eigenvalues

would have to be mapped in the stability region in Figure 2.2.

2.5.3 Eigenvalues – Swanson and Turkel Method

Swanson and Turkel [119] devised an alternative rule of thumb for calculating

a time step which would ensure stability of the RK scheme. While it has no

formal mathematical basis, in practice it has shown to be quite effective as it is a

conservative estimate of the optimum time step. The formula for the general time

step is as follows:
1

∆t
=

1

∆tviscous
+

1

∆tinviscid
(2.54)

2.5.4 Eigenvalues Approximation on Unstructured Grids

There are many ways to estimate the maximum allowable time step on unstruc-

tured grids with the following approach adopted in this work [179]:

∆ti = σ
Vi

(Λc + CΛv)i
(2.55)

where Λc and Λv represent estimates of the spectral radii (i.e. largest absolute

value of its eigenvalues) of the convective and viscous Jacobians respectively for
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cell i. C is an arbitrary constant which is normally chosen to be C = 4 and Vi is

the volume of cell i. In the case of a cell-centred finite volume scheme, the spectral

radii are calculated as:

Λc = Λc,x + Λc,y + Λc,z

Λv = Λv,x + Λv,y + Λv,z

(2.56)

where the Cartesian components of the spectral radii are given as:

Λc,x = (|u|+ cs)Si,x

Λc,y = (|v|+ cs)Si,y

Λc,z = (|w|+ cs)Si,z

Λv,x =
2µ

ρ

(Si,x)
2

Vi

Λv,y =
2µ

ρ

(Si,y)
2

Vi

Λv,z =
2µ

ρ

(Si,z)
2

Vi

(2.57)

where Si,x, Si,y and Si,z represent projections of the cell onto y-z, x-z and x-y

planes respectively, i.e.:

Si,x =
1

2

Nfaces∑
n=1

|Sx|i,n

Si,y =
1

2

Nfaces∑
n=1

|Sy|i,n

Si,z =
1

2

Nfaces∑
n=1

|Sz|i,n

(2.58)

where Sx, Sy and Sz denote the x, y and z components of the face vector Si,n =

ni,n · Si,n, Si,n is the surface area and ni,n is the outward normal of face n of cell

i. The time step for the whole domain is then given as:

∆t = min (∆ti) (2.59)

For unstructured meshes, where the ratio of the largest cell to the smallest cell can

be large, this can result in extremely slow convergence of the solution to a steady-

state. However the transient behaviour of the flow in steady problems is of no
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interest. As a result local timestepping can be employed and each cell is progressed

at its maximum allowable stable time step calculated by Equation (2.55). This

results in significant convergence acceleration.

2.6 Summary

This chapter has introduced the governing equations of the dimensional and non-

dimensional form of the LBFS. It has also introduced the time integration methods

and stability criteria employed in this work. The computational procedure em-

ployed in the LBFS is summarised in Table 2.2.

LBFS Algorithm

1. Calculate the local time step for each cell using Equation (2.55) with Q(t−1)

as input.

2. Calculate the gradients at the cell centres using Equation (A.29).

3. At the cell interface initialise a D3Q15 local lattice Boltzmann solution
with δx chosen so that all lattice grid nodes lie within the two cells ad-
joining the shared surface.

4. Find ρ(r − eαδt, t − δt) and V(r − eαδt, t − δt) at the lattice grid nodes
by interpolation using Equation (2.13) and Equation (2.14).

5. Calculate the pre-streaming equilibrium density distribution function
f eqα (r− eαδt, t− δt) using Equation (2.7).

6. Calculate ρ (r, t) and V (r, t), the post-streaming macroscopic variables at
the cell interface, from Equation (2.15).

7. Use these values to calculate f eqα (r, t) using Equation (2.7).

8. fneqα (r, t) can be calculated from f eqα (r, t) and f eqα (r − eαδt, t − δt) using
Equation (2.9).

9. The inviscid and viscous fluxes can then be calculated from f eqα (r, t) and
fneqα (r, t) using Equations (2.17) and (2.18).

10. The solution can then be advanced in time using Equation (2.29).

Table 2.2: A detailed summary of the LBFS solution procedure.
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Chapter 3

Two-Dimensional Benchmark

Flow Problems

3.1 Introduction

Without having a LBFS code base to begin with, it was required to develop code

in house. This process involves running numerical simulations of benchmark flow

problems of increasing complexity. It can be verified that the LBFS is correctly

coded by comparing the results of the numerical simulations performed against

benchmark results in the literature or analytical solutions. Each flow problem

challenged a different aspect of the code and increased the confidence in the code

developed. This chapter shows the 2D numerical experiments that were performed.

These include:

• Couette flow.

• Poiseuille flow.

• Lid-driven cavity flow.

• Taylor-Green vortex flow.

• Womersley flow.

• Lid-driven cavity flow on non-uniform grids.
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The initial verification was performed in 2D to prove that the LBFS is a viable

candidate for solving blood flow problems in 3D. Working in 2D requires less devel-

opment time, less computational resources and offers a broader range of analytical

and benchmark solutions with which to verify the efficacy of the code. Once the

LBFS was verified for a variety of benchmark problems in 2D, then the additional

commitment in extending the LBFS to 3D could be justified. Note that all nu-

merical experiments were performed on quasi 3D meshes i.e. a 3D mesh with a

thickness of one cell in the Cartesian z direction.

3.2 Couette Flow

3.2.1 Introduction

Couette flow is a simple test case used to illustrate shear driven flow. It consists

of two plates of infinite length and width, one of which is stationary and the other

which is moving (see Figure 3.1).

In this case the N-S equations simplify to:

∂2u

∂y2
= 0 (3.1)

Applying the following boundary conditions:

u (y = 0) = 0 and u (y = h) = Umax (3.2)

where Umax is the velocity of the moving plate and h is the distance between the

two plates, gives an exact solution to Equation (3.1) of:

u (y) = Umax
y

h
(3.3)

3.2.2 Problem Set Up

The analytical solution of Couette Flow is for plates of infinite lengths. This was

implemented in the computational domain by implementing periodic boundary

condition for velocity at x = 0 and a Neumann boundary condition for velocity at
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Moving Plate: u(h) = Umax

h

Stationary Plate: u(0) = 0
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Figure 3.1: Couette flow - set up.

x = L. These can be summarised as:

u (x = 0, t) = u (x = L, t− 1) and
∂u(x = L)

∂x
= 0 (3.4)

The flow problem was run using parameters that are similar to those required in a

hemodynamic fluid flow problem. In this case viscosity was chosen as 1.275 mPa s

as this is the average viscosity of Plasma at 37 ◦C [21]. The largest diameter in

normal coronary arteries has been shown to be in the range of 3.9 mm − 4.3 mm

[180]. For fluid velocity, the average velocity of blood in the aorta is 40 cm s−1

[181] and the density of plasma is given at 37 ◦C as 1.0205 kg m−3 [182]. Using

these parameters results in a Reynolds number of approximately 1375. The above

values are summarised in standard SI units in Table 3.3.

Individual test cases were then run for a variety of mesh densities. These are

summarised in Table 3.2.
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Variable Name Value Units

h 0.0043 m
µ 0.001275 Pa s

u(h) 0.4 m s−1

ρ 1020.5 kg m−3

Reynolds No. 1375 -

Table 3.1: Overall test case parameters for Couette flow.

Test Case No. Mesh Density (No. of Cells)
∆x

δx
∆t(s)

1 15 2 0.000344
2 30 2 0.000172
3 60 2 8.59987E-05
4 120 2 4.29993E-05
5 240 2 4.29993E-05
6 480 2 1.07498E-05
7 960 2 5.37492E-06

Table 3.2: Individual test case parameters for Couette flow.

An illustration of the mesh used in Test Case 1 is given in Figure 3.2.

X

Y

Z

Figure 3.2: Couette flow - mesh for Test Case 1.
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3.2.3 Convergence Criteria

For all test cases, a scaled residual was used to monitor convergence to steady

state. The convergence criteria was defined as follows:

R
(
QIteration,N

)
R
(
QIteration,1

) < 10−9 (3.5)

where:

R
(
QIteration,N

)
=

√√√√No of Cells∑
1

[
dQ

dt

]
(3.6)

3.2.4 Results

3.2.4.1 Numerical Solution Vrs Analytical Solution

The numerical solution plotted against the analytical solution for Test Case 3 is

shown in Figure 3.3.

u/Umax

y/
h

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

uLBFS

uAnalytical

Figure 3.3: Couette flow - numerical solution vrs analytical solution.
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3.2.5 Conclusions

The test case was successfully performed for a variety of test cases with the nu-

merical solutions matching the analytical solution to a high degree of accuracy

(see Figure 3.3). This demonstrates that the LBFS correctly calculates the vis-

cous fluxes and that no-slip, moving, periodic and outlet boundary conditions have

been implemented correctly.

3.3 Poiseuille Flow

3.3.1 Introduction

Poiseuille flow is a simple test case used to illustrate pressure driven flow. It

consists of two stationary plates of finite length with a pressure differential between

the inlet and outlet (see Figure 3.4).

Stationary Plate: u(h) = 0

h

Stationary Plate: u(0) = 0

 
2

)(
yhy

L

PP
yu outin 








 
Inlet 

Pressure 

= Pin

Outlet 

Pressure 

= Pout

Y

X

Figure 3.4: Poiseuille flow - set up.
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An analytic solution can be derived which gives the following equation for the

velocity profile:

u (y) =
∆P

L
· y (h− y)

2µ
(3.7)

3.3.2 Problem Set Up

The analytical solution of Poiseuille flow is for static plates of finite length and a

pressure differential between the inlet and outlet. This was implemented in the

computational domain by implementing a no slip boundary condition for velocity

at y = 0 and y = h. In the LBFS pressure and density are related by Equa-

tion (2.11); the pressure differential was implemented by using Dirichlet boundary

conditions for density at the inlet and outlet. These can be summarised as:

ρ (x = 0, t) =
Pinlet

3
and ρ (x = L, t) =

Poutlet
3

(3.8)

The flow problem was run using parameters that are similar to those required in a

hemodynamic fluid flow problem. Values of viscosity of plasma, density of plasma,

blood flow velocity and artery diameters were chosen in the same manner as in

Section 3.2.2. From these values a realistic value for the pressure gradient can be

calculated. This results in the following pressure gradient:

∆P

∆x
=

0.4 · 8 · 0.001275

0.00432
= 220.658Pa m−1 (3.9)

Using these parameters results in a Reynolds number of approximately 1375. The

above values are summarised in standard SI units in Table 3.3.

Variable Name Value Units

h 0.0043 m
µ 0.001275 Pa s−1

u(h/2) 0.4 m s−1

ρ 1020.5 kg m−3

Reynolds No. 1375 -
∆P

∆x
221 Pa m−1

Table 3.3: Overall flow problem parameters for Poiseuille flow.

Individual test cases were then run for a variety of mesh densities. These are

summarised in Table 3.4.
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Test Case No. Mesh Density (No. of Cells)
∆x

δx
∆t(s)

1 50 2 0.000344
2 100 2 0.000172
3 200 2 8.59987E-05
4 400 2 4.29993E-05
5 800 2 4.29993E-05
6 1600 2 1.07498E-05
7 3200 2 5.37492E-06

Table 3.4: Individual test case parameters for Poiseuille flow.

3.3.3 Convergence Criteria

The convergence criteria used were those described in Section 3.2.3.

3.3.4 Results

3.3.4.1 Numerical Solution Vrs Analytical Solution

The numerical solution plotted against the analytical solution for Test Case 7 is

shown in Figure 3.5.

3.3.5 Conclusions

The test case was successfully performed for a variety of test cases with the nu-

merical solutions comparing favourably to the analytical solution (see Figure 3.5).

This demonstrates that the LBFS can correctly predict the outcome of pressure

driven flow and that convective and viscous fluxes are accurately calculated for

mono-directional flow.
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Figure 3.5: Poiseuille flow - numerical solution vrs analytical solution.
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3.4 Lid-Driven Cavity

3.4.1 Introduction

Shear-driven flow in a cavity is a standard flow problem for validating incompress-

ible viscous flow. It has historically been used as the benchmark study to compare

the accuracy and the performance of CFD codes [183]. Lid-driven cavity flows also

provide a model for understanding more complex flows with closed recirculation

regions. Such regions can be found in blood flows over medical devices as well

as in patients suffering from stenosis [184]. For these reasons, the 2D lid-driven

cavity flow of an incompressible fluid was selected as a suitable benchmark flow

problem for the LBFS.

3.4.2 Problem Set Up

The lid-driven cavity is a steady state problem at low Reynolds numbers with a

moving lid developing the flow. The LBFS iterates the solution in time until a

steady state is reached. This can then be compared to existing numerical results

produced by Ghia et al. [4]. The initial set up of the lid-driven cavity problem

is illustrated in Figure 3.6. The top boundary moves with a velocity ulid. This

was implemented using a Dirichlet boundary condition specifying ulid. A no-slip

boundary condition was implemented at the remaining three boundaries. This

was implemented using a Dirichlet boundary condition specifying zero velocity at

these boundaries. For pressure, a Neumann boundary condition specifying zero

change in pressure across the boundary was implemented at all boundaries.

The fluid in the cavity was chosen as water due to its similar properties to plasma.

The test case was run for a range of Reynolds numbers, i.e. Re = 100, 400, 1000,

3200, for the physical parameters provided in Table 3.15.

Variable Name Value Units

Lref 0.1 m
ν 1.0034 ∗ 10−6 m s−1

ρ 998.2 kg m−3

Table 3.5: Overall test case parameters for lid-driven cavity.
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 u = v =0

 u = v =0

 u = v =0 Lref
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x
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Figure 3.6: Lid-driven cavity - set up.

The value of velocity changes with Reynolds number and a test case was ran

for each Reynolds number. The parameters for the test cases are summarised in

Table 3.6. The test case for Re = 100 was run for two grid sizes. The first grid of

Nx = Ny = 50 was done to give a comparison with the results achieved by Wang

et al. [136]; the other grid size of Nx = Ny = 129 was to give a comparison with

the results achieved by Ghia [4].

Test Case No. Re ulid Mesh Density Nx,y
∆x

δx
∆t

(m/s) (No. of Cells) (s)

1 100 0.001 2500 50 2 0.1
2 100 0.001 16641 129 2 0.03875
2 400 0.004 16641 129 2 0.00279
3 1000 0.010 16641 129 2 0.00187
4 3200 0.032 16641 129 2 0.00141

Table 3.6: Individual test case parameters varying with Reynolds number for
lid-driven cavity.
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3.4.3 Convergence Criteria

For all test cases, the root mean square (RMS) of the velocity change between

successive iterations was used to monitor convergence to steady state. The con-

vergence criteria was defined as follows:

R
(
QIteration,N

)
< 1 ∗ 10−6 (3.10)

where:

R
(
QIteration,N

)
=

No of Cells∑
1

√√√√√√
((√

u2 + v2
)N+1 −

(√
u2 + v2

)N)2

((√
u2 + v2

)N+1
)2 (3.11)

This measure of residual was the same as used by Wang et al. [136].

3.4.4 Results

The results generated by the LBFS were compared to the numerical results pro-

duced by Ghia et al. [4]. The following aspects of the simulation are compared:

• Centre line velocity plots.

• Vorticity contours.

• Streamline plots.

• Primary vortex location.

The velocity profiles of the steady state solution were calculated across the cen-

trelines of the domain in the x and y direction. The results for Test Cases 1-5 are

shown in Figures 3.7 to 3.11.

Vorticity is a measure of the rotationality of the flow at a particular point in space.

It is given mathematically by Equation (3.12):

ζ =

(
∂w

∂y
− ∂v

∂z

)
i +

(
∂u

∂z
− ∂w

∂x

)
j +

(
∂v

∂x
− ∂u

∂y

)
k (3.12)
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In 2D this reduces to:

ζ =

(
∂v

∂x
− ∂u

∂y

)
k (3.13)

The vorticity contour plots for each of the test cases are plotted and a compar-

ison with the results of Ghia et al. [4] is provided in Figures 3.12 to 3.16. The

normalised values of the vorticity for each of the contours is provided in Table 3.7.

Contour Number Value of ζ

0 0
±1 ±0.5
±2 ±1.0
±3 ±2.0
±4 ±3.0
5 4.0
6 5.0

Table 3.7: Normalised vorticity values for contour numbers in Figures 3.12
to 3.16.

A streamline is a curve that is everywhere tangent to the instantaneous velocity

vector. It can alternatively be defined by the streamfunction ψ. Curves of constant

ψ are streamlines of the flow. The streamfunction can be calculated numerically

from the vorticity by solving the following Poisson equation:

∇2ψ = −ζ (3.14)

The streamline plots for each of the test cases are plotted and a comparison with

the results of Ghia et al. [4] is provided in Figures 3.17 to 3.21.

The location of the centre of the primary vortex is the part with the minimum

value of the streamfunction. It is then compared to results provided by Ghia et

al. [4] in Table 3.8.

3.4.5 Conclusions

The results demonstrated above show that the LBFS can calculate the steady

state solution of the lid-driven cavity problem to an acceptable level of accuracy.

However the predictions are still not as accurate as the results presented by Wang
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Re
Vortex Centre (x,y)

Nx Ghia et al.[4] LBFS

100 50 (0.6172,0.7344) (0.6213,0.7568)
100 129 (0.6172,0.7344) (0.6208,0.7460)
400 129 (0.5547,0.6055) (0.5641,0.6153)
1000 129 (0.5313,0.5625) (0.5357,0.5721)
3200 129 (0.5165,0.5469) (0.5185,0.5450)

Table 3.8: Co-ordinates of primary vortex centres for individual test case.

et al. [136]. This may be due to the differences between the approaches taken and

these include:

• Use of non-uniform grids by Wang et al.

• Direct specification of boundary conditions by Wang et al.

The main difference is that Wang et al. used a non-uniform grid which was more

refined at the boundary and had larger cells in the interior. This would aid in

resolving the complex flow conditions at the boundary of the cavity.

Wang et al. also directly calculated the boundary fluxes from the N-S equations.

This could eliminate any source of errors in the flux calculation that could be

related to the use of the ghost cell method in this work (see Section 2.2.3).

To conclude this flow problem has verified that the LBFS can predict complex 2D

flows for a variety of Reynolds numbers.
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Figure 3.7: 2D lid-driven cavity flow: normalised a) u and b) v velocity
profiles along vertical and horizontal centrelines respectively in the z = 0 plane

for Re = 100 and Nx = 50.
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Figure 3.8: 2D lid-driven cavity flow: normalised a) u and b) v velocity
profiles along vertical and horizontal centrelines respectively in the z = 0 plane

for Re = 100 and Nx = 129.
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Figure 3.9: 2D lid-driven cavity flow: normalised a) u and b) v velocity
profiles along vertical and horizontal centrelines respectively in the z = 0 plane

for Re = 400 and Nx = 129.
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Figure 3.10: 2D lid-driven cavity flow: normalised a) u and b) v velocity
profiles along vertical and horizontal centrelines respectively in the z = 0 plane

for Re = 1000 and Nx = 129.
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Figure 3.11: 2D lid-driven cavity flow: normalised a) u and b) v velocity
profiles along vertical and horizontal centrelines respectively in the z = 0 plane

for Re = 3200 and Nx = 129.
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Figure 3.12: 2D lid-driven cavity flow: z vorticity plots for a) LBFS and b)
Ghia[4] on the z = 0 plane for Re = 100 and Nx = 50.
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Figure 3.13: 2D lid-driven cavity flow: z vorticity plots for a) LBFS and b)
Ghia[4] on the z = 0 plane for Re = 100 and Nx = 129.
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Figure 3.14: 2D lid-driven cavity flow: z vorticity plots for a) LBFS and b)
Ghia[4] on the z = 0 plane for Re = 400 and Nx = 129.
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Figure 3.15: 2D lid-driven cavity flow: z vorticity plots for a) LBFS and b)
Ghia[4] on the z = 0 plane for Re = 1000 and Nx = 129.
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Figure 3.16: 2D lid-driven cavity flow: z vorticity plots for a) LBFS and b)
Ghia[4] on the z = 0 plane for Re = 3200 and Nx = 129.
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Figure 3.17: 2D lid-driven cavity flow: streamline plots for a) LBFS and b)
Ghia[4] on the z = 0 plane for Re = 100 and Nx = 50.
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(a)

(b)

Figure 3.18: 2D lid-driven cavity flow: streamline plots for a) LBFS and b)
Ghia[4] on the z = 0 plane for Re = 100 and Nx = 129.
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(a)

(b)

Figure 3.19: 2D lid-driven cavity flow: streamline plots for a) LBFS and b)
Ghia[4] on the z = 0 plane for Re = 400 and Nx = 129.
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(b)

Figure 3.20: 2D lid-driven cavity flow: streamline plots for a) LBFS and b)
Ghia[4] on the z = 0 plane for Re = 1000 and Nx = 129.

70



(a)

(b)

Figure 3.21: 2D lid-driven cavity flow: streamline plots for a) LBFS and b)
Ghia[4] on the z = 0 plane for Re = 3200 and Nx = 129.
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3.5 Taylor-Green Vortex Flow

3.5.1 Introduction

Taylor-Green vortex flow is a transient flow problem in which a vortex is set as an

initial condition and the vortex subsequently decays exponentially with time. It

has an analytical solution and this can be used to test the spatial and temporal

accuracy of N-S solvers.
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Figure 3.22: Taylor-Green vortex flow - initial conditions for pressure and
initial streamlines.

3.5.2 Problem Set Up

Taylor-Green flow is a transient flow problem and is fully periodic in a compu-

tational domain of Lx x Ly. In 2D space the velocity and pressure fields can be
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calculated using Equation (3.15) and Equation (3.16) respectively:

V(r, t) = u0


−
√
ky
kx

cos (kxx) sin (kyy)

−

√
kx
ky

sin (kxx) cos (kyy)

 e−t/td (3.15)

and

p(r, t) = p0 − ρ
u2

0

4

(
ky
kx

cos (2kxx) +
kx
ky

cos (2kyy)

)
e−2t/td (3.16)

where u0 is the initial velocity scale, kx,y =
2π

Lx,y
are the components of the wave

vector k and

td =
1

ν
(
k2
x + k2

y

) (3.17)

is the vortex decay time. The average pressure p0 is an arbitrary value and does

not enter the N-S equations.

In the test cases performed Lx was set equal to Ly. This resulted in the following

velocity and pressure fields:

V(r, t) = u0

 − cos

(
2π

Lx,y
x

)
sin

(
2π

Lx,y
y

)
− sin

(
2π

Lx,y
x

)
cos

(
2π

Lx,y
y

)
 e−t/td (3.18)

and

p(r, t) = p0 − ρ
u2

0

4

(
cos

(
4π

Lx,y
x

)
+ cos

(
4π

Lx,y
y

))
e−2t/td (3.19)

where the decay time is given by:

td =
L2
x,y

8π2ν
(3.20)

Periodic boundary conditions were implemented at all boundaries. The liquid in

the flow was chosen to be water. A Reynolds number of 10 was also chosen. The

test case parameters used are detailed in SI units in Table 3.9.

3.5.3 Results

There are many objectives to the running of this benchmark flow problem. These

include:
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Variable Name Value Units

Lx = Ly 0.1 m
ν 1.04 ∗ 10−6 Pa s−1

u0 1.04 ∗ 10−4 m s−1

ρ 1020.5 kg m−3

Reynolds No. 10 -
p0 2.54 ∗ 10−6 Pa

Table 3.9: Overall test case parameters for decaying vortex flow.

1. Comparison of numerical solution of velocities to analytical solution at cen-

terline.

2. Comparison with existing LBFS results in the literature of second-order ac-

curacy in space.

3. Comparison of LBFS with LBM in both accuracy and order of accuracy.

4. Investigation of accuracy with varying Mach number.

To compare the claim of second-order accuracy in space for the LBFS, the test cases

in Table 3.10 were run. This involved running the test case at a variety of mesh

densities (where Nx,y is the number of cells in x and y direction). The diffusive

scaling approach was used in the non-dimensionalisation of the parameters. These

are the exact same values as those used by Wang et al. [136] whose results will be

used as a comparison.

Test Case No. Mesh Density (No. of Cells ) Nx,y
∆x

δx
∆t(s)

1 441 21 2 0.2857
2 1681 41 2 0.0731
3 6561 81 2 0.0185
4 25921 161 2 0.0046

Table 3.10: Individual test case parameters varying with mesh density for
decaying vortex flow for comparison with existing LBFS results.

Shardt [185] has published a Matlab code that demonstrates that the LBM is

second-order accurate in space. The LBFS was run for these same test cases.

These test cases are detailed in Table 3.11.

To investigate the temporal order of accuracy the test case was run for a variety

of time steps for the mesh density where Nx,y = 96,. These are summarised in

Table 3.12.
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Test Case No. Mesh Density (No. of Cells ) Nx,y
∆x

δx
∆t(s)

5 256 16 2 0.3125
6 1024 32 2 0.0781
7 4096 64 2 0.00195
8 9216 96 2 0.00086

Table 3.11: Individual test case parameters varying with mesh density for
decaying vortex flow for comparison with LBM.

Test Case No. Mesh Density (No. of Cells ) Nx,y
∆x

δx
∆t(s)

9 9216 96 2 0.00862
10 9216 96 2 0.00431
11 9216 96 2 0.00215
12 9216 96 2 0.00107

Table 3.12: Individual test case parameters varying with time step for Nx,y =
96 for decaying vortex flow.

To measure the accuracy of the LBFS, the error in the numerical solution versus

the analytical solution was calculated using a L2 norm of the error in the velocity.

For every test case the error was calculated at the time t
td

= 1. Wang et al. [136]

and Shardt [185] use variations of the L2 norm to calculate the error. These were

used where appropriate to ensure a like-with-like comparison. Wang et al. [136]

use the volume averaged L2 norm which is given by Equation (3.21):

L2 (u)relative =

√√√√ 1

Nx ×Ny

No of Cells∑
1

[
unumerical − uanalytical

uanalytical

]2

(3.21)

Shardt uses a L2 norm of the total error to measure the error. This is given in

Equation (3.22):

L2 (u)total =

√√√√No of Cells∑
1

[
unumerical − uanalytical

uanalytical

]2

(3.22)

The L2 norm at time t
td

= 1 was plotted against mesh density and time step to

investigate the spatial and temporal orders of accuracy.

The velocity profiles of the vortex solution at the decay time were calculated across

the centrelines of the domain in the x and y direction. The velocity profiles were

then compared to the analytical solution at three different times t
td

= 0.2038,

75



t
td

= 0.6115 and t
td

= 1 The results for Test Case 8 are shown in Figures 3.23

to 3.24.
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LBFS t/td = 0.2038
LBFS t/td = 0.6115
LBFS t/td = 1

Figure 3.23: LBFS Re = 10, Nx = 96 VX velocity profile at Y=0.5 for Taylor-
Green vortex flow at varying times.

To investigate the spatial order of accuracy of the LBFS, Test Cases 1-4 were run

(see Table 3.10). The L2 norm of the error was calculated for each test case at the

time t
td

= 1 using Equation (3.21). The results are plotted in Figure 3.25. A linear

curve was fitted to the data using Tecplot (Bellevue, Washington, United States)

and it resulted in a linear curve with a slope value of 2.0543. This indicates that

the LBFS is approximately second-order accurate in space. This agrees with the

results of Wang et al. [136] who provided a result of 1.971. To investigate the

accuracy of the LBFS in comparison with the LBM, Test Cases 5 − 8 were run

(see Table 3.11). The L2 norm of the error was calculated for each test case at

the time t
td

= 1 using Equation (3.21). This is the metric that Wang et al. [136]

used and the results can be seen in Figure 3.26. This figure shows that the LBM

is third-order accurate in space. However the LBM is formally described as being

second-order in space [186]. Shardt’s LBM code [185] is documented as showing

the LBM has second-order spatial accuracy. This contradicts the results shown in

Figure 3.26. To investigate this contradiction the LBFS and LBM code were run
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Figure 3.24: LBFS Re = 10, Nx = 96 UY velocity profile at Y=0.5 for Taylor-
Green vortex flow at varying times.

for Test Cases 5− 8 (see Table 3.11) using Shardt’s measure of L2 norm shown in

Equation (3.22). These results are shown in Figure 3.27. This results in the LBFS

having a spatial order of accuracy of approximately 3.3 for this set of test cases.

For these test cases the LBFS also outperforms the LBM code in both absolute

accuracy and also the spatial order of accuracy. The spatial order of accuracy of

the LBFS is shown to improve for Test Cases 5 − 8. The big difference between

these cases and Test Cases 1 − 4 is the initial Mach number chosen for diffusive

scaling. Cases 1−4 have a starting Mach number of 0.206 for a finer mesh, where-

as cases 5−8 have a starting Mach number of 0.017 for a coarser mesh. The effect

of Mach number on acccuracy can be seen in Figure 3.28.

To ascertain the temporal order of accuracy, the numerical experiment was run for

a variety of time steps for the mesh density where Nx,y = 96. These test cases are

summarised in Table 3.12. The results can be seen in Figure 3.29. It can be seen

that the LBFS is approximately fourth order accurate in time. As a RK4 scheme

is used and is theoretically fourth order accurate, this result shows that the RK4

scheme is correctly implemented.
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Figure 3.25: LBFS - volume averaged L2 norm error of numerical solution vrs
mesh density for Re=10 Taylor-Green vortex flow.

3.5.4 Conclusions

Firstly the results of Wang et al. [136] were recreated and it was shown that the

LBFS is at least second order accurate in space when using the volume averaged L2

norm error metric. However when this approach was used to compare the LBFS to

the LBM, it can be seen that the volume averaged L2 norm error metric was not a

suitable metric as it resulted in making the LBM third order in space. It is noted

in the literature that the LBM is second-order accurate in space [186]. Hence the

total L2 norm error metric would appear to be a more accurate reflection of the

spatial order of accuracy.

When using the total L2 norm error metric, it appears that the LBFS can perform

somewhere between first and third order accurate in space depending on the Mach

number. This increase in accuracy is due to compressibility errors generated by

the lack of third order term in the equilibrium distribution function. As this error

is of the order O(V 3), it would be expected to see large decreases in error as a

result of a reduction in Mach number. Increasing mesh density would have little

impact in reducing this error.
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Figure 3.26: LBFS and LBM comparison - volume averaged L2 norm error of
numerical solution vrs mesh density for Re=10 Taylor-Vortex flow.

This benchmark flow problem also shows that the LBFS can produce time accurate

simulations for transient flow problems. As shown in Figures 3.23 to 3.24 , there

is excellent agreement between the predicted velocity profiles and the analytical

solution at a variety of times. Finally the temporal order of accuracy is found to

be 4.05. The RK4 method is theoretically fourth order accurate and this shows

that the RK4 method is correctly implemented.
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Log10 (1/Nx)

L
o

g
10

  (
L

2 
(u

))

-2.4 -2.2 -2 -1.8 -1.6 -1.4 -1.2 -1
-5.5

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

Low Mach
High Mach

Slope = 3.3200

Slope = 1.0543
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3.6 Womersley Flow

3.6.1 Introduction

Womersley flow is a transient flow problem in which a pressure gradient which

varies periodically in time is applied along a channel. It has as an analytical

solution and this can be used to test the spatial and temporal accuracy of N-S

solvers for unsteady flow.

A dimensionless quantity which serves as a general-purpose indicator of the nature

of the unsteady flow is the Womersley number Wo. This is given by:

Wo =
h

2

√
ω

ν
(3.23)

where h is the channel height, ω is the angular frequency of the unsteady flow

equal to 2π/T , ν is the kinematic viscosity and T is the period of the oscillations

in the flow.

3.6.2 Problem Set Up

The analytical solution of Womersley flow is for static plates of finite length and

a periodically varying pressure differential between the inlet and outlet. This was

implemented in the computational domain by implementing a no slip boundary

condition for velocity at y = −a and y = a (a = h/2). The pressure differential

was implemented by using a body force whose magnitude varies periodically in

time (see Figure 3.30).

An analytical solution can be derived which gives differing velocity profiles for

differing Womersley numbers and times within the flow period. The influence of

time and Womersley number can be seen in Figure 3.31.

The analytical solution for the axial velocity u is given in complex form as:

u (y, t) =
A

iωρ

1−
cosh

(
Wo i0.5

y

a

)
cosh (Wo i0.5)

 eiωt (3.24)
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L

Body Force 
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A Cos(ωt) 

Y

X

u(y)

Figure 3.30: Womersley flow - set up with example parabolic profile for Wo=1.

where A is the amplitude of the body force density driving the flow. The real part

of Equation (3.24) gives the explicit solution of velocity for Womersley flow. As

shown by [5] this is given by:

u (y, t) =
A

ωργ

 [sinhφ1(y)sinφ2(y) + sinhφ2(y)sinφ1(y)] cos(ωt)

+ [γ − coshφ1(y)cosφ2(y) + coshφ2(y)cosφ1(y)] sin(ωt)


(3.25)

where the pressure gradient varies in time as follows:

∂p (t)

∂x
= −A cos (ωt) (3.26)

A is calculated from the following formula:

A =
µ2Re

ρa3
(3.27)

A Reynolds number of 250 was chosen so as to reduce the period of the pressure

oscillations and reduce runtimes. A Womersley number of 10 was chosen as this

results in the most complex velocity profiles. h, µ and ρ were chosen to reflect

typical values found within aortic blood flow. This results in a characteristic

velocity (u0) of the flow of 0.07232m s−1. The test case parameters used in this
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Figure 3.31: Velocity profiles between two flat plates at eight points in time
during a single cycle of a sinusoidally-varying pressure gradient for three values

of Wo. [5]

test case are detailed in SI units in Table 3.13. A sensitivity analysis was performed

Variable Name Value Units

h 0.0043 m
µ 0.001275 Pa s
ρ 1020.5 kg m−3

Reynolds No. 250 -
A 39.895 N m−3

u0 0.07232 m s−1

Womersley No. 10 -

Table 3.13: Overall test case parameters for Womersley flow.

on the length of the channel and it was found that various channel lengths resulted

in the same results. As a result it was decided to have a channel length of five

cells in the x direction. This reduced the computational time required to run the

flow problem.
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3.6.3 Results

3.6.3.1 Introduction

The objectives behind running this benchmark problem include:

1. Comparison of the predicted solution of the axial velocity across channel to

analytical solution at a particular time and Womersley number.

2. Comparison of the predicted solution of the centerline axial velocity of chan-

nel to analytical solution at a particular time for a given Womersley number.

A mesh sensitivity analysis was performed with a variety of mesh densities listed

in Table 3.14. Mesh convergence was achieved for Test Case 4 and all results are

shown for this test case. All test cases were run for a Womersley number of 10 as

this produces the most complex velocity profiles.

Test Case No. Mesh Density (No. of Cells ) Ny Nx
∆x

δx
Ma

T

∆t
1 50 10 5 2 1.08253 126
2 100 20 5 2 0.54126 314
3 200 40 5 2 0.27063 1256
4 250 50 5 2 0.216 3142

Table 3.14: Individual test case parameters used in Womersley flow.

The u-velocity profiles were predicted across the height of the channel for Test Case

4 at each time step. The velocity profiles were then compared to the analytical

solution at different times in the third cycle of oscillations of the flow. These are

3.125T , 3.25T , 3.375T , 3.50T , 3.625T , 3.75T , 3.875T and 4.00T .

The results for Test Case 4 are shown in Figure 3.32 and Figure 3.33.

The predicted u-velocity at y = 0 for Test Case 4 was plotted against time. It is

compared to the analytical solution and also to the driving force. The results are

shown in Figure 3.34.

3.6.4 Conclusions

Results of the Womersley flow problem was predicted using the LBFS for a variety

of mesh densities. Solutions were predicted for a Womersley number of 10 as this
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Figure 3.32: LBFS Re = 250, Ny = 50,Wo = 10, u-velocity profile at x = L/2
for Womersley flow at varying times.

results in the most complex velocity profiles. As shown in Figures 3.32 to 3.34

there is excellent agreement between the numerical results generated by the LBFS

and the analytical solution. This benchmark problem shows that the LBFS can

model unsteady pressure driven flows to a high level of accuracy.
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Figure 3.33: LBFS Re = 250, Ny = 50,Wo = 10, u-velocity profile at x = L/2
for Womersley flow at varying times.

87



t/T

u
/u

0(
y 

= 
0)

N
o

rm
al

is
ed

 F
o

rc
e

0 1 2 3 4 5

-0.02

-0.01

0

0.01

0.02

-1

-0.5

0

0.5

1

Analytical u
LBFS u
Normalised Force

Figure 3.34: LBFS Re = 250, Ny = 50,Wo = 10, u-velocity at y = 0 for
Womersley flow at varying times.

88



3.7 Non-Uniform Grid Lid-Driven Cavity

3.7.1 Introduction

Shear-driven flow in a cavity is a standard flow problem for verifying incompress-

ible viscous flow codes. It has historically been used as the benchmark study to

compare the accuracy and the performance of CFD codes [183]. Previously this

benchmark problem was run with a uniform grid. In this chapter the numerical

experiment is repeated and a non-uniform structured grid has been used. The

results show the performance of the LBFS when using non-uniform grids and are

subsequently compared to the uniform grid results.

This benchmark problem was also be used to investigate methods of calculating

initial values of the macroscopic variables on the localised lattices at the cell inter-

face. Two approaches to this include direct interpolation or calculation from the

gradients of the adjacent cells. Direct interpolation for each node was shown to be

prohibitive in its computational expense as run times were larger by one order of

magnitude. Hence results for two gradient calculation methods, Gauss-Gradient

and Least-Squares, are shown in this section.

3.7.2 Problem Set Up

The lid-driven cavity is a steady state problem with a moving lid developing the

flow. The LBFS will iterate the solution in time until a steady state is reached.

This can then be compared to existing numerical results produced by Ghia et al.

[4]. The initial set up of the lid-driven cavity problem is illustrated in Figure

3.35. The top boundary moves with a velocity ulid. This is implemented using

a Dirichlet boundary condition specifying ulid. A no-slip boundary condition was

implemented at the remaining three boundaries. This was implemented using

a Dirichlet boundary condition specifying zero velocity at these boundaries. For

pressure, a Neumann boundary condition specifying zero change in pressure across

the boundary was implemented at all boundaries.

The fluid in the cavity was chosen as water due to its similar properties to plasma.

The test case was run for a range of Reynolds numbers, i.e. Re = 100, 400, 1000,

3200, for the physical parameters provided in Table 3.15.
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Figure 3.35: Lid-driven cavity flow - set up.

Variable Name Value Units

Lref 0.1 m
ν 1.0034 ∗ 10−6 m s−1

ρ 998.2 kg m−3

Table 3.15: Overall test case parameters for lid-driven cavity flow.

Each test case is run using a non-uniform grid. The non-uniform grid used in each

test case can be generated by using the Chebyshev node formulation:

xi =
1

2

[
1− cos

(
i− 1

Nx − 1
π

)]
for i = 1, 2, ..., Nx (3.28)

yj =
1

2

[
1− cos

(
j − 1

Ny − 1
π

)]
for j = 1, 2, ..., Ny (3.29)

where Nx and Ny are respectively the total number of mesh points in the x and y

direction respectively. An example of a 61 x 61 grid is shown in Figure 3.36.

Local timestepping was used to accelerate the convergence of the solution to

steady-state. The approach adopted was the same as described in Section 2.5.2

and involves using the largest time step at each cell that is allowed by stability

criteria. Each test case was run for both the Gauss-Gradient and Least-Squares

approach to gradient calculations which are described in detail in Appendix A.4.
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Figure 3.36: 61 x 61 non-uniform grid.

The value of the lid velocity changes with Reynolds number and a test case was

run for each Reynolds number. The parameters for the test cases are summarised

in Table 3.16.

Test
Case
No.

Re ulid(m/s) No. of Cells Nx,y
∆x

δx
∆t(s) Gradient Calc

1 100 0.001 3721 61 2 local Least-Squares
2 400 0.004 3721 61 2 local Least-Squares
3 1000 0.010 6561 81 2 local Least-Squares
4 3200 0.032 10201 101 2 local Least-Squares
5 100 0.001 3721 61 2 local Gauss
6 400 0.004 3721 61 2 local Gauss
7 1000 0.010 6561 81 2 local Gauss
8 3200 0.032 10201 101 2 local Gauss

Table 3.16: Individual test case parameters varying with Reynolds number
for lid-driven cavity flow.
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3.7.3 Convergence Criteria

For all test cases, the RMS of the velocity change between successive iterations

was used to monitor convergence to steady state. The convergence criteria was

defined as follows:

R
(
QIteration,N

)
< 1 ∗ 10−6 (3.30)

where:

R
(
QIteration,N

)
=

No of Cells∑
1

√√√√√√
((√

u2 + v2
)N+1 −

(√
u2 + v2

)N)2

((√
u2 + v2

)N+1
)2 (3.31)

and N is the number of iterations completed in the solution. This measure of

residual is used by Wang et al. [136].

3.7.4 Results

The results generated by the LBFS were compared to the numerical results pro-

duced by Ghia et al. [4]. The following aspects of the simulation are compared:

• Centre line velocity plots.

• Streamline plots.

• Primary vortex location.

• Run time comparison.

The velocity profiles of the steady state solution were calculated across the cen-

trelines of the domain in the x and y direction. The results for Test Cases 1-8 are

shown in Figures 3.37 to 3.40.
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Figure 3.37: Non-uniform grid lid-driven cavity flow centreline velocity pro-
files, Re =100.
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Figure 3.38: Non-uniform grid lid-driven cavity flow centreline velocity pro-
files, Re =400.
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Figure 3.39: Non-uniform grid lid-driven cavity flow centreline velocity pro-
files, Re =1000.
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Figure 3.40: Non-uniform grid lid-driven cavity flow centreline velocity pro-
files, Re =3200.
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The streamline plots for each of the test cases are plotted along with the results

of Ghia et al. [4] in Figures 3.41 to 3.44.

(a) Least-Squares (b) Gauss (c) Ghia

Figure 3.41: Comparison of streamline plots for lid-driven cavity flow between
LBFS (non-uniform grid) and Ghia for Re = 100.

(a) Least-Squares (b) Gauss (c) Ghia

Figure 3.42: Comparison of streamline plots for lid-driven cavity flow between
LBFS (non-uniform grid) and Ghia for Re = 400.

(a) Least-Squares (b) Gauss (c) Ghia

Figure 3.43: Comparison of streamline plots for lid-driven cavity flow between
LBFS (non-uniform grid) and Ghia for Re = 1000.

The location of the centre of the primary vortex was taken as the point with the

minimum value of the streamfunction. It is then compared to results provided by

Ghia et al. [4] and LBFS with uniform grid in Table 3.17.
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(a) Least-Squares (b) Gauss (c) Ghia

Figure 3.44: Comparison of streamline plots for lid-driven cavity flow between
LBFS (non-uniform grid) and Ghia for Re = 3200.

Next the simulation run times are compared for the different methods. Run times

are compared for both the Least-Squares and Gauss-Gradient methods. These are

also compared to similar test cases run using a uniform grid. These are shown in

Table 3.18.

3.7.5 Conclusions

The results demonstrated above show that the LBFS can calculate the steady

state solution of the lid-driven cavity problem to a very high level of accuracy

using non-uniform grids. Previously uniform grids were used, using finer meshes

and the results using a non-uniform grid are superior in accuracy and run time.

These results are also comparable to the accuracy achieved by Shu et al. [137].

A comparison between the Gauss-Gradient and Least-Squares approaches for cal-

culating gradients was also done. It was found that both approaches resulted in

very accurate results. The Gauss-Gradient approach seems to be marginally more

accurate at high Reynolds numbers. It also seems to be approximately ten percent

faster for equivalent simulations.

However this is as expected as the Gauss-Gradient approach is optimal on grids

with very low skewness. With the structured non-uniform mesh used, there was

no requirement to use a modification term to allow for errors due to skewness.

This flow problem has demonstrated that the LBFS can handle the use of non-

uniform grids to a high degree of accuracy. This enables the use of refined meshes

which allow increased accuracy or reduced runtimes over an equivalent uniform

mesh.
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Re
Simulation Run Times (s)

No. of Cells Gauss Least-Squares Uniform

100 3721 153.24 148.33 -
400 3721 177.09 192.25 -
1000 6561 500.57 542.68 -
3200 10201 1219.71 1366.36 -
100 16641 - - 1177.27
400 16641 - - 2704.46
1000 16641 - - 3984.87
3200 16641 - - 8463.08

Table 3.18: Run time comparison for lid-driven cavity flow between Gauss-
Gradient, Least-Squares and uniform grid approaches.
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3.8 Summary

In this chapter the solutions of a large variety of complex flow problems have been

predicted by the LBFS. It has been fully verified in 2D that the LBFS can handle

the following features of fluid flow problems:

1. Can correctly calculate the viscous and inviscid fluxes for a variety of Reynolds

numbers.

2. Can predict accurate results for both steady and unsteady flow problems.

3. Can accurately predict the outcomes of pressure driven flow.

4. Has demonstrated that the LBFS has between first and third order accuracy

for 2D flow problems.

5. Can be used as a solver with non-uniform meshes with a high degree of

accuracy, enabling either an increase in accuracy or reduced runtimes when

compared to using an equivalent uniform mesh.

The results in this chapter show that the LBFS is a viable N-S solver and therefore

the effort to extend the LBFS to 3D and to unstructured grids can be justified.

The verification of these further extensions in functionality will be discussed in

the next chapter.
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Chapter 4

Three-Dimensional

Preconditioned Lattice

Boltzmann Flux Solver on

Unstructured Grids

4.1 Introduction

As discussed in Section 1.8, the LBFS performs poorly at incompressible steady-

state problems. In this chapter the γ-preconditioning approach is introduced and

applied to two benchmark flow problems. The results and outcomes of this imple-

mentation are then discussed. In Chapter 3 the LBFS’s ability to predict 2D flow

problems on non-uniform grids was verified. This chapter will also show the results

of extending the LBFS to 3D and extending the meshes used from non-uniform to

fully unstructured hexahedral meshes.
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4.2 Governing Equations

The preconditioned lattice Boltzmann flux solver (PLBFS) takes the same form

as the LBFS with the preconditioned flux tensor Fp given by:

Fp =
N∑
α=0

f eqα


eα,x eα,y eα,z

eα,xeα,x eα,yeα,x eα,zeα,x

eα,xeα,y eα,yeα,y eα,zeα,y

eα,xeα,z eα,yeα,z eα,zeα,z



+
N∑
α=0

[
1− 1

2τp

]
fneqα


0 0 0

eα,xeα,x eα,yeα,x eα,zeα,x

eα,xeα,y eα,yeα,y eα,zeα,y

eα,xeα,z eα,yeα,z eα,zeα,z


(4.1)

where f eqα is defined as:

f eqα (r, t) = ρwα

[
1 +

eα ·V
c2
s

+
(eα ·V)2 − (cs|V|)2

2γc4
s

]
+O(V3) (4.2)

and fneqα is defined as:

fneqα (r, t) = −τp [f eqα (r, t)− f eqα (r− eαδt, t− δt)] (4.3)

where γ is the preconditioning parameter and τp is the preconditioned relaxation

factor. The preconditioning parameter γ relates τp to the standard relaxation

factor τs in the following way:

γ =
τs − 0.5

τp − 0.5
(4.4)

Letting the preconditioning matrix P = diag (1, γ−1, γ−1, γ−1), then through the

Chapman-Enskog expansion, the flux tensor in Equation (2.1) for the precondi-

tioned NS equations can be shown to be:

Fp = P


ρu ρv ρw

ρu2 + p− µ
(
2∂u
∂x

)
ρuv − µ

(
∂u
∂y

+ ∂v
∂x

)
ρuw − µ

(
∂u
∂z

+ ∂w
∂x

)
ρvu− µ

(
∂u
∂y

+ ∂v
∂x

)
ρv2 + p− µ

(
2∂v
∂y

)
ρvw − µ

(
∂v
∂z

+ ∂w
∂y

)
ρwu− µ

(
∂u
∂z

+ ∂w
∂x

)
ρwv − µ

(
∂v
∂z

+ ∂w
∂y

)
ρw2 + p− µ

(
2∂w
∂z

)

 (4.5)
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where:

p = γc2
sρ (4.6)

and:

µ = γρc2
s (τp − 0.5) δt (4.7)

For steady flows utilising Equation (4.5) in Equation (2.1) is equivalent to utilising

Equation (2.2) in Equation (2.1) but with a different equation of state. To demon-

strate the effect of the preconditioning parameter on the rate of convergence, the

partial differential equation form of the preconditioned NS equations is employed:

∂Q

∂t
+ PA

∂Q

∂x
+ PB

∂Q

∂y
+ PC

∂Q

∂z
= 0 (4.8)

where A, B, C are the Jacobians of the flux vectors given by:

A =
∂Fp,x

∂Q
, B =

∂Fp,y

∂Q
, C =

∂Fp,z

∂Q
(4.9)

and Fp,x, Fp,y, Fp,z are the components of the flux tensor in the x, y and z directions

respectively. Considering only the inviscid terms, these are given by:

Fp,x =


ρu

ρu2 + p

ρvu

ρwu

 , Fp,y =


ρv

ρuv

ρv2 + p

ρwv

 , Fp,z =


ρw

ρuw

ρvw

ρw2 + p

 (4.10)

The preconditioned convection matrix PA is now written as:

PA =


1 0 0 0

0 1
γ

0 0

0 0 1
γ

0

0 0 0 1
γ




0 1 0 0

γc2
s − u2 2u 0 0

−vu v u 0

−wu w 0 u

 (4.11)

To calculate the eigenvalues of PA, the determinant of (PA− λI) is first calcu-

lated:

det (PA− λI) =
(u− λ)2

γ3

[
λ2 − 2uλ+ u2 − γc2

s

]
(4.12)

The eigenvalues λ are found by letting Equation (4.12) equal 0 giving:

λ (PA) =
1

γ
(u, u, u± γcs) (4.13)
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The aim of preconditioning is to reduce the stiffness of the system by scaling the

eigenvalues of PA appropriately. The reduction in stiffness can be measured by

the condition number (CN) given as:

CN(PA) =
|max [λ (PA)] |
|min [λ (PA)] |

= 1 +
γcs
u

= 1 +
γ

Ma
(4.14)

where Ma is the dimensionless Mach number. A CN close to 1 indicates a well

balanced system with no stiffness. From Equation (4.14) it can be seen that to

achieve a CN close to 1, it is required that Ma → ∞ or γ → 0. As Ma is

restricted to values < 0.4 to satisfy incompressiblity requirements, reducing γ

can be used to reduce the stiffness of the system. The above only considers one

dimension, in reality a flow will have three dimensional flow. To consider the

impact of preconditioning on three dimensional flow; the CN of PB and PC can

be calculated following the same approach.

4.3 Impact of Preconditioning on Unstructured

Grids

4.3.1 Overview

One advantage of using an unstructured grid with the LBFS is that it allows

local refinement of the mesh in areas of rapidly changing flow. In practice, this

involves having a very fine mesh close to surfaces in the flow and a much coarser

mesh further away. This is in contrast to the traditional LBM where a uniform

mesh density is used throughout the computational domain. When Guo [158]

applied preconditioning to the LBM, there was no need to consider the impact

of preconditioning on larger convection dominated cells or relatively finer cells in

the boundary layer that are viscous dominated. As a result the purpose of that

work was to reduce the stiffness of the inviscid Jacobians. In this section it will be

shown that the PLBFS can improve the accuracy of flux calculations in larger cells

compared to the LBFS but can also have an adverse effect on local timestepping

in viscous dominated cells. An optimal choice of γ will consider both these factors

while trying to reduce the CN of the system, and a strategy for making this choice

is proposed at the end of this section.
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4.3.2 Influence of Preconditioning on Lattice Streaming

Distance

When choosing a lattice streaming distance δx, the preferred strategy is to max-

imise the size of the lattice while keeping all lattice nodes within the cells adjoining

to the common cell interface. This has the effect of reducing the error in inter-

polating the macroscopic variables to the lattice nodes using Equation (2.13) and

Equation (2.14). This is due to the fact that as δx increases, the distance between

the lattice nodes and the cell centre, from which the macroscopic variables are

interpolated, is reduced. This increases the accuracy of the interpolation as the

gradient is calculated at the cell centre and the lattice nodes are closer to the cell

centre.

However this leads to issues in relatively large cells that are prevalent in unstruc-

tured grids. From Equation (4.7), as δx increases τp decreases. This has an adverse

affect on stability as the LBM becomes unstable as τp tends to its minimum value

0.5 especially in the range 0.50 < τp < 0.55 [187]. Preconditioning is most advan-

tageous in scenarios when the stability limit of τp limits the size of δx. Decreasing

γ allows an increase in δx for a constant τp. The benefits are illustrated by Fig-

ure 4.1, where decreasing γ allows a much larger lattice reconstruction without

introducing instability by lowering the value of τp.

As result of this property, preconditioning allows the use of coarser unstructured

grids than the unpreconditioned LBFS with increased accuracy. This allows for

either a decrease in runtimes for similar levels of accuracy or an increase in accuracy

for the same runtime.

4.3.3 Influence of Preconditioning on Viscous Dominated

Cells

Using preconditioning can have an adverse effect on timestepping in viscous dom-

inated cells, i.e. where the viscous spectral radii is larger than the convective

spectral radii, or can cause convection dominated cells to become viscous domi-

nated. To illustrate the impact of γ on the local time step of these relatively fine

cells employed in viscous dominated regions, the spectral radii of a cell is calcu-

lated using Equations (2.55) to (2.58) and it’s assumed that V→ 0 as the cell is
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Figure 4.1: Local reconstruction of the lattice Boltzmann lattice for γ = 1
and γ = 0.02 where Re = 1000, Ma = 0.17 and µ = 0.0001.

assumed to neighbour a surface in the flow. For a uniform cell with edge length l,

surface area S and volume V the convective and viscous spectral radii become:

Λc =
1

γ
3 (0 + γcs)S = 3csS

Λv =
1

γV

2µ

ρ
· 3S2 =

6µl

γρ

(4.15)

The ratio of the viscous spectral radius to the inviscid spectral radius, including

the constant in Equation (2.55), is given as:

Γvc =
CΛv

Λc

= 4
2µ

γcslρ
(4.16)

Re-writing in non-dimensional form and defining l relative to the reference length

L gives:

Γvc =
8MaN

γRe
= ΦN (4.17)

where Φ is a constant and N = L/l is the number of uniform cells along the

reference length L. Values of Γvc > 1 indicate that the flow in a cell is viscous

dominated. If Γvc >> 1 this means that the time step in Equation (2.55) is cal-

culated based off the viscous spectral radius and is not optimised for the inviscid
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contributions. Figure 4.2 illustrates how Φ and cell size influence if a cell is con-

vection or viscous dominated. Cells becomes viscous dominated as the edge length

of the cell becomes smaller and the viscous threshold of edge length, where the

cell changes from convection dominated to viscous dominated, is dependent on Φ.

Smaller values of Φ allow finer cells to remain convection dominated. To reduce

the value of Φ, the following choice of non-dimensional parameters is desired:

• Reduced values of Ma.

• Larger values of γ.

• Larger values of Re.
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Figure 4.2: Variation of Γvc with N for different values of Φ.
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4.3.4 Preconditioning Parameter Selection Strategy

The purpose of preconditioning the N-S equations is to reduce the stiffness of the

inviscid Jacobians to accelerate convergence of steady flow calculations. However,

as shown in the previous sections, the use of preconditioning can have advantages

and disadvantages when it comes to the use of unstructured grids. Preconditioning

allows the use of larger cells in convection dominated flow which leads to reduced

runtimes. However if the mesh contains a large number of viscous dominated cells,

in particular cells in the boundary layer of a surface, this may have an adverse

impact on the convergence rate. A good choice of preconditioning parameter

would have 1+ γ
Ma
→ 1 whilst keeping Γvc ≤ 1 for the vast majority of cells. From

Equation (4.17) and Figure 4.2 it can be seen that smaller values of Ma and larger

values of Re and γ allow smaller cells to be used while keeping Γvc ≤ 1. Setting

Γvc = 1 in Equation (4.17) gives the following equation for setting γ:

γ >
8MaN

Re
(4.18)

Note that Equation (4.18) will only hold for every cell in uniform grids only. In

grids where there is a large variation in cell size, there will be cells that will have

Γvc > 1. Therefore it is recommended to investigate a histogram of cell size of the

computational domain and optimise γ for the most common cell size.

The impact of the choice of preconditioning parameter on stability should also

be considered. Izquierdo suggested the optimal choice of γ = 2Ma [161] as this

value maximises speed up while offering robust stability. However it was provided

with the caveat that the optimal value increases for lower Reynolds numbers. A

strategy for choosing a value of γ is given in Table 4.1. It is preferable to decrease

Ma rather than have Γvc > 1 as lower values of Ma reduces the compressibility

error at no cost in runtime when local timestepping is used. It should be noted

that accurately calculating the real eigenvalues in a cell is quite difficult and that

Equation (4.17) is based on an estimate and that Γvc = 1 may not be the exact

threshold for cells becoming viscous dominated.
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Preconditioning Parameter Selection

1. First attempt using the optimal precondition parameter provide by
Izquierdo [161] where γ = 2Ma.

2. If no convergence acceleration is experienced, then for a given Re and
mesh, investigate the histogram of cell sizes in the computational domain
and identify the most common cell size.

3. Using this cell size calculate Γvc using Equation (4.17) for uniform grids
or Equations (2.56) to (2.58) for unstructured grids.

4. If Γvc > 1, then decrease Ma, increase γ or increase the size of the smallest
cell in the mesh.

5. Repeat Step 3 until an acceleration in runtime is achieved or γ = 1

Table 4.1: Strategy for choosing values for preconditioning on unstructured
grids.

4.4 Numerical Results and Discussion

4.4.1 Overview

To demonstrate the capability of the PLBFS, two flow problems are considered:

3D lid-driven cavity flow and 3D flow over a circular cylinder. For both flow prob-

lems unstructured hexahedral meshes were used to demonstrate that the PLBFS

can be effectively employed with an unstructured mesh topology. Flow problems

were solved using a variety of Re and Ma numbers and the impact of various

values of the preconditioning parameter γ were investigated to show the impact of

preconditioning on accuracy and convergence rates. All meshes were created with

ANSYS ICEM meshing software (ANSYS Inc., Canonsburg, PA, USA).

The RMS of the ρu-momentum residual was used to monitor convergence to

steady-state and is defined as follows:

RRMS

(
QIteration,t

)
=

√∑No of Cells
i=1 R

(
Qi,t

)2

No of Cells
(4.19)

where t is the iteration index and R (Qi) is the ρu residual calculated for cell i

using Equation (2.26). The calculated RMS was normalised relative to the initial
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RMS value calculated at the end of the first iteration. i.e

RRMS,Norm =
RRMS

(
QIteration,t

)
RRMS

(
QIteration,1

) (4.20)

The convergence criterion employed was a five order magnitude reduction in the

normalised residual, i.e.

RRMS,Norm < 1 ∗ 10−5 (4.21)

4.4.2 3D Lid-Driven Cavity Flow

Shear-driven flow in a square/cube cavity is a standard test case for validating

predictions of incompressible viscous flow. It has historically been used as a bench-

mark flow problem to investigate the accuracy and the performance of CFD codes

[183]. Lid-driven cavity flow is steady for Reynolds number less than 10000, with

a moving lid developing the flow. The steady-state predictions by the PLBFS

are compared to existing numerical results produced by Ku et al. [188] and Ding

et al. [189]. The set up of the lid-driven cavity problem is illustrated in Figure

4.3. The top boundary moves with a velocity ulid. This was implemented using

a Dirichlet boundary condition specifying ulid. A no-slip boundary condition was

implemented at the remaining five boundaries. For density, a Neumann boundary

condition, specifying zero change in density across the boundary, was implemented

at all boundaries. The initial conditions were set as V = 0 and ρ = 1. Multi-

ple test cases were run for this flow problem with different combinations of Re

number, Ma number, preconditioning parameter γ and mesh density. The test

case parameters are summarised in Table 4.2 and were chosen as per Table 4.1.

Test Cases 1-8 were run using the mesh shown in Figure 4.3 consisting of 90480

hexahedral cells. Test Cases 9-13, performed without preconditioning, were run

on finer meshes consisting of 226981 and 531411 cells. The origin of the coordinate

system is located at the centroid of the cube and the edges on the cube have a

reference length Lref = 10. Predicted velocity profiles on vertical and horizontal

centrelines respectively in the z = 0 plane for Test Cases 1-13 are shown in Fig-

ures 4.4 to 4.7. The results are compared to the predictions of Ku et al. [188]

and Ding et al. [189]. Overall there is good agreement with the literature by the

preconditioned test cases and the test cases performed on finer meshes. To show

the flow patterns of the 3D lid-driven cavity flow, 2D streamlines are projected

onto three centroidal planes at x = 0, y = 0 and z = 0. The flow patterns are
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Test Case No. ulid Re Ma γ CN Γvc,max δxmax Ncells

1 0.1 100 0.173 1 6.77 0.622 0.60 90480
2 0.1 100 0.173 0.2 2.15 3.11 3.00 90480
3 0.01 100 0.017 1 58.73 0.06 0.06 90480
4 0.01 100 0.017 0.02 2.15 3.11 3.00 90480

5 0.1 1000 0.173 1 6.77 0.062 0.06 90480
6 0.1 1000 0.173 0.2 2.15 0.311 0.30 90480
7 0.01 1000 0.017 1 58.73 0.006 0.006 90480
8 0.01 1000 0.017 0.02 2.15 0.311 0.30 90480

9 0.1 100 0.173 1 6.77 0.854 0.6 226981
10 0.01 100 0.017 1 58.73 0.085 0.06 226981
11 0.1 1000 0.173 1 6.77 0.085 0.06 226981
12 0.01 1000 0.017 1 58.73 0.008 0.006 226981

13 0.01 1000 0.017 1 58.73 0.011 0.006 531411

Table 4.2: Individual test case parameters for 3D lid-driven cavity flow.

shown for Test Cases 4 and 8 where Re = 100 and Re = 1000 respectively. These

results are shown in Figure 4.8 and show the development of stronger secondary

vortices and a stronger 3D impact as the Reynolds number increases. This is in

agreement with the predictions of previous studies by Ku et al. [188], Ding et al.

[189] and Wang et al. [140]. Convergence histories are plotted in Figure 4.9 and

Figure 4.10.

Using an unstructured hexahedral mesh produces excellent results that agree with

predictions by other researchers in the literature. The previous study using a LBFS

by Wang et al. [140] used a 81X81X81 (531441 cells) non-uniform structured mesh

and its predictions had excellent agreement with the studies of Ku et al. [188] and

Ding et al. [189]. Using the PLBFS on a fully unstructured grid allows similar

levels of accuracy to be attained while using a mesh with only 90480 cells. The

results also confirm the theoretical analysis in Section 4.3.3. This analysis suggests

that preconditioning should enable the use of large δx on lattices in relatively larger

cells. This should reduce the interpolation error when applying Equations (2.13)

and (2.14). Inspecting Table 4.2 shows that preconditioning allows the use of a

larger δx in the bigger cells in the mesh. Inspecting Figures 4.4 to 4.7 show that the

preconditioned case with the larger δx is more accurate than the unpreconditioned

cases with smaller δx. Figures 4.4 to 4.7 also show that increasing the mesh density

results in more accurate comparisons with the benchmark solutions. There is also

significant convergence acceleration with the use of preconditioning at lower Ma
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Figure 4.3: 3D lid-driven cavity unstructured mesh (90480 cells) and problem
setup.

numbers. The reduction in iterations required to reach convergence compared

to the non-preconditioned case is 9.72x at Re = 1000 and 5.62x at Re = 100

for Ma = 0.017. At the higher Mach number of Ma = 0.17, the decrease in

CN is offset by disproportionately larger increase in Γvc,max (see Table 4.2). This

accounts for the lack of significant acceleration in convergence at the higher Mach

number. An alternative to preconditioning to improve accuracy is to increase the

mesh density. Figures 4.4 to 4.7 show that the preconditioned test cases produce

results that are of similar accuracy to those of the unpreconditioned test cases on

finer meshes. This is also with the benefit of a reduction in the iterations required

to reach convergence and a reduction in the flux calculations per iteration. As can

be seen in Figure 4.9 and Figure 4.10, this effect is most prominent for high Re and

low Ma. The preconditioned case of Re = 1000 and Ma = 0.017 uses 5.87x less

cells and 20.67x less iterations than the unpreconditioned case on the finest mesh.

In this case preconditioning enables a 121x reduction in computational effort while

attaining similar levels of accuracy.
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Figure 4.4: 3D lid-driven cavity flow: normalised a) u and b) v velocity
profiles along vertical and horizontal centrelines respectively in the z = 0 plane

for Re = 100, Ma = 0.17 and ulid = 0.1.
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Figure 4.5: 3D lid-driven cavity flow: normalised a) u and b) v velocity
profiles along vertical and horizontal centrelines respectively in the z = 0 plane

for Re = 100, Ma = 0.017 and ulid = 0.01.
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Figure 4.6: 3D lid-driven cavity flow: normalised a) u and b) v velocity
profiles along vertical and horizontal centrelines respectively in the z = 0 plane

for Re = 1000, Ma = 0.17 and ulid = 0.1.
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Figure 4.7: 3D lid-driven cavity flow: normalised a) u and b) v velocity
profiles along vertical and horizontal centrelines respectively in the z = 0 plane

for Re = 1000, Ma = 0.017 and ulid = 0.01.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.8: 3D lid-driven cavity flow: predicted streamlines in the x = 0 plane
for a) Re = 100 and b) Re = 1000, in the y = 0 plane for c) Re = 100 and d)

Re = 1000 and in the z = 0 plane for e) Re = 100 and f) Re = 1000.

118



Iterations (1000s)

R
R

M
S

,N
o

rm
 (

L
o

g
10

) 

0 5 10 15 20
-5

-4

-3

-2

-1

0

γ = 1 ; N = 90480 
γ = 0.02 ; N = 90480 
γ = 1 ; N = 226981 

(a)

Iterations (1000s)

R
R

M
S

,N
o

rm
 (

L
o

g
10

) 

0 5 10 15 20
-5

-4

-3

-2

-1

0

γ = 1 ; N = 90480 
γ = 0.02 ; N = 90480 
γ = 1 ; N = 226981 

(b)

Figure 4.9: 3D lid-driven cavity flow: convergence history for Re = 100 with
a) ulid = 0.1 and b) ulid = 0.01.
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Figure 4.10: 3D lid-driven cavity flow: convergence history for Re = 1000
with a) ulid = 0.1 and b) ulid = 0.01.
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4.4.3 3D Flow Over a Circular Cylinder

As mentioned previously, one of the motivations behind using the LBFS is to avoid

the staircase approximation of curved boundaries with the traditional LBM. To

demonstrate the applicability of the LBFS to flow problems with curved bound-

aries, 3D flow over a circular cylinder was investigated. This is a steady flow for

low Reynolds numbers and so the PLBFS can also be used to solve this flow prob-

lem. The problem was set up as in Figure 4.11, with the cylinder immersed in a

uniform freestream. The diameter of the cylinder was the reference length Lref

with a value of Lref = 1 and spanned the length of the z-domain. The bound-

ary condition at the inlet boundary was set equal to the freestream density ρ∞

and freestream velocity U∞ using Dirichlet boundary conditions. At the outlet

boundary condition the pressure was set equal to static pressure by a Dirichlet

boundary condition and a zero change in velocity at the outlet was maintained

by a Neumann boundary condition. A no-slip boundary condition was applied to

the wall of the cylinder and the remaining boundaries all have a zero change in

velocity and density which are maintained by Neumann boundary conditions. The

initial conditions were set as V = 0 and ρ = 1. The flow problem was run for dif-

ferent combinations of Re, Ma and γ. The test cases parameters are summarised

in Table 4.3. The values of γ were chosen for each test case as per the approach

given by Table 4.1.

Test Case No. U∞ Re Ma γ CN Γvc,max δxmax

1 0.1 20 0.17 1 6.77 4.41 0.173

2 0.1 20 0.17 0.2 2.15 22.05 0.866

3 0.01 20 0.017 1 58.73 0.44 0.017

4 0.01 20 0.017 0.05 3.88 8.82 0.346

5 0.1 40 0.17 1 6.77 2.20 0.086

6 0.1 40 0.17 0.2 2.15 11.04 0.433

7 0.01 40 0.017 1 58.73 0.22 0.008

8 0.01 40 0.017 0.05 3.88 4.41 0.173

Table 4.3: Individual test case parameters for 3D flow over a circular cylinder.

All test cases were run with a variety of meshes with densities of 7021, 13051,

18517, 23073 and 25877 cells. For each mesh, the cell height of the first cell
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Figure 4.11: 3D flow over a cylinder problem setup.

adjacent to the cylinder wall was chosen as 0.05 and was one cell thick in the

z-direction. The mesh containing 23073 cells is shown in Figure 4.12. For Re = 20

and Re = 40, the flow is steady. The predicted streamlines and velocity contours

for Test Case 1 and 5 are shown in Figure 4.13. The streamtraces show stationary

recirculation regions on the lee side of the cylinder. The flow pattern shown

is consistent with the existing studies in the literature; however more detailed

measures are required to demonstrate the performance of the PLBFS. To do this,

a variety of parameters can be employed including the drag coefficient of the

cylinder, the recirculation length and separation angle. The drag coefficient Cd

relates the force acting on a body by a fluid in the direction of the freestream

velocity to the force of the freestream dynamic pressure acting on the frontal area

of the body. This is calculated as follows:

Cd =
γFd

0.5ρ∞U2
∞Af

(4.22)

where Af is the frontal area (the area projected onto a plane normal to the flow

direction) of the body and Fd is the drag force which in this flow problem is

calculated by integrating the pressure and viscous stresses acting in the x-direction
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over the surface of the cylinder, i.e.:

Fd = −
∫
S

([
p− µ

(
2∂u
∂x

)
−µ
(
∂u
∂y

+ ∂v
∂x

)
−µ
(
∂u
∂z

+ ∂w
∂x

) ]
· n
)
dS (4.23)

The pressure and viscous stresses in Equation (4.23) were calculated using Equa-

tion (4.1). The recirculation length Ls is defined as the distance between the

trailing edge of the cylinder and the stagnation point in the wake i.e. where

V = 0 on the x-axis. The separation angle θs is the angle between the trailing

edge and the point where the boundary layer separates from the cylinder. This

point is indicated by the wall shear stress equalling zero.

To establish that the PLBFS is at least second-order accurate, Test Case 5 has also

been performed for a variety of mesh densities where the first cell height, number

of divisions and maximum element length were scaled in the same manner from

0.2Lref to 0.02Lref . A further test case was performed at a scale of 0.01Lref and

this was used as the benchmark drag coefficient. The percentage error in the drag

coefficient was calculated for each test case and is plotted in logarithmic form in

Figure 4.14. This shows that the PLBFS is at least second order accurate which

is consistent with the work of Shu et al. [137].

The results from the PLBFS are compared to previous numerical studies (Shu et

al. [137], Dennis and Chang [190], Shukla et al. [191] and Pellerin et al. [138])

in Table 4.4 and Table 4.5. The variation of the various parameters with mesh

density are also plotted and compared to the upperbound and lowerbound values

from the literature in Figures 4.15 to 4.17. These results show that for the vast

majority of test cases, the parameters are converged or very near convergence on

a mesh of 23073 cells. The main differentiator in accuracy are the parameters

Γvc,max and δxmax. The most accurate predictions are for those test cases which

have reduced values of Γvc,max while having δxmax greater than the first cell height

in the boundary layer. These parameters are dependent on the choice of Ma and

γ and a balance has to be struck between both to ensure maximum accuracy.

The convergence histories are plotted in Figure 4.18. As shown in Figure 4.18,

the reduction in iterations required to reach convergence compared to the non-

preconditioned case is 4.92x at Re = 20 and 9.625x at Re = 40 for Ma = 0.017.

However there was an increase in iterations at the higher Mach number of 0.17.

Due to the detrimental effect on convergence rates at Ma = 0.17, further test

cases were run to investigate this issue. These additional test cases were chosen
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Reference U∞ γ Cd Ls/Lref θs

Shu et al. [137] 0.1 - 2.06 0.94 42.94
Dennis and Chang [190] - - 2.05 0.94 43.70

Shukla et al. [191] - - 2.07 0.92 43.30
Pellerin et al.[138] - - 2.01 0.92 43.58

Test Case 1 0.1 1 2.05 0.91 42.97
Test Case 2 0.1 0.2 2.1 0.98 42.81
Test Case 3 0.01 1 2.07 0.86 40.86
Test Case 4 0.01 0.02 2.04 0.91 42.97

Table 4.4: 3D flow over a circular cylinder: comparison of predicted drag
coefficient, recirculation length and separation angle with predictions in the

literature for Re =20 and Ncells = 23073.

Reference U∞ γ Cd Ls/Lref θs

Shu et al. [137] - - 1.53 2.24 52.69
Dennis and Chang [190] - - 1.52 2.35 53.80

Shukla et al. [191] - - 1.55 2.34 52.70
Pellerin et al. [138] - - 1.5 2.26 53.52

Test Case 5 0.1 1 1.53 2.23 53.13
Test Case 6 0.1 0.2 1.58 2.4 52.64
Test Case 7 0.01 1 1.54 2.00 49.26
Test Case 8 0.01 0.02 1.53 2.21 52.64

Table 4.5: 3D flow over a circular cylinder: comparison of predicted drag
coefficient, recirculation length and separation angle with predictions in the

literature for Re =40 and Ncells = 23073.

as per Table 4.1 and are shown in Table 4.6. Test Cases 9-12 used the same mesh

with Ncells = 23073 as before but with a more moderate level of preconditioning.

The convergence histories of these additional test cases can be seen in Figure 4.19.

These results show that any level of preconditioning has an adverse effect on

convergence rates for Ma = 0.17.

Test Case No. U∞ Re Ma γ CN Γvc,max δxmax

9 0.1 20 0.17 0.5 3.88 8.21 0.346
10 0.1 20 0.17 0.75 5.33 5.88 0.230

11 0.1 40 0.17 0.5 3.88 4.41 0.173
12 0.1 40 0.17 0.75 5.33 2.94 0.115

Table 4.6: Additional individual test case parameters for 3D flow over a cir-
cular cylinder problem.
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Using an unstructured hexahedral mesh produces excellent results that agree with

existing studies in the literature. The previous studies using the LBFS were per-

formed by Shu et al. [137] with a cell-centred non-uniform O-grid mesh and by

Pellerin et al. [138] with a vertex-centred tetrahedral mesh. They achieved excel-

lent accuracy using 60501 cells and 63541 vertices respectively. Using the PLBFS

on a fully unstructured hexahedral grid allowed similar levels of accuracy to be

attained while using a mesh with 23073 cells. Inspecting Table 4.3 shows that

preconditioning allowed the use of larger δxmax in larger cells in the mesh. This

lead to more accurate results. It can be seen that Test Cases 3 and 7, which do not

employ preconditioning, have δxmax values that are an order of magnitude lower

than the preconditioned cases. In both cases, δxmax was less than the cell height of

the first cell in the boundary layer. This results in drag coefficients, recirculation

lengths and separation angles which were not as accurate as in the preconditioned

cases. From the initial results in Figure 4.18, preconditioning had a significant

acceleration effect on convergence at Ma = 0.017 but had a detrimental effect on

the rate of convergence for Ma = 0.17. This can be attributed to the fact that

the vast majority of the cells in the mesh can be considered viscous dominated for

γ = 1 as the Reynolds number was very low in each test case. Any implementa-

tion of preconditioning for Ma = 0.17 would make these cells increasingly viscous

dominated and increase runtimes.
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Figure 4.12: 3D flow over a circular cylinder: a) unstructured hexahedral mesh
with 23073 cells and b) exploded view of the mesh close to cylinder surface.
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Figure 4.13: 3D flow over a circular cylinder: streamlines and velocity contour
plots on the z = 0 plane for a) Re = 20 and b) Re = 40 , Ma = 0.17, γ =1 and

Ncells = 23073.
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Figure 4.14: Variation in percentage error in drag coefficient with mesh size.
The percentage error is relative to a simulation with first cell height on the
cylinder boundary equal 0.01Lref . All simulations were run for Re = 40 ,

Ma = 0.17 and γ =1.
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Figure 4.15: 3D flow over a circular cylinder: variation of drag coefficient
with mesh density for varying U∞ and γ for a) Re = 20 and b) Re = 40.
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Figure 4.16: 3D flow over a circular cylinder: variation of recirculation length
with mesh density for varying U∞ and γ for a) Re = 20 and b) Re = 40.
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Figure 4.17: 3D flow over a circular cylinder: variation of separation angle
with mesh density for varying U∞ and γ for a) Re = 20 and b) Re = 40.
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Figure 4.18: 3D flow over a circular cylinder: convergence history for a)
Re = 20 and b) Re = 40 on a mesh with Ncells = 23073.
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Figure 4.19: 3D flow over a circular cylinder: convergence history for a)
Re = 20 and b) Re = 40 for a range of γ on a mesh with Ncells = 23073.
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4.5 Summary

In this chapter a PLBFS has been successfully used to solve flow problems on 3D

unstructured hexahedral meshes. This was demonstrated by successfully simulat-

ing 3D lid-driven cavity flow and 3D flow over a circular cylinder. The use of

unstructured hexahedral meshing was shown to enable the use of coarser meshes

than structured meshes with similar levels of accuracy. This accuracy was also fur-

ther increased by using preconditioning as it allows the use of a more optimal local

lattice Boltzmann reconstruction in larger cells. This effect was demonstrated to

be more significant at higher Reynolds numbers and lower Mach numbers. Pre-

conditioning also has the benefit of accelerating convergence in the vast majority

of cases. Again this effect was more beneficial at higher Reynolds numbers and

lower Mach numbers as the unpreconditioned condition number is larger. It has

also been shown that in certain cases, such as flow problems with low Reynolds

numbers and very fine mesh refinement in the boundary layer as with flow over

a circular cylinder, the acceleration due to preconditioning can be minimal. In

such cases it is recommended to use moderate levels of preconditioning, so that

the ratio of the viscous spectral radius to the convective spectral radius remains

less than one or to use a coarser grid where possible if sufficient accuracy can be

achieved with such a mesh. The PLBFS has been shown to greatly enhance the

use of unstructured meshes with the LBFS, particularly in flow problems with

higher Reynolds numbers. It has also been shown that the 3D PLBFS is at least

second-order accurate in space for the flow over a cylinder problem.
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Chapter 5

Immersed Boundary Method

5.1 Introduction

As discussed in Section 1.6, a method for modelling FSI between RBCs and plasma

is required to model blood flow. The IBM was the method that was identified as the

best choice for modelling this FSI between RBC and plasma. In this chapter the

IBM and its variants are introduced. The extensions of the IBM to be compatible

with unstructured and non-uniform grids are then discussed. The results of two

benchmark flow problems that contain FSI are then shown to demonstrate the

efficacy of the LBFS and IBM in modelling FSI flow problems.

5.2 Overview of Immersed Boundary Method

The IBM is a method that can be used to solve FSI problems. It involves immersing

a Lagrangian object within a fluid domain and approximating a boundary of the

object via a force transfer between nodes on the Lagrangian object and the cells

within a discretised fluid domain. It involves the following main steps:

• Interpolation of fluid velocities onto Lagrangian nodes.

• Integration in time of Lagrangian node velocities to calculate node position.

• Calculation of force at each Lagrangian node based off new position.

• Spreading of node forces to discretised cells in the fluid.
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• Solving the N-S equations at each cell using body forces from Lagrangian

nodes.

There are many variations of the IBM but they all follow the above high-level pro-

cess. The IBM was originally introduced by Peskin [101] for solving FSI problems

with deformable objects. The majority of benchmark FSI flow problems for verify-

ing code involve rigid objects which don’t deform. Many flavours of the IBM have

been suggested which capture the no-slip boundary conditions of rigid objects.

These include the explicit feedback IBM for rigid-boundaries first suggested by

Lai and Peskin [192] and introduced for the LBM by Feng and Michaelides [193].

This method involves attaching the Lagrangian nodes to their reference position

by a spring and any displacements from the reference position result in a restoring

force. If a suitable stiffness of the spring is chosen, this can correctly model rigid

objects. The stiffness of the spring is a free parameter that can impact on the

stability and accuracy of the method.

Due to this weakness, much effort has been put into IBM methods without a free

parameter. This family of methods are referred to as Direct-Forcing-IBM (DF-

IBM) methods. An explicit DF-IBM was first proposed for the FVM by Kim

[194] and for the LBM by Feng and Michaelides [195]. This family of methods

involves calculating a corrective force at the Lagrangian node that is equivalent

to the velocity correction required to make the velocity at the node equal to the

known boundary velocity. An implicit method was proposed by Wu and Shu

[196] that involves calculating the unknown force densities required to ensure the

correct boundary velocities on the Lagrangian object. This approach requires

matrix inversions for calculating the force densities. This results in a method that

probably offers the most accurate IBM approach for ensuring no-slip boundary

conditions but comes at the cost of a very expensive matrix inversion where a

large number of Lagrangian nodes are used. It has also been extended to the LBFS

which is the N-S solver used in this work [197, 198]. Further efforts have also been

made to avoid the expensive matrix inversion involved in the above method and

have adopted an iterative solver to finding the unknown force densities. Khan

and Hassan [199] provide a very detailed review of the different direct-forcing

approaches in the literature.

In this work the original IBM of Peskin is adopted as the end goal is to model

the deformation of red blood cells. To verify the implementation of the IBM, the

136



explict feedback IBM of Lai and Peskin is used on benchmark flow problems with

rigid objects. This includes flow over a cylinder and flow over a sphere. This

tested all aspects of the IBM for deformable objects with the exception of force

calculations at the Lagrangian nodes. This step was replaced by the constitutive

equations of motion of the RBC at a later stage.

5.3 Governing Equations and Implementation

5.3.1 Lagrangian System

The IBM consists of a fixed Eulerian mesh and a deformable Lagrangian surface.

The fixed Eulerian mesh (coordinates r) is used to discretise the fluid compu-

tational domain for solving the N-S equations. The Lagrangian surface of an

immersed object is discretised into nodes and these nodes are free to move in

space (coordinates R). An example of a Eulerian/Lagrangian setup is provided in

Figure 5.1.

Note that the Lagrangian nodes are not connected but free to move individually.

Connectivity relations may be required depending on the constitutive equations

of motion of the object.

5.3.2 Continuous Governing Equations

The first key principle of the IBM is that the velocity of the Lagrangian nodes is

equal to the fluid velocity V at the same coordinates, i.e:

dR(t)

dt
= V (r, t) (5.1)

Rewriting the right hand side in terms of Eulerian coordinates gives:

dR(t)

dt
=

∫
d3rV(r, t)δ(r−R(t)) (5.2)

where δ(r−R(t)) is the Dirac delta distribution. The second key principle of the

IBM describes the momentum exchange between the Lagrangian nodes and the

Eulerian mesh. Assuming there is a force density (per unit area) Fa acting on the
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Figure 5.1: A Lagrangian mesh defining a cylinder overlaying an Eulerian
mesh. Lagrangian nodes are defined by black dots.

Lagrangian nodes, then the equivalent force density (per unit volume) acting on

the Eulerian mesh is given by:

Fvol(r, t) =

∫
d2RFa(R(t), t)δ(r−R(t)) (5.3)

This equation describes the spreading of the Lagrangian forces to the Eulerian

mesh and is called force spreading.

5.3.3 Discretised Governing Equations

The next step is to discretise Equation (5.1) and Equation (5.3). Peskin [101]

provides a detailed derivation which results in the final discretised IBM equations:

dRj(t)

dt
=
∑
r∈gj,h

V(r, t)δh(r−Rj(t))∆x
3 (5.4)
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and

Fvol(r, t) =
∑
j∈Gr,h

Fa,j(R, t)δh(r−Rj(t))∆A (5.5)

where j is the jth Lagrangian node in the immersed object, h is the size of the

stencil of the Dirac delta distribution, Rj is the position of the jth node, ∆x is

the Cartesian edge length of a uniform cell in the Eulerian mesh, gj,h are the

Eulerian cells that lie within the stencil of the Dirac delta distribution, Gr,h are

the Lagrangian nodes that lie in the stencil of a cell r, Fa,j is the force density

per unit area at Lagrangian node j and ∆A is the surface area associated with

Lagrangian node j.

The next step is to adopt a suitable discretised version of the Dirac delta distri-

bution function. Peskin derived suitable kernel functions to represent δh using the

following assumptions. First it is assumed that the 3D δh can be represented by a

product of one-dimensional (1D) variables, i.e. kernels, that scale with the edge

length ∆x as follows:

δh =
φh(x)φh(y)φh(z)

∆x3
(5.6)

The following assumptions and restrictions are used when creating the 1D variables

in Equation (5.6):

• Interpolation and spreading should be short-ranged. This is required to

reduce computational overhead as much as possible.

• Momentum and angular momentum have to be identical when evaluated

either in the Eulerian or the Lagrangian system (same speed and rotation in

both systems).

• Lattice artefacts (“bumpiness” of the interpolation when boundaries move)

should be suppressed as much as possible.

• The kernel function has to be normalised:
∑

r ∆x3δh(r) = 1

This results in the final formulation of the kernels as:

φ2(x) =

{
1− |x|

0

}
when 0 ≤ |x| ≥ ∆x

when ∆x ≤ |x|
(5.7)
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φ3(x) =


1

3
(1 +

√
1− 3x2)

1

6
(5− 3|x| −

√
−2 + 6|x| − 3x2)

0


when 0 ≤ |x| ≥ 0.5∆x

when 0.5∆x ≤ |x| ≥ 1.5∆x

when 1.5∆x ≤ |x|

(5.8)

φ4(x) =


1

8
(3− 2|x| −

√
1 + 4|x| − 4x2)

1

8
(5− 2|x| −

√
−7 + 12|x| − 4x2)

0


when 0 ≤ |x| ≥ ∆x

when ∆x ≤ |x| ≥ 2∆x

when 2∆x ≤ |x|

(5.9)

The index on the φ function denotes the number of cells included in the stencil

of the kernel in each Cartesian direction. This results in 23, 33 and 43 calcula-

tions per Lagrangian node for force spreading and velocity interpolation. A visual

representation of the kernels stencils is provided in Figure 5.2 :

0 1 2-1-2

1

x / Δx

F(x) F2(x) = 

F3(x) = 

F4(x) = 

F2(x) = 

F3(x) = 

F4(x) = 

Figure 5.2: Various stencils for calculating the Dirac delta distribution func-
tion.

This then results in the following algorithm for the IBM:

• Interpolation of fluid velocities onto Lagrangian nodes using Equation (5.4),

Equation (5.6) and Equations (5.7) to (5.9).

• Integration in time of Lagrangian node velocities to calculate change in node

position.

• Calculation of force at each Lagrangian node based off new position. The

force calculation is dependent on the mechanics of the object being modelled.

• Spreading of node forces to discretised cells in the fluid using Equation (5.5),

Equation (5.6) and Equations (5.7) to (5.9).
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• Solve the N-S equations at each cell using body forces from Lagrangian

nodes.

5.4 Non-Uniform Grids

5.4.1 Introduction

It was discovered during the flow over a sphere benchmark case that in excess of

106 uniform cells were required to get sufficiently accurate results. This resulted in

a flow problem with a computational effort that exceeded the hardware capacity

that was available to the project at the time. Alternative approaches were inves-

tigated to reduce the computational effort. As the LBFS can be extended to use

unstructured grids, a variety of IBMs applicable to non-uniform grids were investi-

gated. The main difficulty with extending the IBM to unstructured/non-uniform

grids is in the velocity interpolation and force spreading (VI-FS) calculations de-

tailed earlier. The key aspect of these operations is that force and moments are

conserved as per the following equations:

∑
Fvol(r, t)∆V (r, t) =

∑
j∈Gr,h

Fa,j(R, t)∆A(R, t) (5.10)

and ∑
r× Fvol(r, t)∆V (r, t) =

∑
j∈Gr,h

R× Fa,j(R, t)∆A(R, t) (5.11)

How various studies in the literature have satisfied the above equations on un-

structured grids will now be discussed.

Ouro et al. [200] successfully used a moving least-squares formulation for VI-FS

calculations on fully unstructured grids but this was for rigid stationary objects

and required the calculation of n nearest neighbouring cells to the object nodes for

VI-FS calculations. This becomes prohibitively expensive when using deformable

moving objects and 3D meshes as the search per object node is of order O(total

cells in mesh). Pinelli et al. [201] use the Reproducing Kernel Particle Method

developed by Liu [202] to calculate the VI-FS calculations. This approach in-

volves the use of modified window functions to create a moment matrix which

then requires a rescaling to avoid singularity. This approach can be applied to
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unstructured and non-uniform grids alike. This approach was then successfully

applied to flowing RBCs on fully unstructured grids by Mendez et al. [203]. The

method of Pinelli was extended by Toja-Silva et al. [204] to use radial-basis func-

tions to calculate the VI-FS calculations. This method again involves the creation

of a moment matrix and the solving of a linear system of equations. It removes the

rescaling of the moment matrix but includes an arbitrary parameter to describe the

radial-basis functions. Finally Jang et al. [205] have used a reproducing polyno-

mial particle method (RPPM) to calculate the VI-FS calculations on non-uniform

grids. This method also generates a linear system of equations to ensure the con-

servation of moments in the system. However it doesn’t involve any rescaling or

arbitrary parameters. One massive advantage of the RPPM is that the moment

matrix is in the form of a Vandermonde matrix and allows the linear system to be

solved explicitly. For this reason the method of Jang was adopted for the IBM on

non-uniform grids.

While all the above methods can be used on unstructured and non-uniform grids;

it is proposed that only non-uniform meshes are used in this work due to their su-

perior computational efficiency (see Section 8.5.1.3 for detailed analysis). In sum-

mary non-uniform grids allow neighbouring nodes to be found at a much cheaper

computational cost then unstructured grids. If analytical functions are used to

generate the grids, e.g. Chebyshev nodes, then the neighbouring nodes can be

found explicitly. However if other functions are used, then the neighbouring nodes

can be found using binary searches on each of the Cartesian axes. For a cube

this results in order O(3 × log2(number of x cells)) which compares extremely

favourably to a full search of the mesh which is of order O((number of x cells)3).

5.4.2 Governing Equations

Combining Equation (5.10) and Equation (5.5) gives the following condition per

each object node: ∑
r∈gj,h

δh(r−Rj(t))∆V (r, t) = 1 (5.12)

To compensate for the non-uniformity of the cell volumes, a new corrected distri-

bution is defined:

δ
′

h(r−Rj(t)) =
δh(r−Rj(t))

∆V (r, t)
(5.13)
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which satisfies the zero-moment condition of the weight function:

∑
r∈gj,h

δ
′

h(r−Rj(t)) = 1 (5.14)

In three dimensions, the corrected weight function can be split into the product

of its Cartesian terms as for the uniform case:

δ
′

h(r−Rj(t)) = φ
′
(Xj − x)φ

′
(Yj − y)φ

′
(Zj − z) (5.15)

where Xj , Yj and Zj are the cartesian scalars of the position of jth Lagrangian

node. The weight functions can be obtained by solving the following systems of

linear equations:

∑i=Ne
i=1 (Xj − xj)αφ

′
(Xj − xj) = δα0 for α = 0, ..., Ne∑i=Ne

i=1 (Yj − Yj)αφ
′
(Yj − Yj) = δα0 for α = 0, ..., Ne∑i=Ne

i=1 (Zj − zj)αφ
′
(Zj − zj) = δα0 for α = 0, ..., Ne

(5.16)

In this work Ne = 4 is adopted to satisfy the constraints of Equation (5.10)

and Equation (5.11). Taking the system of equations for the x-component as

an example, this results in a moment-matrix taking the form of the well known

Vandermonde matrix:
1 1 1 1

(Xj − x1) (Xj − x2) (Xj − x3) (Xj − x4)

(Xj − x1)2 (Xj − x2)2 (Xj − x3)2 (Xj − x4)2

(Xj − x1)3 (Xj − x2)3 (Xj − x3)3 (Xj − x4)3



φ
′
(Xj − x1)

φ
′
(Xj − x2)

φ
′
(Xj − x3)

φ
′
(Xj − x4)

 =


1

0

0

0


(5.17)

Considering the above system in the form of Ax = B, the weights x = A−1B. Due

to the form of B, the weights x are equal to the first column of A−1 which, as it’s a

Vendermonde matrix can be explicitly calculated. The weights can be calculated
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explicitly as follows:


φ
′
(Xj − x1)

φ
′
(Xj − x2)

φ
′
(Xj − x3)

φ
′
(Xj − x4)

 = −1



x
′
2x
′
3x
′
4

(x
′
1 − x

′
2)(x

′
1 − x

′
3)(x

′
1 − x

′
4)

x
′
1x
′
3x
′
4

(x
′
2 − x

′
1)(x

′
2 − x

′
3)(x

′
2 − x

′
4)

x
′
1x
′
2x
′
4

(x
′
3 − x

′
1)(x

′
3 − x

′
2)(x

′
3 − x

′
4)

x
′
1x
′
2x
′
3

(x
′
4 − x

′
1)(x

′
4 − x

′
2)(x

′
4 − x

′
3)


(5.18)

where x
′
1 = (Xj − x1), x

′
2 = (Xj − x2), x

′
3 = (Xj − x3) and x

′
4 = (Xj − x4). x2

and x3 are the centroids of the cells that are closest to the Lagrangian node Xj

and x1 and x4 are the centroids of the two neighbouring cells to x2 and x3 in the

x-direction. As mentioned before a binary search is used to find x2 and x3, which

is of order O(log2(number of x cells)) if a structured non-uniform grid is used. A

similar approach is then applied to calculate φ
′
(Yj − y) and φ

′
(Zj − z).

5.5 Benchmark Flow Problems

5.5.1 Introduction

In this section, two benchmark flow problems will be discussed that are used to

test the efficacy of the LBFS-IBM. The flow over a cylinder in a square channel

was chosen to test uniform IBM and shear flow over a sphere was chosen to test the

non-uniform IBM. For all test cases the RMS of the residual was used to monitor

convergence to steady-state and is defined as follows:

RRMS

(
QIteration,t

)
=

√∑No of Cells
i=1 R

(
Qi,t

)2

No of Cells
(5.19)

where t is the iteration index and R
(
Qj

)
is calculated from Equation (2.26).

Equation (5.19) is normalised relative to the initial residual of the calculation

giving the following convergence criterion:

RRMS

(
QIteration,t

)
RRMS

(
QIteration,1

) < 1 ∗ 10−5 (5.20)
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In all flow problems, the ρu-momentum residual was chosen to monitor convergence

as it was the slowest of both the mass and momentum residuals to converge.

As discussed previously an explicit forcing feedback scheme was adopted for the

calculation of the force at each node in the Lagrangian object. As both flow prob-

lems involve fully fixed rigid objects, they use the same formulation for calculating

the force. In this scheme the rigidity constraint is modelled by connecting each of

the object nodes to a reference location with a spring of stiffness k. The reference

location is simply the initial position of the object node R(t = 0). The force per

area is then calculated as:

Fa(R(t), t) = −k[R(t)−R(0)] (5.21)

As the object moves with the fluid, a restoring force is calculated and attempts to

return the object to the reference location. The force at each node increases until

an equilibrium is reached and a local no-slip condition is achieved. The stiffness k

is a user defined parameter; if it is too small it results in too large a deformation

and if it is too large it can result in stability issues.

5.5.2 Flow Over a Circular Cylinder in a Square Channel

5.5.2.1 Problem Set-Up

Flow over a circular cylinder in a square channel is a well established benchmark

for investigating the performance of FSI CFD codes with complex geometries.

Schäfer et al. [12] collated the predictions of ten different CFD codes for this flow

problem and this work adopted the same geometry and flow conditions as these

numerical studies. The fluid flows in a square channel and this was modelled by

uniform Eulerian cells. A circular cylinder was immersed in the channel and this

cylinder was modelled by Lagrangian nodes. The dimensions of the geometry are

as described in Figure 5.3. As illustrated, the channel height and width H =

0.41m, the diameter of the cylinder D = 0.1m and the characteristic velocity

VRE = 4V(0, H/2, H/2)/9. The top, bottom, front and back boundaries of the

channel are set as no-slip boundary conditions. The right boundary is set to an

outflow boundary by setting the pressure equal to atmospheric pressure. Finally
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Figure 5.3: Problem set-up for flow over a cylinder in a square channel.

the left boundary is set equal to an inflow velocity of:

V =


16umyz(H − y)(H − z)/H4

0

0

 (5.22)

where um = 0.45 m/s. With a constant fluid density of 1.0 kg/m3 and a kinematic

viscosity ν = 10−3 m2/s gives a Reynolds number Re = 20. The force in each

cylinder node was calculated using Equation (5.21) and the area of each node was

calculated by:

∆A(R, t) = πD/Nradial ∗H/Naxial (5.23)

where Nradial is the number of object nodes in the radial direction and Naxial is the

number of object nodes in the axial direction. In this flow problem the influence

of varying the stiffness k, the number of object nodes Nobject nodes and the number

of Eulerian cells Ncells was investigated. The test cases that were run are shown

in Table 5.1.
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Test Case No. Re Ncells Nobject nodes k

1 20 40000 900 1
2 20 87000 900 1
3 20 168000 900 1
4 20 400000 900 1

5 20 400000 900 0.01
6 20 400000 900 0.1
7 20 400000 900 1
8 20 400000 900 10

9 20 400000 400 100
10 20 400000 900 100
11 20 400000 1600 100
12 20 400000 2500 100

13 20 400000 100 1
14 20 400000 225 1
15 20 400000 400 1
16 20 400000 900 1
17 20 400000 1600 1
18 20 400000 2500 1

Table 5.1: Individual test case parameters varying with stiffness, Ncells and
Nobject nodes.

5.5.2.2 Results

The velocity contours and predicted streamlines for Test Case 18 are shown in Fig-

ure 5.4. As expected the streamlines are slightly asymmetric around the cylinder

as the cylinder is positioned slightly off the mid-height of the channel. A recircu-

lation region clearly develops in the lee of the cylinder and the no-slip boundaries

are observed at the perimeter of the channel.

As mentioned before Schäfer et al. have collated the predictions for this flow

problem from 10 different CFD codes. They used three parameters to measure the

accuracy of the benchmark: the drag coefficient, the lift coefficient and the pressure

differential between the front and back of the cylinder. The drag coefficient is

calculated by:

Cd =
Fd

0.5ρV2
REDH

(5.24)

where Fd is the drag force given by:

Fd = −
∑

j∈Nobject nodes

Fa,j(Rj) · i ∆A(Rj) (5.25)
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The lift coefficient is given by:

Cl =
Fl

0.5ρV2
REDH

(5.26)

where Fl is the lift force given by:

Fl = −
∑

j∈Nobject nodes

Fa,j(Rj) · j ∆A(Rj) (5.27)

and the pressure differential is defined by ∆P = P (xfront, yfront, zfront)−P (xback, yback, zback)

where (xfront, yfront, zfront) = (0.45, 0.20, 0.205) and (xback, yback, zback) = (0.55, 0.20, 0.205).

The results in Schäfer et al. are given in Table 5.2:

Cd Cl ∆P

lower bound 6.05 0.008 0.1650
upper bound 6.25 0.01 0.1750

Table 5.2: Flow over a cylinder results from the literature [12].

The results in this work are given in Figures 5.5 to 5.7.

X

Y

Z

V/VRE

3.02553
2.7119
2.39827
2.08464
1.77101
1.45738
1.14375
0.830117
0.516485
0.202854

Figure 5.4: 3D flow over a circular cylinder in a square channel: streamlines
and velocity contour plots for Re = 20, Ncells = 400000, Nobject nodes = 2500

and k = 1.

The results are well matched to the benchmarks provided by Schafer and Turek.

In particular there is very good agreement for the drag coefficient and the pressure

differential. It was also observed that increasing the mesh density and the object

node density improves the accuracy of both these parameters. On the other hand
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Figure 5.5: 3D flow over a circular cylinder in a square channel results for
drag coefficient varying with (a) fluid cells (b) object nodes and (c) stiffness.
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Figure 5.6: 3D flow over a circular cylinder in a square channel results for lift
coefficient varying with (a) fluid cells (b) object nodes and (c) stiffness.
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Figure 5.7: 3D flow over a circular cylinder in a square channel results for
pressure differential ∆P varying with (a) fluid cells (b) object nodes and (c)

stiffness.
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the lift coefficient appears to be a more volatile parameter and sensitive to changes

in the number of cells and object nodes. This is consistent with the work of

Schafer and Turek; where there is massive inconsistency in the results for the

lift coefficient. In some of the benchmarks in Schafer and Turek’s study, there

is negative values for the lift coefficient. Other benchmarks have increasing lift

coefficient with mesh density and others have decreasing lift coefficient with mesh

density. Finally there is little variation in the predictions of this work as the

stiffness of the springs increases. This suggests that once a minimum level of

rigidity is achieved, increasing the stiffness of the springs will not affect the results.

To conclude, the results for this flow problem demonstrate that FSI is accurately

modelled on uniform grids using the Peskin IBM.
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5.5.3 Shear Flow Over a Sphere

5.5.3.1 Problem Set-Up

Linear shear flow over a solid sphere is a well established benchmark for investi-

gating the performance of FSI CFD codes with complex geometries. There are

many studies in the literature with the approach of Bagchi and Balachandar [206]

is adopted in this work. The fluid flows in a cubic channel and this is modelled by

a non-uniform mesh of Eulerian cells. A sphere is immersed in the channel and

this sphere is modelled by Lagrangian nodes. The dimensions of the geometry

are as described in Figure 5.8. As illustrated, the non-dimensional domain height,
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Figure 5.8: Problem set-up for shear flow over a sphere.

width and depth is H = 64 and the diameter of the cylinder is D = 6.4. The shear

flow is assumed to be unbounded and in the absence of a sphere is set as:

V(x, y, z) =


Gy

0

0

 (5.28)
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where G is the constant shear rate of the ambient flow along the y-axis. The

front and back boundaries of the channel were set as zero-gradient boundaries.

The bottom boundary was set as a no slip condition and the top boundary is a

Dirichlet condition set equal to V(x, y, z) The right boundary was set to an outflow

boundary by setting the pressure equal to atmospheric pressure. Finally the left

boundary was set equal to an inflow velocity equal to V(x, y, z).

This flow problem requires two parameters to uniquely characterise the flow: the

particle Reynolds number Re and also the shear Reynolds number ReG. These

are defined as:

Re =
VrD

ν

ReG =
GD2

ν

(5.29)

where Vr is the relative velocity of the fluid to the sphere and is defined as Vr =

V(0, 0, 0) −Vt, where Vt is the instantaneous velocity of the sphere. Note that

the two parameters are dependent and are related by:

ReG = s Re

s =
GD

Vr

(5.30)

The sphere mesh was created using GMSH and a tetrahedral mesh is generated

containing 6559 nodes and 13112 triangles. The mesh is shown in Figure 5.9. The

fluid computational domain is meshed using a non-uniform structured mesh. A

plateau function was used to generate the distribution of the cell size in the x, y

and z directions. The plateau function is described using the following formula:

f(x) =
(
expb(x−a) +1

) (
expb(−x−a) +1

)
(5.31)

The plateau function contains two free parameters a and b. a indicates the size of

the plateau at the centre of the grid where the cell size is approximately uniform. b

indicates the steepness of the slopes of the curve outside the plateau. An example

plot of the function is given in Figure 5.10. This function is then normalised

with respect to both the number of nodes and the domain length to calculate

the exact cell lengths in the x, y and z directions. In this flow problem 100 cells

are used along each of the Cartesian axes and values a = 32 and b = 0.2. An
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Figure 5.9: Tetrahedral mesh created using GMSH and containing 6559 nodes
and 13112 triangles.

illustration of this mesh is provided in Figure 5.11. This results in cell heights

of 0.2 in the vicinity of the sphere surface while using 106 cells in a mesh. An

equivalent uniform mesh would require 32.76× 106 cells. In this flow problem the

range of parameters considered are 1 ≤ Re ≤ 200 and s = 0.4 resulting in the

following test cases being performed:

Test Case No. Re s

1 1 0.4
2 5 0.4
3 20 0.4
4 50 0.4
5 100 0.4
6 200 0.4

Table 5.3: Individual test case parameters varying with Re and s.
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Figure 5.10: Plateau function where a = 24 and b = 0.2.

5.5.3.2 Results

The velocity contours and predicted streamlines for Test Case 5 are shown in

Figure 5.12. Due to the asymmetric nature of the flow over the sphere, there is an

asymmetric recirculation region observed in the lee of the sphere. Two parameters

are used to measure the accuracy of the benchmark problem: the drag coefficient

of the sphere and the lift coefficient of the sphere. These are calculated using

Equations (5.24) to (5.27). The drag coefficient is compared to the standard drag

law for uniform ambient flow provided by Schiller and Naumann [207] :

Cd =
24

Re
(1 + 0.15Re0.687) (5.32)

The lift coefficient is compared to the theoretical results of Saffman [208] and

McLaughlin [209], the approximate expression by Mei [210], and the numerical

simulations from Kurose and Komori [211] and Bagchi and Balachandar [206].

The latter two numerical simulations used body-fitted grids and finite difference

and spectral methods respectively. The resulting drag coefficient is plotted in

Figure 5.13 and the exponential curve presented in the work of Bagchi and Bal-

achandar is recovered from the current work’s predictions. Another similarity
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Figure 5.11: Mesh generated using a plateau function where a = 24 and
b = 0.2

between the studies is that the drag coefficient is slightly larger than that pre-

dicted by the empirical formula as Re increases. The predicted lift coefficient

is plotted in Figure 5.14 and again the exponential curve presented in the work

of Bagchi and Balachandar is recovered from the current work’s predictions. The

predictions of lift coefficient in this work agrees well with the predictions of Bagchi

and Balachandar and Kurose and Komori for Re ≥ 10. Where as the values for

Re ≤ 10 are more closely aligned with that of Mei and Saffman. To conclude,

there is good agreement between the present work and the results in the literature

for this flow problem.

5.6 Summary

In this chapter an IBM for both uniform and non-uniform grids is introduced. Both

methods were verified against known FSI benchmark flow problems and results

matched very well with those in the literature. In particular it is shown that

non-uniform structured grids can be used to reduce the number of cells required
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Figure 5.12: 3D sphere in shear flow: streamlines and velocity contour plots
for Re = 100 and s = 0.4.

in the computational domain while offering accurate predictions of FSI problems.

This is because non-uniform grids allow the use of grid refinement at a very cheap

computational cost of a look up function to find the neighbouring fluid cells to the

Lagrangian nodes.
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Figure 5.13: Drag coefficient for a sphere in shear flow for varying Reynolds
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Chapter 6

Red Blood Cell Structural Model

6.1 Introduction

In the ADE-SP RBC model the RBC is modelled as a surface of interconnected

WLC springs. In this work the RBC surface is discretised into triangles (see

Figure 6.4) and the edges on each of the triangles are modelled as a WLC spring.

A WLC spring envisions a continuously flexible isotropic rod that can either display

flexible or stiff behaviour depending on the length of the WLC. Each WLC spring

connects two nodes on the mesh, where each node is considered a spring-particle.

An example of a spring network containing triangles, spring-particles and WLC

springs is shown in Figure 6.1.

In this chapter all aspects of the ADE-SP RBC model used in this work are

introduced. This includes: an introduction of the Helmholtz free energies and the

associated conservative forces used to capture the structural behaviour of the RBC,

the model for capturing the membrane viscosity, the approach to calculating RBC

geometry and the spatial discretisation of the RBC surface, model configuration

and RBC parameter selection, methodology for calculating the interior viscosity

of the RBC (i.e. the cytosol), approach to time integration of velocities of each

spring-particle and finally the non-dimensionalisation approach to the ADE-SP

RBC model is introduced. As mentioned previously the model adopted is from

the work of Chen and Boyle [65]. A concise summary of the model is given here

but for a detailed explanation of this model, please refer to Chen [1].
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Triangle

: Spring ParticleWLC 
Spring

Figure 6.1: Illustration of spring network components including: triangles,
spring-particles and WLC springs.

.

6.2 Helmholtz Free Energy and Internal Conser-

vative Forces

6.2.1 Helmholtz Free Energy

The RBC consists of a surface membrane which surrounds an interior fluid. The

fluid is known as cytosol and is an incompressible fluid which ensures that volume

is conserved. The surface membrane consists of two main parts which confer

structural strength to the RBC: the PM and the cytoskeleton. The PM provides

structural resistance to surface compressibility and out-of-plane bending, while the

cytoskeleton provides resistance to in-plane shearing. Each of these mechanical

properties provides a corresponding contribution to the total Helmholtz energy of

the RBC ERBC , which is defined as:

ERBC = EV + EA + EB + ES (6.1)

where EV is the energy due to the conservation of volume constraint, EA is the

energy due to the conservation of area constraint, EB is the energy due to the out-

of-plane bending resistance in the PM and ES is the energy due to the in-plane

shearing resistance of the cytoskeleton. ERBC is the energy of the instantaneous

shape of the RBC model.
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6.2.2 Internal Forces

Stable equilibrium in a conservative system is defined as the equilibrium corre-

sponding to minimum potential energy of the system [212]. The equilibrium shape

of the RBC is the relaxed geometry i.e. the geometry of RBC with minimum en-

ergy. This is discussed in more detail in Section 6.4. Any RBC with a geometry

other than the relaxed geometry of the RBC will have an excess energy that is

used to bring the RBC back to its relaxed geometry. This conservative force is

defined as:

F(R) = −∇ERBC(R) = −∇ (EV (R) + EA(R) + EB(R) + ES(R)) (6.2)

where R is the vector of particle coordinates in the RBC. Note that the force is in

the direction that will cause the greatest reduction in free energy. Equation (6.2)

also shows that the conservative force is dependent on the energy contribution from

each of the four mechanical properties. To calculate the forces at each particle

(i.e. mesh node) in the RBC, the contributions of the volume constraint, area

constraint, bending energy and shearing energy have to be calculated. A summary

of the equations required to calculate the force at each particle in the RBC and

their discretised form is shown next.

6.2.3 Volume Constraint

The volume constraint energy is defined as follows:

EV =
KV

2VRBC,0
(VRBC − VRBC,0)2 (6.3)

where KV is the volume constraint modulus, VRBC is the instantaneous volume of

the RBC and VRBC,0 is the reference volume of the RBC. The conservative force

due to the volume constraint is then defined as:

FV,j = −∇EV = − ∂

∂Rj

[
KV

2VRBC,0
(VRBC − VRBC,0)2

]
(6.4)

where FV,j is the conservative force due to the volume constraint, j is the particle

index and Rj is the position of the j particle. The derivative of the instantaneous
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volume is given by:

∂VRBC
∂Rj

=
1

6

Nk∑
k=1

(
∂mk

∂Rj

ξk +
∂ξk
∂Rj

mk

)
(6.5)

where k is the triangle index, Nk is the number of triangles in the RBC mesh,

mk is the centroid of triangle k and ξk is the normal to triangle k. Combining

Equation (6.4) and Equation (6.5) gives the following:

FV,j = −
[
KV (VRBC − VRBC,0)

6VRBC,0

] Nk∑
k=1

(
∂mk

∂Rj

ξk +
∂ξk
∂Rj

mk

)
(6.6)

For a discretised triangle such as Figure 6.2. The centroid, mk, can be calculated

as:

mk =
1

3


x1 + x2 + x3

y1 + y2 + y3

z1 + z2 + z3

 (6.7)

Node 1(x1 , y1, z1 ) 

Node 2(x2 , y2, z2 ) 

Node 3(x3 , y3, z3 ) 

1

Figure 6.2: Sample triangle in discretised RBC mesh.

The normal to triangle k, ξk, is given by:

ξk = (R3 −R1)× (R2 −R1) (6.8)
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The derivative of the centroid for Node 1 is given by:

∂mk

∂R1

=
∂(

1

3
(R1 + R2 + R3))

∂R1

=
1

3
(6.9)

similarly
∂mk

∂R1

=
∂mk

∂R2

=
∂mk

∂R3

=
1

3
(6.10)

The derivative of the normal for Node 1 is given by:

∂ξk
∂R1

=


0 z3 − z2 y2 − y3

z2 − z3 0 x3 − x2

y3 − y2 x2 − x3 0

 (6.11)

The derivative of the normal for Node 2 is given by:

∂ξk
∂R2

=


0 z1 − z3 y3 − y1

z3 − z1 0 x1 − x3

y1 − y3 x3 − x1 0

 (6.12)

The derivative of the normal for Node 3 is given by:

∂ξk
∂R3

=


0 z2 − z1 y1 − y2

z1 − z2 0 x2 − x1

y2 − y1 x1 − x2 0

 (6.13)

6.2.4 Area Constraint

The area constraint energy has a global and local contribution and is defined as

follows:

EA =
KA

2ARBC,0
(ARBC − ARBC,0)2 +

Nk∑
k=1

[
KA,k

2Ak,0
(Ak − Ak,0)2

]
(6.14)

where KA is the global area modulus, ARBC is the instantaneous total area of

the RBC, ARBC,0 is the reference total area of the RBC, KA,k is the local area

modulus, Ak is the instantaneous area of triangle k and Ak,0 is the reference area
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of triangle k. The conservative force due to the area constraint is then defined as:

FA,j = −∇EA = − ∂

∂Rj

[
KA

2ARBC,0
(ARBC − ARBC,0)2 +

Nk∑
k=1

[
KA,k

2Ak,0
(Ak − Ak,0)2

]]
(6.15)

where FA,j is the conservative force due to the area constraint. The derivative of

the instantaneous total area is given by:

∂ARBC
∂Rj

=

Nk∑
k=1

(
∂Ak
∂Rj

)
(6.16)

where:
∂Ak
∂Rj

=
1

2

(
∂ξk
∂Rj

ξk
|ξk|

)
(6.17)

Ak is given by:

Ak = 0.5 |ξk| (6.18)

Combining Equations (6.15) to (6.17) gives the following:

FA,j = −1

2

Nk∑
k=1

[(
KA,k

(Ak − Ak,0)

Ak,0
+KA

(ARBC − ARBC,0)

ARBC,0

)
∂ξk
∂Rj

ξk
|ξk|

]
(6.19)

6.2.5 Bending Energy

The bending energy term has two contributions. The first is the Helfrich term

which is due to local bending resistance. The second is the ADE term which is

due to the contribution from the MAD. The bending energy is defined as:

EB =
KB

2

Nj∑
j=1

[
Aj × (Cj − Cj,0)2

]
+

KB,ADE

H2
mARBC,0

(∆Am −∆Am,0) (6.20)

where KB is the local bending modulus, Nj is the number of particles in the RBC

mesh, Aj is the area of particle j, Cj is the instantaneous curvature of particle j,

Cj,0 is the reference curvature of particle j, KB,ADE is the global bending modulus,

Hm is the membrane thickness, ∆Am is the instantaneous MAD of the RBC, and

∆Am,0 is the reference MAD of the RBC. The particle area Aj is defined as:

Aj =
1

3

Nw∑
k=1

Ak (6.21)
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and the membrane curvature of the particle Cj is defined as:

Cj =

1

2

∑Nw
s=1 θsLs

Aj
(6.22)

where Nw is the number of triangles/springs that share particle i, s is the spring

index, θs is the angle between the two normals of the triangles which share spring

s and Ls is the length of spring s. Refer to Figure 6.3 for an illustration of how

As and Cs are calculated. Finally the instantaneous MAD is defined as:

∆Am = Hm

Nj∑
j=1

CjAj (6.23)

The conservative bending force is defined as:

j

Θs

ξsζs

Ls

Figure 6.3: Illustration of particle area Aj and curvature Cj . Aj is equal to
one third of the area of the triangles that share particle j; this is indicated by
the grey area. Cj is dependent on the spring angle θs and spring length Ls.
θs is the angle formed by the normals (ζs and ξs) of the triangles which share

spring s.

FB,j = −∇EB

= − ∂

∂Rj

KB

2

Nj∑
j=1

[
Aj × (Cj − Cj,0)2

]
+

KB,ADE

H2
mARBC,0

(∆Am −∆Am,0)


(6.24)
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This can be re-written after much manipulation as:

FB,j =−
Nj∑
j=1

[(
KB

(Cj − Cj,0)

2
+KB,ADE

∆Am −∆Am,0
HmARBC,0

) Nw∑
s=1

∂θsLs
∂Rj

]

−
Nj∑
j=1

[
KB

(C2
j − C2

j,0)

6

Nw∑
k=1

∂Ak
∂Rj

] (6.25)

where:
∂θsLs
∂Rj

=
∂θs
∂Rj

Ls +
∂Ls
∂Rj

θs (6.26)

and:

∂θs
∂Rj

= − 1

sin θs

(
1

|ξs|

[
∂ξs
∂Rj

(
ζs
|ζs|
− cos θs

ξs
|ξs|

)]
+

1

|ζs|

[
∂ζs
∂Rj

(
ξs
|ξs|
− cos θs

ζs
|ζs|

)]) (6.27)

and:
∂Ls
∂Rj

=
∂|Ls|
∂Rj

=
∂Ls

∂Rj

Ls

|Ls|
(6.28)

where Ls is the length of spring s in vector form and ζs and ξs are the two normals

to the triangles which share spring s. The discretised version of the derivative of

the spring length for a spring between Node 1 and 2 in Figure 6.2 is given as:

∂L12

∂R1

=
(R2 −R1)

|R2 −R1|
(6.29)

6.2.6 Shear Energy

The shearing resistance in the spring-network is provided by the WLC springs

employed in this RBC model. The shearing energy term is defined as:

ES =
kBTK
2LP

Ns∑
s=1

[
Lc,s

(
3λ2

s − λ3
s

1− λs
− 4c1λs − c2

)]
(6.30)

where kB is the Boltzmann constant, TK is the absolute temperature in degrees

Kelvin, LP is the persistent length of the WLC springs, Ns is the total number of

springs in the RBC mesh, Lc,s is the contour length of the spring s and λs is the

ratio of the instantaneous length of the spring to the contour length of the spring
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i.e

λs =
Ls
Lc,s

(6.31)

where Ls is the instantaneous length of the spring. The contour length is the

maximum permissible length of a WLC and the persistence length is the length

at which the WLC transitions from stiff to flexible behaviour.

The two constants in Equation (6.30) are required to set the equilibrium length of

each spring. The standard WLC model tends to an equilibrium where λs = λs,0.

The choice of value of equilibrium length is of much debate and is discussed in

Section 6.4. To find the values of c1 and c2, the following constraints are set:

EWLC,s(λs = λs,0) = 0

FWLC,s(λs = λs,0) = 0
(6.32)

where EWLC,s is the shear energy in spring s, FWLC,s is the force in spring s,

λs,0 is the stretch ratio of the WLC at its reference length. Substituting into

Equation (6.30) gives:

ES(λs,0) =
kBTK
2LP

Ns∑
s=1

[
Lc,s

(
3λ2

0,s − λ3
0,s

1− λ0,s

− 4c1λ0,s − c2

)]
= 0 (6.33)

The general form of the conservative force due to shearing is:

FS,j = −∇ES = − ∂

∂Rj

kBTK
2LP

Ns∑
s=1

[
Lc,s

(
3λ2

s − λ3
s

1− λs
− 4c1λs − c2

)]
(6.34)

which after some manipulation is equal to:

FS,j = −kBTK
2LP

Ns∑
s=1

[(
1

4 (1− λs)2 −
1

4
+ λs − c1

)
∂Ls
∂Rj

]
(6.35)

Applying the constraint from Equation (6.32) to Equation (6.35) gives:

FS,j(λs,0) = −kBTK
2LP

Ns∑
s=1

[(
1

4 (1− λs,0)2 −
1

4
+ λs,0 − c1

)
∂λs,0
∂Rj

]
= 0 (6.36)
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Solving Equation (6.36) and Equation (6.33) gives values of the shear constants

as:

c1 =
1

4 (1− λs,0)2 −
1

4
+ λs,0

c2 =
3λ2

s,0 − 2λ3
s,0

1− λs,0
− 4c1λ0,s

(6.37)

The spring constant in Equation (6.35) for a spring s is given by:

kBTK
LP

(s) =
4λs,0LsKS√

3

(
2(1− λs,0)3

2(1− λs,0)3 + 1

)
(6.38)

where KS is the shear modulus. Finally the derivative of the spring ratio is calcu-

lated from:
∂λs,0
∂Rj

=
1

Lc,s

∂Ls

∂Rj

(6.39)

6.3 Membrane viscosity

In the previous section the elastic behaviour of the RBC was described. This

approach is adequate for static problems but in dynamic problems the PM exhibits

viscoelastic behaviour. To account for the membrane viscosity, the approach of

Ehi-Egharevba [213] is applied. The viscous force at each node is given by:

FV,js = −µTVjs − µC(Vjs ·
Ls

|Ls|
)

Ls

|Ls|
(6.40)

where FV,js is the viscous force at particle j due to spring s, Vjs is the relative

velocity between particle j and the neighbouring particle on spring s, and µT

and µC are coefficients related to the membrane viscosity µPM by the following

relation:

µPM =
√

3µT +

√
3µC
4

µC =
µT
3

(6.41)
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6.4 Red Blood Cell Geometry and Spatial Dis-

cretisation

The relaxed shape of the RBC is the configuration of the RBC with minimum

potential energy, i.e.

∇ERBC(R) = 0 (6.42)

However, finding the initial relaxed discocyte is complicated by the fact that the

reference values of the volume, area and bending energies come from the relaxed

form of the PM, whereas the reference values of the shear energy comes from the

relaxed form of the cytoskeleton. As detailed in Chen [1], the process to find the

relaxed spatially discretised discocyte is summarised as follows:

• Create a sphere with reference area ARBC,0 and volume VA0 by projecting

the vertices of an icosahedron onto a sphere. VA0 is the volume of a sphere

with area ARBC,0.

• Find the relaxed ellipsoid shape of the cytoskeleton by reducing the volume

of the sphere to 0.95VA0. This provides the reference lengths of the WLC

springs, Ls,0, to find λs,0 using Equation (6.31).

• As shown by Peng et al. [214], the dimensionless parameter c0 = Cj,0RRBC,0

plays an important role in the final biconcave shape. c0 is the reference

curvature for each of the nodes. In this work c0 = 6.

• Next find the relaxed discocyte shape of the RBC by reducing the volume

of the sphere to 0.642VA0.

The initial sphere configuration is calculated by first deciding on a reference area

ARBC,0. The value used by Chen [1] of ARBC,0 = 134µm2 is utilised in this work.

The radius RRBC,0 of the initial sphere is then given from:

R0 =

√
ARBC,0

4π
(6.43)

This gives RRBC,0 = 3.265µm. A regular icosahedron with 20 equilateral triangular

faces is then created. To create a finer mesh, each equilateral triangle is then split

into four equilateral triangles by using the midpoints of the edge of the triangle

as vertices. Further subdivision can take place until the required mesh density is
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acquired. Then each vertex on the icosahedron is radially projected onto a sphere

of radius RRBC,0. This gives a sphere with a mesh with a high level of homogeneity

and a volume VA0 = 145.85µm3.

The next step is to find the relaxed elliptical shape of the cytoskeleton by setting

VRBC,0 = 0.95VA0 as in Chen [1]. There is some debate over what the relaxed

shape of the cytoskeleton is, with experimental evidence indicating a quasi-sphere

shape [34] where-as numerical work would indicate an elliptical shape [215, 216].

All other reference values for area, bending and shear constraints are taken from

the sphere configuration. From this relaxed elliptical shape, the reference lengths

for the WLC springs Ls,0 for the next transformation are found.

Finally the relaxed discocyte shape is found by deflating the ellipsoid by setting

VRBC,0 = 0.642VA0 [215]. The reference area and reference lengths for the WLC

springs are taken from the ellipsoid and the reference curvature is defined by setting

c0 = 6. This results in a discocyte shape as seen in Figure 6.4. In practice this

mesh was found to have inconsistencies and did not behave symmetrically. These

were removed by creating a biconcave mesh using the analytical formula proposed

by Evans and Fung [217]:

zRBC =

±DRBC

(
1− 4 (x2

RBC − y2
RBC)

D2
RBC

)0.5
(
a0 + a1

x2
RBC − y2

RBC

D2
RBC

+ a2
(x2

RBC − yRBC)
2

D4
RBC

)
(6.44)

where xRBC , yRBC and zRBC are the Cartesian coordinates of the mesh, DRBC

is the diameter of the RBC, and a0, a1 and a2 are arbitrary constants set as

a0 = 0.0518, a1 = 2.026 and a2 = −4.491. This analytical mesh is then given

the same reference values for volume, area, spring lengths and curvature as before.

After setting these reference values, the analytical mesh moves to a new equilibrium

which is the same as the equilbrium mesh deflated from the ellipsoid but without

the spatial inconsistencies and symmetry errors. This is the initial shape used in

all simulations in this work and can be seen in Figure 6.4.
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Figure 6.4: Discretised RBC discocyte with VRBC,0 = 0.642VA0, c0 = 6 and
Nj = 2562.

.

6.5 Model Configuration

Many experiments have been performed to measure the various mechanical prop-

erties of a RBC. These measurements vary from study to study. The reasons for

this include cell age, RBC nutrient levels, variations in experimental setup and

experimental error [218]. This means that there is a range of observed values for

RBC mechanical properties and that any properties adopted in this work must lie

in this range. Where applicable, the values adopted by Chen were used [1]. These

are presented in Table 6.1.

Note that physiological values of the Area and Volume modulus are of the order

109 N m−2. These values are far in excess of those required to conserve area and

volume. The adopted values of order 103 N m−2 is sufficient to conserve volume

and area. As plasma is assumed to have the same properties as water, ρplasma is

set equal to 1000 kg m−3. µcytosol and µPM are adopted from the work of Swe Soe

[219].
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Property Symbol Values

Icosphere Radius RRBC,0 3.265 µm
RBC Area ARBC,0 134 µm2

RBC Volume VRBC,0 93.641 µm3

Volume Modulus KV 1000 N m−2

Global Area Modulus KA 1000 N m−2

Local Area Modulus KA,k 100 N m−2

Local Bending Modulus KB 2.5× 10−19 N m
Global Bending Modulus KB,ADE 2.5× 10−19 N m

Shear Modulus KS 4× 10−6 N m−1

WLC Stretch Ratio λs 2.6
Plasma Density ρplasma 1000 kg m−3

Cytosol Viscosity µcytosol 6 mPa s
Membrane Viscosity µPM 0.7 µPa s m

Equilibrium Spring Length Ls,0 Initial length on biconcave disc

Table 6.1: Properties of RBC adopted by Chen [1].

A key consideration here is that Chen, while using the ellipsoid for reference spring

lengths to calculate the equilibrium shape, used the initial spring lengths of the bi-

concave disc when performing numerical simulations. This means that the RBC is

stress free at equilibrium. The stress free shape of the RBC membrane is shown in

the literature to have significant impacts on tank treading dynamics [214, 220, 221].

Using the biconcave discocyte as the stress free shape results in tank treading oc-

curring at non-physiological values. Continuum RBC models have successfully

used a nearly-spherical stress free shape when modelling tank treading [51, 222].

In comparison there is a lack of consistency in the literature with regards to spring-

particle models. Pivkin [72] and Reasor [99] use a coarse graining procedure to

specify an equilibrium length for every spring length. Fedosov adopts the same

approach in his earlier work [223] but more recently uses a near spherical stress

free shape as reference for spring equilibrium lengths [51]. Swe Soe [102] uses a bi-

concave stress free shape but does not perform tank treading. Finally Geekiyanage

[216] uses a near spherical stress free shape but does not perform tank treading.

In this work the near spherical stress free shape was attempted for tank treading

but resulted in unphysiological values of KS for reference volumes 0.95VA0 <=

VRBC,0 = 1.0VA0. Thereafter the approach of Pivkin was adopted and an aver-

age equilibrium length was set for each spring. In this approach KS and Ls,0

are specified as input. KS is then used to calculate the spring constant using

Equation (6.38). Ls,0 specifies the equilibrium length of the spring and can be
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used to set the springs in the initial discocyte mesh in compression or tension.

This was then calibrated for the tank treading flow problem giving physiologically

realistic values of KS = 6.1 × 10−6N m−1 and Ls,0 = 2.85 × 10−7m. For com-

parison, Pivkin’s coarse graining procedure would suggest a equilibrium length

of Ls,0 = 2.28 × 10−7m. The RBC properties adopted in this work are given in

Table 6.2.

Property Symbol Values

Icosphere Radius RRBC,0 3.265 µm
RBC Area ARBC,0 134 µm2

RBC Volume VRBC,0 93.641 µm3

Volume Modulus KV 1000 N m−2

Global Area Modulus KA 1000 N m−2

Local Area Modulus KA,k 100 N m−2

Local Bending Modulus KB 2.5× 10−19 N m
Global Bending Modulus KB,ADE 2.5× 10−19 N m

Shear Modulus KS 6.1× 10−6 N m−1

WLC Stretch Ratio λs 2.6
Plasma Density ρplasma 1000 kg m−3

Cytosol Viscosity µcytosol 6 mPa s
Membrane Viscosity µPM 0.7 µPa s m

Equilibrium Spring Length Ls,0 2.85× 10−7m

Table 6.2: Properties of RBC adopted in this work.

6.6 Red Blood Cell Interior Viscosity

While the cytosol in the interior of the RBC membrane is considered to be an

incompressible Newtonian fluid with the same density as the plasma,It has a dif-

ferent viscosity. Typically plasma has an exterior viscosity µext of 1.2 mPa s while

the cytosol has an interior viscosity µint of 6 mPa s. This gives a viscosity ratio

λµ = µint
µext
≈ 5 . However in many experiments a fluid with a different viscosity to

that of plasma is used, e.g. λµ ≈ 0.27 for a RBC suspended in a dextran solution.

It has been shown that the behaviour of the RBC in shear flow is highly dependent

on this ratio [224, 225]. As a result the blood flow solver must correctly assign

viscosity values to the interior and exterior of the RBC during transient flow con-

ditions. In this work a Heaviside function is used to assign viscosity values to

fluid cells [226]. In this approach there is a gradual change in viscosity from the

exterior to the interior to avoid discontinuities. For a given position in the fluid,
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the viscosity is assigned as follows:

µ (r) = µext + (µint − µext)H (r−Rj,n) (6.45)

where Rj,n is the position of the nearest node in the RBC mesh to the fluid cell

with position r and H is the Heaviside function given by:

H (r−Rj,n) =
0.5

[
1 +

r−Rj,n

∆h
+

1

π
sin

π (r−Rj,n)

∆h

]
0

1


|r−Rj,n| ≤ ∆h

|r−Rj,n| > ∆h and external

otherwise

(6.46)

where ∆h is the edge length of the cells at the membrane interface. An example

of viscosity distribution for a RBC using Equation (6.46) is shown in Figure 6.5.

6.7 Time Integration

The position of the nodes on the RBC membrane are simply updated by first

interpolating velocities from the fluid onto the object nodes using Equation (5.2).

These velocities are then integrated in time to advance the position of the mem-

brane nodes. Due to the extremely small timescales involved, a forward Euler

integration method is utilised. This is given as:

R(t+ ∆t) = R(t) + V (R, t) ∆t (6.47)

6.8 Non-Dimensionalisation

When validating the blood flow model, the results of numerical simulations are

compared to real life experimental results. The latter are given in physical units

whereas the numerical simulation uses non-dimensional units. Therefore a conver-

sion factor is required for each input parameter. Letting a conversion factor be

denoted by C and non-dimensional parameters be denoted by *, the conversion
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Figure 6.5: Viscosity ratio for immersed RBC in fluid where the internal
viscosity µint = 0.27µext.

factors for base SI units are:

Clength =
RRBC,0

RRBC,0∗
= 1× 10−6 (6.48)

Cmass =
ρplasma
ρplasma∗

C3
length = 1000× 10−18 = 1× 10−15 (6.49)

Ctime =
∆t

∆t∗
= 1× 10−5 (6.50)

Cforce =
F

F∗
CmassClength

C2
time

= 1× 10−11 (6.51)

Table 6.2 can now be converted to non-dimensional units and is shown in Table 6.3.

The above approach can lead to excessive run times. Cimrak [227] suggests that

the capillary number (Ca) is the most important dimensionless parameter when

comparing different numerical experiments. This is because most isolated RBC

flow problems have Re << 1 and the flow is laminar. Using the capillary number to
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Property Symbol Physical Values Non-Dimensional Values

Icosphere Radius RRBC,0 3.265 µm 3.265
RBC Area ARBC,0 134 µm2 134

RBC Volume VRBC,0 93.641 µm3 93.641
Volume Modulus KV 1000 N m−2 100

Global Area Modulus KA 1000 N m−2 100
Local Area Modulus KA,k 100 N m−2 10

Local Bending Modulus KB 2.5× 10−19 N m 0.025
Global Bending Modulus KB,ADE 2.5× 10−19 N m 0.025

Shear Modulus KS 6.1× 10−6 N m−1 0.61
WLC Stretch Ratio λs 2.6 2.6

Plasma Density ρplasma 1000 kg m−3 1
Cytosol Viscosity µcytosol 6 mPa s 60

Membrane Viscosity µPM 0.7 µPa s m 4000

Table 6.3: Non-dimensional properties of RBC adopted in this work.

non-dimensionalise the RBC parameters allows the use of higher non-dimensional

Re and reduces runtimes significantly. To follow this approach, the following

equation must hold:

Ca =
GµfluidRRBC,0

KS

=
G ∗ µfluid ∗RRBC,0∗

KS∗
(6.52)

It will be indicated in each flow problem if the latter approach is taken.

6.9 Summary

This chapter has introduced the ADE-SP RBC model. In summary, the struc-

tural behaviour of the RBC is described by the internal conservative forces. These

are the derivatives of the Helmholtz free energies for volume constraint, area con-

straint, bending resistance and shear resistance. The impacts of membrane viscos-

ity on dynamic behaviour is captured with a viscous force. The reference volume,

area and curvatures are taken from an icosphere whereas the reference spring

lengths are directly specified. A Heaviside function is used to capture the vari-

ation in viscosity between cytosol and the external fluid. Finally the values of

physical parameters used in the ADE-SP RBC model are given in dimensional

and non-dimensional form.

177



Chapter 7

Red Blood Cell Validation

7.1 Introduction

In this chapter the blood flow model incorporating a LBFS, a non-uniform grid

IBM and an ADE-SP RBC model is validated against experimental results for

individual RBCs. The validation involved performing numerical simulations for a

variety of benchmark experimental results. These experiments include:

• Optical Tweezers Test

• In-Plane Shear Flow - Wheel Configuration

• Out-of-Plane Shear Flow - Tumbling, Tank Treading and Swinging

During this work, all three experiments were first performed using the stress free

RBC. It was only during the tank treading experiment that it was discovered that

a pre-stressed RBC was required to recover physiologically realistic results. The

optical tweezers and wheel configuration was then repeated with the pre-stressed

configuration to confirm it’s suitability for modelling blood flow.

7.1.1 Common Mesh Types

Each of the three benchmark flow problems had a common approach employed

to meshing the suspending fluid. A RBC is immersed in a cubic fluid domain
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with varying edge length. The fluid is meshed using a non-uniform structured

mesh with a varying number of cells. A plateau function is used to generate the

distribution of the cell size in the x, y and z directions. Please refer to Section 5.5.3

for details of plateau functions.

7.2 Optical Tweezers Test

7.2.1 Introduction

The optical tweezers experiment was performed to investigate the mechanical prop-

erties of RBCs in response to stretching by Mills et al. [6]. The RBCs in this

experiment were procured from healthy adults using a lancet device and isolated

using a centrifugation process. Two silica micro beads of 4.12 µm in diameter

were then bound to diametrically opposite points on the RBC. This took place in

a suspending medium of phosphate-buffered-saline (PBS) with PH 7.4 In this ex-

periment the optical tweezers comprised a single-bead gradient optical trap. This

involved the use of a laser to optically trap one of the silica beads. The second

silica bead was then adhered to the glass slide on the stage. To apply a force the

stage was then translated and a resistance force up to a maximum of 193± 20 pN

was provided by the laser (see Figure 7.1 for an illustration of the experiment).

7.2.2 Problem Set-Up

The following approach was taken to numerically simulate this experiment. The

computational domain used is cubic with edge length of 24 µm. The mesh was

generated as described in Section 7.1.1 with 40 cells used along each of the Carte-

sian axes and plateau function values of a = 12 and b = 0.2. An illustration

of this mesh is provided in Figure 7.2. This results in cell heights of 0.3 µm in

the vicinity of the RBC-fluid boundary while using 64000 cells in the mesh. An

equivalent uniform mesh would require 512000 cells. The initial RBC mesh has

2562 nodes and its initial shape is taken as a relaxed biconcave discocyte shape

described in Section 6.4 and is positioned at the centre of the fluid domain as

per Figure 7.2. Chen [1] showed that there was very little variation in results for

the optical tweezers test with mesh density once a minimum of 289 nodes was
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Figure 7.1: Optical tweezers experiment performed by Mills et al. [6]

. (a) shows the initial conditions when two silica microbeads are attached to the
RBC on diametrically opposed ends. (b) shows the mechanism for applying a

stretching force to the RBC.
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Figure 7.2: Initial mesh for optical tweezers test case. The fluid was meshed
using a non-uniform grid where the node distribution is defined by a plateau
function where a = 24 and b = 0.2. The RBC discocyte used is the relaxed
shape of a 2562 node icosphere subject to Helmholtz free energy constraints.

used. PBS is considered to have similar mechanical properties to water and a

viscosity ratio λµ ≈ 5 was used in this test case. The fluid has initial conditions

of V = 0 and ρfluid = 1000 kg m−3. Neumann boundary conditions specifying

zero gradient across the boundary were applied to all faces for both velocity and

density. In Mills’ experiment a range of stretching forces, FStretching, from 0 to 193

pN were applied to the RBC via the attached silica beads. The contact diameter

Dc between the silica beads and the RBC was 2 µm [228]. FStretching was then

distributed over 4% of the nodes on the RBC mesh to reflect the contact diameter

of 2 µm. This is 2% of the nodes with the largest values of x-coordinate and 2%

of the nodes with the smallest values of x-coordinate. The absolute value of the

force at each node FStretching,i =
FStretching

0.02Ni

but orientated in opposite directions

for maximum and minimum x-coordinate nodes (see Figure 7.3).

After FStretching is applied, the simulation is run until equilibrium is reached.

Static equilibrium is considered to be reached when the velocity of the maxi-

mum x-coordinate node, ix,max, is less than 10−4
µm s−1 and the velocity of the
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- Black dots indicate contact 
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Figure 7.3: Initial conditions for simulating the application of the optical
tweezer force to the RBC. The stretching force is applied to 2% of the nodes
with the largest values of x-coordinate and 2% of the nodes with the smallest
values of x-coordinate. This reflects the contact diameter of 2 µm of the silica

bead with the RBC.

minimum x-coordinate node, ix,min, is greater than −10−4
µm s−1. Then the

axial diameter DA = 2 × maxi∈Ni(
√
x2
i + y2

i + z2
i ) and the transverse diameter

DT = 2×maxi∈Ni(
√
y2
i + z2

i ) were calculated.

The simulation was performed twice, first using the RBC parameters for a stress

free biconcave RBC from Table 6.1. This was done to show that the present work

could recreate the results of Chen when the RBC was immersed in a suspending

fluid. The simulation was then performed a second time with the parameters for

a pre-stressed biconcave RBC from Table 6.2.

7.2.3 Results

The optical tweezers experiment was simulated in the range FStretching = 0 − 200

pN with a simulation performed at every multiple of 10 pN for a total of 20 sim-

ulations. The DA and DT at static equilibrium are plotted against FStretching in

Figure 7.5 and there is excellent agreement between the numerical and experimen-

tal results for the stress free biconcave RBC. In Figure 7.6, the final experimental

and steady-state numerical results are plotted for a variety of forces. Again there
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Figure 7.4: Static equilibrium of the RBC after the optical tweezers force is
applied. The axial diameter DA and transverse diameter DT are indicated.

is excellent agreement between both sets of results. It is apparent that as the

force increases that DA increases and DT decreases. The results for a pre-stressed

biconcave RBC are also plotted in Figure 7.5. These results are not as accurate

as the stress free biconcave RBC for the axial diameter but they are well within

the error bars of the results of Mills. It is also noticeable that the pre-stressed

biconcave RBC has better agreement with the experimental transverse diameter

measurements.
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Figure 7.5: Plot of FStretching with DA (upper data) and DT (lower data) at
equilibrium for present work and Mills experimental results [6].
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Figure 7.6: Comparison of present work with Mills experimental results [6]
for static equilibrium shapes in optical tweezers experiment.
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7.3 Deformation in “Wheel” Configuration

7.3.1 Introduction

Yao et al. [7] investigated the efficacy of Low Viscosity Ektacytometry (LVE) by

measuring the deformation of RBCs in “wheel” configuration in a shear flow of

low viscosity. The “wheel” configuration is when both major diameters of the

biconcave RBC are in the same plane as the shear flow applied (see Figures 7.7

to 7.8). The measurements from LVE were compared to those produced by a flow

chamber and imaging system by using a deformation index which is defined as:

DI =
Dmax −Dmin

Dmax +Dmin

× 100 (7.1)

where Dmax and Dmin are the lengths of the major and minor axes of the elliptical

RBC. The imaging system involved taking 20 exposures of digital photographs of a

RBC suspension in shear flow and measuring the DI directly from the photo of the

RBCs in the “wheel” configuration. In comparison LVE involves measuring the

DI by passing a laser through a RBC suspension in shear flow and measuring the

elliptical diffractive pattern on a phototube. Experiments were performed for shear

rates in the range 0 s−1 < G < 120 s−1. The suspending medium used was PBS

with a viscosity ratio λµ ≈ 8.48. For both approaches a linear relationship between

DI and G was discovered. In this validation problem these linear relationships are

used to measure the accuracy of the ADE-SP RBC model.

7.3.2 Problem Set-Up

The following approach was taken to numerically simulate this experiment. A

RBC was immersed in a cubic fluid domain with edge length of 24 µm. The fluid

was meshed using a non-uniform structured mesh with 8000 cells. In this flow

problem 20 cells were used along each of the Cartesian axes and plateau function

values of a = 8 and b = 0.2. An illustration of this mesh is provided in Figure 7.8.

This results in cell heights of 1.0 µm in the vicinity of the RBC-fluid boundary

while using 8000 cells in the mesh. An equivalent uniform mesh would require

13824 cells. The initial RBC mesh has 2562 nodes and its initial shape was taken

as a biconcave RBC described in Section 6.4 and was positioned at the centre of

the fluid domain as per Figure 7.2. PBS is considered to have similar mechanical
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Figure 7.7: RBC in initial wheel configuration subject to shear flow G =
120 s−1. Initially v and w are equal to 0.
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Figure 7.8: 3D view of RBC in initial wheel configuration.
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properties to water and a viscosity ratio λµ ≈ 8.48 is used in this test case. The

fluid had initial conditions of V = 0 and ρfluid = 1000 kg m−3. Dirichlet boundary

conditions specifying a velocity equivalent to the shear rate G are applied to all

faces. Neumann boundary conditions specifying zero gradient across the boundary

are applied to all faces for density. In Yao’s experiment, the RBCs are subjected

to shear rates in the range 0 s−1 < G < 120 s−1. This resulted in the following

linear relationships between DI and G:

DIFlowChamber = 0.0805G− 0.3602 (7.2)

DILV E = 0.0609G+ 0.5837 (7.3)

In this work, simulations were run in the range 0 s−1 < G < 120 s−1, with a

simulation performed at every multiple of 20s−1. The RBC had the material

properties described in Table 6.1, however a sensitivity analysis was performed on

the shear modulus KS to investigate it’s impact on DI. Simulations were performed

in the range of 2µN m−1 < KS < 6.1 µN m−1. Simulations were also performed

with the parameters for a pre-stressed biconcave RBC from Table 6.2.

7.3.3 Results

The initial simulation was run for 3 periods of revolution and it was found that

1.25 periods of revolution were sufficient to find a constant DI. The remaining

simulations were run for 1.25 periods of revolution of the RBC. For each simu-

lation the DI was calculated by extracting the x and y coordinates of the RBC

mesh and finding the minimum sized rectangle that bounds these coordinates (see

Figure 7.9). The minimum rectangle was calculated using a script which fits a

convex hull to the xy coordinates and then calculates a bounding box for each

vertex of the convex hull. The height and width of the rectangle of the bounding

box with minimum area are then plugged into Equation (7.1) to calculate the DI.

The resulting DI is compared to the linear relationships of Yao in Equations (7.2)

to (7.3). The results are shown in Figure 7.10. As can be seen the simulated

results show an approximate linear relationship between the DI and G for all val-

ues of KS. This is in agreement with the experimental work done by Yao et al.

[7]. However the results with KS = 4µN m−1 with an initial stress free shape show

a DI which is slightly lower than that of the experimental work. As seen from

the sensitivity analysis, a value of KS = 3 × 10−6 N m−1 for a stress free shape
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Figure 7.9: Rectangle of minimum area which bounds the x and y coordinates
of the RBC mesh projected onto xy plane. The deformation index is then

calculated from the height and width of the rectangle.

shows better agreement with the experimental work of Yao et al. [7]. When a

pre-stressed initial shape was used with a value of KS = 6.1µN m−1, the deforma-

tion observed was much lower than the experimental results. They were however

significantly more accurate than the stress free results with KS = 6.1µN m−1.
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Figure 7.10: DI of a RBC in wheel configuration for varying shear rates and
shear moduli. Results are shown from the present work and compared with the

experimental measurements of Yao et al. [7].

189



7.4 Tumbling, Tank Treading and Swinging

7.4.1 Introduction

The dynamic behaviour of RBCs in shear flow, where the two major axes of the

RBC are out of plane with the shear flow applied, has been the subject of many

experimental studies over several decades. The observations in these studies have

shown three primary dynamical modes: tumbling (TB) at low shear rates, tank

treading (TT) at high shear rates and an intermediate regime when transitioning

from TB to TT occurs [229, 230]. TB is where the pitch angle of the RBC, see

Figure 7.11, undergoes continuous full 360 degree revolutions. TT is where the

pitch angle remains approximately constant but the surface of the RBC undergoes

a continuous revolution around the centroid of the RBC. The transition from TB

to TT is due to the existence of “shape memory” in the RBC; this is the existence

of a minimum energy when the RBC is in static equilibrium [231]. The transition

to TT occurs when the shear stress applied by a fluid exceeds the maximum

elastic energy storage of the RBC [232]. This transition point is a function of the

shear rate G, viscosity ratio λµ of the RBC cytosol to the suspending fluid, and

the elastic properties of the RBC. In experiments to date, isolated RBCs have

been subjected to shear flow whilst suspended in various solutions of dextran.

The solutions of dextran have varying viscosities and images were recorded of the

dynamic behaviour of the RBCs. Abkarian et al. [10] used dextran solutions

with viscosities of 22, 31 and 47 mPa s. Fischer [233] used dextran solutions

with viscosities ranging from 12.9 to 102.9 mPa s. Abkarian et al. established a

relationship between the oscillation period of the RBC and the shear rate. They

also identified the critical shear stresses for the transition point from TB to TT.

Fischer has also observed these characteristics in his studies. Numerical studies

have been performed by Pivkin [8] and Reasor [9] which compare favourably to

the experimental work of Abkarian et al.. Numerical simulations of a RBC in

shear flow were performed in this work and compared to the experimental work

of Abkarian et al. and the numerical work of Pivkin and Reasor.
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7.4.2 Problem Set-Up

The following approach was taken to numerically simulate this experiment. A RBC

was immersed in a cubic fluid domain. The domain size was reduced compared to

previous flow problems due to the increased computational cost of this problem.

Various domain sizes were trialled and an edge length of 12 µm was found to be the

smallest edge length that did not adversely impact on the simulations performed.

The fluid is meshed using a non-uniform structured mesh with 27000 cells. In

this flow problem 30 cells are used along each of the Cartesian axes and plateau

function values of a = 10 and b = 0.2. An illustration of this mesh is provided

in Figure 7.12. This results in cell heights of 0.25 µm in the vicinity of the RBC-

fluid boundary while using 27000 cells in the mesh. An equivalent uniform mesh

would require 110592 cells. The initial RBC mesh has 2562 nodes and its initial

shape is taken as the pre-stressed biconcave RBC described in Section 6.4 and is

positioned at the centre of the fluid as per Figure 7.12. A constant Mach number

of 0.173 is used in each simulation to minimise run times. The shear Reynolds

number ReG varies between 0.39 and 0.025. Dextran is considered to have similar

mechanical properties to water and the fluid has initial conditions of V = 0 and

ρplasma = 1000 kg m−3. In this work, the approach of the experimental work of

Abkarian et al. and the numerical work of Pivkin and Reasor is adopted where a

suspending fluid with a viscosity of 22 mPa s is used. This gives a viscosity ratio

of λµ = 0.27. Dirichlet boundary conditions specifying a velocity equivalent to
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the shear rate G are applied to all faces for all velocity components. Neumann

boundary conditions specifying zero gradient across the boundary are applied to

all faces for both velocity and density. In this work, simulations were run in the

range 0 s−1 < G < 7.5 s−1. The RBC has the material properties described in

Table 6.2.

7.4.3 Results

The first benchmark parameter identified was the period of rotation of the RBC

under varying shear rates. It was also identified if the RBC was TB or TT at

each shear rate. The results are shown in Figure 7.13. As can be seen there is

very good agreement between the present predictions and the predictions of Pivkin

[8] and Reasor [9]. The present work correctly predicts that lowering the shear

rate results in larger periods of oscillation of the RBC. The present work also

predicts a transition between TB and TT in the range of 1 s−1 < G < 1.4 s−1.

Reasor predicts a range of 1 s−1 < G < 1.5 s−1 and Pivkin predicts a range of

1.15 s−1 < G < 1.35 s−1.

Snapshots of a RBC tumbling (G = 0.5 s−1) and a RBC tank treading (G =

1.6 s−1) are shown in Figures 7.14 and 7.15. As is shown, the TB RBC fully

rotates around the z Cartesian axis. In comparison, the TT RBC slightly oscillates

around a fixed pitch angle from the xz Cartesian plane. This behaviour is referred

to as swinging and the amplitude of this angle has been experimentally measured

by Abkarian et al.for the case of G = 1.8 s−1. The pitch angle is illustrated

in Figure 7.11. In the present work, the pitch angle is calculated by applying a

principal component analysis [234] to each xy coordinate on the RBC mesh. This

gives a vector of the RBC from which the pitch angle can be calculated. The

pitch angle of the case where G = 1.8 s−1 is shown in Figure 7.16. It can be seen

that there is very good agreement between the present work and the experimental

measurements of Abkarian et al. for the amplitude of the pitch angle. The initial

period of the results should be discounted as the RBC starts from steady state and

initial perturbations are removed. Abkarian et al. also discovered a logarithimic

relationship between the amplitude of the swinging angle and the shear rate. The

results from the present work are shown in Figure 7.17. The linear curve fitted to

the results has a slope of -0.983 which is in excellent agreement with Abkarian et

al.’s slope of -1. Finally intermittent behaviour was also observed in the present
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work for G = 1.2 s−1 and is shown in Figure 7.18. As can be seen, the RBC

alternates between TB and TT behaviour. Abkarian et al. observes intermittent

behaviour at a much higher value of G = 1.526 s−1. This was not observed in the

current work. The numerical works of Reasor and Pivkin do not show results for

intermittent behaviour of a RBC but claim the transition/intermittency zone is

between 1 s−1 < G < 1.5 s−1 and 1.15 s−1 < G < 1.35 s−1 respectively.

In conclusion the present work shows that ADE-SP LBFS blood flow model can

model the complex RBC dynamics of TB, TT and the intermittent region. The

results produced by the present work are in great agreement with the experimental

and numerical results in the literature. One interesting feature is that the results

produced were unsensitive to changes in membrane viscosity. This would indicate

that the membrane viscosity approach used by Ehi-Egharevba [213] is unsuitable

when a RBC is immersed in a fluid and another approach should be used.
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Figure 7.12: RBC in initial tank treading configuration subject to shear flow
G = 0.5 s−1. Initially v and w are equal to 0.
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Pivkin [8] and Reasor [9]. The mode of the rotation of the RBC is also denoted.
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Figure 7.14: Snapshots of a RBC tumbling over a period where G = 0.5 s−1

and λµ = 0.27. The normalised velocity magnitude of the suspending fluid is
shown. The node index of the mesh is also shown to demonstrate the rotation

of the RBC.
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Figure 7.15: Snapshots of a RBC tank treading over a period where G =
1.6 s−1 and λµ = 0.27. The normalised velocity magnitude of the suspending
fluid is shown. The node index of the mesh is also shown to demonstrate the

rotation of the RBC.
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Figure 7.16: Pitch angle of a swinging RBC over multiple tank treading rev-
olutions for G = 1.8 s−1 and λµ = 0.27. Upper and lower bound of pitch angle

from experimental measurements of Abkarian et al. is also shown [10].
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Figure 7.17: Amplitude of the swinging angle for a variety of shear rates.
The linear relationship found by Abkarian et al. between the variables is also

plotted.
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Figure 7.18: Pitch angle of RBC over multiple tank treading revolutions for
G = 1.2 s−1 and λµ = 0.27. The flow shows one single intermittent tumble.
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7.5 Flow Problem Runtimes

A key aspect of modelling blood flow is the computational effort required to per-

form simulations. This is primarily due to the very small time step requirement

of the ADE-SP LBFS. Initially the RK4 time integration scheme, as described in

Section 2.4.2, was adopted for fluid flow. However the time step required to main-

tain stability for the flow problems in this chapter was an order of magnitude lower

than that predicted by Equation (2.55). Subsequently a Forward Euler integration

scheme was trialled and no adverse affect on stability was found for a large compu-

tational saving. This would suggest that the IBM and ADE-SP time integration

is the limiting factor on stability criteria. This time step requirement lead to very

large computation requirements due to the large number of iterations required to

perform numerical simulations. The runtimes for each of the flow problems in this

chapter are shown in Table 7.1. These runtimes confirm that the allowable time

Flow Problem NCells ∆t Iterations
CPU
time

Simulated
time

Other

(µs) (106) (s) (s)

Optical Tweezers 64000 0.047 14.7 25897 0.69 F = 160pN
Wheel 8000 0.1 4.87 11531 0.49 G = 60s−1

Tank Treading 27000 3.125 12.0 15709 37.5 G = 1.6s−1

Table 7.1: Runtimes of RBC flow problems simulated in this work. All simu-
lations were run with a RBC with Nobject nodes = 2562

and all simulations were performed on a Volta V100 GPU card.

step is the primary factor in determining the computation effort required. The

timestep ∆t is of the order of µs where as the flow problem requires time scales

in the order of seconds to be simulated. This suggests that an alternate approach

to time integration that allows larger time steps would offer large computational

savings. It is also noticeable that the time per iteration is higher for the Wheel

problem than the Tank Treading problem even though the Wheel problem has

a lower Ncells. The increase in computational effort per iteration in the wheel

problem is due to the VI-FS steps during the IBM process. This demonstrates

the complex relationship between computational complexity and runtimes when

GPUs are used. Depending on the orientation and position of the RBC this could

lead to uncoallesced memory accesses and code divergence. The impact of these

are discussed in further detail in Chapter 8.
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7.6 Summary

This chapter has shown that the ADE-SP LBFS blood flow model implemented

in this work is equivalent to that produced by Chen [1]. The optical tweezers nu-

merical experiment performed produces equivalent results to Chen with the exact

same RBC parameters. However when the ADE-SP LBFS blood flow model was

validated against further experimental results, it was found that a pre-stressed bi-

concave mesh was required to simulate RBC dynamics with physiologically realistic

values. A pre-stressed mesh using the values in Table 6.2 produces very accurate

results for RBC dynamics in shear flow that agree with experimental evidence in

the literature. However this produced more inaccurate results than the stress free

configuration when the pre-stressed configuration was retrospectively used to sim-

ulate the optical tweezers and wheel deformation experiment. It resulted in larger

deformations in the optical tweezers experiment and smaller deformations in the

wheel experiment. This may be down to the spring model used. The modified

WLC model proposed by Chen is stiffer than alternative spring models used in the

literature. Fedosov [223] uses a WLC-POW model whereas Pivkin [72] and Rea-

sor [99] use a WLC spring mixed with a hydrostatic elastic energy term. Another

consideration is the choice of model for membrane viscosity. It is shown that the

viscosity of Ehi-Egharevba [213] does not impact on RBC dynamics in blood flow

scenarios. The work of Fedosov [73] shows that membrane viscosity has signifi-

cant impact on RBC tank treading frequency and also swinging angle amplitudes.

Membrane viscosity is captured in this work by assigning the membrane viscos-

ity to the SPH particles in the fluid colocated with the membrane. This would

suggest that to capture membrane viscosity in the current work, that the fluid

volume’s viscosity must be updated to reflect the viscosity of the membrane. This

would require the modification of Equation (6.45). On the other hand the work

of Pivkin [72] and Reasor [99] do not supply results for the amplitude of swinging

angles in their work. It may be that if these models are adopted that they do not

accurately capture the pitch orientations or swinging angles that are observed in

experimental studies. Finally the runtimes of the simulations performed, confirm

that the allowable time step is the primary factor in determining the computation

effort required. The timestep ∆t is of the order of µs where as the flow problem

requires time scales in the order of seconds to be simulated. This would suggest

that an alternate approach to time integration that allows larger time steps would

offer large computational savings.
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Chapter 8

General Purpose GPU

Programming and Computational

Optimisation

8.1 Introduction

As discussed in Section 1.8.2, it was decided to utilise GPGPU programming us-

ing the CUDA framework and Nvidia GPU cards to reduce runtimes this enabling

physiologically realistic blood flow modelling in the future. This section outlines

the design decisions that were made to optimise the runtime acceleration on GPG-

PUs and also the trade offs between applicable approaches to mesh topology. It

will give a minimal overview of the CUDA architecture. If a more detailed under-

standing of the CUDA framework and GPU technology is required, please refer to

the CUDA toolkit [235].

8.2 CUDA Framework

CUDA is a software library that allows programmers to interface with Nvidia

GPU cards with programming languages including C++, C, Fortran and Python.

It allows the programmer to focus on programming functionality rather than pro-

gramming hardware. However a baseline knowledge of GPU hardware is required
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to maximise the acceleration due to GPGPU programming. GPGPU program-

ming essentially allows a common task to be performed in parallel by distributing

each individual job to multiple cores in a GPU. For example if you wish to calcu-

late the volume of every cell in a mesh, a CPU will calculate the volume of each

cell sequentially whereas the GPU will calculate the volume of each cell in parallel.

This is done by what’s referred to as “calling a kernel” from your CPU language

(C++ in this work). A kernel is essentially a function which tells your GPU to run

this task in parallel using the specified amount of cores. It hides all interactions

with the GPU and allows the programmer to focus on functionality rather than

telling the GPU which core to run the task. An overview of this process is shown

in Figure 8.1 for an example calculation. A streaming multiprocessor is a subset

of cores on the GPU only accessible to that streaming multiprocessor. A block is

a software abstraction and is a collection of warps. Warps are another software

abstraction and contain 32 threads with common instructions, each thread is then

run on a GPU core. Unified memory is a CUDA software abstraction which allows

memory to be called from both CPU and GPU. The key point for a programmer

to take from this overview is that CUDA will split the task into parcels of work

called warps which contain 32 threads. Each thread performs one of the parallel

jobs to be performed. Key to note is that each warp performs the same operations

on each of these 32 threads. This will be discussed in more detail later in this

chapter.

8.3 Compute Capability

Nvidia GPUs were used in this work. A Tesla K40c was kindly donated by Nvidia

Corporation. This GPU was used on a desktop basis for development, debugging

and profiling. Towards the end of this work the Irish supercomputer Kay hosted by

ICHEC was used to run simulations. This allowed the author to run simulations

on Tesla V100 GPUs. This was done for running simulations after concepts were

proven locally on the Tesla K40c. A comparison of the compute capability of the

Volta V100 relative to previous generations of Nvidia GPUs is shown in Figure 8.2.
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Figure 8.1: Workflow of CUDA kernel - shows declaration of memory in Uni-
fied Memory, kernel calling and Streaming Multiprocessor architecture for cell

volume calculation.

8.4 Programming Best Practice

The best practice for CUDA programming [236] recommends the following ap-

proach to GPGPU development:
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Figure 8.2: Compute capability of the Volta V100 relative to previous gener-
ations of Nvidia GPUs. Extracted from Nvidia Volta white paper [11].

• Profile Code.

• Parallelise.

• Optimise.

• Deploy.

Code development is a timely and costly process. There is no point in spending

valuable time improving code that accounts for less than one percent of runtime of

the overall program. To identify the key bottlenecks in the program, it is recom-

mended to use a profiling tool such as GPROF. This identifies the key functions

that should be parallelised. After these functions are parallelised, it is recom-

mended to use NVPROF, the Nvidia CUDA profiler, to measure the speed up

in these functions. If certain functions are still highly time consuming, it is rec-

ommended to spend time optimising them with the following high priority design

implementations:
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• Develop approaches for parallelisation of sequential code.

• Minimise data transfers between the CPU and the GPU.

• Adjust kernel launch configuration to maximize GPU utilisation.

• Ensure global memory accesses are coalesced.

• Minimise redundant accesses to global memory whenever possible.

• Avoid long sequences of diverged execution by threads within the same warp.

• Avoid race conditions.

These are now described in turn.

8.4.1 Find ways to parallelise sequential code

In the example in Section 8.2, the cell was used as a base unit of parallelisation.

Impediments to parallelisation include the cell requiring prerequisite information

about neighbouring cells to complete a calculation e.g. neighbouring cell velocities

for calculating the velocity gradient in the current cell. Reordering kernels so

that the prerequisite information is calculated in parallel before the main cell

volume calculations can avoid the need for sequential code. Another key decision

is choosing the base unit of, for example, flux calculations; do you calculate the

flux in and out of a cell volume simultaneously or calculate the flux at each face

simultaneously? This decision has many impacts and will be discussed in more

detail later as it depends highly on the solver used.

8.4.2 Minimise data transfers between the CPU and the

GPU

On many occasions there is information which is stored in memory on the CPU

which is required on the GPU to perform calculations. However there is a limit in

bandwidth capacity for transferring data from CPU to GPU and vice versa (see

Figure 8.3). As a result data transfers are very time consuming processes and

should be minimised. In blood flow numerics, it is possible to run the solver com-

pletely on the GPU without CPU interactions. The only prerequisite information
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Figure 8.3: Illustration of bandwith bottleneck in data transfers from CPU
to GPU.

includes mesh details and initial conditions. This can be calculated once and sent

to the solver before the initial time step. The only remaining need for a data trans-

fer is for postprocessing source data, i.e numerical solution values during runtimes,

as they cannot be written in Tecplot formats from the GPU directly. This is a

time consuming process and it is recommended to export postprocessing data at

an arbitrary frequency, e.g. every 10000 iterations. This frequency is dependent

on the accuracy required by the time scale of the flow problem. Increasing the

frequency will give more accurate postprocessing but will increase runtimes.

8.4.3 Adjust kernel launch configuration to maximize GPU

utilisation

When calling a CUDA kernel, it is possible to specify the number of threads per

block. This is a key consideration when trying to ensure that the GPU device

is as busy as possible. Key recommendations are to use the CUDA occupancy

calculator to optimise the occupancy, i.e. percentage of CUDA cores active in

GPU at a given time, and to keep the number of threads per block to multiples of

32.

8.4.4 Ensure global memory accesses are coalesced

Most data on a GPU is stored in global memory and is then transferred to warps

as required. Similar to CPU and GPU memory, this data transfer takes time

and should be minimised as much as possible. When accessing memory, the warp

accesses memory in 32 byte memory transactions. When 8 byte double precision

variables are used, this results in 4 variables per transaction. To ensure maximum
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efficiency each of those 4 variables should be used by the warp in calculations. To

achieve this efficiency in blood flow numerics, it is recommended to use structured

uniform or non-uniform grids. Structured grids store variables in sequential order

and have structured connectivity rules which ensure maximum efficiency of global

memory accesses. Unstructured grids on the other hand have random connectivity

relationships. This leads to more memory transactions to access all the global

memory required by a warp. This trade off in mesh choice is discussed in more

detail later.

8.4.5 Minimise redundant accesses to global memory when-

ever possible

In addition to the previous recommendations on global memory accesses, where

it is identified that global memory accesses are time consuming operations, it is

recommended that the number of global memory accesses be reduced as much as

possible. An example of this may be a property that is calculated as the product of

two constant global memory variables. Rather than two global memory accesses,

it is recommended to calculate this new property once at the start of the code

and store the property in memory. This reduces the global memory accesses from

two to one. Secondly, it is important to ensure that kernels only call the global

memory variables it needs to calculate the output and no more.

8.4.6 Avoid long sequences of diverged execution by threads

within the same warp

As shown in Figure 8.1, each warp executes the same set of instructions on 32

threads. This means that if there are decision trees or loops within the kernel,

they should have the same outcome for every thread within a warp. If there is

a divergence, the warp will perform the instructions for every thread once for

one decision path and then perform the instructions again for the second decision

path. If loops within a warp have different numbers of iterations, every thread in

the warp will perform at the speed of the largest loop. In blood flow numerics,

this issue is primarily introduced by having meshes with different cell types i.e

tetrahedrons and hexahedrons.
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8.4.7 Avoid race conditions

A race condition occurs when two threads are trying to write memory to the same

memory location. This occurs in many cases in numerics, e.g. summing fluxes in

a cell volume. As threads are fully parallel there is a chance that both threads

will finish their computation at the same time and update global memory at the

same time. This results in an incorrect update of the flux in the cell volume due

to the race condition (see Figure 8.4). The solution to this problem is to use what

Thread

Thread

Thread

Global 

Memory 

(n)

+ 1

+1

+ 1

Threads add 1 each to global 

memory (n) at same time

Global 

Memory 

(n)

Read global memory (n);

Output should be 3 but is 1 due to 

race condition

Output 

= 1

Figure 8.4: Illustration of race condition.

is called atomic operations. These ensure race conditions are avoided but come at

a computational expense as it means that instructions are executed sequentially

rather than in a parallel fashion. As GPUs are slower than CPUs at sequential

operations, this can result in lengthy bottlenecks.

8.5 Design Decisions and GPUs

In the previous sections, CUDA architecture and some key design considerations

for GPGPU development were introduced. This section will show how they were
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considered in the development of the blood flow solver and provided recommen-

dations for future developers.

8.5.1 LBFS - Fluid Solver

In the LBFS, there are four main functions that have to be performed:

• Calculate local time step.

• Calculate gradients at cell centres.

• Calculate fluxes at each face.

• Time integration of N-S equations.

After profiling of the CPU code it was found that flux calculations accounted for

≥ 80 percent of the runtime and the flux calculations were ported to GPU code

initially. After this port, profiling the GPU code found that the vast majority of

time was spent transferring the solution of the conserved variables from GPU to

CPU and vice versa. To avoid these GPU-CPU data transfers, all four steps were

ported to GPU code with base units as described in Table 8.1. After profiling

Function Base unit of parallelisation

Time step Cell volume
Gradients Cell volume

Fluxes Cell faces
Time integration Cell volume

Table 8.1: Base unit of parallelisation for LBFS functions.

the new fully GPU ported code, the flux calculations still accounted for ≥ 80

percent of the runtime. As per best practice, the flux calculation function was

then subjected to more intense profiling and the function was thoroughly investi-

gated for opportunities to improve runtimes as per Section 8.4. The outcomes of

the investigation resulted in three key decisions to make: choice of base unit of

parallelisation, availability of modern GPU hardware and mesh choice.
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8.5.1.1 Flux calculations - base unit of parallelisation

The choice of base unit of parallelisation for the flux calculations has a large

impact on runtimes. Depending on the choice of base unit, it will either result

in race conditions and use of atomics or double the calculations required. When

calculating fluxes in and out of the cell volumes, the flux at each face is calculated

and summed together with the fluxes at each face in the cell. If the base unit

of parallelisation is chosen as the face, this results in race conditions and the

necessary use of atomics to add fluxes together for each cell. The alternative is to

use cell volumes as a base unit. To avoid atomics with this approach requires the

computation of the flux at each cell face twice, once for each neighbouring cell.

Using this approach can also introduce code divergence if meshes with multiple

cell types or hanging nodes are used.

8.5.1.2 Availability of modern GPU hardware

When profiling the flux calculations on the GPUs, it was discovered that the

atomic operations necessary for calculating the cell fluxes were responsible for 60

percent of the runtime on a Tesla K40. Using the same code on a modern Tesla

V100 resulted in 5× reduction in runtimes. This is mainly due to the significant

improvements in atomic operations in modern GPU hardware.

8.5.1.3 Mesh choice

The use of structured or unstructured meshes has the largest impact on runtimes.

As discussed before there is a benefit from coalesced global memory accesses using

structured grids. This is common to all solvers. However there are some specific

traits of the LBFS that make structured meshes computationally cheaper than

unstructured meshes. First off structured meshes allow a reduction in the number

of calculations required at each face. Due to the face normal having two zero

terms, this makes a lot of calculations redundant and can be removed from the

code. For example, this means that only 4 terms are required to be calculated in

the flux tensor in Equation (2.2) as opposed to 10 terms with an unstructured grid.

Another key aspect of the face calculation is the interpolation of the macroscopic

variables (see Equation (2.14)). As part of the approach it is required to establish

which cell neighbour the lattice nodes lie in. As shown in listing 8.1, there are
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3 diverging conditions for every two lattice velocities. Using D3Q15, this could

result in 3×7 = 21 diverging conditions across 32 threads in a warp. As each warp

performs common instructions on each thread, this could result in a 21× increase

in runtimes. This was a main motivation behind using hexahedral meshes as they

tend to be more consistent in aspect ratio and normals than tetrahedral meshes.

Using any structured mesh removes any divergence in the GPU code.

/// case 5 and 6: // back node and front node

if (cell_normal.z > d_1) {

rho_lattice [5] = rho_i - grad_rho_1.z* dt;

u_lattice [5] = u_i - grad_u_1.z* dt;

v_lattice [5] = v_i - grad_v_1.z *dt;

w_lattice [5] = w_i - grad_w_1.z *dt;

rho_lattice [6] = rho_nb + grad_rho_2.z* dt;

u_lattice [6] = u_nb + grad_u_2.z* dt;

v_lattice [6] = v_nb + grad_v_2.z *dt;

w_lattice [6] = w_nb + grad_w_2.z *dt;

}

else if (cell_normal.z < -d_1) {

rho_lattice [5] = rho_nb - grad_rho_2.z* dt;

u_lattice [5] = u_nb - grad_u_2.z* dt;

v_lattice [5] = v_nb - grad_v_2.z *dt;

w_lattice [5] = w_nb - grad_w_2.z *dt;

rho_lattice [6] = rho_i + grad_rho_1.z* dt;

u_lattice [6] = u_i + grad_u_1.z* dt;

v_lattice [6] = v_i + grad_v_1.z *dt;

w_lattice [6] = w_i + grad_w_1.z *dt;

}

else {

rho_lattice [5] = rho_lattice [0] - grad_rho_3.z* dt;

u_lattice [5] = u_lattice [0] - grad_u_3.z* dt;

v_lattice [5] = v_lattice [0] - grad_v_3.z *dt;

w_lattice [5] = w_lattice [0] - grad_w_3.z *dt;

rho_lattice [6] = rho_lattice [0] + grad_rho_3.z* dt;

u_lattice [6] = u_lattice [0] + grad_u_3.z* dt;

v_lattice [6] = v_lattice [0] + grad_v_3.z *dt;

w_lattice [6] = w_lattice [0] + grad_w_3.z *dt;

}

Listing 8.1: Interpolation Divergence
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8.5.1.4 Conclusion

To summarise it is recommended to use cell faces as a base unit for flux calculations

if there is access to modern Tesla V100 hardware. It is also recommended where

possible to use a structured grid be it uniform or non-uniform as both reduce the

amount of calculations required and reduce the divergence of threads during flux

calculations.

8.5.2 IBM

In the IBM, there are four main functions that have to be performed:

• Velocity interpolation on nodes.

• Update of node positions.

• Update node forces (RBC solver in next section).

• Force spreading.

Similar to the LBFS porting approach, all four functions were ported to GPUs as

they used data which was already being stored on global memory in GPUs. This

avoided unnecessary transfer of data from GPU to CPU. The base units for each

function are described in Table 8.2. The main design decision here is to decide

Function Base unit of parallelisation

Velocity interpolation Object nodes
Update of node positions Object nodes

Force spreading Object nodes

Table 8.2: Base unit of parallelisation for IBM functions.

on the base unit of the force spreading function. If a base unit of object nodes is

adopted it results in the necessary use of atomics to add restoring forces to each

cell volume. If a base unit of cell volumes is adopted, it results in excessive com-

putations. The former results in O(Nobject nodes × 64) atomic operations whereas

the latter results in O(Ncells × Nobject nodes) parallel operations. For a test case

involving Nobject nodes = 2562 and Ncells = 64000 this results in 10000× less oper-

ations for the former approach. As this work was performed for single red blood
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cells, this dynamic may change when additional red blood cells are added to the

flow and should be investigated for computational efficiency.

8.5.3 RBC Structural Model

In the RBC model there are two functions to consider:

• Internal RBC viscosity assignment.

• RBC force calculation.

Similar to the LBFS and IBM porting approach, all functions were ported to

GPUs as they used data which was already being stored on global memory in

GPUs. This avoided unnecessary transfer of data from GPU to CPU. The base

units for each function are described in Table 8.3. The bulk of runtime is spent in

Function Base unit of parallelisation

Viscosity Object nodes
RBC Forces Object springs

Table 8.3: Base unit of parallelisation for IBM functions.

the RBC forces function. There are two options here for base units: to use object

nodes or object springs. Using object nodes has the benefit of avoiding atomics

but involves a far greater number of global memory accesses as node connectivity

is required in the RBC kernel. It also involves twice the number of calculations as

the force from each spring is calculated for each spring node. The use of object

springs results in less global memory accesses and calculations are performed only

once for each spring, but it does involve the use of atomics to sum the forces on

each object node. The former approach performs better on Tesla K40 whereas the

latter performs better on the Volta V100.

8.6 Indicative Runtimes

To demonstrate the benefit of using GPGPU enabled hardware a variety of prob-

lems were profiled and the CPU clock times were recorded. Identical simulations
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were profiled on CPU (where applicable), a Tesla K40 and a Volta V100. The

CPU simulations were performed on a AMD Fx-6300 chip. Each problem was run

for 25000 iterations and the runtime was recorded. Three runs of each problem

were performed and the average time of the three runs was taken as the bench-

mark time. A comparison of the runtimes for a fluid only problem is shown in

Table 8.4. A comparison of runtimes for a ADE-SP RBC solver only problem is

shown in Table 8.5. Finally, a comparison of the ADE-SP LBFS blood flow solver

is done for the Tesla K40 and a Volta V100 only as a CPU version is not available.

The results for this benchmark are shown in Table 8.6. It is worth noting that

significant improvements in runtimes are made by using GPUs versus CPUs.

Test Case CPU Tesla K40 Volta V100

Runtime (s): Lid Driven Cavity -
Structured Mesh

15550 317 129

Runtime (s): Lid Driven Cavity -
Unstructured Mesh

18401 930 392

Runtime Ratio: Structured Mesh 120.5 2.5 1.0
Runtime Ratio: Unstructured 142.6 7.2 3.0

Table 8.4: Indicative runtimes in seconds and runtime ratios of simulations
performed on GPUs and CPU with the LBFS for fluid flow problem only with

1000000 cells in the fluid domain.

Test Case CPU Tesla K40 Volta V100

Runtime (s): RBC - Optical Tweezers (No
Fluid)

483 20 12

Runtime Ratio: RBC 40.3 1.7 1.0

Table 8.5: Indicative runtimes in seconds and runtime ratios of simulations
performed on GPUs and CPU with the ADE-SP RBC solver with 2562 object

nodes on the RBC mesh.

Test Case CPU Tesla K40 Volta V100

Runtime (s): RBC - Optical Tweezers
(Fluid Present)

- 126 28

Runtime Ratio: - 4.5 1.0

Table 8.6: Indicative runtimes in seconds and runtime ratios of simulations
performed on GPUs with the full ADE-SP LBFS blood flow solver with 2562

object nodes on the RBC mesh and 64000 cells in the fluid domain.
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8.7 Summary

In conclusion the use of GPGPU programming enables large acceleration in run-

times for the current ADE-SP LBFS blood flow model. The extent of the accel-

eration achieved is highly dependent on two main user choices: use of structured

or unstructured meshes and choice of GPU hardware. The use of structured grids

enables significant speed ups over fully unstructured grids due to a reduction in

calculations and increased memory coalescence. Modern GPU hardware also offers

significant improvements over older hardware due to extensive improvements in

the speed of atomic operations in modern hardware.
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Chapter 9

Conclusions and

Recommendations

9.1 Conclusions

In this work a full ADE-SP LBFS blood flow model has been developed, and

verified and validated against a variety of experimental and numerical results in the

literature. In Chapter 4 it was demonstrated that the LBFS is capable of predicting

solutions to the N-S equations in 3D using fully unstructured hexahedral grids.

It was shown that utilising preconditioning can significantly accelerate runtimes

of the LBFS when simulating convection dominated steady flow. Preconditioning

also offers increased levels of accuracy when utilised on fully unstructured grids

with a large variation in cell size. In Chapter 5 an IBM that can handle non-

uniform grids is succesfully verified against benchmark results in the literature.

This work was a prerequisite for coupling a ADE-SP RBC model with a N-S

solver.

In Chapter 7 it was demonstrated that the ADE-SP LBFS blood flow model can

fully capture the complex RBC dynamics of tank treading, swinging and tumbling.

During these experiments, it was found that a prestressed biconcave mesh was re-

quired to simulate RBC dynamics with physiologically realistic values of RBC

elastic properties. A prestressed mesh using the values in Table 6.2 produces very

accurate results for RBC dynamics in shear flow that agree with experimental mea-

surements in the literature. However this produced more inaccurate results than
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the stress free configuration when the prestressed configuration was retrospectively

used to simulate the optical tweezers and wheel deformation experiment. This may

be down to the spring model used. The modified WLC model proposed by Chen is

significantly stiffer than alternative spring models used in the literature. Fedosov

[223] uses a WLC-POW model whereas Pivkin [72] and Reasor [99] use a WLC

spring mixed with a hydrostatic elastic energy term. Another consideration is

the choice of model for membrane viscosity. It was discovered that the model of

Ehi-Egharevba [213] does not impact on RBC dynamics in blood flow scenarios.

The work of Fedosov [73] shows that membrane viscosity has significant impact

on RBC tank treading frequency and also swinging angle amplitudes. Membrane

viscosity is captured in this work by assigning the membrane viscosity to the SPH

particles in the fluid colocated with the membrane. This would suggest that to

capture membrane viscosity in the current work, that the fluid volume’s viscosity

must be updated to reflect the viscosity of the membrane. This would require the

modification of Equation (6.45). On the other hand the work of Pivkin [72] and

Reasor [99] do not supply results for the amplitude of swinging angles in their

work. It may be that if these models are adopted that they do not accurately cap-

ture the pitch orientations or swinging angles that are observed in experimental

studies.

Finally the ADE-SP LBFS blood flow model was accelerated using a GPGPU

which offers significant performance improvements over CPU solvers. However the

extent of the acceleration achieved is highly dependent on two main user choices:

use of structured or unstructured meshes and choice of GPU hardware. The use

of structured grids enables significant speed ups over fully unstructured grids due

to a reduction in calculations and increased memory coalescence. Modern GPU

hardware also offers significant improvements over older hardware due to extensive

improvements in the speed of atomic operations with modern hardware.

9.2 Recommendations for Future Work

The scope of the project was to investigate the outcome of coupling the ADE-SP

RBC model with a N-S solver and predicting RBC dynamics in flow. The investi-

gations performed in this work show that there is a lack of a uniform configuration

of the RBC that satisfies all experimental results in the literature. Due to the lack

of results in the literature it is hard to ascertain if this is due to the choice of spring
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model or that all spring models are incapable of fully capturing all experimental

results. There is also an element of uncertainty in the literature with regards to

the correct stress free shape of the RBC for SP models. Therefore the following

future investigation is proposed:

• Investigation of RBC dynamics for the modified WLC model (current work),

the WLC-POW model and the WLC model with hydrostatic elastic energy

constant.

• Comparison of equilibrium shape for continuum and spring-particle methods.

In particular investigate compressive and tensile stresses in the biconcave

shape.

As mentioned previously, the choice of membrane viscosity model has no impact on

the results of the RBC dynamics simulations. A different approach that updates

the cell volumes of the fluid to reflect the RBC membrane could have significant

impact on RBC dynamics and would be a worthwhile investigation.

Once the aforementioned investigations have been performed the ADE-SP RBC

model could be then extended to a variety of other blood flow problems includ-

ing parachute flow, flow through a micro-channel, aggregation, and dynamics of

complex morphologies in shear flow. The possiblities are endless.

As shown in Chapter 8 and Chapter 5, utilising non uniform grids can offer signifi-

cant savings in computational expense over fully unstructured flows. However this

was not benchmarked in this work and it is recommended that a fully unstructured

IBM be developed and implemented. This should then be benchmarked against

the current work.

It is shown in Chapter 8 that the use of structured meshes offers significant ac-

celeration over unstructured meshes when utilising GPUs. However in this work

tetrahedral meshes are used to discretise the RBC which perform poorly on GPUs

with regards to memory coalescence. It would be an interesting study to inves-

tigate the performance of the ADE-SP RBC model on GPUs when hexahedral

meshes are employed. Hexahedral meshes tend to offer better memory coalescence

and could offer significant savings in runtimes.

Finally one of the largest impacts on computational costs is the very low time

step required during RBC dynamics. It is proposed that a similar approach to
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that used by Breen et al. [237] to accelerate the many body problem could offer

significant savings in runtimes. In their work, a deep neural network is trained on

the results of a classical numerical solver and subsequently can predict the results

of the classical solver up to 100 million times faster over a bounded time interval.
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Appendix A

Governing Equation Aids

A.1 Introduction

This appendix includes aids to understanding the governing equations of the LBFS

described in Chapter 2. The aids include: an explicit D3Q15 Discretisation of N-S

Equations in the LBFS, a full discussion of non-dimensional form of the LBFS, the

equations of the Hybrid Green-Gauss/Weighted-Least-Squares Gradient Operator,

an explicit writing of non-conservative form of N-S equations and computer code

for calculating the RK4 stability region.

A.2 Explicit D3Q15 Discretisation of N-S Equa-

tions

This appendix contains an explicit description of how the mass and momentum

fluxes are calculated using the LBFS. These fluxes are then used in the N-S equa-

tion to calculate the change in macroscopic variables from time step to time step.

The flux tensor in Equation (2.2) can be re-written as:

F = Flux Tensor =


Px Py Pz

Πxx Πxy Πxz

Πyx Πyy Πyz

Πzx Πzy Πzz

 (A.1)
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where P is the mass flux, Π is the momentum flux and x, y, z indicate the Cartesian

axis of the flux contribution. Using Equation (2.4) and Table 2.1 the individual

parts of the flux tensor can be written explicitly in terms of lattice velocities,

equilibrium distribution functions and non-equilibrium functions as follows:

Px =e1,xf
eq
1 (r, t) + e2,xf

eq
2 (r, t) + e7,xf

eq
7 (r, t)

+e8,xf
eq
8 (r, t) + e9,xf

eq
9 (r, t) + e10,xf

eq
10 (r, t)

+e11,xf
eq
11 (r, t) + e12,xf

eq
12 (r, t) + e13,xf

eq
13 (r, t)

+e14,xf
eq
14 (r, t)

=(1)f eq1 (r, t) + (−1)f eq2 (r, t) + (1)f eq7 (r, t)

+(−1)f eq8 (r, t) + (1)f eq9 (r, t) + (−1)f eq10 (r, t)

+(1)f eq11 (r, t) + (−1)f eq12 (r, t) + (−1)f eq13 (r, t)

+(1)f eq14 (r, t)

(A.2)

Py =e3,yf
eq
3 (r, t) + e4,yf

eq
4 (r, t) + e7,yf

eq
7 (r, t)

+e8,yf
eq
8 (r, t) + e9,yf

eq
9 (r, t) + e10,yf

eq
10 (r, t)

+e11,yf
eq
11 (r, t) + e12,yf

eq
12 (r, t) + e13,yf

eq
13 (r, t)

+e14,yf
eq
14 (r, t)

=(1)f eq3 (r, t) + (−1)f eq4 (r, t) + (1)f eq7 (r, t)

+(−1)f eq8 (r, t) + (1)f eq9 (r, t) + (−1)f eq10 (r, t)

+(−1)f eq11 (r, t) + (1)f eq12 (r, t) + (1)f eq13 (r, t)

+(−1)f eq14 (r, t)

(A.3)
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Pz =e5,zf
eq
5 (r, t) + e6,zf

eq
6 (r, t) + e7,zf

eq
7 (r, t)

+e8,zf
eq
8 (r, t) + e9,zf

eq
9 (r, t) + e10,zf

eq
10 (r, t)

+e11,zf
eq
11 (r, t) + e12,zf

eq
12 (r, t) + e13,zf

eq
13 (r, t)

+e14,zf
eq
14 (r, t)

=(1)f eq5 (r, t) + (−1)f eq6 (r, t) + (1)f eq7 (r, t)

+(−1)f eq8 (r, t) + (−1)f eq9 (r, t) + (1)f eq10 (r, t)

+(1)f eq11 (r, t) + (−1)f eq12 (r, t) + (1)f eq13 (r, t)

+(−1)f eq14 (r, t)

(A.4)

Πxx =e2
1,x

[
f eq1 (r, t) +

(
1− 1

2τ

)
fneq1 (r, t)

]
+ e2

2,x

[
f eq2 (r, t) +

(
1− 1

2τ

)
fneq2 (r, t)

]
+e2

7,x

[
f eq7 (r, t) +

(
1− 1

2τ

)
fneq7 (r, t)

]
+ e2

8,x

[
f eq8 (r, t) +

(
1− 1

2τ

)
fneq8 (r, t)

]
+e2

9,x

[
f eq9 (r, t) +

(
1− 1

2τ

)
fneq9 (r, t)

]
+ e2

10,x

[
f eq10 (r, t) +

(
1− 1

2τ

)
fneq10 (r, t)

]
+e2

11,x

[
f eq11 (r, t) +

(
1− 1

2τ

)
fneq11 (r, t)

]
+ e2

12,x

[
f eq12 (r, t) +

(
1− 1

2τ

)
fneq12 (r, t)

]
+e2

13,x

[
f eq13 (r, t) +

(
1− 1

2τ

)
fneq13 (r, t)

]
+ e2

14,x

[
f eq14 (r, t) +

(
1− 1

2τ

)
fneq14 (r, t)

]

= (1)

[
f eq1 (r, t) +

(
1− 1

2τ

)
fneq1 (r, t)

]
+ (1)

[
f eq3 (r, t) +

(
1− 1

2τ

)
fneq3 (r, t)

]
+ (1)

[
f eq7 (r, t) +

(
1− 1

2τ

)
fneq7 (r, t)

]
+ (1)

[
f eq8 (r, t) +

(
1− 1

2τ

)
fneq8 (r, t)

]
+ (1)

[
f eq9 (r, t) +

(
1− 1

2τ

)
fneq9 (r, t)

]
+ (1)

[
f eq10 (r, t) +

(
1− 1

2τ

)
fneq10 (r, t)

]
+ (1)

[
f eq11 (r, t) +

(
1− 1

2τ

)
fneq11 (r, t)

]
+ (1)

[
f eq12 (r, t) +

(
1− 1

2τ

)
fneq12 (r, t)

]
+ (1)

[
f eq13 (r, t) +

(
1− 1

2τ

)
fneq13 (r, t)

]
+ (1)

[
f eq14 (r, t) +

(
1− 1

2τ

)
fneq14 (r, t)

]
(A.5)
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Πyy =e2
3,y

[
f eq3 (r, t) +

(
1− 1

2τ

)
fneq3 (r, t)

]
+ e2

4,y

[
f eq4 (r, t) +

(
1− 1

2τ

)
fneq4 (r, t)

]
+e2

7,y

[
f eq7 (r, t) +

(
1− 1

2τ

)
fneq7 (r, t)

]
+ e2

8,y

[
f eq8 (r, t) +

(
1− 1

2τ

)
fneq8 (r, t)

]
+e2

9,y

[
f eq9 (r, t) +

(
1− 1

2τ

)
fneq9 (r, t)

]
+ e2

10,y

[
f eq10 (r, t) +

(
1− 1

2τ

)
fneq10 (r, t)

]
+e2

11,y

[
f eq11 (r, t) +

(
1− 1

2τ

)
fneq11 (r, t)

]
+ e2

12,y

[
f eq12 (r, t) +

(
1− 1

2τ

)
fneq12 (r, t)

]
+e2

13,y

[
f eq13 (r, t) +

(
1− 1

2τ

)
fneq13 (r, t)

]
+ e2

14,y

[
f eq14 (r, t) +

(
1− 1

2τ

)
fneq14 (r, t)

]

= (1)

[
f eq1 (r, t) +

(
1− 1

2τ

)
fneq1 (r, t)

]
+ (1)

[
f eq3 (r, t) +

(
1− 1

2τ

)
fneq3 (r, t)

]
+ (1)

[
f eq7 (r, t) +

(
1− 1

2τ

)
fneq7 (r, t)

]
+ (1)

[
f eq8 (r, t) +

(
1− 1

2τ

)
fneq8 (r, t)

]
+ (1)

[
f eq9 (r, t) +

(
1− 1

2τ

)
fneq9 (r, t)

]
+ (1)

[
f eq10 (r, t) +

(
1− 1

2τ

)
fneq10 (r, t)

]
+ (1)

[
f eq11 (r, t) +

(
1− 1

2τ

)
fneq11 (r, t)

]
+ (1)

[
f eq12 (r, t) +

(
1− 1

2τ

)
fneq12 (r, t)

]
+ (1)

[
f eq13 (r, t) +

(
1− 1

2τ

)
fneq13 (r, t)

]
+ (1)

[
f eq14 (r, t) +

(
1− 1

2τ

)
fneq14 (r, t)

]
(A.6)
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Πzz =e2
5,z

[
f eq5 (r, t) +

(
1− 1

2τ

)
fneq5 (r, t)

]
+ e2

6,z

[
f eq6 (r, t) +

(
1− 1

2τ

)
fneq6 (r, t)

]
+e2

7,z

[
f eq7 (r, t) +

(
1− 1

2τ

)
fneq7 (r, t)

]
+ e2

8,z

[
f eq8 (r, t) +

(
1− 1

2τ

)
fneq8 (r, t)

]
+e2

9,z

[
f eq9 (r, t) +

(
1− 1

2τ

)
fneq9 (r, t)

]
+ e2

10,z

[
f eq10 (r, t) +

(
1− 1

2τ

)
fneq10 (r, t)

]
+e2

11,z

[
f eq11 (r, t) +

(
1− 1

2τ

)
fneq11 (r, t)

]
+ e2

12,z

[
f eq12 (r, t) +

(
1− 1

2τ

)
fneq12 (r, t)

]
+e2

13,z

[
f eq13 (r, t) +

(
1− 1

2τ

)
fneq13 (r, t)

]
+ e2

14,z

[
f eq14 (r, t) +

(
1− 1

2τ

)
fneq14 (r, t)

]

= (1)

[
f eq1 (r, t) +

(
1− 1

2τ

)
fneq1 (r, t)

]
+ (1)

[
f eq3 (r, t) +

(
1− 1

2τ

)
fneq3 (r, t)

]
+ (1)

[
f eq7 (r, t) +

(
1− 1

2τ

)
fneq7 (r, t)

]
+ (1)

[
f eq8 (r, t) +

(
1− 1

2τ

)
fneq8 (r, t)

]
+ (1)

[
f eq9 (r, t) +

(
1− 1

2τ

)
fneq9 (r, t)

]
+ (1)

[
f eq10 (r, t) +

(
1− 1

2τ

)
fneq10 (r, t)

]
+ (1)

[
f eq11 (r, t) +

(
1− 1

2τ

)
fneq11 (r, t)

]
+ (1)

[
f eq12 (r, t) +

(
1− 1

2τ

)
fneq12 (r, t)

]
+ (1)

[
f eq13 (r, t) +

(
1− 1

2τ

)
fneq13 (r, t)

]
+ (1)

[
f eq14 (r, t) +

(
1− 1

2τ

)
fneq14 (r, t)

]
(A.7)
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Πxy = Πyx =

e7,xe7,y

[
f eq7 (r, t) +

(
1− 1

2τ

)
fneq7 (r, t)

]
+ e8,xe8,y

[
f eq8 (r, t) +

(
1− 1

2τ

)
fneq8 (r, t)

]
+e7,xe7,y

[
f eq7 (r, t) +

(
1− 1

2τ

)
fneq7 (r, t)

]
+ e8,xe8,y

[
f eq8 (r, t) +

(
1− 1

2τ

)
fneq8 (r, t)

]
+e9,xe9,y

[
f eq9 (r, t) +

(
1− 1

2τ

)
fneq9 (r, t)

]
+ e10,xe10,y

[
f eq10 (r, t) +

(
1− 1

2τ

)
fneq10 (r, t)

]
+e11,xe11,y

[
f eq11 (r, t) +

(
1− 1

2τ

)
fneq11 (r, t)

]
+ e12,xe12,y

[
f eq12 (r, t) +

(
1− 1

2τ

)
fneq12 (r, t)

]
+e13,xe13,y

[
f eq13 (r, t) +

(
1− 1

2τ

)
fneq13 (r, t)

]
+ e14,xe14,y

[
f eq14 (r, t) +

(
1− 1

2τ

)
fneq14 (r, t)

]

= (1)

[
f eq7 (r, t) +

(
1− 1

2τ

)
fneq7 (r, t)

]
+ (1)

[
f eq8 (r, t) +

(
1− 1

2τ

)
fneq8 (r, t)

]
+ (1)

[
f eq9 (r, t) +

(
1− 1

2τ

)
fneq9 (r, t)

]
+ (1)

[
f eq10 (r, t) +

(
1− 1

2τ

)
fneq10 (r, t)

]
+ (−1)

[
f eq11 (r, t) +

(
1− 1

2τ

)
fneq11 (r, t)

]
+ (−1)

[
f eq12 (r, t) +

(
1− 1

2τ

)
fneq12 (r, t)

]
+ (−1)

[
f eq13 (r, t) +

(
1− 1

2τ

)
fneq13 (r, t)

]
+ (−1)

[
f eq14 (r, t) +

(
1− 1

2τ

)
fneq14 (r, t)

]
(A.8)
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Πxz = Πzx =

e7,xe7,z

[
f eq7 (r, t) +

(
1− 1

2τ

)
fneq7 (r, t)

]
+ e8,xe8,z

[
f eq8 (r, t) +

(
1− 1

2τ

)
fneq8 (r, t)

]
+e7,xe7,z

[
f eq7 (r, t) +

(
1− 1

2τ

)
fneq7 (r, t)

]
+ e8,xe8,z

[
f eq8 (r, t) +

(
1− 1

2τ

)
fneq8 (r, t)

]
+e9,xe9,z

[
f eq9 (r, t) +

(
1− 1

2τ

)
fneq9 (r, t)

]
+ e10,xe10,z

[
f eq10 (r, t) +

(
1− 1

2τ

)
fneq10 (r, t)

]
+e11,xe11,z

[
f eq11 (r, t) +

(
1− 1

2τ

)
fneq11 (r, t)

]
+ e12,xe12,z

[
f eq12 (r, t) +

(
1− 1

2τ

)
fneq12 (r, t)

]
+e13,xe13,z

[
f eq13 (r, t) +

(
1− 1

2τ

)
fneq13 (r, t)

]
+ e14,xe14,z

[
f eq14 (r, t) +

(
1− 1

2τ

)
fneq14 (r, t)

]

= (1)

[
f eq7 (r, t) +

(
1− 1

2τ

)
fneq7 (r, t)

]
+ (1)

[
f eq8 (r, t) +

(
1− 1

2τ

)
fneq8 (r, t)

]
+ (−1)

[
f eq9 (r, t) +

(
1− 1

2τ

)
fneq9 (r, t)

]
+ (−1)

[
f eq10 (r, t) +

(
1− 1

2τ

)
fneq10 (r, t)

]
+ (1)

[
f eq11 (r, t) +

(
1− 1

2τ

)
fneq11 (r, t)

]
+ (1)

[
f eq12 (r, t) +

(
1− 1

2τ

)
fneq12 (r, t)

]
+ (−1)

[
f eq13 (r, t) +

(
1− 1

2τ

)
fneq13 (r, t)

]
+ (−1)

[
f eq14 (r, t) +

(
1− 1

2τ

)
fneq14 (r, t)

]
(A.9)
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Πyz = Πzy =

e7,ye7,z

[
f eq7 (r, t) +

(
1− 1

2τ

)
fneq7 (r, t)

]
+ e8,ye8,z

[
f eq8 (r, t) +

(
1− 1

2τ

)
fneq8 (r, t)

]
+e7,ye7,z

[
f eq7 (r, t) +

(
1− 1

2τ

)
fneq7 (r, t)

]
+ e8,ye8,z

[
f eq8 (r, t) +

(
1− 1

2τ

)
fneq8 (r, t)

]
+e9,ye9,z

[
f eq9 (r, t) +

(
1− 1

2τ

)
fneq9 (r, t)

]
+ e10,ye10,z

[
f eq10 (r, t) +

(
1− 1

2τ

)
fneq10 (r, t)

]
+e11,ye11,z

[
f eq11 (r, t) +

(
1− 1

2τ

)
fneq11 (r, t)

]
+ e12,ye12,z

[
f eq12 (r, t) +

(
1− 1

2τ

)
fneq12 (r, t)

]
+e13,ye13,z

[
f eq13 (r, t) +

(
1− 1

2τ

)
fneq13 (r, t)

]
+ e14,xe14,z

[
f eq14 (r, t) +

(
1− 1

2τ

)
fneq14 (r, t)

]

= (1)

[
f eq7 (r, t) +

(
1− 1

2τ

)
fneq7 (r, t)

]
+ (1)

[
f eq8 (r, t) +

(
1− 1

2τ

)
fneq8 (r, t)

]
+ (−1)

[
f eq9 (r, t) +

(
1− 1

2τ

)
fneq9 (r, t)

]
+ (−1)

[
f eq10 (r, t) +

(
1− 1

2τ

)
fneq10 (r, t)

]
+ (−1)

[
f eq11 (r, t) +

(
1− 1

2τ

)
fneq11 (r, t)

]
+ (−1)

[
f eq12 (r, t) +

(
1− 1

2τ

)
fneq12 (r, t)

]
+ (1)

[
f eq13 (r, t) +

(
1− 1

2τ

)
fneq13 (r, t)

]
+ (1)

[
f eq14 (r, t) +

(
1− 1

2τ

)
fneq14 (r, t)

]
(A.10)
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A.3 Non-Dimensional form of the N-S Equations

Using the Chapman-Enskog expansion [129], it can be shown that the LBE cor-

responds directly with the N-S equations. Using the LBFS approach, we are

interested in the fluxes generated by the LBE. The fluxes will be influenced by the

non-dimensionalisation procedure. How they are influenced will be shown in this

section.

A.3.1 Non-Dimensionalisation of LBE form of the N-S Equa-

tions

Starting with the N-S equations derived in finite difference form in Appendix A.5

gives:
∂ρ

∂t
+∇ · (ρV) = 0 (A.11)

∂ρV

∂t
+∇ · (ρVV) = −∇ρ+∇

[
µ
(
∇V + [∇V]T

)]
(A.12)

where µ = ρν = ρc2
sδtτ(1 − 1

2τ
) and p = ρc2

s. The LBM is predominantly solved

in terms of “lattice units”. This is where the physical variables in the simulation

are non-dimensionalised by reference values in terms of the lattice units. The

process involves converting the physical variables into non-dimensional form and

then solving the LBE using variables which are in the form of the lattice units in

the lattice velocity model chosen.

Let * indicate a non-dimensional variable. The following is the non-dimensionalisation

procedure:

x∗ =
x

Lref
y∗ =

y

Lref
z∗ =

z

Lref

u∗ =
u

Lref/tref
v∗ =

v

Lref/tref
w∗ =

w

Lref/tref

ρ∗ =
ρ

ρref
t∗ =

t

tref

where tref is the reference time, Lref is the reference length, and ρref is the refer-

ence density. Applying the non-dimensionalisation procedure to Equation (A.11)
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gives the mass conservation equation in non-dimensional form:

∂ρ∗ρref
∂t∗tref

+
1

Lref
∇ ·
(
ρ∗ρrefV

∗Lref
tref

)
= 0 (A.13)

and dividing across by
ρref
tref

gives:

∂ρ∗

∂t∗
+∇ · (ρ∗V ∗) = 0 (A.14)

Applying the non-dimensionalisation procedure to Equation (A.12) gives the mo-

mentum equation in non-dimensional form:

∂ρ∗ρrefV
∗Lref
tref

∂t∗tref
+

1

Lref
∇ ·
(
ρ∗ρrefV

∗Lref
tref

V∗
Lref
tref

)
=

− 1

Lref
∇ρ∗ρref +

1

Lref
∇

[
ρ∗ρref (c∗s)

2 L
2
ref

t2ref
δt∗trefτ

∗(1− 1

2τ ∗
)

(
1

Lref
∇V∗

Lref
tref

+

[
1

Lref
∇V∗

Lref
tref

]T)]
(A.15)

and dividing across by
ρrefLref
t2ref

gives:

∂ρ∗V∗

∂t∗
+∇ · (ρ∗V∗V∗) =

−∇ρ∗ +∇
[
ρ∗ (c∗s)

2 δt∗τ ∗(1− 1

2τ ∗
)
(
∇V∗ + [∇V∗]T

)] (A.16)

The outcome of the above means that the LBE formulated using non-dimensional

terms is equivalent to what would be traditionally known as the dimensional form

of the N-S equations. This means that there is no factoring of the viscous flux

term by the Mach and Reynolds number as would happen in the traditional non-

dimensional form of the N-S equations.

Converting Equation (A.14) into integral form gives:

d

dt∗

∫ ∫
V ∗
ρ∗dV ∗ +

∫
S∗
ρ∗V∗ dS∗ = 0 (A.17)

229



while converting Equation (A.16) into integral form gives:

d

dt∗

∫ ∫
V ∗
ρ∗V∗dV ∗+

∫
S∗

[
ρ∗V∗V∗ + ρ∗ (c∗s)

2] dS∗
−
∫
S∗

[
ρ∗ (c∗s)

2 δt∗τ ∗
(

1− 1

2τ ∗

)(
∇V∗ + [∇V∗]T

)]
dS∗

= 0

(A.18)

or rearranging into inviscid and viscous flux contributions:

d

dt∗

∫ ∫
V ∗

(Q∗dV ∗) +

∫
S∗

F∗I · n dS∗ +

∫
S∗

F∗V · n dS∗ = 0 (A.19)

A.3.2 Traditional Non-Dimensionalisation of the N-S equa-

tions

The approach in Appendix A.3.1 is in contrast to the traditional approach to the

non-dimensionalisation of the N-S equations. This approach is as follows; let *

indicate a non-dimensional variable. The following is the non-dimensionalisation

procedure:

x∗ =
x

Lref
y∗ =

y

Lref
z∗ =

z

Lref

u∗ =
u

cs,ref
v∗ =

v

cs,ref
w∗ =

w

cs,ref

ρ∗ =
ρ

ρref
t∗ =

tcs,ref
Lref

µ∗ =
µ

µref

where cs,ref is the speed of sound of the fluid in the free stream Lref is the reference

length, ρref is the reference density, and µref is the reference dynamic viscosity.

Following the same steps as for the LBE in Appendix A.3.1 and applying to Equa-

tion (2.1) gives the N-S equations in non-dimensional form:

d

dt∗

∫ ∫
V ∗

(Q∗dV ∗) +

∫
S∗

F∗I · n dS∗ +
Ma

Re

∫
S∗

F∗V · n dS∗ = 0 (A.20)

where Ma =
|Vmax|
cs,ref

, Re =
ρref |Vmax|Lref

µref
and |Vmax| is the characteristic veloc-

ity of the fluid with respect to problem domain.

230



A.3.3 Reasons for Difference in Non-Dimensionalisation

Procedures

Two separate approaches to non-dimensionalisation have been discussed and have

significant consequences for the LBFS approach. If we compare the two non-

dimensionalised equations, we see that there is a difference in how the contribution

of the viscous flux is calculated:

LBE :
d

dt∗

∫ ∫
V ∗

(Q∗dV ∗) +

∫
S∗

F∗I · n dS∗ +

∫
S∗

F∗V · n dS∗ = 0 (A.21)

N − S :
d

dt∗

∫ ∫
V ∗

(Q∗dV ∗) +

∫
S∗

F∗I · n dS∗ +
Ma

Re

∫
S∗

F∗V · n dS∗ = 0 (A.22)

There are two reasons for this difference. The first reason is the fact that the

LBE approach has a viscosity that can be calculated in terms of ρ∗, (c∗s)
2 , δt∗ and

τ ∗. In comparison, a reference viscosity is used in the traditional non-dimensional

approach. This reference viscosity is why the Ma/Re coefficient appears in the

viscous flux term.

The second reason is that the LBE approach uses a reference length and time to

non-dimensionalise the velocities whereas the traditional approach uses a reference

speed of sound. So why can’t a reference speed of sound be used with the LBE

non-dimensionalisation approach? This is due to what is called compressibility

error. This error is generated by the lack of third order term in the equilibrium

distribution function (see Equation (2.7)). This error is of the order O(V 3). This

in comparison to spatial discretisation error and time discretisation error which

have errors of O(δx2) and O(δt2) respectively.

Before commenting on this further the concepts of acoustic and diffusive scaling

will be introduced. Acoustic scaling means that δt scales ∝ δx where-as diffusive

scaling means that δt scales ∝ δx2. What this means is that if one uses acoustic

scaling (N-S approach) and increase the mesh density, the compressibility error will

remain constant. If diffusive scaling (LBE approach) is used and mesh density is

increased, the compressibility error will reduce by the same order as the spatial

discretisation error. It is desirable for all errors to be of the same order or else

the compressibility error will drown out the solution and cause instability in the

simulation.
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A.3.4 Commentary on Applicability of Diffusive scaling

The immediate question that now comes to mind is does diffusive modelling ac-

curately capture the physical reality that is trying to be modelled? As described

by Kruger [186],

If one is modelling incompressible flow, the speed of sound does not

have any physical significance and any compressibility effects are un-

desired. Diffusive scaling is then the method of choice to reduce com-

pressibility effects proportional to δx2. If, however, the speed of sound

is a physically relevant parameter (as in compressible fluid dynamics

and acoustics), acoustic scaling must be chosen as it maintains the

correct scaling of the speed of sound. Holdych et al.[174] emphasised

that the numerical solution can only converge to the solution of the

incompressible N-S Equations when δt scales ∝ δxΨ with Ψ > 1 since

the compressibility error remains constant for Ψ ≤ 1 .

As the end goal is to model incompressible blood flow, it is recommended to

use diffusive scaling. As long as the Reynolds number of the lattice simulation

matches the physical Reynolds number, the law of similarity dictates that they

are equivalent.

An alternative approach to removing the compressibility error was developed by He

and Luo [148]. They proposed an alternative equilibrium distribution function that

solved steady-state incompressible flow with zero compressibility error. However,

their approach does not remove compressibility error for transient problems and

diffusive scaling is required.

A.3.5 Derivation of Non-Dimensional Relaxation Factor

A very important parameter in the LBE is the relaxation factor τ . This has a

big impact on the contribution of the viscous flux term and is closely related to

viscosity as shown in non-dimensional form below:

ν∗ = ρ∗ (c∗s)
2 δt∗τ ∗(1− 1

2τ ∗
) (A.23)
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This can then be manipulated into the following form:

τ ∗ = 0.5 +
ν∗

(c∗s)
2 δt

(A.24)

Rearranging gives:

τ ∗ = 0.5 +
V∗D∗

Re∗ (c∗s)
2 δt

(A.25)

where D∗ is the characteristic linear dimension of the fluid flow. A representation

of D∗ in terms of nodes and cell volumes is given in Figure A.1. For a uniform

Q i+1Q i

  

  

r-e7δtr-e8δt

r-e6δtr-e5δt

δx*δx*

Q i+2

δx*δx* δx*δx* δx*δx* δx*δx* δx*δx*

 r-e4δt

 r-e0δt

 r-e2δt

D*D*

Δx*Δx* Δx*Δx* Δx*Δx*

Figure A.1: Characteristic linear dimension and relation to node and cell
volume size

grid where δx∗ = (∆x/2) ; D∗ = (Nnodes − 1)δx∗ = (Nnodes − 1)(1) = 2Ncells and

Nnodes = number of nodes along the characteristic linear dimension and Ncells =

number of cell volumes along the characteristic linear dimension length. This

gives:

τ ∗ = 0.5 +
V∗2Ncells

Re∗ (c∗s)
2 (1)

(A.26)

which is equivalent to:

τ ∗ = 0.5 +
Ma∗2Ncells

Re∗ (c∗s)
(A.27)

which is also equivalent to:

τ ∗ = 0.5 +

√
3Ma∗2Ncells

Re∗
(A.28)
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The Reynolds number and the Reynolds number calculated with dimensional val-

ues must have the same values. But as mentioned in Appendix A.3.3, the Mach

number calculated with non-dimensional values will differ from the dimensional

Mach number calculated with dimensional values for incompressible flow due to

the requirement of diffusive scaling.
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A.4 Hybrid Green-Gauss/Weighted-Least-Squares

Gradient Operator

The Hybrid Green-Gauss/Weighted-Least-Squares Gradient Operator is given as:

[βiMi + 2 (1− βi)ViI]∇Qi =

Nfaces∑
j=1

(βiαwjxij + 2 (1− βi)αGjnj)Sj∆Qj (A.29)

where I is the identity matrix, i is the index of the current cell where the gradient

is being calculated, j is the face index of cell i, ∇Qi is the gradient vector of the

macroscopic variables at the centroid of cell i, Sj is the surface area of face j, αGj

is a constant assumed to be equal to 0.5 for all faces, nj is the normal to face j,

∆Qj is the change in macroscopic variable between the centroid of the current cell

i and the centroid of the neighbouring cell with shared face j, βi is the switching

parameter for cell i and is given by:

βi = min

(
1,

2

AR

)
(A.30)

where AR is the effective aspect ratio of the cell and is given by:

AR =
2 ·max|rj − ri| ·max (Sj)

Vi
(A.31)

rj is a position vector for the centroid of the neighbouring cell with shared face

j, ri is a position vector for the centroid of the current cell i and Vi is the cell

volume of the current cell i. Mi is a matrix that weights the contribution of each

neighbouring cell to the least-squares gradient calculation and is given by:

Mi =


∑Nfaces

j=1 ωj∆x∆x
∑Nfaces

j=1 ωj∆y∆x
∑Nfaces

j=1 ωj∆z∆x∑Nfaces
j=1 ωj∆x∆y

∑Nfaces
j=1 ωj∆y∆y

∑Nfaces
j=1 ωj∆z∆y∑Nfaces

j=1 ωj∆x∆z
∑Nfaces

j=1 ωj∆y∆z
∑Nfaces

j=1 ωj∆z∆z

 (A.32)

∆x, ∆y and ∆z are the changes in location along the Cartesian axes between

the current cell’s centroid and the jth neighbouring cell’s centroid. αwj is an

interpolation factor given by:

αwj = 4

(
|rk − ri| · nj
|rj − ri| · nj

)2

(A.33)
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where rk is the centroid of the face j and ωj is a weighting function given by:

ωj = αwj
Sj

|rj − ri|
(A.34)

Finally xij is given by:

xij =
rj − ri
|rj − ri|

(A.35)
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A.5 Non-Conservative form of N-S Equations

This section shows how the coefficients of the spatial derivatives of the primitive

variables are calculated for the non-conservative form of the N-S equations. This

was then used in Section 2.5.1 to calculate the RK4 stability criteria. It is not

possible to calculate the correct stability using the coefficients in their base form.

Therefore a symmetric form of the coefficients is used in Section 2.5 to analyse the

stability of the N-S equations. As detailed in Abarbanel [178], the non-conservative

form of the N-S equations are given as follows:

∂Q

∂t
+ A

∂Q

∂x
+B

∂Q

∂y
+ J

∂Q

∂z
=

+ C
∂2Q

∂2x
+D

∂2Q

∂2y
+K

∂2Q

∂2z
+ Exy

∂2Q

∂x∂y
+ Eyz

∂2Q

∂y∂z
+ Ezx

∂2Q

∂z∂x

(A.36)

where:

Q =


ρ

u

v

w

 (A.37)

A =


u ρ 0 0

0 u 0 0

0 0 u 0

0 0 0 u

 (A.38)

B =


v 0 ρ 0

0 v 0 0

0 0 v 0

0 0 0 v

 (A.39)

J =


w 0 0 ρ

0 w 0 0

0 0 w 0

0 0 0 w

 (A.40)
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C =



0 0 0 0

0
2µ

ρ
0 0

0 0
µ

ρ
0

0 0 0
µ

ρ


(A.41)

D =



0 0 0 0

0
µ

ρ
0 0

0 0
2µ

ρ
0

0 0 0
µ

ρ


(A.42)

K =



0 0 0 0

0
µ

ρ
0 0

0 0
µ

ρ
0

0 0 0
2µ

ρ


(A.43)

Exy =


0 0 0 0

0 0
µ

ρ
0

0
µ

ρ
0 0

0 0 0 0

 (A.44)

Eyz =


0 0 0 0

0 0 0 0

0 0 0
µ

ρ

0 0
µ

ρ
0

 (A.45)

Ezx =


0 0 0 0

0 0 0
µ

ρ

0 0 0 0

0
µ

ρ
0 0

 (A.46)

238



A symmetric operator is defined as follows:

Sp =


ρ

cs
0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 (A.47)

S−1
p =


cs
ρ

0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 (A.48)

Applying this symmetric operator simultaneously to the matrices A through E

gives:

S−1
p ASp =


u cs 0 0

cs u 0 0

0 0 u 0

0 0 0 u

 (A.49)

S−1
p BSp =


v 0 cs 0

0 v 0 0

cs 0 v 0

0 0 0 v

 (A.50)

S−1
p JSp =


w 0 0 cs

0 w 0 0

0 0 w 0

cs 0 0 w

 (A.51)

S−1
p CSp =



0 0 0 0

0
2µ

ρ
0 0

0 0
µ

ρ
0

0 0 0
µ

ρ


(A.52)
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S−1
p DSp =



0 0 0 0

0
µ

ρ
0 0

0 0
2µ

ρ
0

0 0 0
µ

ρ


(A.53)

S−1
p KSp =



0 0 0 0

0
µ

ρ
0 0

0 0
µ

ρ
0

0 0 0
2µ

ρ


(A.54)

S−1
p ExySp =


0 0 0 0

0 0
µ

ρ
0

0
µ

ρ
0 0

0 0 0 0

 (A.55)

S−1
p EyzSp =


0 0 0 0

0 0 0 0

0 0 0
µ

ρ

0 0
µ

ρ
0

 (A.56)

S−1
p EzxSp =


0 0 0 0

0 0 0
µ

ρ

0 0 0 0

0
µ

ρ
0 0

 (A.57)

A.6 VBA RK4 Stability Region Code

The following code, is written in VBA, and was used to calculate the stability

contour for a RK4 integration method. The graphical representation is given by

Figure 2.2.

Sub rk4()

Dim wb As Workbook

Set wb = ThisWorkbook
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Dim ws As Worksheet

Set ws = wb.Sheets(“Runge Kutta 4”)

Dim j As Long

j = 1

Dim x, y As Double

Dim g re, g im, g mod As Double

For x = -300 To 300 Step 1

For y = -300 To 300 Step 1

a = x / 100

b = y / 100

g re = 1 + b

g re = g re + 0.5 * (b ∧ 2 - a ∧ 2)

g re = g re + (b ∧ 3 - 3 * a ∧ 2 * b) / 6

g re = g re + (a ∧ 4 + b ∧ 4 - 6 * a ∧ 2 * b ∧ 2) / 24

g im = a + a * b + (3 * b ∧ 2 * a - a ∧ 3) / 6 + (4 * b ∧ 3 * a - 4 *

a ∧ 3 * b) / 24

g mod = (g re ∧ 2 + g im ∧ 2) ∧ 0.5

If Abs(g mod - 1) < 0.01 Then

ws.Cells(j, 1).Value = g re

ws.Cells(j, 2).Value = g im

ws.Cells(j, 3).Value = x

ws.Cells(j, 4).Value = y

ws.Cells(j, 5).Value = g mod

j = j + 1

End If

Next

Next

End Sub
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Appendix B

Source Code Repository

B.1 Source Code

The code used in this work is kept in a repository under MIT license at https:

//github.com/CHRG-Developer. A view of the architecture of the program is

provided in Figure B.1. Note that the following dependencies are required to be

installed before use:

• Boost -https://www.boost.org/users/download/

• CUDA -https://developer.nvidia.com/cuda-downloads

• TECIO - Tecplot Input/Output library https://github.com/su2code/SU2/

tree/master/externals/tecio

A makefile is provided that will compile the code. Note however that references

to external library need to be updated in the makefile for local user settings.
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Run 

Program

Solver_GPU.cu-

Data transfer to GPU and CPU time 

stepping loop

End

XML Input 

File

Mesh - Openfoam 

Dictionary Format

Program.cpp-

Performs preprocessing of mesh 

input and initial conditions

For timestep =1 to last 

timestep

LBFS.cu – gradient calculations, 

flux calculations at the face and 

time integration of 

macrovariables at cell centres

immersed_boundary_method.cu 

– velocity integration, force 

spreading and node time 

integration

Spring_network.cu – RBC 

conservative force calculations
Simulation Finished?

Tecplot_output.cpp – output 

postprocessing data

NO

YES

Figure B.1: Architecture of the LBFS ADE-SP blood flow model source code.
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[12] M. Schäfer, S. Turek, F. Durst, E. Krause, and R. Rannacher. Benchmark

Computations of Laminar Flow Around a Cylinder. pages 547–566, 1996.

doi: 10.1007/978-3-322-89849-4 39.

[13] Hana Thomas, Jaime Diamond, Adrianna Vieco, Shaoli Chaudhuri, Eliezer

Shinnar, Sara Cromer, Pablo Perel, George A. Mensah, Jagat Narula,

Catherine O. Johnson, Gregory A. Roth, and Andrew E. Moran. Global

Atlas of Cardiovascular Disease 2000-2016: The Path to Prevention and

Control. Global Heart, 13(3):143–163, 2018. ISSN 22118179. doi: 10.1016/

j.gheart.2018.09.511.

[14] James F Antaki, Michael R Ricci, Josiah E Verkaik, Shaun T Snyder, M Tim-

othy, Jeongho Kim, Dave B Paden, Marina V Kameneva, Bradley E Paden,

D Peter, and Harvey S Borovetz. NIH Public Access, volume 1. 2011. ISBN

1323901000. doi: 10.1007/s13239-010-0011-9.PediaFlow.

[15] Eoin A. Murphy, Adrian S. Dunne, David M. Martin, and Fergal J.

Boyle. Oxygen Mass Transport in Stented Coronary Arteries. Annals

of Biomedical Engineering, 44(2):508–522, 2016. ISSN 15739686. doi:

10.1007/s10439-015-1501-6.

[16] A. M. Gambaruto and A. J. João. Flow structures in cerebral aneurysms.

Computers and Fluids, 2012. ISSN 00457930. doi: 10.1016/j.compfluid.2012.

02.020.

245

http://doi.wiley.com/10.1002/fld.2534


[17] Hernán G. Morales and Odile Bonnefous. Unraveling the relationship be-

tween arterial flow and intra-aneurysmal hemodynamics. Journal of Biome-

chanics, 2015. ISSN 18732380. doi: 10.1016/j.jbiomech.2015.01.016.

[18] Jianping Xiang, Sabareesh K. Natarajan, Markus Tremmel, Ding Ma,

J. Mocco, L. Nelson Hopkins, Adnan H. Siddiqui, Elad I. Levy, and Hui

Meng. Hemodynamic-morphologic discriminants for intracranial aneurysm

rupture. Stroke, 2011. ISSN 00392499. doi: 10.1161/STROKEAHA.110.

592923.

[19] Nick Ashton. Physiology of red and white blood cells. Anaesthesia and In-

tensive Care Medicine, 14(6):261–266, 2013. ISSN 14720299. doi: 10.1016/j.

mpaic.2013.03.001. URL http://dx.doi.org/10.1016/j.mpaic.2013.03.

001.

[20] A. V. Belyaev, J. L. Dunster, J. M. Gibbins, M. A. Panteleev, and V. Volpert.

Modeling thrombosis in silico: Frontiers, challenges, unresolved problems

and milestones. Physics of Life Reviews, 2018. ISSN 15710645. doi: 10.

1016/j.plrev.2018.02.005.

[21] Oguz K. Baskurt and Herbert J. Meiselman. Blood Rheology and Hemo-

dynamics. Seminars in Thrombosis and Hemostasis, 29(5):435–450, 2003.

ISSN 00946176. doi: 10.1055/s-2003-44551.

[22] G. D.O. Lowe. 1 Blood rheology in vitro and in vivo. Bailliere’s Clin-

ical Haematology, 1(3):597–636, 1987. ISSN 09503536. doi: 10.1016/

S0950-3536(87)80018-5.

[23] E. W. Errill. Rheology of blood. Physiological Reviews, 49(4):863–

888, oct 1969. ISSN 0031-9333. doi: 10.1152/physrev.1969.49.4.

863. URL http://www.ncbi.nlm.nih.gov/pubmed/4898603http://www.

physiology.org/doi/10.1152/physrev.1969.49.4.863.

[24] Peter W. Rand, Eleanor Lacombe, Hamilton E. Hunt, and William H.

Austin. Viscosity of normal human blood under normothermic and hy-

pothermic conditions. Journal of Applied Physiology, 19(1):117–122, jan

1964. ISSN 8750-7587. doi: 10.1152/jappl.1964.19.1.117. URL http:

//www.physiology.org/doi/10.1152/jappl.1964.19.1.117.

246

http://dx.doi.org/10.1016/j.mpaic.2013.03.001
http://dx.doi.org/10.1016/j.mpaic.2013.03.001
http://www.ncbi.nlm.nih.gov/pubmed/4898603 http://www.physiology.org/doi/10.1152/physrev.1969.49.4.863
http://www.ncbi.nlm.nih.gov/pubmed/4898603 http://www.physiology.org/doi/10.1152/physrev.1969.49.4.863
http://www.physiology.org/doi/10.1152/jappl.1964.19.1.117
http://www.physiology.org/doi/10.1152/jappl.1964.19.1.117


[25] S. Chien, S. Usami, H. M. Taylor, J. L. Lundberg, and M. I. Gregersen.

Effects of hematocrit and plasma proteins on human blood rheology at low

shear rates. Journal of applied physiology, 21(1):81–87, 1966. ISSN 00218987.

[26] H. Schmid-Schönbein, R. Wells, and J. Goldstone. Influence of deformability

of human red cells upon blood viscosity. Circulation research, 25(2):131–143,

1969. ISSN 00097330. doi: 10.1161/01.RES.25.2.131.

[27] Aleksander S Popel and Paul C Johnson. Microcirculation and

Hemorheology. Annual review of fluid mechanics, 37:43–69, jan

2005. ISSN 0066-4189. doi: 10.1146/annurev.fluid.37.042604.

133933. URL http://www.ncbi.nlm.nih.gov/pubmed/21151769http://

www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3000688.

[28] Stuart R. Keller and Richard Skalak. Motion of a tank-treading

ellipsoidal particle in a shear flow. Journal of Fluid Mechan-

ics, 120:27–47, jul 1982. ISSN 0022-1120. doi: 10.1017/

S0022112082002651. URL https://www.cambridge.org/core/product/

identifier/S0022112082002651/type/journal{_}article.

[29] Richard E. Waugh and Robert M. Hochmuth. Mechanics and deformability

of hematocytes. In Biomechanics: Principles and Practices. 2014. ISBN

9781439870990. doi: 10.1201/b15575.

[30] S. J. Singer and Garth L. Nicolson. The fluid mosaic model of the structure

of cell membranes. Science, 1972. ISSN 00368075. doi: 10.1126/science.175.

4023.720.

[31] Christopher W. Harland, Miranda J. Bradley, and Raghuveer Parthasarathy.

Phospholipid bilayers are viscoelastic. Proceedings of the National Academy

of Sciences of the United States of America, 2010. ISSN 10916490. doi:

10.1073/pnas.1010700107.

[32] E A Evans, R Waugh, and L Melnik. Elastic area compress-

ibility modulus of red cell membrane. Biophysical journal, 16(6):

585–95, jun 1976. ISSN 0006-3495. doi: 10.1016/S0006-3495(76)

85713-X. URL http://www.ncbi.nlm.nih.gov/pubmed/1276386http://

www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC1334882.

[33] Volkmar Heinrich, Ken Ritchie, Narla Mohandas, and Evan Evans. Elastic

Thickness Compressibilty of the Red Cell Membrane. Biophysical Journal,

247

http://www.ncbi.nlm.nih.gov/pubmed/21151769 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3000688
http://www.ncbi.nlm.nih.gov/pubmed/21151769 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3000688
https://www.cambridge.org/core/product/identifier/S0022112082002651/type/journal{_}article
https://www.cambridge.org/core/product/identifier/S0022112082002651/type/journal{_}article
http://www.ncbi.nlm.nih.gov/pubmed/1276386 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC1334882
http://www.ncbi.nlm.nih.gov/pubmed/1276386 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC1334882


81(3):1452–1463, sep 2001. ISSN 00063495. doi: 10.1016/S0006-3495(01)

75800-6. URL http://www.ncbi.nlm.nih.gov/pubmed/11509359.

[34] David Boal. Mechanics of the Cell. Cambridge University Press, Cambridge,

2012. ISBN 9781139022217. doi: 10.1017/CBO9781139022217. URL http:

//ebooks.cambridge.org/ref/id/CBO9781139022217.

[35] R. Skalak, A. Tozeren, R. P. Zarda, and S. Chien. Strain Energy Function

of Red Blood Cell Membranes. Biophysical Journal, 1973. ISSN 00063495.

doi: 10.1016/S0006-3495(73)85983-1.

[36] X. Z. Li, D. Barthes-Biesel, and A. Helmy. Large deformations and burst of a

capsule freely suspended in an elongational flow. Journal of Fluid Mechanics,

1988. ISSN 14697645. doi: 10.1017/S0022112088000394.
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