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Abstract

Electroencephalogram (EEG) can be used to record electrical potentials in the brain by

attaching electrodes to the scalp. However, these low amplitude recordings are suscep-

tible to noise which originates from several sources including ocular, pulse and muscle

artefacts. Their presence has a severe impact on analysis and diagnoses of brain abnor-

malities. This research assessed the effectiveness of a stacked convolutional-recurrent

auto-encoder (CR-AE) for noise reduction of EEG signal. Performance was evalu-

ated using the signal-to-noise ratio (SNR) and peak signal-to-noise ratio (PSNR) in

comparison to principal component analysis (PCA), independent component analy-

sis (ICA) and a simple auto-encoder (AE). The Harrell-Davis quantile estimator was

used to compare SNR and PSNR distributions of reconstructed and raw signals. It was

found that the proposed CR-AE achieved a mean SNR of 5.53 db and significantly in-

creased the SNR across all quantiles for each channel compared to the state-of-the-art

methods. However, though SNR increased PSNR did not and the proposed CR-AE

was outperformed by each baseline across the majority of quantiles for all channels.

In addition, though reconstruction error was very low none of the proposed CR-AE

architectures could generalize to the second dataset.

Keywords: electroencephalography, event related potentials, noise reduction, convolutional-

recurrent auto-encoder, signal-to-noise ratio

II



Acknowledgements

I would like to express my deepest appreciation to Dr. Luca Longo for his invaluable

insight, support and guidance throughout the dissertation process.

I would also like to acknowledge and convey my thanks to the Technological University

Dublin staff that have supported me over the past two years. In particular, Dr. Sarah

Jane Delaney, Andrea Curley and Deirdre Lawless, who gave me this opportunity.

I would also like to thank Conor Hanrahan and Alexander Suvorov, who kindly pro-

vided their dissertations and related work which I was able to leverage to deepen my

understanding of the topic.

I would like to express my sincerest gratitude to Brendan O’Dowd and Kevin Mc-

Tiernan, without whom I would not be where I am today. They have encouraged

and supported me in my work and personal development, and are the reason I have

completed this MSc.

Lastly, my family, who have an unwavering belief in my ability and who have never

stopped supporting me no matter what. To you I am eternally grateful. This is for

you.

III



Contents

Declaration I

Abstract II

Acknowledgements III

Contents IV

List of Figures VII

List of Tables XI

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Research problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Research objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Research methodologies . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.5 Scope and limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.6 Document outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Related work 7

2.1 Electroencephalogram . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 EEG artefacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Ocular artefact . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.2 Muscle artefact . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.3 Pulse artefact . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Artefact identification and reduction . . . . . . . . . . . . . . . . . . . 10

IV



2.3.1 Principal component analysis . . . . . . . . . . . . . . . . . . . 11

2.3.2 Independent component analysis . . . . . . . . . . . . . . . . . 13

2.4 Artificial neural networks . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5 Auto-encoders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5.1 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5.2 Feature learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5.3 Noise reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.6.2 Gaps in the literature . . . . . . . . . . . . . . . . . . . . . . . . 23

2.6.3 Research question . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Design and methodology 26

3.1 Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 Data collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 Data preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4 Auto-encoder design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.5 Evaluation of design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.5.1 Signal-to-noise ratio . . . . . . . . . . . . . . . . . . . . . . . . 39

3.5.2 Hypothesis testing . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.6.1 Strengths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.6.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4 Results, evaluation and discussion 45

4.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.1.1 Signal reconstruction . . . . . . . . . . . . . . . . . . . . . . . . 46

4.1.2 Signal-to-noise ratio . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2.1 Proposed CR-AE architecture . . . . . . . . . . . . . . . . . . . 57

4.2.2 Principal components analysis . . . . . . . . . . . . . . . . . . . 58

V



4.2.3 Independent components analysis . . . . . . . . . . . . . . . . . 62

4.2.4 Basic auto-encoder . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.3 Summary of Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.4.1 Strengths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.4.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5 Conclusion 75

5.1 Research Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.2 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.3 Design, Evaluation & Results . . . . . . . . . . . . . . . . . . . . . . . 77

5.4 Contributions and impact . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.5 Future work & recommendations . . . . . . . . . . . . . . . . . . . . . 81

Bibliography 83

A Additional content 96

VI



List of Figures

2.1 Example of 2D data cloud where PCs are principal components (PC1

explains the maximum amount of variance, PC1 and PC2 are orthog-

onal). Reprinted from Zinovyev et al., 2013 . . . . . . . . . . . . . . . 11

2.2 Example of 2D data cloud where ICs are independent components

(give maximally non-gaussian distribution of the projections). Reprinted

from Zinovyev et al., 2013 . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Single hidden layer ANN network with each node representing an arti-

ficial neuron and arrows the connections from the output of one node

to the input of another . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1 High level overview of how each of the design components combines

to create the experiment . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 10-10 electrode placement system with black circles indicating posi-

tions of the original 10-20 system. Reprinted from Oostenveld and

Praamstra, 2001. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3 Left: Stimulus presentation sequence for each trial. Right: Finger-

numeral configurations (right-hand only). Reprinted from Soylu et

al., 2019 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4 Single channel preprocessed EEG signal taken from primary dataset . 31

3.5 Single channel preprocessed EEG signal taken from secondary dataset 32

3.6 Top: Single trial split into windowed segments. Bottom: Two win-

dowed segments recombined . . . . . . . . . . . . . . . . . . . . . . . 33

3.7 A simplified representation of an auto-encoder architecture . . . . . . 34

VII



3.8 Top: Structure of the encoder for the single layer architecture. Bot-

tom: Structure of the decoder for same . . . . . . . . . . . . . . . . . 35

4.1 Original signal overlaid with the corresponding reconstructed signal

for architecture one (primary dataset) . . . . . . . . . . . . . . . . . . 47

4.2 Original signal overlaid with the corresponding reconstructed signal

for architecture two (primary dataset) . . . . . . . . . . . . . . . . . . 47

4.3 Original signal overlaid with the corresponding reconstructed signal

for architecture three (primary dataset) . . . . . . . . . . . . . . . . . 48

4.4 Original signal used as input for each of the reconstructions below . . 49

4.5 Original signal overlaid with the corresponding reconstructed signal

for architecture one (secondary dataset) . . . . . . . . . . . . . . . . . 49

4.6 Original signal overlaid with the corresponding reconstructed signal

for architecture two (secondary dataset) . . . . . . . . . . . . . . . . . 50

4.7 Original signal overlaid with the corresponding reconstructed signal

for architecture three (secondary dataset) . . . . . . . . . . . . . . . . 50

4.8 Single 300ms window of a signal used for the reconstruction below . . 52

4.9 Output from architecture one for the 300ms input window above . . . 53

4.10 Output from architecture one for the next 300ms window of the same

signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.11 Combined outputs of the first and second windows with overlaps av-

eraged . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.12 Original signal overlaid with the corresponding reconstructed signal

for PCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.13 Original signal overlaid with the corresponding reconstructed signal

for the CR-AE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.14 Original signal overlaid with the corresponding reconstructed signal

for ICA — electrode T7 . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.15 Original signal overlaid with the corresponding reconstructed signal

for ICA — electrode Fp1 . . . . . . . . . . . . . . . . . . . . . . . . . 64

VIII



4.16 Original signal overlaid with the corresponding reconstructed signal

for basic AE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.17 Original signal overlaid with the corresponding reconstructed signal

for CR-AE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

A.1 Technical model of proposed CR-AE . . . . . . . . . . . . . . . . . . 97

A.2 Heat-maps of SNR and PSNR HD quantile differences at channel level

for CR-AE reconstructed signals compared to original signals — con-

dition 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

A.3 Heat-maps of SNR and PSNR HD quantile differences at channel level

for CR-AE reconstructed signals compared to original signals — con-

dition 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

A.4 Heat-maps of SNR and PSNR HD quantile differences at channel level

for CR-AE reconstructed signals compared to original signals — con-

dition 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

A.5 Heat-maps of SNR and PSNR HD quantile differences at channel level

for PCA reconstructed signals compared to original signals — condi-

tion 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

A.6 Heat-maps of SNR and PSNR HD quantile differences at channel level

for PCA reconstructed signals compared to original signals — condi-

tion 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

A.7 Heat-maps of SNR and PSNR HD quantile differences at channel level

for PCA reconstructed signals compared to original signals — condi-

tion 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

A.8 Heat-maps of SNR and PSNR HD quantile differences at channel level

for ICA reconstructed signals compared to original signals — condition 1110

A.9 Heat-maps of SNR and PSNR HD quantile differences at channel level

for ICA reconstructed signals compared to original signals — condition 2110

A.10 Heat-maps of SNR and PSNR HD quantile differences at channel level

for ICA reconstructed signals compared to original signals — condition 3111

IX



A.11 Heat-maps of SNR and PSNR HD quantile differences at channel level

for AE reconstructed signals compared to original signals — condition 1111

A.12 Heat-maps of SNR and PSNR HD quantile differences at channel level

for AE reconstructed signals compared to original signals — condition 2112

A.13 Heat-maps of SNR and PSNR HD quantile differences at channel level

for AE reconstructed signals compared to original signals — condition 3112

X



List of Tables

3.1 Summary of datasets used in experiment . . . . . . . . . . . . . . . . 30

3.2 Summary of available hyper-parameters for each layer . . . . . . . . . 38

3.3 Summary of training parameters used to fit each model . . . . . . . . 39

4.1 SNR and PSNR HD quantile differences for PCA and the proposed

CR-AE — condition 1 trial sampling . . . . . . . . . . . . . . . . . . 61

4.2 SNR and PSNR HD quantile differences for PCA and the proposed

CR-AE — condition 1 subject sampling . . . . . . . . . . . . . . . . 61

4.3 SNR and PSNR HD quantile differences for ICA and the proposed

CR-AE — condition 1 trial sampling . . . . . . . . . . . . . . . . . . 65

4.4 SNR and PSNR HD quantile differences for ICA and the proposed

CR-AE — condition 1 subject sampling . . . . . . . . . . . . . . . . 65

4.5 SNR and PSNR HD quantile differences for AE and the proposed

CR-AE — condition 1 trial sampling . . . . . . . . . . . . . . . . . . 68

4.6 SNR and PSNR HD quantile differences for AE and the proposed

CR-AE — condition 1 subject sampling . . . . . . . . . . . . . . . . 69

A.1 Common electrode placement sites for primary and secondary datasets 96

A.2 Chosen hyper-parameters for architecture 1 . . . . . . . . . . . . . . . 98

A.3 Chosen hyper-parameters for architecture 2 . . . . . . . . . . . . . . . 99

A.4 Chosen hyper-parameters for architecture 3 . . . . . . . . . . . . . . . 100

A.5 SNR and PSNR HD quantile differences for PCA and the proposed

CR-AE — condition 2 trial sampling . . . . . . . . . . . . . . . . . . 101

A.6 SNR and PSNR HD quantile differences for PCA and the proposed

CR-AE — condition 2 subject sampling . . . . . . . . . . . . . . . . 101

XI



A.7 SNR and PSNR HD quantile differences for PCA and the proposed

CR-AE — condition 3 trial sampling . . . . . . . . . . . . . . . . . . 102

A.8 SNR and PSNR HD quantile differences for PCA and the proposed

CR-AE — condition 3 subject sampling . . . . . . . . . . . . . . . . 102

A.9 SNR and PSNR HD quantile differences for ICA and the proposed

CR-AE — condition 2 trial sampling . . . . . . . . . . . . . . . . . . 103

A.10 SNR and PSNR HD quantile differences for ICA and the proposed

CR-AE — condition 2 subject sampling . . . . . . . . . . . . . . . . 103

A.11 SNR and PSNR HD quantile differences for ICA and the proposed

CR-AE — condition 3 trial sampling . . . . . . . . . . . . . . . . . . 104

A.12 SNR and PSNR HD quantile differences for ICA and the proposed

CR-AE — condition 3 subject sampling . . . . . . . . . . . . . . . . 104

A.13 SNR and PSNR HD quantile differences for AE and the proposed

CR-AE — condition 2 trial sampling . . . . . . . . . . . . . . . . . . 105

A.14 SNR and PSNR HD quantile differences for AE and the proposed

CR-AE — condition 2 subject sampling . . . . . . . . . . . . . . . . 105

A.15 SNR and PSNR HD quantile differences for AE and the proposed

CR-AE — condition 3 trial sampling . . . . . . . . . . . . . . . . . . 106

A.16 SNR and PSNR HD quantile differences for AE and the proposed

CR-AE — condition 3 subject sampling . . . . . . . . . . . . . . . . 106

XII



Chapter 1

Introduction

Electroencephalogram is a method of recording electrical potentials produced by the

brain (Binnie & Prior, 1994), commonly achieved by attaching non-invasive electrodes

to the scalp which measure voltage fluctuations. In some cases, electrodes are placed

directly against the brain. This method of invasive electroencephalogram (iEEG)

is used when scalp EEG is not sufficient and high spatial and temporal accuracy is

required (Ball et al., 2009). EEG is utilized in many fields including the study of event

related potentials (ERP). ERP are small voltage changes resulting from the onset of

a stimulus used to assess motor or sensory function. They are commonly analysed to

detect the presence of abnormalities, such as for patients suffering from Alzheimers,

Schizophrenia and Dementia (Himani et al., 1999).

1.1 Background

In the medical domain accuracy is paramount as patients’ well-being is dependent on

accurate diagnosis. For EEG readings this is no different. It is important to accurately

record voltage fluctuations in the human brain to identify or detect the presence of

cognitive abnormalities. As mentioned, in some cases EEG is not sufficient and iEEG

has to be used. This is primarily in cases of epilepsy, where patients are resistant to

pharmacological treatment (Engel et al., 2005) but is also due to limitations associated

with EEG recording. As noted by Nair et al., 2008, given the varying shape and depth

1



CHAPTER 1. INTRODUCTION

of the skull at certain locations, scalp electrodes can lie at different distances from the

brain. This can cause discharge to not be detected at the scalp or be obscured by

background activity. iEEG is used because the electrodes are closer to the brain than

scalp electrodes and produce higher amplitude readings with high spatial resolution

(Ball et al., 2009), however, being an invasive procedure it is not utilized in the ma-

jority of cases.

Another reason for the use of iEEG is related to EEG artefacts. These are contami-

nating signals such as eye movement, blinking (Vigário, 1997) and muscle contraction

(Crespo-Garcia et al., 2008) which interfere with the capture of other signals (Vaseghi

& V., 2001). Since the implanted electrodes produce higher amplitude readings, they

are generally less susceptible to artefact contamination (Marinković, 2004). Both

artefacts and background activity are generally referred to as noise because they are

unwanted signals present in the EEG recordings. Given that iEEG is only used in

exceptional circumstances, an approach to removing these artefacts or distinguishing

meaningful signal from background activity is required.

Several approaches have been applied to noise removal, including the use of filters (Roy

& Shukla, 2015), mathematical transformations like the wavelet transform (Heydari

& Shahbakhti, 2015) and blind source separation algorithms like ICA (Hyvarinen,

1999). In some cases, additional electrodes specifically placed to capture artefacts

have been used, allowing for their subsequent identification and removal, however this

can be uncomfortable for the patient. In other cases, machine learning techniques

such as auto-encoders (B. Yang et al., 2016) have been utilized for their ability to

reconstruct inputs from latent space representations. The aim of this paper is to

propose a method of noise reduction based on convolutional and recurrent neural net-

work layers. A stacked auto-encoder incorporating the spatial feature representations

of convolutional neural networks and the temporal patterns extracted by long short-

term memory recurrent neural networks, combined with the deep learning capabilities

of stacked auto-encoders is explored as a potential solution.

2



CHAPTER 1. INTRODUCTION

1.2 Research problem

Two metrics are generally used to measure the level of noise present in a signal. Those

being the signal-to-noise ratio which measures the power of a signal relative to the

power of noise and the peak signal-to-noise ratio which measures the maximum am-

plitude of a signal relative to the power of noise corrupting it. Both are measured on

the decibel scale and usually calculated using a clean signal and its noisy counterpart.

Positive SNR indicates the presence of more signal than noise.

In order to maximize the SNR and PSNR, the level of noise present in a signal needs to

be reduced. However, it is important to ensure that critical signal information is not

lost during the process. This project investigates the use of a stacked convolutional-

recurrent auto-encoder to increase the SNR and PSNR by reducing the level of noise

present in a signal while retaining as much meaningful information as possible.

If this can be achieved, what is the magnitude of the increase, how effective is the

solution compared to previously used techniques such as PCA and ICA and can it

generalize to other research?

1.3 Research objectives

There are several objectives of this research. The first is to perform a literature review

of noise reduction techniques and their application to EEG signals. In addition, the

use of auto-encoders for both EEG noise reduction and other problems, will also be

investigated. The focus of this review will be to discover any gaps or limitations that

exist and to examine whether unsupervised machine learning algorithms can be used

to address these limitations. Secondly, an empirical experiment will be designed to

enable the hypothesis to be tested. This should allow the research to be replicated

and validated by other researchers while also ensuring the rationale behind the chosen

solution is clearly stated. Furthermore, a description of the data used and all pre-

processing steps will be given. The third objective is to evaluate the experiment using

3



CHAPTER 1. INTRODUCTION

the chosen metrics and evaluation criteria. For this the proposed method will be

compared to each baseline to determine whether an improvement has been observed.

In addition, observations and key findings of the results will be highlighted. Finally, the

overall purpose of this research is to enhance understanding of convolutional-recurrent

auto-encoders and their effectiveness, as it pertains to noise reduction of EEG signals.

1.4 Research methodologies

The type of research being carried out is secondary, quantitative, empirical research

using deductive reasoning. It involves a systematic review, summary, and extension

of previous research. Two EEG datasets are used; One generated by Ford et al., 2014,

the other by Soylu et al., 2019 both containing numeric voltage amplitudes recorded in

microvolts (µV ). These datasets were sourced from Kaggle and the Harvard dataverse

respectively and each involved a set of trials in which subjects were presented with

a stimulus. The original purpose of their collection was to measure the subjects’

response by conducting an ERP analysis. In this case, mathematical models are

applied to reconstruct these EEG signals with the aim of reducing the level of noise

in the output compared to the input. This relationship is measured using the SNR

and PSNR and compared using the Harrell-Davis quantile estimator. To determine

whether the proposed method can reduce the level of noise, a hypothesis has been

defined with a suitable experiment designed to test it. For this, empirical evidence

is gathered from the data which tests the feasibility of the solution. This hypothesis

has been derived from a theory, is tested through experiment and concluded upon to

determine its validity.

1.5 Scope and limitations

The scope of this research is the use of convolutional and recurrent neural network

layers in a stacked AE for noise reduction in EEG signals. Two datasets are used in

this experiment. The first relates to a study on efference copy and corollary discharge
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of schizophrenia patients in response to a stimulus. Data for that study was collected

from 81 subjects (49 with diagnosed schizophrenia, 32 control) as they underwent 100

trials in each of three conditions. The second relates to a study on early perceptual

and later semantic processing of canonical and non-canonical finger-numeral configu-

ration in adults. Data for that study was collected for 46 right-handed undergraduate

students as they underwent 960 trials comprised of randomized sets of finger-numeral

counting configurations. In each case, data is epoched around the presentation of

the stimulus and subset between 100 ms pre-stimulus and 500 ms post-stimulus. Pre-

stimulus recordings are used to represent baseline noise, while the remainder represents

meaningful signal.

This research is limited to ERP analysis, where a stimulus is used to illicit a response

in the brain. It is assumed, that when a stimulus is used, the response contains both

meaningful signal and noise, while pre-stimulus activity is only noise. This allows the

SNR to be calculated using pre and post-stimulus activity as opposed to using a noise

free reference signal which is not available. This assumption is required due to an

inability to record perfectly clean EEG, and while the experiments are set up in a

way to limit intra-trial neural activity, it is not guaranteed. It is also assumed that

the output from the proposed and baseline methods are noise free signals and that no

neural activity has been removed in the process. This limitation is important, because

in the absence of clean reference EEG the actual information loss cannot be quantified.

Though artefact reference electrodes are captured in the datasets, no comparative

regression-based methods are used to determine whether the neural activity from EEG

artefacts present in other electrodes are reduced by the proposed method. This lim-

itation means that evaluation on a specific type of EEG noise is not conducted and

therefore it cannot be concluded which type of noise the proposed method is removing

from the signals. Finally, due to differences in the electrodes present in both datasets,

the research is limited to the 28 described in table A.1. Additionally, due to sample

rate differences it is also limited to EEG recordings at 500 samples per second.
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1.6 Document outline

The remaining chapters of this research structured as follows:

Chapter 2 - Related work

In this chapter, existing literature in the field of EEG noise reduction is reviewed and

discussed with respect to the proposed solution. It is aimed at comparing and con-

trasting previous noise reduction approaches to convey the gaps identified that led to

this research.

Chapter 3 - Design and methodology

This chapter focusses on experiment design; covering data collection, preparation and

the proposed solution. Evaluation is discussed in detail to describe how the experi-

ment will be conducted and the methods employed to test the hypothesis.

Chapter 4 - Results, evaluation and discussion

This chapter focusses on summarizing the results of the experiment in a clear and

concise manner to evaluate the proposed method with respect to each of the baseline

methods. In addition, the strengths and limitations of the proposed solution are dis-

cussed to highlight any areas for improvement.

Chapter 5 - Conclusion

In this final chapter, the research is summarized; presenting key findings, conclusions

and areas for future research.
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Chapter 2

Related work

Noise reduction in EEG signals is fundamentally grounded in the field of signal pro-

cessing. Many of the techniques used for this purpose, which have their origins in

speech and audio processing, have been implemented across the area. This research

focuses on the application of unsupervised machine learning techniques to solve the

problem. In particular, the use of convolutional and recurrent neural network layers

in a stacked auto-encoder.

In this chapter, EEG noise reduction techniques are reviewed, from classical meth-

ods covering frequency filtering and transformation to decomposition using PCA and

ICA. In addition, auto-encoders and both convolutional and recurrent neural networks

are discussed in relation to their applications in noise reduction and other complex

problems.

2.1 Electroencephalogram

As mentioned above, EEG is the recording of electrical potentials produced by the

brain. They are made up of brief localized action potentials and slower widespread

postsynaptic potentials (Binnie & Prior, 1994). EEG is recorded by placing electrodes

on the scalp that measure the voltage of electrical potentials. Placement of the scalp

electrodes was standardized by Klem et al., 1999 with the introduction of the interna-
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tional 10—20 system, though this has been extended to the 10—10 and 10—5 system

(Oostenveld & Praamstra, 2001) in recent years. They are so-called because place-

ment is defined using proportional distances of 20, 10, and 5% of the total length along

contours between skull landmarks respectively (Oostenveld & Praamstra, 2001). The

amplitude of recordings at these electrodes usually lies between 10 and 100 µV and

can be separated into a number of frequency components: Delta (0.1 - 4 Hz), Theta

(4 - 8 Hz), Alpha (8 - 13 Hz), Beta (13 - 30 Hz) and Gamma (above 30 Hz) (Kaushal

et al., 2016). Their low magnitude means that though the activity of a single neuron

can be recorded at adjacent electrodes, it is not detected at a distance (Binnie & Prior,

1994). EEG is used to diagnose brain abnormalities such as sleep disorders, epilepsy,

stroke, tumors, brain death and coma (Kaushal et al., 2016).

2.2 EEG artefacts

As EEG signals are very low amplitude, it makes them susceptible to various types of

noise (Harender & Sharma, 2017). This noise originates from a number of sources such

as eye blink and movement, muscle contraction, cardiac signals and line interference

(Jung et al., 2000) commonly referred to as EEG artefacts.

2.2.1 Ocular artefact

Ocular artefacts which are the result of eye blinks and movement produce large electri-

cal potentials at amplitudes more than ten times that of EEG (Peng et al., 2013). As

discussed in Croft et al., 2005, there have been a number of methods used to remove

these artefacts including the fixation/rejection technique and EOG correction. The

former involves instructing the subject not to blink or including another task which

involves the subject focussing on a fixed point, while the latter involves additional

channels strategically placed to record ocular artefacts that are then subtracted, by

means of regression estimation, from EEG channels. Though these are popular meth-

ods, the fixation/rejection technique has been shown to affect several components of

the ERP (Verleger, 1991) while EOG correction can reduce important signal informa-
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tion captured in the EOG channel. It was concluded in Croft et al., 2005 that, though

each method resulted in cleaner data than no removal, a specific correction was needed

for each type of ocular artefact.

2.2.2 Muscle artefact

Muscle artefacts, usually caused by movement, swallowing, or twitches, tend to be high

frequency and normally affect electrodes located at the frontal and temporal regions

of the brain, but can have an impact on any scalp electrode (van de Velde et al.,

1998). Due to the high frequency nature of these artefacts filtering has been used

as a method for their removal, however this can remove important underlying EEG

information or sometimes obscure the muscle artefact. As noted in Crespo-Garcia

et al., 2008, equivalent regression methods used for EOG correction are not possible

for muscle artefacts since no regression channel exists for these sources.

2.2.3 Pulse artefact

Another of the more prominent artefacts is known as the pulse artefact. It is char-

acterized by amplitudes and frequencies in the range of normal EEG synchronized

with cardiac rhythm but with a delay of approximately 200 ms. In addition, it tends

to exhibit more complete coverage across electrodes (Debener et al., 2009). Several

factors make identification and removal of these artefacts quite difficult. In particular,

because it lasts for approximately 500 ms and subjects can have heart rate differences,

pulse artefacts associated with higher heart rates can overlap, which complicates their

removal (J. L. Vincent et al., 2007). As discussed in Debener et al., 2009, one of

the most frequently used algorithms for their removal is average artefact subtraction

(AAS). It is constrained by the assumption that the EEG is not correlated to the

electrocardiogram (ECG) information and that the artefact is stable across successive

heartbeats. A simultaneous ECG is used to identify the exact onset of the heartbeat

cycle, then a template is created for the artefact which is subtracted from the EEG.

However, Debener et al., 2009 noted that due to the assumptions of AAS, correla-

9



CHAPTER 2. RELATED WORK

tion between cardiac activity and the neuronal activity can cause EEG data quality

issues. In addition, if the stability assumption is not met, the artefact can be wrongly

estimated, resulting in greater residual artefact after subtraction.

2.3 Artefact identification and reduction

As mentioned, there have been a number of methods employed to identify and reduce

EEG artefacts. The most common methods include filtering, regression, empirical

mode decomposition (EMD), wavelet transformations (WT) and blind source sepa-

ration (BSS) (Islam et al., 2016; Sheoran et al., 2015). Each of these have certain

advantages and disadvantages. In particular, regression and adaptive filtering based

methods require a reference channel for their implementation and it has been noted

that regression-based methods can remove neural potentials contained in the reference

channel (Croft et al., 2005). The wavelet transform, which is a time-frequency analy-

sis, decomposes a signal into a set of functions that are translated versions of a mother

wavelet, resulting in a set of coefficients. A threshold is then applied to the coefficients

to de-noise the signal before being inverse transformed (Islam et al., 2016). It has been

widely used (Harender & Sharma, 2017; Heydari & Shahbakhti, 2015; Kiamini et al.,

2009) however, the issue with the WT is that the choice of decomposition method,

mother wavelet, level of decomposition and threshold are all user defined with no ap-

propriate means of selection (Sheoran et al., 2015).

The most frequently used method is BSS. In particular principal component analysis

(PCA) and independent component analysis (ICA), both of which are decomposition

methods. Primarily their use was motivated by the fact that an additional EOG or

ECG channel was not required for their implementation (Jung et al., 1998). However,

once successfully applied to one artefact, they were also implemented across a number

of them. For example in Srivastava et al., 2005, ICA was extended to the identification

and removal of pulse artefacts.
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2.3.1 Principal component analysis

PCA is one of the most widely used multivariate statistical techniques, originally

proposed by Pearson, 1901. The goal is to decompose a data table into a set of or-

thogonal variables called principal components. PCA is dependent on two things,

an eigenvalue decomposition of positive semi-definite matrices and a single value de-

composition (SVD) of rectangular matrices (Abdi & Williams, 2010). The extracted

components are linear combinations of the original variables with their importance

given by the proportion of explained variance. PCA differs to ICA in that it finds

the orthogonal direction of greatest variance, whereas with ICA, components may not

be orthogonal (Jung et al., 1998). Figure 2.1 shows PCA components from a simple

example taken from Zinovyev et al., 2013. In comparison, the ICA components from

the same example can be seen in figure 2.2.

Figure 2.1: Example of 2D data cloud where PCs are principal components (PC1

explains the maximum amount of variance, PC1 and PC2 are orthogonal). Reprinted

from Zinovyev et al., 2013
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The method has been used in a number of cases for EEG de-noising. In particular,

Casarotto et al., 2004 used PCA for the removal of ocular artefacts in ERP. Their

method involved computing the correlation between each of the principal components

and the EOG reference channel. The first or second component was subtracted if the

correlation was above 0.9 or 0.95 respectively. Performance was measured by the num-

ber of useful trials and it was found that a significant increase was obtained. However,

this requires a reference channel for its implementation which is not always available.

Furthermore, as noted in Jung et al., 1998, PCA cannot completely separate ocular

artefacts from brain signals when they have comparable amplitudes.

Though applied to magneto-encephalography (MEG), in de Cheveigné and Simon,

2007 time shift PCA was used to remove environmental noise. This method uses ref-

erence signals that are time-shifted by a set of positive and negative periods. PCA is

then applied to these to obtain orthogonal signals. Finally, each sensor is projected

onto the components and the projection is removed resulting in clean data. Perfor-

mance was measured using the SNR and the results showed that a difference of about

20 db was observed between the clean and noisy data. Similarly to Casarotto et al.,

2004, a reference signal is also required and the method is only applied to one EEG

artefact.

In Kang and Zhizeng, 2012, PCA was combined with a density estimation blind source

separation (DEBSS) algorithm. First wavelet decomposition was used to remove high

frequency noise before using PCA for dimensionality reduction, keeping only those

components whose cumulative explained variance was above 85%. These components

were then seperated using the DEBSS algorithm and compared to the reference chan-

nels using cross-correlation. The highly correlated components were removed by set-

ting them to zero before the EEG signals were reconstructed.
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2.3.2 Independent component analysis

Introduced by Bell and Sejnowski, 1995 and optimized by Hyvarinen, 1999, inde-

pendent component analysis is a decomposition method commonly used for feature

extraction and BSS. The goal of ICA is to decompose an input into a set of statisti-

cally independent sources. As noted in Jung et al., 2000, the BSS problem is to recover

independent source signals, s = s1(t), ..., sN(t) after they are mixed, by an unknown

mixing matrix A, into a set of N mixtures x = x1(t), ..., xN(t), where x = As. ICA

estimates u = Ws by finding a square matrix W that acts as the pseudo inverse of the

estimation of A. ICA has two assumptions, first that the data is a linear mixture of the

underlying source signals and second that they are linearly independent (Nakamura

et al., 2006). Figure 2.2 below, shows the first two ICA components from an example

given by Zinovyev et al., 2013.

Figure 2.2: Example of 2D data cloud where ICs are independent components (give

maximally non-gaussian distribution of the projections). Reprinted from Zinovyev et

al., 2013
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For EEG, the idea is to separate the signals from the projection of the artefact in each

channel (Crespo-Garcia et al., 2008). It can be shown that EEG meets the criteria

required for implementing ICA, however an assumption discussed in Jung et al., 2000

is that the number of sources is the same as the number of sensors. They note that this

is questionable as the number of statistically independent signals contributing to scalp

EEG is not known. Once the signal has been decomposed, EEG artefacts are removed

by setting the components containing artefacts to zero before inverse transforming the

decomposition.

ICA has been successfully implemented for a number of artefacts (Crespo-Garcia et

al., 2008; Nakamura et al., 2006; Vigário, 1997). Makeig et al., 1997 examined its

application to ERP analysis, where ICA was used to decompose the ERP into its

components. Their results highlighted the use of ICA for EEG signal analysis and led

to an extension of their work in which ocular, muscle, and line noise artefacts were

removed (Jung et al., 2000). They noted however, that some limitations did exist.

Specifically that, like PCA, ICA can only decompose at most N components from N

channels and that without enough data its results are not meaningful. The principal

limitation, which has been noted in several instances, is that ICA requires manual vi-

sual inspection and identification of the components for their removal (Campos Viola

et al., 2009; Jung et al., 2000).

As a result, Campos Viola et al., 2009 attempted to develop a semi-automated im-

plementation based on correlation between the inverse weights. It uses a template

based method, similar to regression methods, that calculates the correlation between

component weights and the template weights. Highly correlated components are then

removed accordingly. The method introduced is designed to speed up the process by

acting as an aid for the user. They found that performance was best for ocular arte-

facts due a high degree of overlap between user only selection and user aided selection

of those artefacts.
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Similarly, Ghandeharion and Erfanian, 2010 attempted to develop a fully automated

implementation based on mutual information (MI) and wavelets. They suggest the use

of four measures for identification, kurtosis of the coarse and detail component wave-

forms, the correlation coefficient between the components and the reference signals,

the relative strength of each component at the vertical and horizontal EOG, and mu-

tual information. Components with at least four maximal values are selected. When

evaluated, the accuracy of ocular artefact identification was 97.8% using 4 second

EEG epochs, however this still requires EOG reference channels and isn’t applicable

to artefacts that cannot be captured by reference electrodes.

2.4 Artificial neural networks

In the recent past, with the advances in deep learning and their expressive power, neu-

ral networks have been used for many complex problems (Bengio & Delalleau, 2011).

An artificial neural network (ANN) is a system modelled after the human brain con-

taining artificial neurons designed for complex non-linear tasks. Figure 2.3 shows a

basic ANN network with an input, hidden and output layer. In an ANN, each con-

nection is given a weight which is multiplied by the input before being passed to a

node. At each node, a typically non-linear activation function is applied to the inputs

to produce a single output. The purpose being to add non-linearity to the output

enabling the model to learn complex relationships.

There are two central types of machine learning algorithm — supervised and unsuper-

vised. In the former, a target variable is given and the algorithm learns a function that

maps the attributes to each target. In the latter, the data is unlabelled which means

the algorithm has to learn patterns in the data and add structure to meaningfully

group instances. Two common types of supervised learning task are regression and

classification. The difference between them is that in a regression task the target val-

ues are continuous while for classification they are categorical. In Miller et al., 1995 a

single layer ANN was used to classify remote-sensing image data achieving within-class
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discrimination comparable to humans; Highlighting their classification effectiveness.

In Cigizoglu and Alp, 2006 a two hidden layer ANN was used to model river sediment

yield and was found to be significantly superior to conventional methods; Highlighting

the strength of ANN’s for regression tasks.

Figure 2.3: Single hidden layer ANN network with each node representing an artificial

neuron and arrows the connections from the output of one node to the input of another

2.5 Auto-encoders

A specific class of ANN is the auto-encoder. This is an unsupervised learning algo-

rithm proposed by Kramer, 1991 that is used to reconstruct a given input from a lower

dimension representation called a bottleneck. As described by Bengio et al., 2013, the

AE consists of a feature-extracting function called an encoder which creates a feature

vector from the set of input vectors h(t) = fθ(x) and a decoder which maps from the

feature space to the input space r = gθ(h). In an AE the number of inputs is the same

as the number of outputs and the model learns the set of encoder and decoder param-
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eters simultaneously to minimize the reconstruction error L(x, r) between the input

values and their reconstruction. There are many types of AE including the de-noising

auto-encoder (DAE) which corrupts an input signal before learning to reconstruct

the original input (P. Vincent et al., 2008), sparse auto-encoder (SAE) which adds a

sparsity constraint to the hidden units to control to the number of neurons that are

active at once (B. Yang et al., 2016), contractive auto-encoder (CAE) which adds a

penalty to the cost function to make the model more robust to slight variations in

input data (Rifai et al., 2011), and the variational auto-encoder (VAE). In some cases

these have been combined with convolutional neural networks (CNN) or recurrent neu-

ral networks (RNN) particularly due to their known strengths in image classification

(Bengio et al., 2013) and time-series analysis (Bengio et al., 1994) respectively. As a

result auto-encoders have been used for a number of EEG based problems including

feature learning, classification and noise reduction.

2.5.1 Classification

A stacked de-noising auto-encoder was used by Yin and Zhang, 2016 for the classifi-

cation of cognitive task load (CTL) into binary levels of low and high. One of their

motivations for using a DAE was as a replacement for using a band-pass filter to re-

move potential noise in the signals. They found that based on classification error,

the proposed method achieved 74% subject specific accuracy on average. A sparse

DAE was used by Qiu et al., 2018 for classifying seizures in ictal EEG. They used

the sparsity constraint for efficiency and similarly to Yin and Zhang, 2016, used the

de-noising corrupting operation for robustness. In this case, they used a logistic re-

gression classifier as an extension of the method for classification purposes. Results,

measured using sensitivity and specificity, were very strong only falling to 92% for the

five class classification problem. Despite these results, neither included a comparative

method to determine whether their proposed method was better than an established

classification technique.
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2.5.2 Feature learning

Auto-encoders have been widely used in EEG as a means of extracting or enhancing

features. This use of auto-encoders is similar to those mentioned above for classi-

fication, though in these cases they are specifically used for feature extraction. In

Supratak et al., 2014, a stacked auto-encoder was used to extract features for a lo-

gistic regression classifier to detect seizures. The method employed is similar to that

of Yin and Zhang, 2016, however a DAE was not used in this case. Performance was

also evaluated with respect to sensitivity and it was found that given a single channel

or set of three the model could classify all seizures, though when using 5 channels

sensitivity fell to 87.18%. This result is very like that of Yin and Zhang, 2016 and

in neither case was a comparative method used. This was addressed in Helal et al.,

2017 who used a single layer AE for dimensionality reduction and feature extraction in

comparison to PCA. Each output was used as input to a linear discriminant analysis

(LDA) classifier and performance was evaluated with respect to classification accuracy

and Cohen’s Kappa. It was found that the AE performed better than PCA achieving

a kappa of 0.56 compared to 0.52 with classification accuracy of 67% compared to 64%.

The use of convolutional auto-encoders was exploited by Wen and Zhang, 2018 for

seizure detection in their proposed AE-CDNN. The deep convolutional network stacked

layers of CNN’s for both the encoder and decoder using nine different classification

methods to compare performance. Once again PCA was used as a comparative method

along with sparse random projection (SRP). Accuracy was used for evaluation and the

proposed method was found to outperform PCA and SRP when feature reduction was

greater than 16 reaching on average 92% accuracy. In cases of lower feature dimension

reduction PCA and SRP were found to perform better. This result is consistent with

that of Helal et al., 2017 who also found that PCA performed better than the proposed

AE when dimension reduction increased.

As mentioned before auto-encoders have been combined with both convolutional and

recurrent neural network layers due to their ability to extract both spatial and tempo-
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ral features. In Jia et al., 2017, a spatio-temporal auto-encoder was designed using a

stacked architecture of AE layers wrapped around long short-term memory (LSTM) re-

current layers. The LSTM is used to extract temporal features while the AE extracted

spatial features. The feature output was then used in several classifiers to determine

whether a patient was under the influence of alcohol or not. This research was specif-

ically looking to determine whether the model could perform well with missing data,

as was also done in Li et al., 2015 using a DAE, however their results showed the DAE

did not outperform a support vector machine (SVM). In this case, three classifiers

were tested using the full EEG data, 30% continuous and linear imputed data, and

both imputed datasets using the spatio-temporal AE feature extraction method. The

proposed method was shown to improve accuracy greatly for both imputed datasets

with performance close to that of the full EEG dataset. The CNN classifier used

achieved the highest accuracy, however it was not discussed why CNN layers weren’t

used in place of the AE layers of the spatio-temporal AE, especially considering the

CNN’s ability to extract spatial features. This strength could have been exploited

which may have improved performance even more for the other simpler classification

methods used.

The opposite configuration was used by Abdelhameed et al., 2018, who designed a

deep convolutional auto-encoder for feature extraction as input to three classifiers —

a multi-layer perceptron (MLP), an LSTM and a bi-directional LSTM for seizure de-

tection. Several convolutional and max-pooling layers were stacked for the encoder

with several convolutional and upsampling layers for the decoder. Sensitivity, speci-

ficity and accuracy were again chosen as evaluation metrics however, in this case no

data was imputed and three other feature extraction methods were used for compari-

son. The comparative methods were PCA, wavelet transform and an ANN, and in all

cases the proposed method using a bi-directional LSTM achieved better results across

all metrics. The methods used in Abdelhameed et al., 2018 and Jia et al., 2017 high-

light the strength of combining auto-encoders with both convolutional and recurrent

neural network architectures.
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2.5.3 Noise reduction

In addition to being used for feature extraction, auto-encoders have also been used for

noise reduction and artefact removal. Generally the focus seems to have been on the

removal of EOG artefacts, though auto-encoders have been used for de-noising in ECG

signals (Xiong et al., 2016) and medical images (Gondara, 2016). In the former, a DAE

was used in combination with a wavelet transform (WT) to remove artificially added

noise from ECG signals. The SNR was used to measure performance and a significant

improvement was observed along with very low root-mean-square error (RMSE) for

reconstruction loss. In the latter, a deep convolutional AE was used to remove noise,

that similarly to Xiong et al., 2016 had been artificially added, to medical images.

In this case, structural similarity index measure (SSIM) was used instead of PSNR

for consistency and accuracy. Results showed that the proposed method was better

than a simple median filter, however other more established image de-noising methods

could have been used for comparison.

A common method used for EOG artefact removal is that of the SAE (Nguyen et al.,

2019; B. Yang et al., 2018; B. Yang et al., 2016). In B. Yang et al., 2016 an SAE was

combined with a least squares adaptive filter for this purpose. Though the focus of this

research was on EOG artefact removal, classification accuracy and time consumption

were used as evaluation metrics. Therefore, despite an increase in classification accu-

racy the ability to remove EOG artefacts was not evaluated. This was addressed in B.

Yang et al., 2018, where an SAE was also used though evaluation of artefact removal

was specifically assessed using the power spectral density (PSD) along with RMSE and

classification accuracy as additional metrics. In both cases comparisons were made to

other state-of-the-art methods including ICA in the first instance and ICA, k-ICA and

second-order blind identification (SOBI) in the second. In both cases the proposed

methods were shown to outperform the state-of-the-art. PSD was also used by Nguyen

et al., 2019 along with frequency correlation (FC) to evaluate the performance of their

proposed deep wavelet SAE which uses the wavelet coefficients as input to an SAE

for EOG removal. Similarly to B. Yang et al., 2018, SOBI is also used for comparison
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along with a wavelet neural network (WNN). They showed that the proposed method

addressed some limitations of the other methods, specifically single channel online use.

The method used by Leite et al., 2018, assessed the ability of a deep convolutional

AE to remove EOG and jaw clench artefacts. As with Wen and Zhang, 2018, several

stacked convolutional and max pooling layers were used for the encoder with upsam-

pling used in the decoder. In this case, PSNR was used to measure the peak amplitude

of signals compared to the noise affecting them. Unlike in both Xiong et al., 2016 and

Gondara, 2016 artificial noise was not added to the signals. As an alternative, specific

tasks were developed to evoke a response which would create the desired noise. In

this way, though still artificially generated, the noise would be more indicative of real

artefacts. As a result, the proposed method could be assessed for both types of noise

individually. Evaluation was done using the PSNR and it was found that overall the

mean difference was positive across all channels with specific channels performing best

for each type of noise. Channel Cz had the highest overall mean PSNR for eye blink

noise while Fz had the highest for jaw clench noise. In addition, F4 and Fz exhibited

the highest PSNR difference for eye blink and jaw clench noise respectively.

An interesting concept used by Ghosh et al., 2019, is that of combining an SVM to

classify windowed segments as noisy or not with an AE to remove noise from noisy

segments. The proposed method uses a 0.45 second sliding window with a 50% overlap.

This window covers the typical eye-blink duration and the average eye-blink duration

so none are missed. Training of the AE involved 1000 pre-classified segments of noisy

data as input with clean data as the target. Similarly, for the SVM, training involved

classification of pre-labelled noisy and clean EEG data using three features, namely,

variance, kurtosis and peak-to-peak amplitude. In total, five metrics were used to

evaluate the artefact removal method, including RMSE, signal-to-artefact ratio (SAR),

mean absolute error (MAE), correlation coefficient (CC) and MI with accuracy used to

evaluate the SVM. Results showed that SVM identification of corrupted segments was

consistent across the entire EEG, and that the proposed de-noising method achieved
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better results across each metric than both adaptive noise cancellation (ADC) and

the wavelet transform. In addition, this method does not alter the entire EEG; Only

specific windowed segments are changed by the auto-encoder.

2.6 Summary

2.6.1 Overview

EEG is a low amplitude recording of electrical potentials in the brain. As such they

are susceptible to noise being present in the signal which could impact analysis and

consequently diagnosis. This noise can originate from several sources including eye

and muscle movement, heartbeat pulse and line interference which are known as arte-

facts. Each has different characteristics which make their identification and reduction

difficult. Many approaches have been used to identify and reduce each artefact, in-

cluding fixation, subtraction, linear and non-linear filtering, wavelet transformations

and blind source separation. The most widely used methods have been PCA and ICA

though a lot of research has been done on wavelets. All approaches have been suc-

cessfully implemented, however there have also been several limitations noted for each.

With advances in modern machine learning techniques, many supervised and unsu-

pervised algorithms have been used for both classification and regression tasks. In

particular, auto-encoders, which are used to reconstruct an input from a dimension-

ally reduced representation with several variations, have become increasingly useful

across a spectrum of tasks. From an EEG perspective they have been used primarily

for classification and feature extraction, however recently they have also been imple-

mented for noise reduction and artefact removal. In addition to the various types of

auto-encoder, other neural network architectures including CNN’s and RNN’s have

been embedded in them. These utilize the spatial and temporal feature maps that

have shown CNN’s and RNN’s to be so successful for image classification and time

series analysis. Primarily they have been used in stacked auto-encoders to take further

advantage of deep architectures for highly non-linear and complex tasks.
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2.6.2 Gaps in the literature

Classic noise reduction approaches, including regression-based techniques, adaptive

filters and blind source separation, have often required a reference signal for artefact

removal. This means that additional electrodes, placed specifically to record these

artefacts need to be used. For pulse and ocular artefacts this is possible, however, it

cannot be implemented for all artefacts. Furthermore, it has been noted, that specif-

ically for ocular artefacts, these reference signals can also include neural information

which is subtracted in the process. Therefore, an automated method is required that

can be applied for the identification and removal of all noise sources and will limit the

amount of information loss.

Decomposition methods like PCA and ICA have been used to address the limitation

of regression-based methods. However, the effectiveness of PCA has primarily been

for oculur artefacts and it has been noted to struggle when the amplitudes of artefacts

and signal are comparable. In addition, ICA has been noted as requiring extensive

knowledge and time to implement. This is due to the fact that careful consideration

is needed for the identification of those components that contain artefacts. There-

fore, automated and semi-automated approaches have been developed to address this

limitation. The latter method uses components identified for one subject to identify

similar components for other subjects. This still requires time for identification but

significantly reduces the time required for other subjects. The former approach uses a

combination of ICA, MI and WT’s along with a number of metrics at maximal value

to identify components. Though this has been successfully implemented there is still

an opportunity to utilize the power of deep architectures and modern machine learn-

ing methods to improve the effectiveness. In particular, because of information loss,

since the N channel EEG is decomposed into N components. Each component likely

contains some important neural information which is then removed during the process

and unlike PCA cannot be quantified. Therefore, further validation is given to the

need for an automated method that is applicable to more noise sources and can limit

information loss.
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Auto-encoders, which are specifically designed to minimize construction loss between

the input and output, are particularly useful for tackling the issue of information loss.

Since they are designed to minimize reconstruction loss between the input and output

they are by default trying to reduce the amount of information lost as a result of

the dimensionality reduction. Not only this but their unsupervised algorithm enables

them to learn important features of the latent representation which are retained in

the reconstruction. The assumption here is that only important neural activity will

be retained and noise will be reduced. In addition, given that no reference signal is

required, they therefore also address the limitation of previous regression-based meth-

ods and become applicable to a broader spectrum of artefacts.

Their use to date has primarily been limited to classification tasks and feature ex-

traction though they have been implemented recently for noise reduction. In many

of these cases they have been used because of their supposed de-noising ability, in

particular the DAE, and used to pre-train neural networks. The assumption is that

the auto-encoder architecture would retain only the important information, however,

in the majority of classification and feature extraction cases they were evaluated based

on measures of accuracy or loss and have rarely been evaluated for the purpose they

were implemented. In fact even when used for artefact reduction they have not always

been evaluated with measures of signal purity. Despite this fact, they have been very

successful and have achieved higher accuracy than other classic methods. This high-

lights their effectiveness, though it has not been thoroughly quantified from a noise

reduction perspective. This indicates that there is a need to evaluate these methods

based on metrics such as SNR and PSNR which determine the level of noise compared

to the signal.

Recurrent neural networks have been shown to perform very well for time-series anal-

ysis (Wan et al., 2019). In particular, gated architectures such as the LSTM and

GRU allow RNN’s to learn long-term dependencies which are particularly powerful in
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problems for which these are essential (Bengio et al., 1994). Furthermore, they have

been used in stacked AE architectures for EEG feature learning and shown to greatly

improve accuracy. Convolutional neural networks on the other hand, are a proven

state-of-the-art image classification method (Szegedy et al., 2015) and, similarly to

RNN’s, have been shown to perform well in stacked AE’s for EEG feature learning.

Their respective ability to extract temporal and spatial features has been one the key

motivations for their use. In some cases they have been used in combination, where

one is used for feature extraction and the other as a classifier or for other complex

problems such as in Cakir et al., 2017, Marchi et al., 2015, and Trigeorgis et al., 2016.

However, there has been limited exploration of their combined use in a single auto-

encoder architecture for noise reduction despite it being noted as a potential extension

(Leite et al., 2018). As can be found in the literature, they are often used in deep

architectures and have been used in stacked auto-encoders for EEG feature learning.

In fact, the most commonly used auto-encoder architecture for artefact removal has

been the stacked SAE because of its depth and sparsity constraints making it a robust

learning algorithm. This combination of deep learning and advanced neural network

architectures has proven to be very powerful for a number of complex tasks. For these

reasons, a logical extension of the CNN or RNN based AE is to combine both into

a single convolutional-recurrent auto-encoder. Furthermore, stacking layers to add

depth seems like a reasonable approach, given the already successful use of stacked

AE architectures for EEG artefact removal.

2.6.3 Research question

This literature review led to the following research question:

“Can the signal-to-noise ratio of EEG signals produced by a stacked auto-encoder be

improved when compared to PCA, ICA and a traditional auto-encoder?”
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Chapter 3

Design and methodology

The purpose of this chapter is to introduce the research methodology for this quanti-

tative empirical study on whether a convolutional recurrent auto-encoder can be used

to improve the signal-to-noise ratio of EEG signals. In this chapter the null and alter-

native hypothesis are stated, data collection and preparation methods are discussed

and the experiment design used to test the hypothesis is described. Additionally, a

summary of the method including its strengths and limitations are outlined.

3.1 Hypothesis

H1: If a stacked auto-encoder, built with convolutional and recurrent neural network

layers, is applied to EEG signals, the signal-to-noise ratio will be increased when com-

pared to PCA, ICA and a basic auto-encoder.

H0: If a stacked auto-encoder, built with convolutional and recurrent neural network

layers, is applied to EEG signals, the signal-to-noise ratio won’t be increased when

compared to PCA, ICA and a basic auto-encoder.

Figure 3.1 below shows a high level overview of the experiment and its components.
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Figure 3.1: High level overview of how each of the design components combines to

create the experiment

3.2 Data collection

Two datasets were used in this research. The primary dataset, sourced from Kaggle 1

2 was recorded by Ford et al., 2014 during research into efference copy and corollary

discharge of schizophrenia patients in response to a stimulus. The 64 channel EEG

data, with an additional 8 external sites, was collected for 81 subjects as they under-

went 100 trials in each of 3 conditions. It was recorded at 1024 Hz using a BioSemi

ActiveTwo system with the 64 channels placed as per the international 10-10 system

described by Oostenveld and Praamstra, 2001 (see figure 3.2). Of the 81 subjects, 49

had been diagnosed with DSM-IV schizophrenia while the remaining 32 were healthy

controls.

Following recording, the data was re-referenced to averaged earlobe electrodes and

bandpass filtered between 0.5 and 15 Hz. It was then divided into 3000 ms epochs,

1500 ms before the onset of the stimulus and 1500 ms after, and baseline corrected at

−600 to −500ms.

1https://www.kaggle.com/broach/button-tone-sz
2https://www.kaggle.com/broach/buttontonesz2
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Figure 3.2: 10-10 electrode placement system with black circles indicating positions of

the original 10-20 system. Reprinted from Oostenveld and Praamstra, 2001.

Each condition involved a simple set of actions: for condition 1, each subject pressed

a button every 1 to 2 seconds which generated, without delay, a 1000 Hz, 80 dB

tone (Button Tone), condition 2 involved the listening back to the tones generated in

the first condition (Play Tone), finally, for condition 3, subjects once again pressed

a button but no tone was generated (Button Alone). In total, the primary dataset

contained 71,273,391 samples with each trial containing approximately 3000.

The secondary dataset, sourced from Harvard Dataverse 3 was recorded by Soylu et

al., 2019 for research into early perceptual and later semantic processing of canonical

and non-canonical finger-numeral configurations in adults. The 32 channel EEG data

was collected for 46 right-handed undergraduate students as they underwent a total

of 960 trials but was excluded for 8 of those who counted on their left-hands. It was

3https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/BNNSRG
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recorded at 500 Hz using a BrainVisio ActiChamp system with electrodes placed as

per the international 10-20 system.

Once recorded, the data was re-referenced to the average reference and filtered between

0.5 and 15 Hz using a Butterworth filter. Each recording was segmented into epochs

representing 200 ms before the onset of the gesture presentation to 500 ms after and

baseline corrected using the 200 ms pre-stimulus period.

In each trial a finger-numeral configuration was presented for 500 ms followed by a

validation step in which a single-digit Arabic numeral was presented (see figure 3.3).

To reduce predictability and evenly distribute the stimuli, each 96 trial block was made

up of 4 randomized sets of 24 finger-numeral configuration images; 4 montring (MO),

4 counting (CO), and 4 non-canonical (NC) separately for left and right hands (see

figure 3.3). Participants pressed one of two buttons using their right or left index finger

to indicate whether the Arabic numeral corresponded to the number represented by

the preceding finger-numeral configuration. In total, the secondary dataset contained

47,569,380 samples with each trial containing approximately 1500.

(a) (b)

Figure 3.3: Left: Stimulus presentation sequence for each trial. Right: Finger-numeral

configurations (right-hand only). Reprinted from Soylu et al., 2019
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3.3 Data preparation

For the primary dataset, each subject’s data is divided per condition into three separate

datasets. Separately, all trials for every subject are combined into a single dataset per

condition. This is done to enable both subject and trial wise sampling. Full details of

both datasets can be found in table 3.1 below.

Dataset Source Subjects Trials Channels Sample Rate Sample Size Data Format

Primary Kaggle 81 100 64 + 8 1024 Hz 71,273,391 Epoched

Secondary Harvard Dataverse 46 960 32 500 Hz 47,569,380 Continuous

Table 3.1: Summary of datasets used in experiment

For preprocessing, both the baseline and meaningful signals are extracted from each

sample. In Ford et al., 2014 a 100 ms baseline was used, whereas in each of Bijma

et al., 2003; Hu et al., 2014; Min and Herrmann, 2007; Soylu et al., 2019 the baseline

varied between 100 and 500 ms. For consistency with the original research, each sam-

ple is subset to included 100 ms pre-stimulus and 500 ms post-stimulus as the baseline

and meaningful signal respectively. Though this is inconsistent with the 700 ms used

in Ford et al., 2014, the meaningful signal from the second dataset is constrained to

500 ms due to the subsequent presentation of a single-digit Arabic numeral in each

trial. Therefore, each trial is subset such that it contains 600 samples corresponding

to 100 ms pre-stimulus and 500 ms post-stimulus at a rate of 1000 samples per second.

Additionally, the data is downsampled by a factor of 2 due to the sample rate differ-

ence between the datasets. Furthermore, since a smaller subset of electrodes was used

in Soylu et al., 2019, only channels present in both datasets are preserved. With a dif-

ference of three channels and only 31 present in the secondary dataset, 28 channels are

used for this research. Details of the channels used can be found in table A.1. Finally,

each dataset is re-shaped such that its dimensions are (trials, timesteps, channels).

An example pre-processed signal can be seen in figure 3.4.

30



CHAPTER 3. DESIGN AND METHODOLOGY

−100 0 100 200 300 400 500
Time (ms)

−9

−6

−3

0

3

6

9
Am

pl
it 

te
 (μ

V)

Preprocessed EEG signal - 600ms (300 samples)

Figure 3.4: Single channel preprocessed EEG signal taken from primary dataset

For the secondary dataset, all 960 trials per subject were recorded continuously and

contained in an approximately 1.3 million sample observation per channel. Stimulus

introductions were annotated for each trial at the point of onset. Using these, each

trial is subset such that it contains 300 samples, corresponding to 100 ms pre-stimulus

and 500 ms post-stimulus at a rate of 500 samples per second.

For every subject a separate dataset is created for each of the 24 stimuli. Since each

subject was presented with 4 randomized sets of the 24 in each block and there were

10 blocks altogether per subject, a total of 40 trials for each stimulus is present in a

given dataset. As before, all trials for each stimulus are then combined into a single

dataset containing data across all subjects for the corresponding stimulus. Finally,

the channels are reordered to be consistent with the primary dataset and each dataset

is re-shaped such that its dimensions are (trials, timesteps, channels). An example

pre-processed signal can be seen in figure 3.5.
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Figure 3.5: Single channel preprocessed EEG signal taken from secondary dataset

Two methods of sampling are used to generate train and test datasets for the primary

data — subject-wise and trial-wise. For the former, each condition dataset is ran-

domly shuffled and then split in the ratio 70:30; For the latter, the set of subjects is

randomly shuffled and split using the same ratio. Then train and test data is created

using each set of subjects. This allows the model to be tested on both unseen subjects

and unseen trials.

Windowing is used to augment both the train and test datasets by extracting addi-

tional information from each input. A sliding window of 300 ms with a 25 ms shift

is used to divide each input into seven overlapping slices. In doing so, the number

of inputs for training increases by a factor of 6. Order is preserved by applying the

sliding window, after sampling, to the train and test data. This is done to ensure that

all predicted outputs can be combined correctly into the corresponding original signal

for evaluation. Predicted output signals are recombined by averaging the values in

every overlap and taking the actual values to the left and right of each overlap. This

process is shown in the graphic below 3.6.
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(a)

(b)

Figure 3.6: Top: Single trial split into windowed segments. Bottom: Two windowed

segments recombined
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3.4 Auto-encoder design

The proposed stacked auto-encoder is based on a combination of one-dimensional

convolutional neural network (CNN) layers and long short-term memory (LSTM) re-

current neural network layers. In total three architectures are evaluated. The first

combines a single layer of each for both the encoder and decoder, the second utilizes

a single CNN layer with multiple LSTM layers, while the third combines multiple

CNN layers with a single LSTM layer. Figure 3.7 shows a simplified example of the

auto-encoder architecture.

Figure 3.7: A simplified representation of an auto-encoder architecture

Each convolutional layer is constructed as a triple of parallel CNN’s utilizing different

size kernels to extract varied temporal information similar to the method used for in-

ception modules (Szegedy et al., 2015). This enables each CNN to extract information

for the same window but over a larger number of time-steps. For the encoder, pooling

is applied to each CNN individually and the outputs are concatenated. Before being

input to a recurrent layer, comprising an LSTM and layer normalization, the concate-

nated outputs are passed to a dense layer to extract the most meaningful information.

For the decoder, this sequence is reversed and pooling is replaced by upsampling. Fig-

ure 3.8, shows the structure of the single layer architecture for both the encoder and
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decoder. When multiple convolutional layers are used, each parallel block is made up

of sequential CNN and pooling layers.

(a)

(b)

Figure 3.8: Top: Structure of the encoder for the single layer architecture. Bottom:

Structure of the decoder for same

Pooling is used to reduce the input resolution, making it more robust to small vari-

ations from previous learned features (Zheng et al., 2014). There are several pooling

strategies, though the most commonly used are maximum and average pooling. The

former emphasizes prominent features while the latter smooths them by taking their
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average. Though max pooling has been shown to produce excellent results across

a variety of tasks in both signal and image processing (Abdelhameed et al., 2018;

Gondara, 2016; Leite et al., 2018; Wen & Zhang, 2018), average pooling is chosen for

its smoothing property which should aid signal de-noising. As noted in Bengio et al.,

1994, training recurrent neural networks is complicated due to long-term dependencies

and vanishing gradient. In Glorot and Bengio, 2010, normalization was proposed to

speed up convergence — an approach that was further developed by Ioffe and Szegedy,

2015 who introduced batch normalization. This strategy standardizes each summed

activation of the previous layer at each batch. One of the issues when training recur-

rent neural networks using this strategy is that the activations tend to vary with the

length of the sequence which indicated a requirement to have different statistics for

different time-steps (Ba et al., 2016). This led to the development of layer normaliza-

tion which normalizes the activations of the previous layer for each given example in a

batch independently. For that reason layer normalization was chosen to help improve

model convergence.

Further optimization is achieved through the use of the Adam algorithm — a stochastic

gradient descent method based on adaptive estimation of first-order and second-order

moments. This method uses the exponential moving average of the gradients to scale

the learning rate which is similar to the RMSProp algorithm, however it incorporates

momentum which helps to accelerate gradient descent. The benefit of the Adam algo-

rithm is its computational efficiency and limited memory requirement (Kingma & Ba,

2014). Another consideration was the NAdam algorithm which incorporates Nesterov

momentum into Adam. This calculates the gradient updates with respect to the future

steps as opposed to the current step. It is useful for noisy or high curvature gradients

but was noted to perform best when dropout was included but not work well in all

cases (Dozat, 2016). As discussed, dropout is not used in this model so for that reason

Adam was chosen over NAdam.
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A key choice for the model is the loss function. Since this is a regression based model,

potential options include mean square error (MSE), MAE and Huber loss. Both MSE

and MAE are commonly used loss functions though MAE is more robust to outliers,

while MSE is more stable and converges even with a fixed learning rate. In this

case, the EEG signals have high variance and contain a significant number of outliers.

These outliers are important to model as they could be related to meaningful signals.

However, since there are a significant number and MSE is sensitive to outliers other

predictions may be skewed which could impact signal de-noising. Huber loss incor-

porates both by adding a threshold value which determines whether the residuals are

minimized using MSE or MAE. This means it is less sensitive to outliers but is still

capable of accurate reconstruction. Therefore, Huber loss is chosen for this research.

Several hyper-parameters can be tuned for the CNN and LSTM layers. Specifically,

for a CNN layer those include the number of filters, kernel size, strides, padding and

activation. Since signals can take any real value r ∈ R, linear activation is used for

the convolutional layers. Given the computational requirements for training recurrent

neural networks, the cuDNN backed LSTM implementation is used which takes ad-

vantage of GPU optimization. Since this is only compatible with hyperbolic tangent

activation, sigmoid recurrent activation and zero recurrent dropout, hyper-parameter

choices for the LSTM layers are limited. A summary of the available hyper-parameters

can be found in table 3.2 while full details of the hyper-parameters chosen for each

architecture can be found in tables A.2, A.3 and A.4 in appendix A.

A concept discussed in van den Oord et al., 2016 is that of using causal convolutions

for modelling time series data. This ensures that a prediction at time t does not

depend on any future time-step — thus preserving temporal order. Additionally,

dilated convolutions are used which maintain input shape but allow the model to

operate on a coarser scale. Stacking layers of dilated convolutions thus increases the

receptive field of the network. For this research, causal padding is used for all CNN

layers, while dilated convolutions are used for sequential CNN layers only.
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Layer Hyper-parameters Description

Filters The dimensionality of the output space

Kernel size Length of the convolution window

CNN Strides The stride length of the convolution

Padding The padding to use, one of valid, same or causal

Dilation rate The dilation rate to use for dilated convolution

Activation Activation function to use

Average Pooling Pool size Factor by which to downscale

Up-sampling Size Upsampling factor

Units Dimensionality of the output space

LSTM Unit forget bias Whether to add 1 to the bias of the forget gate

Return sequences
Whether to return the last output in the output sequence,

or the full sequence

Dense Units Dimensionality of the output space

Table 3.2: Summary of available hyper-parameters for each layer

When fitting the model, mini-batch sizes over 10 are recommended by Bengio, 2012

due to the computational advantage of matrix-matrix products over matrix-vector

products. Given its use in (Glorot & Bengio, 2010; Liu & Yang, 2019; Supratak et al.,

2014) a batch size of 10 is chosen here. A validation split of 20% is used to track

the out-of-sample error. Using the validation loss, early stopping and model check-

points can be implemented which monitor this value. Early stopping stops training

when a given criteria is met while a checkpoint saves the model after each epoch if

the validation loss has improved. For this research, patience is used to stop train-

ing if there has been no improvement after 5 epochs. The total number of epochs

used is 100. All neural networks are implemented using Keras with a TensorFlow

back-end and trained on an Nvidia GeForce GTX 1050 GPU with 4GB dedicated and

16GB shared RAM. Details of the chosen training parameters can be found in table 3.3
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ML Library API Batch Size Epochs Early stopping Validation split Loss Optimizer Model checkpoint

TensorFlow Keras 10 100 5 epochs 20% Huber loss Adam Best

Table 3.3: Summary of training parameters used to fit each model

3.5 Evaluation of design

3.5.1 Signal-to-noise ratio

Both the peak signal-to-noise ratio (PSNR) and signal-to-noise ratio (SNR) were used

for evaluation. The PSNR was calculated using the expression in (3.1), while the SNR

was calculated using the expression in (3.2).

PSNR = 10 · log10
(
MAXS

N

)2

(3.1)

SNR = 20 · log10
(
S

N

)
(3.2)

S =

√∑
(signal)2

len(signal)
(3.3) N =

√∑
(noise)2

len(noise)
(3.4)

Where signal is the meaningful input (0ms - 500ms), MAXS is the maximum ampli-

tude of the meaningful input and noise is the unwanted baseline (−100ms - 0ms).

3.5.2 Hypothesis testing

Two state-of-the-art signal de-noising techniques are used to examine the effective-

ness of the proposed method — PCA and ICA. In addition, a basic auto-encoder is

included for comparative purposes to ensure the proposed method outperforms a sim-

plified variant.
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For PCA, it is generally considered that the main information from a signal is retained

in the principal components when the cumulative explained variance is ≥ 85% (Kang

& Zhizeng, 2012). For the primary dataset, that is captured by the first six principal

components (87.35%). For the second dataset, 87.2% is captured by the first nine

principal components. Therefore, the number of components chosen in each case is 6

and 9 respectively.

ICA is discussed in Jung et al., 1998 with regard to its use for EEG artefact removal.

They note that one of the assumptions of ICA is, given a set of N sensors there exists

exactly N sources. However, for EEG the effective number of statistically-independent

contributing signals is not known. When using ICA for artefact removal, components

are usually manually omitted based on observation and visual inspection of source

scalp locations (Berkovsky & Freyne, 2010; Jung et al., 2000; Scott Makeig et al.,

1995). In other circumstances EEG artefacts are removed semi-automatically by iden-

tifying components that contain EEG artefacts for one subject and using correlation

to identify similar components for other subjects (Campos Viola et al., 2009). In all

cases, continuous EEG is used to identify artefacts because those like eye blink and

heartbeat tend to exhibit an element of regularity.

For this research, EEG signals were epoched and subset to 100ms before the onset of a

stimulus to 500ms after. As a consequence, the signals used are no longer continuous,

and manual artefact removal techniques based on visual inspection of the ICA compo-

nents may not be successful. To account for this and for evaluation purposes only, ICA

is applied to the full continuous EEG before it is subset. Artefacts are removed for

a single subject and correlation is used to identify similar artefacts for other subjects

as per Campos Viola et al., 2009. This method of implementation is consistent with

the literature and provides a meaningful baseline estimation of the SNR and PSNR

for comparison.
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Using test data as input, each state-of-the-art method and proposed model is used to

re-construct the input signals. While the test data used for evaluation is the same in

all cases, ICA is applied to the full continuous signals, PCA to each 500ms subset,

and the proposed models to each 300 ms window. Before the PSNR and SNR are

calculated for both the raw and re-constructed test data, all outputs are returned to

the original test data shape. In total, fourteen distributions are produced — seven

SNR and seven PSNR. Each resulting distribution for a given metric and proposed

model is then compared individually using the Harrell-Davis quantile estimator (Har-

rell & Davis, 1982) to the PCA, ICA, basic auto-encoder and raw distributions for the

corresponding metric.

All calculations are implemented channel-wise to reduce the influence of channel out-

liers. Individual decile differences are calculated and also averaged across the deciles.

A positive increase for a given metric is indicted by either a positive mean difference

or by five or more positive decile differences.

3.6 Summary

Three different architectures are proposed to test that, when built using convolutional

and recurrent neural network layers, a stacked auto-encoder applied to EEG signals

will increase the signal-to-noise ratio compared to ICA, PCA and a basic auto-encoder.

Performance and generalizability is tested using two data sources. The respective 64

and 32 channel primary and secondary datasets were captured for ERP research. The

former comprises 81 subjects in each of 3 conditions for approximately 100 trials, while

the latter is made up of 38 right-handed subjects in each of 4 randomized sets of 24

finger-numeral counting configurations for 10 sets of 96 trials. In both cases 100ms pre-

stimulus is used as the baseline and 500 ms post-stimulus as the meaningful signal. The

primary dataset is downsampled by a factor of 2 due to a sample rate difference between

the recordings before both are reshaped to (trials, timesteps, channels). Sampling is
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applied at subject and trial level to generate train and test data. A ratio of 70:30 is

used in combination with random shuffling to divide the subjects and trials respec-

tively. In addition, windowing is implemented using a window length of 300 ms with

a shift of 25 ms to augment the training data. Predicted outputs are combined before

evaluation by reversing the windowing process; averaging across overlapping segments.

The PSNR and SNR, which are calculated channel-wise for the reconstructed signals

produced when each proposed architecture and baseline method are applied to the

test data, are used for evaluation. In addition, both are calculated for the raw signals.

The Harrell-Davis quantile estimator is used to compare the resulting distributions for

the proposed model to those of each baseline method and the raw signals. A positive

increase for a given metric is indicated by a positive mean difference across all deciles

or by 5 or more positive decile differences.

3.6.1 Strengths

� Computational efficiency: All models are trained using Tensorflow — a

framework which utilizes the GPU-accelerated NVIDIA CUDA® Deep Neural

Network library (cuDNN) 4. The resulting computational speed-up which en-

ables in the range of 6000 to 7000 tokens per second compared to ∼400 on a

standard CPU is thus approximately 14 times faster.

� Stacking neural network architectures: As noted in Bengio and Lecun, 2007

deep network architectures can generalize in non-local ways and model complex

relationships between variables for the purpose of AI. In addition, combining

both recurrent layers, which have been noted as being very powerful for modelling

sequences (Bengio et al., 2013), and convolutional layers, which can utilize local

perception to extract signal features (Wen & Zhang, 2018), should improve the

overall performance.

4https://developer.nvidia.com/cudnn
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� Limited domain knowledge required: Unlike ICA which requires manual

intervention to remove noise related components and thus specific domain knowl-

edge and expertise to identify EEG artefacts, the proposed CR-AE is an unsu-

pervised method that can be implemented without prior domain knowledge to

reduce noise in EEG signals.

� Second dataset to test generalizability: With the addition of a second

dataset, a more robust estimation of the generalizability of the proposed models

to unseen data can be given.

� Robust statistical method for distribution comparison: The Harrell-

Davis quantile estimator is a weighted average of all the order statistics and

provides a robust decile based statistical method to calculate the difference be-

tween deciles of two groups.

3.6.2 Limitations

� No baseline EEG signals: The SNR is usually calculated between a clean

signal and its noisy equivalent. However, it is not possible to record perfectly

clean EEG signals. Therefore, a 100 ms baseline is used to represent the noisy

input, under the assumption that, before a stimulus is presented, the recorded

signal represents noise and not neural activity. This means it is not possible to

accurately determine whether noise is actually removed from the reconstructed

signals. An increase in SNR or PSNR does not necessarily indicate that noise

has been removed, important signal information could also have been removed

during the process. In some cases synthetic EEG data is created and noise is

artificially added which allows the researcher to quantify what information is

removed through the process (Ahmadi & Quian Quiroga, 2013).

� Unquantifiable information loss: As a consequence of the above there is

no way to determine how much information is lost through the reconstruction

process of the proposed convolutional recurrent auto-encoder. This is unlike ICA
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and PCA where information loss can be quantified by the components removed

during analysis and in PCA specifically by the total explained variance of the

components removed.

� Limited hyper-parameter tuning: The cuDNN backed implementation of

LSTM is optimized only for use with hyperbolic tangent activation, sigmoid

recurrent activation and zero recurrent dropout, therefore the available hyper-

parameters are limited and consequently the potential for tuning.

� Non-use of spatial information: Though the scalp position of electrodes is

known, this information is not utilized by the proposed method. A 2D convo-

lutional layer applied to temporal spatial projections of the electrode placement

in 2D space could make use of this information.

In the next chapter, implementation of the experimental process and results are dis-

cussed along with evaluation of same.
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Chapter 4

Results, evaluation and discussion

The presence of noise in EEG is a significant problem as it interferes with the capture

of other signals. The identification and removal of noise is a key area of research as it

improves the quality of EEG recordings and could reduce the number of trials required

for ERP analysis. This research is focussed on improvement of the PSNR and SNR

of EEG signals in comparison to the state-of-the-art methods — ICA and PCA. A

basic auto-encoder is also included as a baseline to measure the improvement of the

proposed CR-AE over a simple auto-encoder.

In this chapter, the experimental results are discussed and evaluated with respect to

those obtained from each of the baseline methods and in relation to previously con-

ducted research. Limitations of the study and findings are highlighted and a summary

of the results is presented.

4.1 Results

The results for each proposed architecture are discussed in relation to reconstruction

error, SNR and PSNR. Results for the primary dataset were generated using test data

as input across each condition for both trial and subject wise sampling. In contrast,

results for the secondary dataset were generated using all data points and used to

assess model generalizability.

45



CHAPTER 4. RESULTS, EVALUATION AND DISCUSSION

4.1.1 Signal reconstruction

The purpose of these auto-encoders is to reconstruct an input signal from a latent space

representation and in doing so reduce the level of noise present. As such, an important

aspect of this research is the accuracy to which the signals are reconstructed. During

training, Huber loss was used to measure this. As mentioned previously, Huber loss

utilizes a combination of the mean squared error and mean absolute error depending

on a given threshold. In this way it is robust to outliers but still provides a balanced

prediction error across all instances.

Primary dataset

The mean reconstruction error for architectures one, two and three is 1.32, 1.65 and

1.61 respectively. From the condition and sampling method point of view, mean re-

construction error is lowest for condition 3 (1.46, sd=0.21) and trial wise sampling

(1.40, sd=0.17). Architecture 1 has the lowest reconstruction error, however, the over-

all mean of 1.52 (sd=0.21) indicates the performance does not vary greatly.

Lower error rates associated with condition 3 could be due to the fact that, in that

task, each subject pressed a button but no tone was generated. From the analysis

conducted by Ford et al., 2014, in healthy controls this condition was associated with

a smaller response than pressing a button to deliver a tone. Therefore, condition 3

may contain fewer outliers and have lower variance than other conditions which would

influence reconstruction error.

Visual inspection of the reconstructed signals shows, that for each architecture, the

output closely resembles the original input. This can be seen in figures 4.1, 4.2, and

4.3 below which highlight examples of reconstructed signals from condition 1 for each

architecture overlaid with the original input.
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Figure 4.1: Original signal overlaid with the corresponding reconstructed signal for

architecture one (primary dataset)
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Figure 4.2: Original signal overlaid with the corresponding reconstructed signal for

architecture two (primary dataset)
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Figure 4.3: Original signal overlaid with the corresponding reconstructed signal for

architecture three (primary dataset)

Secondary dataset

The purpose of including a second dataset, is to determine how well the proposed

CR-AE can generalize to other datasets without needing to be retrained. If the model

can perform well on another dataset it shows that there is the potential it could be

used as a noise reduction technique in other scenarios. Mean reconstruction error for

each architecture shows that architecture one (0.14) performs better than architecture

two (1.23) and three (0.38) though there is little between architecture one and three.

These results are in fact also better than the reconstruction error on the primary

dataset. However, visual inspection of reconstructed signals across the three architec-

tures shows that none are able to accurately reproduce the input signal. Figures 4.4,

4.5, 4.6, and 4.7 highlight this across each architecture.
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Figure 4.4: Original signal used as input for each of the reconstructions below
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Figure 4.5: Original signal overlaid with the corresponding reconstructed signal for

architecture one (secondary dataset)
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Figure 4.6: Original signal overlaid with the corresponding reconstructed signal for

architecture two (secondary dataset)
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Figure 4.7: Original signal overlaid with the corresponding reconstructed signal for

architecture three (secondary dataset)
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It can be clearly seen that there are significant issues with each reconstructed signal.

One of those is partly caused by the method employed to recombine the windowed

signals and partly due to inaccurate reconstruction for early samples. As mentioned

previously each 600 ms input is windowed using a 300 ms window length with a 50

ms stride, to augment the training data. This results in seven inputs representing

each single input from the raw data. Each consecutive set of seven inputs is then

recombined post prediction into the original 600 ms signal.

This is achieved by averaging the predicted values in each overlapping window. This

method of combining the windowed segments would in most cases be fine, however, in

this case all three architectures fail to correctly predict early samples; an issue which

is then exaggerated across much of the reconstructed signal due to how the outputs

are combined. Reconstruction error for early samples is likely due to a lack of his-

toric information. Each model was trained on data from the primary dataset which

means the weights are adjusted during training to predict values from that dataset.

The convolutional layers in this model use causal padding which means they only take

into account previous time steps. The weights associated with early time-steps would

have been updated during training using only initial values from all instances and

therefore are optimized to predict those. Failure to correctly predict early values in

the secondary dataset could be due to a difference in the range of values. Certainly

the variance is much less which could also influence predictions. This reconstruction

error highlights the fact that the proposed architectures do not generalize well to other

datasets, particularly for early samples. Using padding that can violate temporal or-

der could solve this issue.

For architecture one and two, later samples are more accurately predicted, preserving

at least signal shape despite not being in the same range. This can be seen in figure

4.5 where, after 250 ms, the signal resolves and the shape begins to resemble that of

the input. Since the stride length is 25 ms and there are seven windows in total, at 175

ms the last window is combined with that of all previous windows to create the final

51



CHAPTER 4. RESULTS, EVALUATION AND DISCUSSION

output. Shortly after that point, the signals resolve. Since early samples from each

prior window are poorly predicted, when these are combined the error is repeated

throughout the reconstruction. Figures 4.8, 4.9, 4.10, and 4.11 show reconstructed

signals from consecutive windows before and after being combined. It highlights the

issue with poor prediction and the method used to recombine the windows. Another

way to combine these would be to only use early samples from the first window and

use later samples from all others in place of the early samples of subsequent windows.

This would solve the problem, however, if the models could generalize it would not

have to be solved and therefore should not be implemented.
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Figure 4.8: Single 300ms window of a signal used for the reconstruction below
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Figure 4.9: Output from architecture one for the 300ms input window above
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Figure 4.10: Output from architecture one for the next 300ms window of the same

signal
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Figure 4.11: Combined outputs of the first and second windows with overlaps averaged

Given that the reconstructed signals are not accurate representations of the input,

reconstruction accuracy is not taken into consideration for architecture selection or

model evaluation. Additionally, SNR and PSNR are not reported for the second

dataset as they do not provide any meaningful information for solution evaluation.

These findings show that the proposed method does not generalize to all other EEG

datasets.

4.1.2 Signal-to-noise ratio

To compare the level of signal to the level of noise in each reconstructed input, the

SNR is used. Additionally, PSNR is used to compare the maximum possible power of

a signal to the level of noise affecting it. Each of these are measured on the decibel

scale. Since an uncorrupted EEG signal is not possible to record, the 100 ms baseline

is used to calculate the level of noise in each signal. The purpose of this research is

to increase these ratios for reconstructed signals compared to each baseline and the

raw signals. Both are calculated channel wise to reduce the influence of outliers and

provide more detailed results.

54



CHAPTER 4. RESULTS, EVALUATION AND DISCUSSION

Architecture three achieved the highest mean SNR across all conditions and sampling

methods with 5.53 db (sd=4.49) compared to 5.33 db (sd=4.36) and 5.30 db (sd=4.36)

for architectures one and two respectively. Similarly, it achieved the highest PSNR

with −24.44 db (sd=6.67) compared to −24.46 db (sd=6.46) and −24.48 db (sd=6.47)

though the difference between each architecture in both cases is minimal. This result

could highlight the benefit of using dilated convolutions in sequential convolutional

layers to increase the receptive field of the network. By doing so, the model learns

coarser representations of its input which would result in less detailed signals and

by consequence less noise. As can be seen from figure 4.3, this results in the loss of

signal information, though importantly, critical information appears to be retained.

However, as a result of not having clean EEG signals the information loss cannot be

quantified.

Condition 1 was consistently highest in terms of both metrics with mean values of

5.38 (sd=4.31) and −23.81 db (sd=6.24) for SNR and PSNR respectively across the

three proposed architectures. In comparison, condition 2 and 3 achieved very similar

results for both, with mean SNR values of 5.01 db (sd=4.13) and 4.99 db (sd=4.23)

and mean PSNR values of −24.33 db (sd=6.06) and −24.24 db (sd=6.17) respectively.

As mentioned before, this could be due to the nature of condition 1, wherein subjects

pressed a button to deliver a tone. As greater responses was observed for that condi-

tion, higher SNR and PSNR values would be expected. Indeed, for the raw signals,

both metrics were higher for condition 1. This indicates the values are not necessarily

the result of improved noise reduction for that condition, though this will be explored

later to quantify the difference.

The sampling method chosen did not have a significant influence on the results with

mean SNR of 5.09 db (sd=0.008) and 5.16 db (sd=0.008), and mean PSNR of −24.22

db (sd=0.011) and −24.03 db (sd=0.011), for trial and subject sampling respectively.

This result shows that the models can be trained on a subset of subjects and perform
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equally well for unseen subjects. The benefit of this is that the model does not need to

be trained with data for a given subject before being able to accurately reconstruct sig-

nals with performance equivalent to a model trained on a portion of the subjects’ data.

Certain channels reached higher mean SNR than others. Specifically, for electrode

TP10, each proposed architecture reached above 6 db at a maximum of 6.93 db

(sd=5.07) for architecture three. In fact, mean SNR reached over 6 db for five elec-

trodes for that architecture, those being, TP10, F7, Fp1, F8 and Fp2; in that order

from highest to lowest. Furthermore, the highest mean SNR values were observed for

each of those electrodes across all proposed architectures. Given that Fp1 and Fp2

are located above the left and right eye respectively, they are usually associated with

strong eye activity (Vigário, 1997) and therefore could contain more noise than other

signals. Additionally, both F7 and F8 are located in proximity to Fp1 and Fp2 which

could also indicate the presence of noise in those signals. Since the research conducted

by Ford et al., 2014 involved an auditory experiment, activity around electrode TP10,

located close to the ear, may have been more prevalent and hence noisier. Early au-

ditory activity would likely have been present in these signals and given the focus

of ERP analysis on electrodes Fz, FCz and Cz, the overall indication is that TP10

did not contain relevant ERP information. These findings would suggest that noise

reduction is most effective when signals are noisier, rather than for those that contain

meaningful ERP information. Once again, this will be explored later in comparison

to the raw signals and other baseline methods.

4.2 Evaluation

SNR and PSNR distributions are compared using the Harrell-Davis quantile estimator.

This robust statistical method provides better estimation of the difference between two

distributions than using a standard comparative test. As a weighted sum of sorted

values it is used in place of point estimates like mean or median to show how much

one group must be shifted to be comparable to another group at each quantile (Rous-
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selet, 2010; G. A. Rousselet et al., 2009). The purpose of this research is to determine

whether a statistically significant difference exists between the SNR and PSNR pro-

duced by applying the proposed CR-AE to EEG signals, compared to those produced

by ICA, PCA and a basic auto-encoder. To achieve this, HD quantiles are calculated

for the reconstructed signals and the raw signals and their difference computed. For

each method the differences are directly compared to determine whether there is a

positive shift.

4.2.1 Proposed CR-AE architecture

To choose the best CR-AE architecture, each model was evaluated, by condition and

sampling method, individually to the raw signals at both an overall and channel level.

The chosen architecture was then used to establish whether the null hypothesis could

be rejected.

For condition 1, architecture three had the highest SNR HD quantile increase for

both trial (mean=0.640) and subject (mean=0.633) sampling compared to both ar-

chitecture one (trial mean=0.426, subject mean=0.447) and two (trial mean=0.406,

subject mean=0.434). However, for trial sampling channel CP1 showed a decrease of

(mean=−0.078) with only 3 positive quantile differences. For PSNR, all three pro-

posed CR-AE performed worse than the raw signals; Each showing a mean HD quantile

decrease across all channels. Furthermore, none had any channel showing more than

5 positive quantile differences. Architecture three, had the lowest decrease for trial

sampling (mean=−0.457) but performed worst for subject sampling (mean=−0.640).

Despite this, architecture three had the most positive decile differences overall in both

cases, including 4 positive quantiles for channels Fp1, Fp2, F7 and TP10.

Similar results were found for condition 2 and 3 with respect to both metrics. However,

in both cases architecture three performed better than one and two in terms of PSNR

for both trial and subject sampling. Despite this, HD quantiles remained negative in all

cases. Though all three architectures performed worse than the raw signals, architec-

57



CHAPTER 4. RESULTS, EVALUATION AND DISCUSSION

ture three had the lowest decrease for both trial (condition 2 mean=−0.473, condition

3 mean=−0.549) and subject (condition 2 mean=−0.583, condition 3 mean=−0.604)

sampling for both conditions. As regards SNR, architecture three performed best in

condition 2 for both trial (mean=0.651) and subject (mean=0.602) sampling and sim-

ilarly for condition 3 in respect of same (trial mean=0.626, subject mean=0.612).

Given its performance across all conditions and sampling methods, architecture three

is chosen as the best CR-AE. The technical model can be seen in figure A.1. As

highlighted above, it outperformed both alternatives for SNR in all cases and PSNR in

most. It was only outperformed once for PSNR in condition 1 using subject sampling.

Overall, PSNR performance was poor for all architectures which could be due to the

use of average pooling. As can be seen in figure 4.3, the reconstructed signals do not

accentuate the peaks or troughs of the original signal. Therefore, the max amplitude

is reduced by the CR-AE. As can be seen by expression 3.1, if the max amplitude

of the meaningful signal is reduced, and the mean square amplitude of the noise is

not reduced by an equivalent amount, the PSNR will decrease. Utilizing max pooling

to extract the most prevalent features, instead of average pooling, could improve this

metric, though it could also increase the level of noise and thus lower the PSNR.

4.2.2 Principal components analysis

Six components were used for PCA with retained variance of 87.35% to reconstruct

the EEG signals. The mean SNR of 4.88 db (sd=4.04) was lower than the proposed

CR-AE (mean=5.53 db, sd=4.49), however, at −23.78 db (sd=5.76) the mean PSNR

was higher. Huber loss calculated for the reconstructed signals shows that the pro-

posed CR-AE (1.61) produced more accurate results than PCA (2.46). Figures 4.12

and 4.13 show an example of the PCA reconstructed signals compared to the raw

signals and those of the proposed CR-AE compared to same. It can clearly be seen

that the CR-AE produces a smoother signal that better models the general shape of

the original input in comparison to PCA.
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Figure 4.12: Original signal overlaid with the corresponding reconstructed signal for

PCA
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Figure 4.13: Original signal overlaid with the corresponding reconstructed signal for

the CR-AE
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For comparative purposes, both the SNR and PSNR of the PCA and CR-AE recon-

structed signals were compared to those of the raw signals with each set of results then

being compared to determine whether there was an improvement.

Results of the experiment, averaged across all channels, for condition 1 can be seen in

tables 4.1 and 4.2. These results show that, for condition 1, PCA performs approxi-

mately equivalently to the raw signals across all quantiles for both SNR and PSNR. In

each case, the overall mean difference is positive but only marginally with maximum

shift of 0.108 and 0.121 in the 8th and 9th quantiles for PSNR with subject sampling.

In contrast, for SNR, the proposed CR-AE shows significant shift across the majority

of quantiles except for quantile 1, where the increase is marginal. For each consecu-

tive quantile the shift gets gradually bigger, indicating that shift is more to the right

of the distribution. However, performance for PSNR was greatly reduced across the

majority of quantiles, with notable increases in only the 9th quantile for both sampling

methods. Since the improvement for PCA is marginal the overall difference remains

similar to that of the proposed CR-AE.

From a channel perspective, PCA showed positive shift across the majority of quantiles

for electrodes FC1, F3, F4, F8, P8, Pz and T7, while the proposed CR-AE showed

positive shift across all quantiles for every electrode except CP1. Figures A.5 and

A.2 highlight the HD decile differences for both PCA and the proposed CR-AE in

condition 1 across all channels when compared to the original signals. The original

research on this dataset analysed ERP’s from reference nodes, FCz, Fz and Cz, for

which information from FC1, F3, F4, F7 and F8 would be important. Therefore, it is

essential to improve SNR on these channels. This has been achieved by both methods

however, the positive shift is greater for the proposed CR-AE.
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SNR PSNR

Split Decile PCA vs Raw CR-AE vs Raw Difference PCA vs Raw CR-AE vs Raw Difference

1 -0.003 0.0830 0.0862 -0.0174 -1.4540 -1.4366

2 -0.004 0.2388 0.2426 0.0160 -0.9659 -0.9819

3 0.005 0.3834 0.3786 0.0197 -0.7547 -0.7744

4 -0.001 0.5139 0.5151 0.0435 -0.5827 -0.6262

Trial 5 -0.025 0.6233 0.6482 0.0370 -0.4364 -0.4733

6 -0.007 0.7420 0.7486 0.0480 -0.2675 -0.3155

7 0.012 0.8926 0.8805 0.0442 -0.1125 -0.1566

8 0.023 1.0418 1.0187 0.0414 0.0822 0.0408

9 0.000 1.2444 1.2446 0.0436 0.3804 0.3367

Mean 0.000 0.6403 0.6403 0.0307 -0.4568 -0.4874

Table 4.1: SNR and PSNR HD quantile differences for PCA and the proposed CR-AE

— condition 1 trial sampling

SNR PSNR

Split Decile PCA vs Raw CR-AE vs Raw Difference PCA vs Raw CR-AE vs Raw Difference

1 -0.065 0.068 0.133 0.004 -1.781 -1.785

2 -0.004 0.248 0.253 -0.011 -1.224 -1.213

3 0.024 0.400 0.376 0.034 -0.954 -0.987

4 0.024 0.516 0.492 0.028 -0.756 -0.785

Subject 5 0.022 0.624 0.603 0.051 -0.564 -0.614

6 0.014 0.749 0.735 0.064 -0.399 -0.463

7 0.051 0.871 0.820 0.063 -0.230 -0.293

8 0.046 1.031 0.985 0.108 -0.024 -0.132

9 0.026 1.197 1.171 0.121 0.170 0.048

Mean 0.015 0.634 0.619 0.051 -0.640 -0.692

Table 4.2: SNR and PSNR HD quantile differences for PCA and the proposed CR-AE

— condition 1 subject sampling
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Results for condition 2 and 3, which can be seen in tables A.5, A.6, A.7 and A.8, are

very similar to those of condition 1. In each case, the proposed CR-AE outperforms

PCA across all quantiles for SNR, but as expected, heavily underperforms in terms of

PSNR with meaningful positive shift observed only in the 9th quantile for both trial

and subject sampling. As with condition 1, the proposed CR-AE showed minimal

positive shift for SNR on one electrode (F7) across all quantiles in condition 2, though

not for the same electrode. In contrast, condition 3 showed positive shift across all

quantiles for every electrode. Though SNR performance improved from condition 1

to 3, PSNR declined with significant negative shift across quantile 2 and 3, indicating

that as SNR performance improves, PSNR performance declines.

4.2.3 Independent components analysis

ICA was implemented in a semi-supervised manner using all components and PCA

pre-whitening. Components containing artefacts were identified for one subject and

correlation was used to find similar components for other subjects. In all cases the

component was set to zero before the signal was reconstructed to remove that compo-

nent from the original input. A correlation coefficient equal to or above 0.7 was used

to identify other components. As ICA is usually applied to continuous EEG, ICA was

implemented before the signals were epoched and subset. As this is a semi-supervised

method, domain knowledge of EEG artefacts is required for identification. Due to a

lack of expertise, the focus was to remove ocular artefacts which are easier to identify.

These usually appear as large, sometimes periodic spikes with scalp activity focused

around electrodes Fp1 and Fp2. The mixing matrix was used to determine how the

components mapped to the electrodes. This was used in combination with visual in-

spection of component plots to identify potential ocular artefacts.

Overall, SNR (mean=4.75 db, sd=3.88) was lower for ICA than that of the proposed

CR-AE. However, PSNR (mean=−23.95 db, sd=5.62) was higher. This is consistent

with earlier findings for the CR-AE due to poor PSNR performance. Huber loss cal-

culated for the reconstructed signals shows that ICA (0.35) performed better than the
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proposed CR-AE (1.61). However, this is skewed by the fact that in some cases no

components are removed which means the original input is reconstructed perfectly.

This can be seen in figure 4.14 where the original input is completely obscured by

the reconstruction. In this case the Huber loss is zero. This occurs when none of the

components are correlated high enough with the example component.
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Figure 4.14: Original signal overlaid with the corresponding reconstructed signal for

ICA — electrode T7

Results averaged across all channels, for condition 1 can be seen in tables 4.3 and

4.4 with all other results available in A.9, A.10, A.11, and A.12. These show that

ICA performed worse than the raw signals across all quantiles in almost every case

— except for condition 1 using subject sampling where it performed approximately

equal which is likely due to its implementation. It is quite clear from the channel

breakdowns for conditions 1, 2 and 3 (figures A.8, A.9 and A.10 respectively) that

for both metrics, the majority of negative shift is focused on electrodes Fp1 and

Fp2. However, nearby electrodes have also been heavily impacted in most cases.

This would indicate that important information has been removed during the process

impacting SNR and PSNR. This can be seen in 4.15 which shows a reconstructed
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signal for electrode Fp1. Most peaks and troughs are removed leaving a relatively flat

signal. This is consistent for most signals of affected electrodes. Though this may

be appropriate in some circumstances, it appears too much of the variation has been

removed. This may be the result of setting entire components to zero and could be

modified by only setting localized spikes in the component to zero instead.
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Figure 4.15: Original signal overlaid with the corresponding reconstructed signal for

ICA — electrode Fp1

As a consequence, the results for ICA are similar to PCA. The proposed CR-AE

outperformed ICA in terms of SNR across all conditions and sampling methods for

all quantiles. In addition, channel performance shows significant positive shift across

all quantiles between the CR-AE and ICA. Though SNR performance improved, once

again the proposed CR-AE was outperformed in terms of PSNR across the majority of

quantiles. All but the 8th and 9th quantiles showed positive shift. Given the potential

issues with its implementation, it is very hard to consider these results as significant

in the context. In contrast to PCA, ICA requires domain knowledge. As a result, it

would be better to compare the proposed CR-AE to ICA using a dataset where the

results are available and on which ICA has already been implemented by an expert.
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SNR PSNR

Split Decile ICA vs Raw CR-AE vs Raw Difference ICA vs Raw CR-AE vs Raw Difference

1 -0.088 0.083 0.171 -0.154 -1.454 -1.300

2 -0.125 0.239 0.364 -0.160 -0.966 -0.806

3 -0.148 0.383 0.532 -0.157 -0.755 -0.598

4 -0.171 0.514 0.685 -0.192 -0.583 -0.390

Trial 5 -0.181 0.623 0.804 -0.228 -0.436 -0.209

6 -0.195 0.742 0.937 -0.258 -0.267 -0.010

7 -0.200 0.893 1.093 -0.283 -0.112 0.171

8 -0.201 1.042 1.243 -0.332 0.082 0.414

9 -0.198 1.244 1.442 -0.443 0.380 0.824

Mean -0.168 0.640 0.808 -0.245 -0.457 -0.212

Table 4.3: SNR and PSNR HD quantile differences for ICA and the proposed CR-AE

— condition 1 trial sampling

SNR PSNR

Split Decile ICA vs Raw CR-AE vs Raw Difference ICA vs Raw CR-AE vs Raw Difference

1 -0.006 0.068 0.073 -0.017 -1.781 -1.764

2 0.002 0.248 0.246 -0.022 -1.224 -1.202

3 0.000 0.400 0.400 -0.011 -0.954 -0.943

4 -0.005 0.516 0.521 -0.009 -0.756 -0.747

Subject 5 -0.009 0.624 0.633 -0.013 -0.564 -0.550

6 -0.006 0.749 0.755 -0.015 -0.399 -0.384

7 -0.001 0.871 0.873 -0.027 -0.230 -0.203

8 0.005 1.031 1.026 -0.031 -0.024 0.006

9 0.025 1.197 1.172 -0.019 0.170 0.188

Mean 0.001 0.634 0.633 -0.018 -0.640 -0.622

Table 4.4: SNR and PSNR HD quantile differences for ICA and the proposed CR-AE

— condition 1 subject sampling
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4.2.4 Basic auto-encoder

A basic auto-encoder was included as a simple baseline to ensure the proposed CR-AE

could outperform the non convolutional-recurrent alternative. From an SNR per-

spective, the basic auto-encoder (mean=4.84 db, sd=4.02) underperformed compared

to the proposed CR-AE (mean=5.53 db, sd=4.49), PCA (mean=4.88 db, sd=4.04)

and the raw signals (mean=4.89 db, sd=4.02). However, for PSNR (mean=−23.80

db, sd=5.73), it outperformed the proposed CR-AE (mean=−24.44 db, sd=6.67) and

performed on par with the raw signals (mean=−23.80 db, sd=5.75), with only PCA

(mean=−23.78 db, sd=5.76) showing improved performance over it.

Huber loss calculated for the reconstructed signals shows that the proposed CR-AE

(1.61) once again produces more accurate results than the baseline method (2.30).

Figures 4.16 and 4.17 show an example of an AE reconstructed signal overlaid with

the original signal alongside the equivalent for the proposed CR-AE. As mentioned

previously, the CR-AE accurately models the shape of the input signal producing a

smoother representation compared to the AE which only accurately reconstructs the

initial 200 ms but begins to diverge thereafter. It can be seen that like PCA the AE

accentuates the peaks far more than the CR-AE which is likely the reason for its per-

formance with regard to PSNR.

As before, results are evaluated with respect to the performance of each method when

compared to the raw signals as determined by the HD quantiles. These are then di-

rectly compared to evaluate performance. Results for the experiment can be seen in

tables 4.5 and 4.6 for condition 1, and tables A.13, A.14, A.15, and A.16 for condition

2 and 3 respectively. As highlighted by its mean SNR, the AE showed negative shift

across all quantiles for each condition in both trial and subject sampling, except for

condition 2 with subject sampling where two quantiles showed marginal positive shift.

As with PCA, the CR-AE outperformed the AE for SNR across all conditions and

sampling methods with mean positive shift difference of approximately 0.674.
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In terms of PSNR, despite parity between the mean for the AE and the raw signals,

the AE showed negative mean shift for all conditions except condition 1. However,

as before, since the CR-AE showed significant negative shift in all conditions across

every quantile but the 9th, the mean shift difference of −0.545 further reinforces the

trade-off between increased SNR at the expense of PSNR.

Heat-maps illustrating channel performance, show that the majority of the negative

shift was confined to electrode TP10 (A.11a, A.12a, A.13a). In comparison, the CR-

AE showed significant positive shift for that channel. Across all conditions, for SNR,

the majority of the positive shift was seen across electrodes C3, C4, CP1, CP2, though

for condition 1 this shift was minimal. Differences across the quantiles for PSNR was

much more sporadic, except for condition 1 which showed consistent improvement for

all central and central parietal electrodes. Once again, the majority of the negative

shift was isolated to electrode TP10.
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Figure 4.16: Original signal overlaid with the corresponding reconstructed signal for

basic AE
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Figure 4.17: Original signal overlaid with the corresponding reconstructed signal for

CR-AE

SNR PSNR

Split Decile AE vs Raw CR-AE vs Raw Difference AE vs Raw CR-AE vs Raw Difference

1 -0.052 0.083 0.135 0.019 -1.454 -1.473

2 -0.028 0.239 0.267 0.001 -0.966 -0.967

3 -0.026 0.383 0.410 0.024 -0.755 -0.778

4 -0.032 0.514 0.545 0.036 -0.583 -0.618

Trial 5 -0.052 0.623 0.676 0.017 -0.436 -0.453

6 -0.088 0.742 0.830 0.003 -0.267 -0.270

7 -0.062 0.893 0.954 -0.010 -0.112 -0.103

8 -0.069 1.042 1.111 -0.027 0.082 0.109

9 -0.112 1.244 1.357 0.005 0.380 0.376

Mean -0.058 0.640 0.698 0.007 -0.457 -0.464

Table 4.5: SNR and PSNR HD quantile differences for AE and the proposed CR-AE

— condition 1 trial sampling
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SNR PSNR

Split Decile AE vs Raw CR-AE vs Raw Difference AE vs Raw CR-AE vs Raw Difference

1 -0.085 0.068 0.153 0.047 -1.781 -1.828

2 -0.040 0.248 0.289 0.013 -1.224 -1.236

3 -0.008 0.400 0.408 0.036 -0.954 -0.989

4 -0.019 0.516 0.535 0.041 -0.756 -0.798

Subject 5 -0.014 0.624 0.638 0.046 -0.564 -0.610

6 -0.044 0.749 0.793 0.030 -0.399 -0.430

7 -0.027 0.871 0.899 0.031 -0.230 -0.261

8 -0.051 1.031 1.083 0.057 -0.024 -0.081

9 -0.064 1.197 1.261 -0.003 0.170 0.172

Mean -0.039 0.634 0.673 0.033 -0.640 -0.673

Table 4.6: SNR and PSNR HD quantile differences for AE and the proposed CR-AE

— condition 1 subject sampling

4.3 Summary of Findings

Three CR-AE architectures were proposed for this experiment, each containing at least

one convolutional and one recurrent neural network layer. Performance was evaluated

based on reconstruction error, SNR and PSNR. Both SNR and PSNR were compared

channel wise using the Harrell-Davis quantile estimator. In addition, two datasets were

used to generate results with the second being included to test model generalizability.

Initially, the proposed architectures were evaluated with respect to each other to de-

termine which would be chosen as the final CR-AE. Architecture one (1.32) had the

best overall reconstruction error though differences were marginal. Visually, all three

proposed architectures showed strong performance on the primary dataset, however

for the secondary dataset this was not the case. Due to poor prediction error for early

samples exaggerated by windowing, none of the proposed methods could generalize.
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As a result, SNR and PSNR were not reported for the second dataset as they do not

make sense in the context.

Performance with respect to SNR and PSNR was evaluated by first comparing each

architecture to the raw signals with those results compared at quantile and channel

level to each other. Architecture three performed the best overall for both SNR and

PSNR. It had the highest mean SNR (5.53 db) and maintained minimum mean quan-

tile difference of 0.187, across all conditions and sampling methods, to a maximum

of 0.223 in comparison to architecture one and two. For PSNR, though the results

were poor compared to the raw signals, architecture three (−24.44 db) had the highest

mean PSNR. In addition, the mean quantile difference was positive in the majority of

cases with a minimum of −0.060 and maximum of 0.139. Given overall performance,

architecture three was chosen for the CR-AE.

To test the hypothesis, the proposed CR-AE was compared to each baseline meth-

ods using both SNR and PSNR. A positive increase was indicated by a positive mean

quantile difference or when five or more deciles were positive. In all cases the proposed

method outperformed each baseline in terms of SNR but exhibited worse performance

for PSNR.

For PCA, the mean SNR (4.88 db) was lower than that of the CR-AE, while the

PSNR (−23.78 db) was higher. All SNR quantile differences were positive for all con-

ditions and sampling methods with a mean difference of 0.631. In contrast, all but

the 8th and 9th quantiles in most cases were negative, with a mean difference of −0.564.

In terms of ICA, the semi-supervised nature of its implementation and the lack of

domain knowledge available brings into question the validity of the results. Recon-

structed signals and heat-maps of quantile differences by channel suggest that impor-

tant signal information may have been lost during the process. In addition, comparison

to the raw signals shows that ICA performed worse in the majority of quantiles for
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both SNR and PSNR. With that in mind, the mean SNR (4.75 db) was lower than

that of the CR-AE, while the PSNR (−23.95 db) was higher. All quantile differences

were positive for SNR with a mean difference of 0.716. The mean quantile difference

for PSNR (−0.427) was negative in all but some of the 7th, 8th and 9th quantiles.

A basic auto-encoder was used to determine the effectiveness of the proposed CR-AE

wth respect to a simpler implementation. Mean SNR for the AE (4.84 db) was also

lower than that of the CR-AE, while again for PSNR the mean (−23.80) was higher.

Similar to the results for both PCA and ICA, the SNR quantile difference was positive

for all quantiles with mean difference of 0.674. In addition, PSNR results were also

similar with negative differences across all but the 8th and 9th quantiles with a mean

difference of −0.545.

These results show, that for PCA and a basic AE, there is evidence to support rejecting

the null hypothesis from the point of view of SNR. However, for ICA, there is not

enough evidence. In addition, for all three baseline methods, there is no evidence to

support rejecting the null hypothesis in terms of PSNR. Finally, reconstruction error

on the second dataset shows the proposed model does not generalize well to unseen

data from other datasets. Therefore, it must be concluded that there is not enough

evidence to support rejecting the null hypothesis that a stacked auto-encoder built with

convolutional and recurrent neural network layers can increase the signal-to-noise ratio

of EEG signals when compared to PCA, ICA and a simple auto-encoder.

4.4 Discussion

In this section the strengths and limitations of the results are discussed along with

potential improvements that could be made to improve performance.
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4.4.1 Strengths

The inclusion of a second dataset allowed model generalizability to be tested. Impor-

tantly, it highlighted an issue with the proposed CR-AE and showed that the CR-AE

could not generalize well. The model’s inability to predict early signal values for the

second dataset, indicates that historic information may be required for accurate pre-

dictions. A potential solution could be to include an additional amount of data for

each input that would be omitted from the final output. This would be used only to

aid prediction of early values. As a solution this works though it is not optimum as it

only shifts the error back a number of time-steps. From an architecture point of view

this issue has a number of potential solutions. One of those is the use of non-causal

padding. Causal padding is used to preserve temporal order which prevents the model

from looking forward to future time-steps. As a consequence the model can only look

back to previous time-steps which could be why it seems to require historic data to

generalize. Using same or valid padding could help solve this issue as the CNN would

use both prior and subsequent time-steps. This however violates temporal order which

would be required if the model were to be used in a real-time application.

The use of windowing to augment training data was important as it increased the

number of inputs seven-fold and enabled the model to extract more meaningful infor-

mation from each overlapping slice of a signal. Order was preserved so that all windows

from a single input were passed sequentially to the model, in that was they could be

recombined accordingly post training. This worked well for the primary dataset but

caused issue for the second due to the issue above. Re-combining the windows meant

the issue was repeated throughout the reconstructed signal.

Incorporating both trial and subject sampling enabled the model to be tested on both

unseen data and unseen subjects. By doing so, it showed whether the model could

generalize to data it has never seen. Importantly, it also showed whether the model

could generalize to subjects for whom it has seen no previous data.
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Using dilated convolutions in combination with stacked parallel CNN’s each utilizing

different kernel sizes enabled the model to extract multiple feature maps over varied

length temporal slices at a coarser scale. This increased the models’ receptive field

while maintaining input shape. These output feature maps were then concatenated

and passed through a dense layer to obtain the most meaningful information.

4.4.2 Limitations

Though EEG inherently contains spatial information, given by the scalp location of

each electrode, that information is not utilized by the proposed method. In this case

only temporal information is used without explicitly taking into consideration prox-

imity to nearby electrodes. Another approach to the problem would be to use a two-

dimensional spatial representation of the electrodes at each time-step. Convolutional

layers could then extract spatial information in addition to temporal information from

each time-step. This, in combination with max pooling, could have the effect of en-

hancing the ERP information while reducing the level of noise originating from other

electrodes.

The results obtained for ICA were poor due to the lack of domain specific knowledge

required for its correct implementation. ICA is usually implemented in either a su-

pervised or semi-supervised manner. The approach used in this case required at least

one artefact to be identified for a single subject before being applied broadly across all

subjects. The results suggest that this was done incorrectly as important information

was lost across several electrodes. This meant that any evidence to support rejecting

the null hypothesis could not be used as the results were not reflective. An alterna-

tive approach would be to use results from another piece of research where ICA was

applied correctly and compare the results to those of the proposed CR-AE using the

same dataset. As long as the design of the original research is mirrored, results should

be comparable.
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Though one of the motivations for conducting this research is to reduce the number

of trials required to extract ERP, this is never explored. Increasing the signal-to-noise

ratio is just one aspect of preparing the EEG for analysis and does not necessarily

result in better quality signals. Being able to show that the number of trials required

to extract ERP information has reduced, would further enhance the results and show

that critical information has not been lost in the process. This would be especially

powerful as a direct consequence of not being able to quantify information loss.

74



Chapter 5

Conclusion

5.1 Research Overview

The electroencephalogram is a method of recording electrical potentials in the brain

used to diagnose different brain abnormalities including sleep disorder, epilepsy, stroke,

and coma. These electrical potentials are measured using electrodes attached to the

scalp which capture voltage fluctuations. Their placement is usually defined by one of

the international standards depending on the number of electrodes and scalp coverage.

This high temporal resolution recording is usually conducted during trials of a specific

task where event related potentials can be extracted to analyse a subjects’ reaction.

Despite the availability of other recording methods, the electroencephalogram has

remained in use since the first human EEG was recorded in 1924 by Hans Berger.

5.2 Problem Definition

The low amplitude nature of EEG makes it susceptible to interference. This can arise

in the form of noise from eye and muscle movement, heart beat, line interference and

underlying brain activity. These sources of noise are known as EEG artefacts. Given

the proximity of electrodes on the scalp this noise tends to be present across a number

of electrodes even if it is from ocular artefacts that originate at the frontal parietal

area of the skull.
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Since EEG is used to diagnose brain abnormalities it is imperative that accurate read-

ings are taken so as a misdiagnosis is not given. The presence of artefacts is therefore

a significant issue for EEG analysis. In the past, a number of approaches for removing

these artefacts has been suggested. Early methods included selective rejection of EEG

epochs based on visual inspection, verbal instruction not to blink given to the subjects

and a fixation dot on a screen to reduce the likelihood of ocular artefacts. These proved

useful, but were not effective in all cases and were very time-consuming. As an alterna-

tive, specific electrodes were placed to record artefacts and regression-based methods

were used to remove the specific artefact from all other electrodes. This method was

not applicable to all artefacts and any neural activity present in the reference channel

would also be removed. Therefore, methods based on wavelet transformations and

blind source separation were evaluated as they did not require a reference channel and

addressed some issues with previous methods. However, wavelet transforms required

a number of parameters to be chosen with little appropriate means for their selection

and methods like PCA, which was primarily useful for ocular artefacts, failed to be

fully effective when amplitudes were similar for the artefact and EEG. In addition,

ICA involved similar domain knowledge and time to early rejection methods as com-

ponents had to be inspected and removed manually. To address the limitations of ICA

semi-automated and fully automated methods were developed though removing entire

components could also remove important neural activity.

More recently, advanced machine learning algorithms have been used to solve very

complex problems and their use for EEG analysis has been explored. Unsupervised

learning algorithms, specifically auto-encoders, have the potential to address many

of the issues identified for classic noise reduction techniques. Moreover, their design

encourages accurate input reconstruction which could address the issue of information

loss. If a method such as this could be used to reduce the amount of noise in an EEG

signal in a robust and generalizable manner, without requiring manual intervention or

significant time while minimizing information loss, then the number of trials required
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for ERP analysis could be reduced and the accuracy of clinical diagnose could be im-

proved.

For this research, a stacked auto-encoder designed using convolutional and recurrent

neural network layers was proposed. The goal was to determine if the method could

reduce the level of noise in a signal by improving the signal-to-noise ratio while retain-

ing as much neural activity as possible. To evaluate its effectiveness, the method was

compared to PCA and ICA — two state-of-the-art noise reduction techniques widely

used for EEG signals. In addition, the method was compared to a simple auto-encoder

variant to determine the level of improvement over a similar method. Finally, to ensure

robustness and generalizably a second dataset was included in the research.

5.3 Design, Evaluation & Results

Two datasets were used in this research with both having previously been collected for

ERP analysis. In each case a stimulus was introduced to elicit a cognitive response.

Each trial was epoched around the onset of the stimulus and subset between 100 ms

pre-stimulus and 500 ms post-stimulus. Pre-stimulus values were used to represent

the noise while post-stimulus values represented the meaningful signal. The primary

dataset was then divided into three seperate datasets; one for each condition. Differ-

ences in sample rate and channels mean that the primary dataset was downsampled

by a factor of two and only common channels were retained. Two sampling methods

were applied to each; trial and subject sampling. For the former, 30% of the instances

were set aside as test data with the rest for training. In the latter 30% of all subjects

were set aside for testing with the remaining 70% being used for training. Windowing

using a 300 ms window length and 25 ms shift was then implemented on the train and

test data to augment it. Augmentation was done at this point to preserve order so

that the signals could be easily combined post prediction.
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Three architectures were proposed to solve the problem. Each was a stacked auto-

encoder created by combining CNN and RNN layers. The first was a combination of a

single CNN and single RNN for both the encoder and decoder. The other two utilized

multiple CNN or RNN layers as an extension of architecture one. Causal padding

was used for all CNN layers with dilated convolutions being introduced for sequential

CNN’s. In addition, every layer was made up of three parallel CNN’s each with a

different kernel size followed by average pooling. LSTM was the chosen architecture

for all RNN layers. A dense layer was used to combine the outputs of each parallel

CNN and layer normalization was introduced to normalize the activations after every

RNN layer. Huber loss was used to measure reconstruction error with early stopping

implemented to prevent over-fitting. Finally, GPU accelerated TensorFlow was used

to enable faster training and smaller batch size with more weight updates per epoch.

Each 300 ms window for all 28 channels was used as input to the proposed methods.

Following prediction, these were re-combined with all other relevant windows to create

the original 600 ms signal. The method used to re-combine the windows was to aver-

age the overlapping segments. Two metrics were used for evaluation, those being the

SNR and PSNR. Both were implemented channel-wise across each input to generate

a distribution of values. For comparative purposes, the Harrell-Davis quantile esti-

mator was used to compare distributions. A positive shift was indicated by either a

positive mean quantile difference or by five or more positive quantile differences. This

was done to account for potential outliers in either the quantiles or channels. The

best architecture was chosen by comparing reconstruction loss, SNR and PSNR of the

reconstructed signals to those of the raw signals for both the primary and secondary

datasets. Architecture three performed the best overall with higher mean SNR and

PSNR than the other architectures and higher mean quantile difference across all con-

ditions and sampling methods. However, architecture one had the best reconstruction

error. In addition, none of the architectures generalized to the second dataset which

resulted in the SNR and PSNR not being reported as they did not make sense in the

context. As a result, architecture three was chosen for the CR-AE.
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Three comparative methods were used to determine whether the CR-AE could in-

crease the SNR and PSNR of EEG signals; PCA, ICA and a simple auto-encoder.

PCA with retained variance of 87.35% was used to reconstruct the EEG signals. PCA

was applied to the whole EEG signals before windowing. Results showed that, for

SNR, the proposed CR-AE outperformed PCA in all conditions for both sampling

methods. However, PCA outperformed the CR-AE in terms of PSNR for same. Mean

quantile differences showed that for SNR there was a positive shift but for PSNR there

was an equivalent negative shift.

ICA was implemented in a semi-supervised manner by identifying EEG artefacts for a

single subject and using correlation to identify similar components across all subjects

to remove. Components were removed by setting the values to zero before reconstruct-

ing the signals. This was done using the full continuous EEG as per the literature

before being subset into trials. Results for ICA indicated that the method had not

been implemented correctly. This was likely due to the lack of expertise required for

identifying EEG artefacts and called into question the strength of the results. The

CR-AE achieved higher mean SNR than ICA though lower mean PSNR. Similarly to

PCA, a positive mean quantile difference was observed for SNR with a negative mean

difference for PSNR.

Finally, a simple AE was used ensure the proposed method performed better than the

basic implementation. This was also trained on the windowed signals and separately

for each condition and sampling method. As with PCA and ICA, the proposed CR-AE

achieved higher mean SNR but lower mean PSNR. The quantile differences showed

that the CR-AE exhibited positive mean shift for SNR but negative mean shift for

PSNR.

Given these results and the issues identified for ICA, it was concluded that there was

not enough evidence to support rejecting the null hypothesis.
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5.4 Contributions and impact

This research evaluated the applicability of a convolutional-recurrent auto-encoder to

the task of noise reduction of EEG signals. A CR-AE, using stacked parallel CNN lay-

ers and an LSTM recurrent layer, was successfully implemented and evaluated using

the SNR and PSNR showing this was possible.

Through evaluation, it was found that an increase in SNR was coupled with a corre-

sponding decrease in PSNR. It was also found that the CR-AE could not generalize to

a second dataset due to issues with early sample predictions. However, performance

on subject sampling indicated that the CR-AE could generalize to data from the same

research for unseen subjects.

By comparing performance on the raw signals to the performance of PCA, ICA and

a simple AE on same, it was found that in all cases the CR-AE increased SNR across

all Harrell-Davis quantiles for every condition and sampling method. However, it was

also found that PSNR decreased in all cases across the majority of quantiles except

for the 8th and 9th.

Issues with identifying EEG artefacts in ICA components highlighted both the need

for domain knowledge when doing so, and the benefit of using an unsupervised method

that achieves equivalent results.

The performance of architecture two suggests that, in this case, sequential LSTM layers

do not improve performance when preceded by a CNN. In most cases the SNR, PSNR

and reconstruction error were worse than both other architectures. In comparison, the

performance of architecture three suggests that there is a benefit to using consecutive

parallel CNN layers with dilated convolutions.
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5.5 Future work & recommendations

This research focussed on the application of auto-encoders for noise reduction of EEG

signals. Another topic of potential interest where this research could be expanded, is

the area of mental workload (MWL) modelling. MWL is a highly complex concept,

that explores the interaction of humans with technological devices. It is used to assess

the cognitive effort involved in completing a task to ascertain performance (Longo,

2014, 2018a; Moustafa & Longo, 2019; Rizzo & Longo, 2017, 2019). In particular, fu-

ture research could focus on the area of cognitive load theory, which has evolved within

Education Psychology but is still grounded in the same concepts as MWL (Orru &

Longo, 2019). With applications in medicine (Longo, 2015), human computer inter-

action (HCI) (Longo, 2011) and education (Longo, 2018b; Longo & Orru, 2019) there

is plenty of scope within which to explore the application of auto-encoders to EEG

signals for noise reduction in this field.

Prediction accuracy, on early samples from the secondary dataset inputs, highlighted

the inability for the CR-AE to generalize to other datasets. As mentioned previously,

this could be a result of using causal padding which limits the CNN to prior time-steps

for predictions. An extension of this work could look to determine whether an alter-

native padding could be used to improve model generalizability. Another potential

option would be to use a bi-directional wrapper for the LSTM layers, which learns

from the original input and a reversed copy of it. In both cases this does not preserve

temporal order so could not be used in a real-time scenario but it could enable the

model to generalize better.

One of the limitations with using the GPU accelerated LSTM layers is the constraint

imposed on hyper-parameter selection and consequently tuning. For this research,

therefore there was little experimentation with LSTM hyper-parameters. In partic-

ular, recurrent dropout, which probabilistically excludes units from activation and

weight updates could be used to improve model performance. For future work, I
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would recommend focussing on how model performance is impacted by altering model

hyper-parameters particularly in relation to performance on the secondary dataset if

applicable.

As noted before, this research was motivated by the potential to reduce the required

number of trials for ERP extraction. An extension of this research, which may also

give context to the information loss incurred as a result of de-noising, would be to

determine the number of trials required to extract ERP from the EEG signals. This

could be achieved by averaging over an incremental number of trials before and after

applying the CR-AE and generating a distribution of error values between the actual

ERP, extracted from averaging all 100 trials per condition and subject, to the ERP’s

generated for the raw and reconstructed signals at each incremental number of av-

eraged trials. In doing so, this would show the point at which error was lowest, the

point at which it stopped improving and the information gain at each point. It would

however be imperative to maintain the original order of the trials to ensure each ERP

is generated using only information that had been captured to that point.

Given the spatial topography of EEG scalp electrodes, and the use of convolutional

layers it would be interesting to extend this work to a two-dimensional implementation

of the CNN by generating a spatial array of the values at each electrode on a given

channel for each time-step. This could be achieved by creating a sparse (n×m) ma-

trix M where each value M(i, j) would represent an electrode location with the value

being either zero, representing no electrode, or the voltage amplitude recorded for the

electrode at time τ . This would then become an (n × m × τ) matrix which could

be used as input to the two-dimensional CNN. By doing this, spatial and temporal

information could be extracted thus enhancing the model. If used in combination with

windowing, this could be very powerful as a single trial could be split into overlap-

ping windows which would enhance the temporal information available to the model.

As an alternative to simple data augmentation, this could actually then become an

(ω × n × m × τ) input, where ω is the number of windows, which can be used in a
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three-dimensional convolutional layer, commonly used for MRI or CT scan imagery.

As model performance improved when using stacked convolutional layers, a final sug-

gestion would be to add more sequential CNN layers to take additional advantage

of deep learning and its numerous benefits. With more layers even higher dilation

could be used which would allow the model to learn even sparser representations of

the inputs and potentially increase the signal-to-noise ratio even more.
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Appendix A

Additional content

Electrode Placement Sites

Pre-frontal Frontal Frontal Central Central Temporal Central Parietal Temporal Parietal Parietal Occipital Ground

Fp1 F3 FC1 C3 T7 CP1 TP10 P3 O1 Fz

Fp2 F4 FC2 C4 T8 CP2 P4 O2 Oz

F7 FC5 CP5 P7 Pz

F8 FC6 CP6 P8

Table A.1: Common electrode placement sites for primary and secondary datasets
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Figure A.1: Technical model of proposed CR-AE
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Hyperparameters

Stage Layer Block 1 Block 2 Block 3

Conv1D

Filters = 28

Kernel size = 3

Strides = 1

Padding = ’causal’

Dilation rate = 1

Activation = ’linear’

Filters = 28

Kernel size = 5

Strides = 1

Padding = ’causal’

Dilation rate = 1

Activation = ’linear’

Filters = 28

Kernel size = 7

Strides = 1

Padding = ’causal’

Dilation rate = 1

Activation = ’linear’

Encoder AveragePooling1D Pool size = 3 Pool size = 3 Pool size = 3

Concatenate

TimeDistributed(Dense) Units = 28

CuDNNLSTM Units = 150

LayerNormalisation

CuDNNLSTM Units = 150

LayerNormalisation

Decoder Conv1D

Filters = 28

Kernel size = 3

Strides = 1

Padding = ’causal’

Dilation rate = 1

Activation = ’linear’

Filters = 28

Kernel size = 5

Strides = 1

Padding = ’causal’

Dilation rate = 1

Activation = ’linear’

Filters = 28

Kernel size = 7

Strides = 1

Padding = ’causal’

Dilation rate = 1

Activation = ’linear’

UpSampling1D Size = 3 Size = 3 Size = 3

Concatenate

TimeDistributed(Dense) Units = 28

Table A.2: Chosen hyper-parameters for architecture 1
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Hyperparameters

Stage Layer Block 1 Block 2 Block 3

Conv1D

Filters = 28

Kernel size = 3

Strides = 1

Padding = ’causal’

Dilation rate = 1

Activation = ’linear’

Filters = 28

Kernel size = 5

Strides = 1

Padding = ’causal’

Dilation rate = 1

Activation = ’linear’

Filters = 28

Kernel size = 7

Strides = 1

Padding = ’causal’

Dilation rate = 1

Activation = ’linear’

AveragePooling1D Pool size = 3 Pool size = 3 Pool size = 3

Concatenate

Encoder TimeDistributed(Dense) Units = 28

CuDNNLSTM Units = 150

LayerNormalisation

CuDNNLSTM Units = 150

LayerNormalisation

CuDNNLSTM Units = 150

LayerNormalisation

CuDNNLSTM Units = 150

LayerNormalisation

Decoder Conv1D

Filters = 28

Kernel size = 3

Strides = 1

Padding = ’causal’

Dilation rate = 1

Activation = ’linear’

Filters = 28

Kernel size = 5

Strides = 1

Padding = ’causal’

Dilation rate = 1

Activation = ’linear’

Filters = 28

Kernel size = 7

Strides = 1

Padding = ’causal’

Dilation rate = 1

Activation = ’linear’

UpSampling1D Size = 3 Size = 3 Size = 3

Concatenate

TimeDistributed(Dense) Units = 28

Table A.3: Chosen hyper-parameters for architecture 2
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Hyperparameters

Stage Layer Block 1 Block 2 Block 3

Conv1D

Filters = 28

Kernel size = 3

Strides = 1

Padding = ’causal’

Dilation rate = 1

Activation = ’linear’

Filters = 28

Kernel size = 5

Strides = 1

Padding = ’causal’

Dilation rate = 1

Activation = ’linear’

Filters = 28

Kernel size = 7

Strides = 1

Padding = ’causal’

Dilation rate = 1

Activation = ’linear’

AveragePooling1D Pool size = 3 Pool size = 3 Pool size = 3

Encoder Conv1D
Dilation rate = 2

All other parameters as above

Dilation rate = 2

All other parameters as above

Dilation rate = 2

All other parameters as above

AveragePooling1D Pool size = 3 Pool size = 3 Pool size = 3

Concatenate

TimeDistributed(Dense) Units = 28

CuDNNLSTM Units = 150

LayerNormalisation

CuDNNLSTM Units = 150

LayerNormalisation

Conv1D
Dilation rate = 2

All other parameters as below

Dilation rate = 2

All other parameters as below

Dilation rate = 2

All other parameters as below

UpSampling1D Size = 3 Size = 3 Size = 3

Decoder Conv1D

Filters = 28

Kernel size = 3

Strides = 1

Padding = ’causal’

Dilation rate = 1

Activation = ’linear’

Filters = 28

Kernel size = 5

Strides = 1

Padding = ’causal’

Dilation rate = 1

Activation = ’linear’

Filters = 28

Kernel size = 7

Strides = 1

Padding = ’causal’

Dilation rate = 1

Activation = ’linear’

UpSampling1D Size = 3 Size = 3 Size = 3

Concatenate

TimeDistributed(Dense) Units = 28

Table A.4: Chosen hyper-parameters for architecture 3
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SNR PSNR

Split Decile PCA vs Raw CR-AE vs Raw Difference PCA vs Raw CR-AE vs Raw Difference

1 -0.041 0.099 0.140 0.028 -1.536 -1.564

2 -0.020 0.264 0.285 -0.003 -1.037 -1.034

3 -0.014 0.380 0.395 0.026 -0.809 -0.835

4 0.012 0.534 0.521 0.035 -0.631 -0.666

Trial 5 0.039 0.656 0.617 0.025 -0.437 -0.463

6 0.016 0.757 0.741 0.034 -0.261 -0.295

7 -0.009 0.882 0.890 0.037 -0.108 -0.145

8 0.015 1.034 1.019 -0.004 0.115 0.119

9 0.020 1.257 1.237 -0.004 0.446 0.451

Mean 0.002 0.651 0.649 0.019 -0.473 -0.492

Table A.5: SNR and PSNR HD quantile differences for PCA and the proposed CR-AE

— condition 2 trial sampling

SNR PSNR

Split Decile PCA vs Raw CR-AE vs Raw Difference PCA vs Raw CR-AE vs Raw Difference

1 -0.032 0.051 0.083 -0.045 -1.626 -1.582

2 -0.005 0.212 0.217 -0.052 -1.128 -1.076

3 -0.002 0.328 0.330 0.004 -0.918 -0.922

4 0.018 0.463 0.445 0.037 -0.728 -0.765

Subject 5 0.015 0.581 0.567 0.031 -0.562 -0.593

6 0.039 0.713 0.674 0.042 -0.387 -0.429

7 0.028 0.849 0.821 0.041 -0.223 -0.264

8 0.002 1.002 1.001 0.069 0.028 -0.041

9 0.031 1.218 1.187 0.105 0.300 0.195

Mean 0.010 0.602 0.592 0.026 -0.583 -0.608

Table A.6: SNR and PSNR HD quantile differences for PCA and the proposed CR-AE

— condition 2 subject sampling
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SNR PSNR

Split Decile PCA vs Raw CR-AE vs Raw Difference PCA vs Raw CR-AE vs Raw Difference

1 -0.016 0.058 0.074 -0.021 -1.716 -1.694

2 -0.018 0.212 0.230 -0.019 -1.174 -1.155

3 -0.031 0.356 0.386 -0.037 -0.897 -0.860

4 -0.040 0.490 0.530 -0.041 -0.678 -0.637

Trial 5 -0.029 0.615 0.644 -0.032 -0.498 -0.466

6 -0.031 0.720 0.751 -0.061 -0.339 -0.278

7 -0.047 0.867 0.914 -0.062 -0.161 -0.099

8 -0.035 1.041 1.075 -0.018 0.078 0.096

9 -0.003 1.271 1.275 0.009 0.446 0.437

Mean -0.028 0.626 0.653 -0.031 -0.549 -0.517

Table A.7: SNR and PSNR HD quantile differences for PCA and the proposed CR-AE

— condition 3 trial sampling

SNR PSNR

Split Decile PCA vs Raw CR-AE vs Raw Difference PCA vs Raw CR-AE vs Raw Difference

1 -0.035 0.040 0.075 -0.032 -1.695 -1.663

2 -0.040 0.195 0.235 -0.007 -1.180 -1.174

3 -0.047 0.341 0.388 -0.026 -0.912 -0.886

4 -0.027 0.467 0.493 -0.004 -0.710 -0.707

Subject 5 0.001 0.586 0.586 -0.036 -0.543 -0.508

6 0.009 0.730 0.721 -0.049 -0.400 -0.351

7 -0.023 0.844 0.867 -0.005 -0.216 -0.212

8 -0.013 1.018 1.031 -0.008 -0.030 -0.022

9 -0.011 1.286 1.297 0.024 0.254 0.230

Mean -0.021 0.612 0.633 -0.016 -0.604 -0.588

Table A.8: SNR and PSNR HD quantile differences for PCA and the proposed CR-AE

— condition 3 subject sampling
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SNR PSNR

Split Decile ICA vs Raw CR-AE vs Raw Difference ICA vs Raw CR-AE vs Raw Difference

1 -0.096 0.099 0.195 -0.039 -1.536 -1.497

2 -0.085 0.264 0.350 -0.075 -1.037 -0.962

3 -0.098 0.380 0.479 -0.095 -0.809 -0.714

4 -0.106 0.534 0.639 -0.106 -0.631 -0.525

Trial 5 -0.114 0.656 0.770 -0.122 -0.437 -0.316

6 -0.117 0.757 0.874 -0.141 -0.261 -0.121

7 -0.135 0.882 1.016 -0.165 -0.108 0.057

8 -0.142 1.034 1.175 -0.193 0.115 0.309

9 -0.173 1.257 1.429 -0.245 0.446 0.691

Mean -0.118 0.651 0.770 -0.131 -0.473 -0.342

Table A.9: SNR and PSNR HD quantile differences for ICA and the proposed CR-AE

— condition 2 trial sampling

SNR PSNR

Split Decile ICA vs Raw CR-AE vs Raw Difference ICA vs Raw CR-AE vs Raw Difference

1 -0.109 0.051 0.160 -0.099 -1.626 -1.527

2 -0.099 0.212 0.311 -0.123 -1.128 -1.005

3 -0.106 0.328 0.434 -0.141 -0.918 -0.777

4 -0.107 0.463 0.570 -0.152 -0.728 -0.576

Subject 5 -0.116 0.581 0.698 -0.162 -0.562 -0.399

6 -0.104 0.713 0.816 -0.179 -0.387 -0.207

7 -0.105 0.849 0.954 -0.188 -0.223 -0.034

8 -0.115 1.002 1.118 -0.215 0.028 0.243

9 -0.124 1.218 1.342 -0.246 0.300 0.546

Mean -0.110 0.602 0.712 -0.167 -0.583 -0.415

Table A.10: SNR and PSNR HD quantile differences for ICA and the proposed CR-AE

— condition 2 subject sampling

103



APPENDIX A. ADDITIONAL CONTENT

SNR PSNR

Split Decile ICA vs Raw CR-AE vs Raw Difference ICA vs Raw CR-AE vs Raw Difference

1 -0.044 0.058 0.101 -0.024 -1.716 -1.691

2 -0.049 0.212 0.261 -0.034 -1.174 -1.140

3 -0.055 0.356 0.410 -0.067 -0.897 -0.830

4 -0.054 0.490 0.544 -0.073 -0.678 -0.605

Trial 5 -0.062 0.615 0.677 -0.089 -0.498 -0.409

6 -0.055 0.720 0.775 -0.112 -0.339 -0.227

7 -0.065 0.867 0.932 -0.120 -0.161 -0.041

8 -0.089 1.041 1.130 -0.162 0.078 0.240

9 -0.139 1.271 1.410 -0.225 0.446 0.671

Mean -0.068 0.626 0.694 -0.101 -0.549 -0.448

Table A.11: SNR and PSNR HD quantile differences for ICA and the proposed CR-AE

— condition 3 trial sampling

SNR PSNR

Split Decile ICA vs Raw CR-AE vs Raw Difference ICA vs Raw CR-AE vs Raw Difference

1 -0.045 0.040 0.085 0.004 -1.695 -1.698

2 -0.057 0.195 0.252 -0.031 -1.180 -1.150

3 -0.056 0.341 0.397 -0.046 -0.912 -0.866

4 -0.062 0.467 0.529 -0.060 -0.710 -0.650

Subject 5 -0.057 0.586 0.643 -0.072 -0.543 -0.471

6 -0.065 0.730 0.795 -0.092 -0.400 -0.308

7 -0.067 0.844 0.911 -0.113 -0.216 -0.103

8 -0.088 1.018 1.107 -0.139 -0.030 0.108

9 -0.130 1.286 1.416 -0.195 0.254 0.449

Mean -0.070 0.612 0.681 -0.083 -0.604 -0.521

Table A.12: SNR and PSNR HD quantile differences for ICA and the proposed CR-AE

— condition 3 subject sampling
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SNR PSNR

Split Decile AE vs Raw CR-AE vs Raw Difference AE vs Raw CR-AE vs Raw Difference

1 -0.059 0.099 0.158 0.006 -1.536 -1.543

2 -0.033 0.264 0.298 0.021 -1.037 -1.058

3 -0.040 0.380 0.421 -0.005 -0.809 -0.804

4 -0.036 0.534 0.570 0.003 -0.631 -0.634

Trial 5 -0.019 0.656 0.674 -0.024 -0.437 -0.413

6 -0.026 0.757 0.783 -0.011 -0.261 -0.250

7 -0.039 0.882 0.920 -0.021 -0.108 -0.087

8 -0.027 1.034 1.061 -0.042 0.115 0.157

9 -0.081 1.257 1.337 -0.037 0.446 0.484

Mean -0.040 0.651 0.691 -0.012 -0.473 -0.461

Table A.13: SNR and PSNR HD quantile differences for AE and the proposed CR-AE

— condition 2 trial sampling

SNR PSNR

Split Decile AE vs Raw CR-AE vs Raw Difference AE vs Raw CR-AE vs Raw Difference

1 -0.029 0.051 0.080 -0.097 -1.626 -1.530

2 0.001 0.212 0.210 -0.049 -1.128 -1.079

3 -0.022 0.328 0.350 -0.020 -0.918 -0.898

4 -0.003 0.463 0.466 -0.001 -0.728 -0.727

Subject 5 -0.018 0.581 0.599 0.007 -0.562 -0.568

6 0.006 0.713 0.706 0.032 -0.387 -0.419

7 -0.004 0.849 0.854 0.016 -0.223 -0.239

8 -0.022 1.002 1.024 0.020 0.028 0.008

9 -0.055 1.218 1.273 0.071 0.300 0.229

Mean -0.016 0.602 0.618 -0.002 -0.583 -0.580

Table A.14: SNR and PSNR HD quantile differences for AE and the proposed CR-AE

— condition 2 subject sampling
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SNR PSNR

Split Decile AE vs Raw CR-AE vs Raw Difference AE vs Raw CR-AE vs Raw Difference

1 -0.062 0.058 0.119 0.072 -1.716 -1.788

2 -0.056 0.212 0.268 -0.006 -1.174 -1.168

3 -0.064 0.356 0.420 0.000 -0.897 -0.897

4 -0.077 0.490 0.567 -0.032 -0.678 -0.647

Trial 5 -0.080 0.615 0.695 -0.045 -0.498 -0.453

6 -0.091 0.720 0.811 -0.077 -0.339 -0.262

7 -0.086 0.867 0.953 -0.103 -0.161 -0.058

8 -0.081 1.041 1.121 -0.052 0.078 0.131

9 -0.047 1.271 1.318 -0.014 0.446 0.460

Mean -0.071 0.626 0.697 -0.029 -0.549 -0.520

Table A.15: SNR and PSNR HD quantile differences for AE and the proposed CR-AE

— condition 3 trial sampling

SNR PSNR

Split Decile AE vs Raw CR-AE vs Raw Difference AE vs Raw CR-AE vs Raw Difference

1 -0.061 0.040 0.101 -0.023 -1.695 -1.672

2 -0.067 0.195 0.262 -0.031 -1.180 -1.149

3 -0.063 0.341 0.404 -0.030 -0.912 -0.882

4 -0.066 0.467 0.533 -0.004 -0.710 -0.706

Subject 5 -0.060 0.586 0.646 -0.033 -0.543 -0.511

6 -0.050 0.730 0.779 -0.072 -0.400 -0.328

7 -0.066 0.844 0.909 -0.045 -0.216 -0.172

8 -0.053 1.018 1.071 -0.041 -0.030 0.011

9 -0.015 1.286 1.301 -0.014 0.254 0.267

Mean -0.056 0.612 0.667 -0.032 -0.604 -0.571

Table A.16: SNR and PSNR HD quantile differences for AE and the proposed CR-AE

— condition 3 subject sampling
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(a) CR-AE vs Raw - SNR condition 1
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(b) CR-AE vs Raw - PSNR condition 1

Figure A.2: Heat-maps of SNR and PSNR HD quantile differences at channel level for

CR-AE reconstructed signals compared to original signals — condition 1
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(a) CR-AE vs Raw - SNR condition 2
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(b) CR-AE vs Raw - PSNR condition 2

Figure A.3: Heat-maps of SNR and PSNR HD quantile differences at channel level for

CR-AE reconstructed signals compared to original signals — condition 2
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(a) CR-AE vs Raw - SNR condition 3
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(b) CR-AE vs Raw - PSNR condition 3

Figure A.4: Heat-maps of SNR and PSNR HD quantile differences at channel level for

CR-AE reconstructed signals compared to original signals — condition 3
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(a) PCA vs Raw - SNR condition 1
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(b) PCA vs Raw - PSNR condition 1

Figure A.5: Heat-maps of SNR and PSNR HD quantile differences at channel level for

PCA reconstructed signals compared to original signals — condition 1
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(a) PCA vs Raw - SNR condition 2
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(b) PCA vs Raw - PSNR condition 2

Figure A.6: Heat-maps of SNR and PSNR HD quantile differences at channel level for

PCA reconstructed signals compared to original signals — condition 2

1 2 3 4 5 6 7 8 9
Harrell-Davis Quantile

C3
C4
CP1
CP2
CP5
CP6
F3
F4
F7
F8

FC1
FC2
FC5
FC6
Fp1
Fp2
Fz
O1
O2
Oz
P3
P4
P7
P8
Pz
T7
T8

TP10

El
ec
tro

de
 L
ab
el

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

(a) PCA vs Raw - SNR condition 3
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(b) PCA vs Raw - PSNR condition 3

Figure A.7: Heat-maps of SNR and PSNR HD quantile differences at channel level for

PCA reconstructed signals compared to original signals — condition 3
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(a) ICA vs Raw - SNR condition 1
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(b) ICA vs Raw - PSNR condition 1

Figure A.8: Heat-maps of SNR and PSNR HD quantile differences at channel level for

ICA reconstructed signals compared to original signals — condition 1
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(a) ICA vs Raw - SNR condition 2
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(b) ICA vs Raw - PSNR condition 2

Figure A.9: Heat-maps of SNR and PSNR HD quantile differences at channel level for

ICA reconstructed signals compared to original signals — condition 2
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(a) ICA vs Raw - SNR condition 3
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(b) ICA vs Raw - PSNR condition 3

Figure A.10: Heat-maps of SNR and PSNR HD quantile differences at channel level

for ICA reconstructed signals compared to original signals — condition 3
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(a) AE vs Raw - SNR condition 1
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(b) AE vs Raw - PSNR condition 1

Figure A.11: Heat-maps of SNR and PSNR HD quantile differences at channel level

for AE reconstructed signals compared to original signals — condition 1
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(a) AE vs Raw - SNR condition 2
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(b) AE vs Raw - PSNR condition 2

Figure A.12: Heat-maps of SNR and PSNR HD quantile differences at channel level

for AE reconstructed signals compared to original signals — condition 2
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(a) AE vs Raw - SNR condition 3
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(b) AE vs Raw - PSNR condition 3

Figure A.13: Heat-maps of SNR and PSNR HD quantile differences at channel level

for AE reconstructed signals compared to original signals — condition 3
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