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Abstract.

Tensiography is a technique that determines the physical and chemical properties of a liquid
by illuminating a growing pendant drop from within using a source fibre. Light reflected
internally at the surface of the drop is recieved by a collector fibre and is converted into an
electric signal called a tensiotrace, which is a graph of reflected light as a function of drop
volume. The instrument obtaining this signal is called multianalyser. A numerical model
that simulates tensiotraces through a raytracing analysis (RAST - Raytracing Analysis for the
Simulation of Tensiotraces) of the multianalyser as been developed to define theoretically how
the tensiotrace describes the physical and chemical properties of a liquid. The purpose of this
study is to investigate the model as an engineering/design assistant leading to discoveries and
improvements to the multianalyser.

Published under licence by IOP Publishing Ltd 1
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1. Introduction

1.1. Tensiography

Tensiography [1] is a technique that determines physical and chemical properties of a liquid [2]
from illuminating a growing pendant drop from within by a source fibre. Light reflected at
the surface of the drop is received by a collector fibre and is converted into an electric signal
called a tensiotrace, the graph of reflected light intensity versus drop volume. The tensiotrace
records the entire drop history from remnant drop initiations until the mature drop separates.
The optical tensiograph [3] (also known as drop analyser or multi analyser) is an Amplitude
Modulated Fibre Optic Sensor (AMFOS) instrument that records tensiotraces.
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Figure 1: Schematic diagram of the tensiograph instrument

The scheme of the instrument arrangement is shown in figure 1. The liquid a, which is
to be analysed is pumped via the liquid delivery tube ¢ to the drophead d using a motor
stepper pump b and a pendant drop grows at a uniform volume rate (isochoric) in size until
it separates from the drophead. Throughout this process, light from a light emitting diode
(LED) f is injected into the drop through the source-fibre and the reflected signal, picked up by
the collector-fibre is transmitted to a photodiode h. The amplification of the low photocurrent
into an adequate voltage signal is necessary before the signal is passed to an acquisition board
(an electronic system based on a programmable interface controller (PIC) and other suitable
electronics hardware) incorporated in a personal computer (PC) i. The Peltier temperature
control block e maintains the temperature of the LUT at usually 20°C or 25°C0.1°C'. The
optical eyes g enable the signal to be scissored - the initial trigger occurs when the initiation
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drop falls through the optical eye and triggers the start of the data acquisition, indicating when
the measurement drop has arrived on the drophead and then the data acquisition continues until
this drop falls off the drophead and the second trigger locates precisely the ending of recording
of the tensiotrace (a data set recorded over the life cycle of the drop). Two-stages anti-vibration
mounts [ and m protect the drop from vibrations. The analogue to digital converter (ADC)
of the acquisition board converts the analogue voltage (amplified optoelectronic signal from the
detector) into a digital signal, which is then subsequently transferred to the memory of the PC
where it is stored for later analysis. There is a source-detector employing a CCD (charged couple
device) or CMOS (complementary metal oxide semi-conductor) detector in conjunction with a
spectral source such as fibre deuterium, xenon, halogen or tungsten sources. Such a system
provides a spectral array of tensiotraces; one for every measurement wavelength.

The instrument has been engineered to deliver measurements of the physical properties of the
LUT, namely surface tension/density ratio, refractive index (n), colour at a specific wavelength
(absorption = A)) and turbidity at a specific wavelength. The instrument can also be used for
quality assurance for solid products such as pharmaceutical products if these are dissolved in
an appropriate solvent for this purity/fingerprinting assay. It can also be used to sensitively
monitor chemical and biochemical kinematics processes.

Figure 2 shows a typical concave drophead. The practical problem with such a design is
fundamental in that physical damage can be caused due to exposure of the fibres. As a result
of this study, a patented quartz drophead has been designed that gives the same universal
fingerprint capability as this traditional drophead. This new design of drophead is one of the
key innovations that facilitates accurate, reproducible and sensitive tensiography. Tensiography
has potential to contribute to quality assurance in the wine industry in terms of chemical analysis
and fingerprinting.

Source Collector
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Figure 2: Drophead configuration

1.2. Tensiotraces
The key concept of the tensiograph is the fact that all the various physical and chemical
processes that modulate the coupled light in the drop produce a signal, which is unique in
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a theoretical sense for every specific combination of properties of the LUT. These processes
include (i) partial reflection of the light beam inside the pendant drop, (ii) absorption of the
light from chromophores in the liquid, (iii) scattering of the light from turbid particulate matter,
(iv) changes in the emission angle from the source fibre, and indeed perhaps other processes. The
detected light intensity is amplitude modulated during the life cycle of a drop i.e. the reflecting
surface of the inner drop changes continuously. Figure 3 shows the characteristic features of
a tensiotrace. The physical features of tensiotraces are defined by the physical and chemical
properties of the LUT such as density, colour, refractive index and adbsorbance. Although each
of these can be measured from tensiotraces, the measurands are not statistically independant.
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Figure 3: Tensiotrace showing the important trace features associated with drop mechanics,
labeled 0 to 7

The first-order peak (proto-peak) is not seen in the current drophead design where the first
order coupling is geometrically impossible because the measurement drop is too flat with the
widely spaced fibres. The horizontal axis can be either volume or time as both are equivalent
for constant volume delivery from stepper pumps. Here only volume is shown but this quantity
is derived from a time measurement.

The positioning of the fibres in the drophead has been engineered to optimise the measurement
of various physical /chemical properties. The rainbow peak height and position in the tensiotrace
is a good measure of refractive index. It gets its name from the fact that in rainbows a
measurement of the angle of the bow to that of the observer provides a measurement of the
refractive index of the liquid. The height of the major tensiograph peak (3-tensiopeak) provides
a good measurand for determining the colour and/or turbidity of the solution in that this
decreases with respectively the increasing absorptive or scattering power of the liquids. The
drop period can be used to give a good measure of the surface tension/density ratio. Other
physical measurements have been shown to be possible with the tensiograph, but the principal
use of the tensiograph is as a fingerprinting technique. The combination of the physical and
chemical properties of the drop defines the form of the tensiotrace and thus the tensiotrace
provides a very sensitive fingerprint technique for liquids, or indeed solid samples dissolved in a
solvent.

The computer model described below reveals that the coupling of the light from source fibre
to collector fibre can be represented as a 2-D process as the drop grows and with this volume
growth higher reflection orders develop. The light must enter the collector fibre within the
acceptance angle. Therefore the first order ’single’ reflection off a position close to the centre of
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the drop base in the smallest drop does not couple to the detector. An important measurement
position is known as the commencement or RPC (7 in figure 1) at which the light from source
fibre is received by the collector fibre and can be transmitted in the multimode fibre to the
detector. In the drophead design used in this study no light couples to the detector until the
second order reflection begins to develop in a larger drop with reflections off either side of the
drop.

1.8. The RAST model

A computer program that simulates tensiotraces through a raytracing analysis (RAST model)
has been developed using Matlab to define the formation of tensiotraces. Modeled tensiotraces
from this model were compared qualitatively and quantitatively to experimental tensiotraces of
different liquids in order to evaluate the model.

A representation of the drophead is coded in the program. All dimensions including indent
of the quartz disc, position and size of the fibres are normalised on the radius of the drophead.
This is the basis of a dimensionless invariant model. Figure 4 shows a 2D cross section of
the drophead model; notice the scale is normalised to -1 ... 1. The drop head dimensions are
extremely important for the model and are later used when simulating the rays of light.

09
3 [ [ 2]
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Figure 4: Representation of a drophead

In this schematic representation of the quartz drop head (figure 4), the quartz disc protecting
the fibres is clearly visible. The two vertical lines on the outside of the disc represent the edges
of the lip and the two small rectangles at the top are the fibers. The emitting fiber cone of light
and the detector fiber acceptance angle are represented by the triangles. This representation is
only an approximation since these dimensions can only be fabricated by Starna with a tolerance
of 0.1 mm. In particular the edge of the drophead cannot be fabricated as represented.

The RAST model is best described by figure 5. Each drop shape is grown incrementally from
the apex using Runge-Kunta 4 algorithms and following the Laplace-Young equation until the
radius of the drop shape is 1 (normalised drophead diameter = 2).

The life cycle of the drop is created by modelling the drop shapes from the value of X, that
corresponds to the solution with the smallest permissible volume. Solutions for smaller drop
shapes could be obtained but the corresponding drop would not attach to the drophead edge
(angle of attachment too small) and as such would be smaller than the remnant drop. Xy is
then increased incrementally and more drop shapes are calculated. A point is eventually reached
when a further increase in X actually results in a decrease in volume. This point in the drop
cycle is considered to be the theoretical drop separation. Indeed, as more liquid is pumped in
the drop, the drop has to increase in size or fall. Since there is no more solution to the equation
forming a larger drop, the drop must have fallen. This is a theoretical maximum and it is
believed that the drop separation can be slightly earlier as vibrations and liquid fluid mechanics
are not taken in consideration here.

To form a tensiotrace, light emitted from the fibre goes through the drop and is coupled to
the detector fiber. The model follows the same principle, modelling the light as a collection of
rays. The emission from the multimode fibre is modelled by a cone of rays from the source fiber
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Define drop shape

Define cone of light
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Figure 5: RAST algorithm

comprising at least 1000 rays (100,000 is more typical). Each ray starts from the surface of the
fiber and has a direction limited by the numerical aperture of the fiber. This collection of rays
forms the cone of light previously mentioned. Figure 4 shows the cone of light given by the
numerical aperture of the fibers. In order to cover the fibre end uniformly, a parameter ny, is
defined, corresponding to the number of possible values of theta (angle of ray with vertical norm)
between 0 and the numerical aperture NA. n;, = 200 corresponds to 125830 rays calculated per
dropshape and is the value used for data collection. The emission from a fibre is non-uniform
and the intensity is accurately described by a cosf function [4] based on the Warn’s illumination
model [5].

Rays first have to go through the quartz disc protecting the fibre from the liquid. Light is
refracted at each interface and the new direction is calculated using the Fresnel equation [6].
Similarly to the emission end, rays when reaching the quartz disc are refracted on to the fibres
level. The position is calculated as well as the angle of incidence. Rays are coupled (transmitted
along the fiber and reach the detector) only if they hit the collector fiber with an incidence angle
less or equal to the numerical aperture of the fiber. If the ray is coupled to the detector fiber,
its intensity is added to the tensiotrace intensity for that volume.
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2. Experimental

The testing involves the engineering process to create the new patented quartz drop head
(see figure 6) made by Starna and the repercussions on the measurement capabilities of the
instrument. The main objective is to show how the model can be used to improve the
drophead design for a particular application. Each set of result gives a better understanding
of tensiography and the tensiotraces. Also testing a new drophead design in order to obtain
the desired tensiotrace can be very costly both financially and in man-hours. Indeed it requires
changing the design and building a new prototype but also retesting the new drophead and
analysing the results. The model facilitates this analysis at a fraction of the cost.

B3

rp=4.2% I

Figure 6: Representation of the quartz drophead

Simulations have been carried out in order to test the effect of different measurements of the
new quartz drophead.

the disc thickness
the fibre diameter
the fibre position
the edge height (Zyp)

A cross section analysis was also carried out in order to study the impact position of rays and
evaluate the possibility of simultaneous multi-wavelength analysis.
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3. Results
3.1. Analysis of the disc thickness

Tensiotraces of water
on a 8.5mm drophead

dx0 = 0.005 - nb rays per dropshape = 125825
0051

disc=5mm
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0.035
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Figure 7: Modeled Tensiotraces of water for various disc thickness

Figure 7 shows the effect of the size of the quartz disc on tensiotraces. Although quartz is
a transparent medium, the thicker the disc, the less light goes through; this results in lowering
the intensity of the tensiotrace. It should be noted that the quartz disc is protecting the fibres
from the LUT and the possible damages from proteins 7?7. Another effect of the quartz disc
is to narrow the numerical aperture of the fibres as the refractive index of the disc is different
from the refractive index of the fibres. This is shown by a larger reduction of intensity on the
rainbow peak than on the tensio peak. This is shown in figure 8 where the downward slope for
RPH is greater than for TPH. Ideally the smaller thickness is preferred as optical coupling is
optimised but fabrication issues force the minimum size to 1mm.

Analysis of Rainbow Peak Height vs Disc Thickness
of water on a 8.5mm drophead
ox0 = 0.005 - nb rays per dropshape = 125825
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Analysis of Tensio Peak Height vs Disc Thickness
of water on a 8.5mm drophead
0 = 0.005 - nb rays per dropshape = 125825

005+

0031

= 0.045 E\\\\

S 0o1sf 2 .

5 5 ~

< oo} T g

i 0o4t ~I.

D ©

3 \ 2 T~

el w -

2 nonzf . 2 .

= . 3 0035 . <
T g g y=0.24x2 +-0.17x +0.054 T

0.05

0.1 0.15
Disc Thickness

(b) Tensio Peak Height

Figure 8: Analysis of effect of disc thickness on RPH and TPH

02

3.2. Analysis of the fibre diameter
Figure 9 shows the effect on tensiotraces when changing the diameter of both fibres. Even though
the simulations could have been carried out with input and output fibres of different diameter,
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Figure 9: Modeled tensiotraces of water for various fibre diameters

this would cause problems when fabricating the drop heads as drilling quartz is a challenging
process. The different fibres simulated were taken from the artphotonics catalogue [7].

Increasing the diameter of the fibres effectively increases the light being transmitted to
the detector and as such probably increases the detection limit. In drop spectroscopy good
quantitative capability is required. It is achieved by maximising the optical throughput (i.e.
increasing the fibre diameter). However, the drophead was designed in order to maximize the
resolution of each peak. The larger fibre simulated here (FIB = 1500um) affects the quality
of the tensio peak to such a degree that the shoulder peak disappears. It can be argued that
600 micron fibres give a better resolution of separation peak and noticeably better symmetry
in the rainbow peak. In practice, a compromise is found using 1000 micron fibres but this does
not seem to be the best option in all cases. It is important that the drop head is designed for
purpose. The RAST model can help achieve this. Figure 10 shows that the fibre diameter has
a linear relationship with the tensiopeak height.

Analysis of Rainbow Peak Height vs Fibre Diameter Analysis of Tensio Peak Height vs Fibre Diameter
of water on a 8. 5mm drophead of water on a 8.5mm drophead
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Figure 10: Analysis of effect of fibre diameter on RPH and TPH

3.8. Analysis of fibre position
Tensiotraces of water were modelled on a quartz drophead with different positions for centre of
the input and output fibres between 2.5 and 3.5mm from the centre of the drophead.
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The relation between Rainbow Peak Commencement and Remnant Drop Volume was first
analysed to make sure that the full tensiotrace could be recorded on the multianalyser (RPC < 0
result in the start of the rainbow peak not being recorded). The definition of the peak was also
rated from poor to good in order to discard poorly defined tensiotraces. It was concluded that
symmetric position of the fibres often give better defined peaks. Also fibres cannot be placed
too close to the edge of the drophead (3.25mm and 3.5mm from centre) to avoid problems with
the start of the rainbow peak or fabrication. A symmetric design of the drophead is also an
advantage in the construction stage.

Peak heights were then analysed (see figure 11) in order to find the tensiotrace with the
best throughput. It should be noted that the tensiotraces from drophead B and C and from
drophead E and F are identical because it does not matter which fibre is connected to the source
and which is connected to the detector.

Test | Position of fibres Peaks analysis

Nb | source ‘ detector H RPH ‘ TPH ‘ RP symmetry ‘ SP definition
A | 250mm | 2.50mm || 0.0063 | 0.0365 good good

B | 2.50mm | 2.75mm || 0.0080 | 0.0345 good poor

C | 2.75mm | 2.50mm | 0.0080 | 0.0345 good poor

D | 2.75mm | 2.75mm || 0.0146 | 0.0397 average good

E | 2.75mm | 3.00mm || 0.0189 | 0.0383 good poor

F | 3.00mm | 2.75mm || 0.0189 | 0.0383 good poor

G | 3.00mm | 3.00mm || 0.0340 | 0.0440 poor average

Table 1: Analysis of water tensiotraces peaks for various fibre positions

Test A gives a tensiotrace of lesser quality with a very flat (although very symmetrical)
rainbow peak which may cause accuracy problems when calculating apex coordinates. Visual
inspection reveals that the best position for the fibres seems to be symmetrical 3mm from the
centre although the rainbow peak is not well balanced. Current version of the quartz drophead
(Test D - symmetrical 2.75mm from the centre) gives a well defined tensiotrace with arguably
a better balanced and more symmetric rainbow peak but with a smaller throughput. However
water is at the bottom of the RI range. A low RPH for water gives a greater dynamic range for
RI. Hence this choice of fibre position is best overall.

on a 85mm drophead
0 = 0.005 - nb rays per dropshape = 125825

——— Test A- water IN250 OUT250
Test B - water IN250 OUT275

Normalised Intensity
/

Normalised Volume ()

Figure 11: Analysis of water tensiotraces for various fibre positions
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3.4. Analysis of Zyp

The Zyp dimension corresponds to the width of the protruding edges on the drophead (see
figure 6). Zyp = 0 corresponds to a flat drophead. Increasing Zyp has a similar effect to
increasing the disc thickness with the overall intensity of the drophead decreasing as well as
the numerical aperture. It also has a strong effect on the tensiopeak, especially in the case of
coloured LUT. Increasing Zyp also increases the path length of the rays in the liquid, decreasing
the tensiopeak height in a similar way to absorbance.

Tensiotraces of water
on a 8.5mm drophead
dx0 = 0.005 - nb rays per dropshape = 125825

Z p=5mm
Z p=10mm
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Figure 12: Modeled tensiotraces of water for various lip height

The modelling (see figure 12) shows the result of using a 2mm design is compromised as this
is about 10 times poorer than the Omm head. However, these protruding edges are necessary.
It was designed to counter the wetting problem encountered with the first design of the quartz
drophead and stop liquids with high surface tension to leak onto the upper edge of the drophead.
This practical problem is one that stops proper measurement. Although Zyp = 0 gives the best
result it is not a practical option as there is no lip. Starna’s engineering capability is pushed to
the limit with small values and they cannot make them reproducibly with values of less than
2mm. Figure 13 shows the lip height has a greater effect on RPH because it increasing the lip
height has a similar effect as changing the numerical aperture of the fibres.
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Figure 13: Analysis of effect of lip height on RPH and TPH
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3.5. Cross section analysis

inred
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Figure 14: Drop head cross section analysis of coupled rays at Rainbow Peak

3.5.1. Analysis of coupled rays Top left corner of figure 14 shows a cross section view of the
drophead and the coupled rays for the rainbow peak. As described above input rays cover
uniformly the input fibre (right fibre). The detector fibre (left fibre) also makes full use of fibre
end to collect light. The insert graphs at bottom respectively show a front view (bottom left
insert) and side view (bottom right insert) of the input fibre. Only coupled rays are shown. Left
insert reveals that although light is shining in every direction (within the aperture), only rays
shining approximately vertically find their way to the detector fibre. Also, only 75% of the cone
of light is coupled, confirming the choice of fibre to be adequate. This is even more true in the
side view of the emitting fibre.
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Figure 15: Drop head cross section analysis of coupled rays at Tensio Peak

Analysis of the coupled rays for the tensiopeak (see figure 15) and at the drop period (see
figure 16) revealed the same conclusions as for the rainbow peak even though drop shapes are
radically different. This confirms that positioning of the fibres, disc thickness and edge width
are essential design features and are here optimised with regards to fabrication capabilities.

Analysis of the rainbow peak commencement (see figure 17) confirms experimental results
that RPC is bound to the geometry of the drop and the drophead design, i.e. spacing between
fibres.
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Figure 16: Drop head cross section analysis of coupled rays at Drop Period

Drophead cross section - Coupled Rays only - Dropshape 75
Rays Start in green, Rays @ bottom of drophead disc in cyan, Rays end inred
r0 = 0.425 - nb rays = 125825 - nb dropshape = 75 4
coupled rays (red) = 55 ; l——l i ¢ : (B

O O

El 2

- 05 0 05 1 ] 05 0 05 1
X R
Drophead - Emitting fibre front view - Coupled Rays only - Dropshape 75  Drophead - Emitting fibre side view - Coupled Rays only - Dropshape 75
09p 03
0sp 08
~ 07 N 07
08 05
05 05
03 04 05 06 07 08 0.9 1 04 03 02 01 0 01 02 03 04
X Y

Figure 17: Drop head cross section analysis of coupled rays at Rainbow Peak Commencement

3.5.2.  Analysis of lost rays Analysis of non coupled rays (lost rays) can help predict the
potential of a design change, especially in regards to fibres diameter and position.

Figure 18 shows impacts of rays that did not reach the detector for the rainbow peak. They
are not coming from a particular area of the input fibre nor a particular angle. However, most
(over 50%) seem to hit the bottom of the drophead within the vicinity (within 2mm) of the
detector fibre. This leads to the conclusion that a wider detector fibre (=2mm) would increase
the overall intensity of the tensiotrace thus increasing the detection limit. However it might
have a negative effect on the definition of peaks. Also, with it being a difficult process to drill
accurately into quartz, in order to keep costs down it is a prerequisite to have both fibres of the
same diameter. As with coupled rays, it is shown here that rays converge towards the detector
fibre due the concave shape of the drop. It is then possible to add one or two pairs of fibres inside
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Figure 18: Drop head cross section analysis of non coupled rays at Rainbow Peak

the drophead in order to simultaneously analyse the LUT using different wavelength. Rays of
different fibres would not affect each other.
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Figure 19: Drop head cross section analysis of non coupled rays at Tensio Peak

Rays that did not couple at the tensiopeak however do not converge toward the detector
fibre but seem to cover a wider area thus reducing the possibility of simultaneous analysis using
multiple fibre pairs (see figure 19).
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4. Conclusion

This paper shows that theoretical testing was crucial to create the new patented quartz drop
head and explains design choices and their repercussions on the measurement capabilities of the
instrument. The main objective (to show how the model can be used to improve the drophead
design for a particular application) was achieved at a fraction of the normal cost. The RAST
model allows to design the drophead to fit the purpose but in practice there has to be some
compromises with Starna’s engineering capability.
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