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Reversible Lysine Acetylation Regulates Activity of Human
Glycine N-Acyltransferase-like 2 (hGLYATL2)
IMPLICATIONS FOR PRODUCTION OF GLYCINE-CONJUGATED SIGNALING MOLECULES*
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Dominik P. Waluk‡, Filip Sucharski§, Laszlo Sipos‡, Jerzy Silberring§, and Mary C. Hunt¶1

From the ‡Department of Genetics, Microbiology, and Toxicology, Stockholm University Svante Arrhenius väg 20C, 106 91
Stockholm, Sweden, §Department of Biochemistry and Neurobiology, Faculty of Materials Science and Ceramics, AGH University of
Science and Technology, Al. Mickiewicza 30, 30-059 Cracow, Poland, and the ¶Dublin Institute of Technology, School of Biological
Sciences, Kevin Street, Dublin 8, Ireland

Background: Lysine acetylation is a major post-translational modification of proteins.
Results: Human glycine N-acyltransferase-like 2 is regulated by acetylation/deacetylation of lysine 19.
Conclusion: Reversible lysine acetylation is important in regulating the activity and function of human glycine
N-acyltransferases.
Significance: Our study links post-translational modification of proteins with the production of lipid signaling molecules, the
N-acyl glycines.

Lysine acetylation is a major post-translational modification
of proteins and regulates many physiological processes such as
metabolism, cell migration, aging, and inflammation. Pro-
teomic studies have identified numerous lysine-acetylated pro-
teins in human andmousemodels (Kim, S. C., Sprung, R., Chen,
Y., Xu, Y., Ball, H., Pei, J., Cheng, T., Kho, Y., Xiao, H., Xiao, L.,
Grishin, N. V., White, M., Yang, X. J., and Zhao, Y. (2006) Mol.
Cell 23, 607–618).One family of proteins identified in this study
was the murine glycine N-acyltransferase (GLYAT) enzymes,
which are acetylated on lysine 19. Lysine 19 is a conserved resi-
due in human glycineN-acyltransferase-like 2 (hGLYATL2) and
in several other species, showing that this residuemay be impor-
tant for enzyme function. Mutation of lysine 19 in recombinant
hGLYATL2 to glutamine (K19Q) and arginine (K19R) resulted
in a 50–80% lower productionofN-oleoyl glycine andN-arachi-
donoylglycine, indicating that lysine 19 is important for enzyme
function. LC/MS/MS confirmed that Lys-19 is not acetylated in
wild-type hGLYATL2, indicating that Lys-19 requires to be
deacetylated for full activity. The hGLYATL2 enzyme conju-
gates medium- and long-chain saturated and unsaturated acyl-
CoA esters to glycine, resulting in the production of N-oleoyl
glycine and also N-arachidonoyl glycine. N-Oleoyl glycine and
N-arachidonoyl glycine are structurally and functionally related
to endocannabinoids and have been identified as signalingmol-
ecules that regulate functions like the perception of pain and
body temperature and also have anti-inflammatory properties.
In conclusion, acetylation of lysine(s) in hGLYATL2 regulates
the enzyme activity, thus linking post-translational modifica-
tion of proteins with the production of biological signalingmol-
ecules, the N-acyl glycines.

Lysine acetylation is a major post-translational modifica-
tion of histones and other proteins. The occurrence of acetyl
groups located on the N terminus of histones was first
reported in 1963 (1). More recent reports have also demon-
strated that numerous proteins located outside the nucleus
are also acetylated, strongly suggesting that this protein
modification plays major regulatory roles in eukaryotes (for
review, see Ref. 2). Acetylation of proteins may modulate
protein-protein, protein-ligand, protein-DNA interactions,
protein stability, or intracellular localization (3) and plays a
crucial role in many physiological processes such as migra-
tion, metabolism, and aging as well as in pathological dis-
eases such as cancer and neurodegenerative disorders (for
review, see Ref. 4). Lysine acetylation is a post-translational
modification that is highly regulated by enzymes called
acetyltransferases and deacetylases. Acetylation is catalyzed
by the (histone) acetyltransferase enzyme family (HATs),
and deacetylation is carried out by the (histone) deacetylase
class of enzymes (HADC) (5–8) or by one of the seven sir-
tuins or sirt (silent information regulators) deacetylase
enzymes identified to date (7–9). Eleven HDAC enzymes
have been identified, with HDAC1, -2, -8, and -11 localized
in the nucleus and HDAC3, -4, -5, -7, -9, and -10 distributed
in nucleus and cytoplasm (10). Deacetylase enzymes belong-
ing to the mammalian SIRT family are localized in mito-
chondria (SIRT3, -4, -5) and cytoplasm (SIRT1 and SIRT2),
although SIRT1 together with SIRT6 and -7 have been local-
ized in the nucleus (7, 9).
A proteomics survey by Kim et al. (11) focused on non-

nuclear acetylated proteins, identifying new potential sub-
strates and a diversity of lysine-acetylated proteins in mouse
and human models. Their study revealed 195 acetylated pro-
teins from HeLa cells and mouse liver mitochondria, with
more than 20% of total mitochondrial proteins being lysine-
acetylated, including metabolic enzymes. Two of these
enzymes identified in mouse mitochondria were members of

* This work was supported by the Swedish Research Council, Carl Tryggers
Foundation, Professor Nanna Svartz Fond, and Åke Wibergs Stiftelse and
by the fellowship Doctus-Lesser Poland donation program for PhD
students.
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the gene family of glycine N-acyltransferases (GLYATs).2
GLYATs are a family of enzymes that conjugate various xeno-
biotics and acyl-CoA esters to glycine (12–14). Lysine 19 of the
murine GLYATwas shown to be acetylated (11), and this lysine
is conserved in GLYAT enzymes in several different species
(including human GLYATL2). We have recently characterized
the hGLYATL2 enzyme and showed that it conjugates
medium- and long-chain saturated and unsaturated acyl-CoA
esters to glycine, resulting in the production of mainlyN-oleoyl
glycine but also otherN-acyl glycines includingN-arachidonoyl
glycine (14). N-Arachidonoyl glycine and N-oleoyl glycine are
structurally and functionally related to endocannabinoids and
have been identified as signaling molecules that regulate func-
tions like the perception of pain and body temperature and also
have anti-inflammatory properties (15–17).
In this study we examined if lysine acetylation of hGLYATL2

could regulate enzyme activity. We replaced lysine at position
19 with arginine K19R (which retains a positive charge and is
thus considered a conserved substitution) or glutamine K19Q
(which abolishes the positive charge and, therefore, may
“mimic” the effect of acetylation) in the hGLYATL2 protein.
We found that the K19Q had a markedly reduced enzymatic
activity, indicating that a positive charge is important at posi-
tion 19 in hGLYATL2 and that the active wild-type enzyme
requires deacetylation for full activity. The mutation K19R also
resulted in lowered enzyme activity showing the importance of
a lysine at position 19. Moreover, our tandem mass spectrom-
etry (MS/MS) results shows that hGLYATL2 is not acetylated
on lysine 19 in mammalian or bacterial systems, but treatment
with nicotinamide (NAM, an inhibitor of the SIRT family of
deacetylases and, therefore, resulting in an acetylated enzyme)
resulted in acetylation of lysine 19, supporting an inhibitory
effect of acetylation on enzyme activity in hGLYATL2.

EXPERIMENTAL PROCEDURES

Cloning and Expression of Recombinant Human GLYATL2
Proteins—The hGLYATL2 open reading frame was previously
cloned into the pMal-c2x vector (New England Biolabs, Bev-
erly, MA) (14). Two mutations were introduced into the
hGLYATL2 protein; K19R, which is a conserved substitution in
the sense that the Arg has the same charge and is about the
same size as Lys but cannot be acetylated. This results in a
mutant protein with approximately the same properties as the
wild type, except that it cannot be acetylated on Lys-19. The
secondmutation thatwas introducedwasK19Q, the uncharged
residue glutamine, which may mimic acetylation of lysine.
The QuikChange II site-directed mutagenesis kit (Stratagene)

wasused formutagenicPCR.Mutagenicprimersweredesignedas
follows: K19R, 5�-CTGTATAAATCCTTAGAAAGGAGCATC-
CCTGAATCC-3� and 5�-GGATTCAGGGATGCTCCTTTCT-
AAGGATTTATACAG-3�; K19Q, 5�-CTGTATAAATCCTTA-
GAACAGAGCATCCCTGAATCC-3� and 5�-GGATTCAGGG-
ATGCTCTGTTCTAAGGATTTATACAG-3� (Cybergene AB,

Stockholm, Sweden), with the mutated codon in bold and the
base pair change underlined. The PCR was prepared according
to the manufacturer’s instructions and carried out as follows:
95 °C for 30 s, 16 cycles of 95 °C for 30 s and 55 °C for 60 s, and
finally 68 °C for 7 min. The PCR products were incubated for
1 h at 37 °C with Dpn1, and the digested samples were trans-
formed into XL-1 Blue bacteria (Stratagene) and fully
sequenced. Purified, sequenced plasmids were introduced into
BL21(DE3) pLysS cells (Novagen Inc., Madison,WI), and over-
night cultures were transferred to 250-ml Rich Medium con-
taining 10 mg/ml Tryptone, 5 mg/ml yeast, 5 mg/ml NaCl, and
2 mg/ml glucose. Induction of recombinantly expressed pro-
teins was carried out as described by the addition of isopropyl-
1-thio-�-D-galactopyranoside (0.3 mM) (14). Treatment with
NAM, a deacetylase inhibitor, was carried out by adding 5 mM

NAM into the culture media together with the isopropyl-1-
thio-�-D-galactopyranoside. The purified recombinant pro-
teins were analyzed on SDS/PAGE gel and stained with Coo-
massie Brilliant Blue (data not shown).
Identification of N-Acyl Glycines by Electrospray Mass Spec-

trometry (ESI-MS) Analysis—Incubation mixtures were set up
containing acyl-CoAs (50 �M), 1 �g of recombinant
hGLYATL2 proteins, and glycine (50 mM) in 50 mM potassium
phosphate buffer, pH 7.4. Bovine serum albumin (BSA) was
added in amolar ratio of 1:5.5 BSA:acyl-CoA to all samples. The
reactions were incubated for 5 min at 37 °C in a water bath.
Samples were purified using EVOLUTE™ABN25mg, 1-ml SPE
columns (Biotage AB, Uppsala, Sweden) and analyzed byQuat-
tro Micro triple quadrupole mass spectrometer (Micromass,
Manchester, UK) essentially as described in Waluk et al. (14).
Sample Preparation for LC/MS/MS Analysis—A HEK293

cell lysate overexpressing recombinant hGLYATL2 containing
a C-terminal myc/DDK tag was purchased (Origene Technol-
ogies, Rockville, MD). A plasmid expressing hGLYATL2 as a
green fluorescent fusion protein was expressed in HepG2 cells
as described previously (14). HepG2 cells were treated with 5
mM nicotinamide (a deacetylase inhibitor) for 24 h. Cells were
collected by scraping, resuspended in 500 ml of PBS, sonicated
in pulses 3 � 10 s at 5-s intervals, and incubated 5 min at 95 °C.
Cell lysates were centrifuged at 13,000 rpm for 5 min, and the
supernatant collected and frozen at �20 °C for LC/MS/MS
analysis as described below.
100 �g of cell lysate or recombinant wild-type hGLYATL2,

wild-type treatedwithNAM, ormutant (K19Q, K19R) proteins
were prepared in 20 mM Tris-HCl, pH 8.3, 2.5 mM EDTA and
heated at 95 °C for 5 min. TCEP (tris(2-carboxyethyl)phos-
phine) (Thermo Scientific) was added to a final concentration
of 10 mM for 1 h at 37 °C to reduce disulfide bonds. Samples
were treated with iodoacetamide (final concentration 30 mM)
for 1 h at ambient temperature. 5 �g of chymotrypsin (Pierce)
was added to each sample (1:20 v/v), and digestion was per-
formed overnight at 37 °C. Samples were desalted on Solid
Phase Extraction Sep-Pack Vac C18 100-mg columns (Waters)
and dried in a SpeedVac.
Nano-High Performance Liquid Chromatography Combined

with Tandem Mass Spectrometry (Nano-HPLC/MS/MS) and
Data Base Analysis—All data were acquired on an Amazon
ETDmass spectrometer (Bruker Daltonik, Bremen, Germany).

2 The abbreviations used are: GLYAT, glycine N-acyltransferase; hGLYATL2,
human glycine N-acyltransferase-like 2; NAM, nicotinamide; ESI, electro-
spray ionization; CID, collision-induced dissociation; ETD, electron transfer
dissociation.
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Chromatographic separation of peptides was achieved on a
Proxeon EASY-nLC system equippedwith a 10-cm-long, 3-�m
ReproSil-PurC18 resin, 100-�mfused silica column, and 2-cm-
long, 5-�m ReproSil-Pur C18 resin, 100-�m ID precolumn.
The LC system operated with mobile phases, solvent A (98:2
H2O:acetonitrile (ACN)) (v:v) and solvent B (20:80 H2O:ACN)
(v:v), both supplemented with 0.1% formic acid. Samples were
loaded from a cooled (7 °C) auto sampler and separated with a
linear gradient that was formed at a flow rate of 300 nl/min. It
consisted of a 100-min linear ramp up to 30% solvent B, subse-
quently 70% B for 10 min, 10 min of isocratic run at 70% B, and
eventually a 10-min isocratic run at 100% solvent A. The scan
range was set to 150–2400 m/z in MS mode and increased in
MS2 mode up to 3000 m/z. The instrument was operated in
auto-MSn mode. The three highest peaks within the range of
450–2400 were automatically fragmented when their intensity
exceeded threshold value. Each precursor ion was fragmented
with collision-induced dissociation (CID) and (electron trans-
fer dissociation (ETD) method. LC-MS/MS spectra were ana-
lyzed using Proteinscape Software (Bruker Daltonik). Peak lists
were submitted to the Mascot Server 2.3 (Matrix Science, Lon-
don, UK). Searches were performed using a data base contain-
ing three sequences of hGLYATL2 proteins: wild type, K19R
mutant, and K19Q mutant. Chymotrypsin was selected as a
site-specific enzyme for digestion. The precursor ion tolerance
was set to 0.5Da, and fragmentmass tolerancewas set to 0.6Da.
In addition, cysteine was defined with fixed carboxyamido-
methylation modification (�57.0214 Da), lysine was defined
with variable acetylation modification (�42.0106 Da), and ser-
ine/threonine were set with phosphorylation as variable modi-
fication (�79.9663 Da). Finally, y and b fragment ions were
defined for all CID data, whereas c and z fragment ions were
defined for ETD. Annotation of MS2 (MS/MS) spectra was
done using Proteinscape, and mass chromatograms were man-
ually inspected with Data Analysis 4.0 (Bruker Daltonik).

RESULTS

Lysine 19 of GLYATL2 Is a Conserved Residue in Several Spe-
cies—hGLYATL2 is a member of a gene family of acyltrans-
ferases with four genes identified in human, hGLYAT,
hGLYATL1, hGLYATL2, and hGLYATL3 (14), with a similar
gene family existing in mouse. The human gene products show
�40% sequence identity to each other, suggesting that they
have different substrate specificities and functions. GLYAT is
involved in thedetoxificationof endogenous andexogenousxeno-
bioticacyl-CoAsand in themetabolismof shortchain fattyacids in
mammals (for review, see Ref. 18). hGLYATL2 conjugates long
chain acyl-CoAs such as oleoyl-CoA, stearoyl-CoA, and arachi-
donoyl-CoA to glycine (14), whereas the substrate(s) for
hGLYATL1 and hGLYATL3 remains unidentified. A recent pro-
teomics study identified lysine 19 inmurineGLYATproteins that
was acetylated (11). The lysine 19 residue identified in themurine
GLYAT enzymes is also conserved in the hGLYATL2. Alignment
of the amino acid sequences of GLYATs from various species
(Homo sapiens, Equus caballus, Canis lupus familiaris, Macaca
mulatta, Bos taurus, and Mus musculus) shows that lysine 19 is
conserved in these species (Fig. 1). However, in hGLYATL1 this
lysine is replaced by an arginine. Interestingly, in most species a

serine is the residue adjacent to the Lys-19 (Ser-20), and cross-talk
between lysine acetylation and phosphorylation on adjacent ser-
ines has been described (2).
Wild-type hGLYATL2 Is Not Acetylated on Lysine 19—To

confirm the acetylation status of Lys-19 in hGLYATL2
expressed in a mammalian expression system, hGLYATL2 was
overexpressed in HEK293 cells. The cell lysate was digested
with chymotrypsin after LC-MS/MS including ETD and CID
fragmentation. The MS/MS analysis confirmed that the gener-
ated triply ionized KSLEKSIPESIKVYGAIF peptide containing
Lys-19 (underlined) with a corresponding m/z 751.9 was not
acetylated at Lys-19 in hGLYATL2 (Fig. 2). Similarly, HepG2
cells overexpressing a hGLYATL2/GFP fusion protein (14)
were treatedwithNAM(a deacetylase inhibitor), and this treat-
ment resulted in the acetylation of Lys-19, which was again
confirmed using LC-MS/MS including ETD and CID fragmen-
tation (data not shown). These results confirm that the acety-
lation of Lys-19 is a reversible process, and the presence of the
deacetylase inhibitor NAM resulted in acetylation of Lys-19.
To examine the effect of acetylation/deacetylation on the

enzyme activity of hGLYATL2, we expressed the protein in
Escherichia coli and purified by affinity chromatography. To
identify if lysine 19 is an acetylated residue in hGLYATL2
expressed in E. coli (a prokaryotic system), LC/MS/MS analysis
was carried out after digestion of recombinantly expressed
hGLYATL2 (purified from BL21(DE3) pLysS cells) with MS
grade chymotrypsin. The sequences obtainedwere searched for
awell identified peptide that included lysine at position 19 (Lys-
19). The triple-ionized KSLEKSIPESIKVY peptide with Lys-19
(underlined) was selected, and the correspondingm/z 541 was
directed for ETD andCIDMS/MS analysis (Fig. 3A).When this
peptide was fragmented using ETD and CID, peptide backbone
fragmentations formed a complete or almost complete series of
c and z ions and thus extensive peptide sequence information,
as presented in the ETD MS/MS spectrum of wild-type
hGLYATL2. The fragmentation spectrum of the peptide
KSLEKSIPESIKVY identified Lys-19 in hGLYATL2 as a non-
acetylated residue (Fig. 3B). The hGLYATL2 produced in the
presence of the deacetylase inhibitor NAM was analyzed using
nano-liquid chromatography tandem mass spectrometry (LC/
MS/MS). From the MS spectrum a triple-ionized KSLEK-
SIPESIKVY peptide corresponding to m/z 608.7 was selected
(Fig. 3C) and analyzed by ETD and CIDMS/MS. Lysine 19 was
acetylated in theNAM-treated hGLYATL2 protein as shown in
the CID MS/MS spectrum (Fig. 3D). Additionally, two other

FIGURE 1. Lysine 19 is a conserved residue in GLYATs in several species.
Alignment of the first �24 amino acids of GLYATs in the indicated species was
carried out using the ClustalW method. The conserved lysine 19 residue is
shown in bold (note this residue is an arginine in hGLYATL1). There is a serine
(Ser-20) adjacent to lysine 19 in most species. L1, like-1; L2, like-2.
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lysine residues in the KSLEKSIPESIKVY (K indicates lysine at
position 19 in the protein sequence) peptide were acetylated
(Lys-15, Lys-26), with three adjacent serines phosphorylated
(Ser-16, Ser-20, Ser-24) (Fig. 3D). Wild-type hGLYALT2 con-
tained only one phosphorylated serine (Ser-16) and no modi-
fied lysine residues in this peptide (Fig. 3B). These results
explain the mass differences between corresponding peptides
from wild-type hGLYATL2 and NAM-treated hGLYATL2.
Interestingly, NAM treatment significantly enhanced the

overall acetylation of hGLYATL2. Nine acetylated lysine resi-
dues in hGLYATL2 were identified when protein expression
was induced in the presence of NAM, compared with four
acetylated lysines in hGLYATL2 produced in the absence of
NAM (data not shown).
Quantitative Analysis of Acetylation Levels in hGLYATL2

KSLEKSIPESIKVY Peptide Analyzed by LC/MS/MS—The
acetylation of Lys-19 in the KSLEKSIPESIKVY peptide gener-
ated by proteolytic digestion of wild-type hGLYATL2with chy-
motrypsin was compared with non-acetylated lysine 19 and
resulted in a quantitative ratio of 1:4 (acetylated:non-acety-
lated). In contrast, Lys-19 in KSLEKSIPESIKVY peptide from
NAM-treated hGLYATL2 resulted in a quantitative ratio of 2:1
(acetylated:non-acetylated) (Fig. 4). As these data are obtained
for peptides arising from the same protein, theymay be consid-
ered as quantitative. We have observed different retention
times for selected peptides containing the Lys-19 residue. Dis-
tinctive retention times are due to the level of acetylation occur-
ring on lysine residues in the KSLEKSIPESIKVY peptide. Intro-

duction of an acetyl group into the �-amino site of lysine
residues abolishes the positive charge and, therefore,may result
in an interaction between the chromatographic column and the
peptide and in turn influence the retention times of KSLEK-
SIPESIKVY peptides with either acetylated lysines or non-
acetylated lysines (Fig. 4).
Acetylation of Lysine 19 in hGLYATL2 Regulates Enzyme

Activity—Reversible lysine acetylation has been reported to
regulate the enzyme activity of the ornithine carbamoyltrans-
ferase (19) and themitochondrial acetyl-CoA synthetase 2 (20).
To investigate if lysine acetylation is involved in regulation of
hGLYATL2, two mutations were introduced into the recombi-
nant protein, K19R and K19Q. The K19R is a conserved muta-
tion in that arginine has the same charge and is approximately
the same size as lysine but cannot be acetylated. This results in
amutant proteinwith approximately the same properties as the
wild type except for lack of acetylation on lysine 19. The K19Q
mutation introduces an uncharged glutamine that abolishes
the positive charge and, therefore, may mimic acetylation. The
wild-type protein and the K19Q and K19R mutants were
expressed in pLys bacteria, and themutations did not affect the
levels of recombinant protein expression (data not shown). To
determinewhether Lys-19 is important for hGLYATL2 enzyme
activity, hGLYATL2 activity was measured with wild type,
K19Q, and K19R using oleoyl-CoA (C18:1-CoA) and arachi-
donoyl-CoA (C20:4-CoA), which were previously shown to be
substrates for hGLYATL2 (14). The wild-type enzyme activity
with oleoyl-CoA was calculated to be �1100 nmol/min/mg of

FIGURE 2. Lysine 19 in human GLYATL2 expressed in HEK293 cells is not acetylated. Fragmentation CID mass spectrum of the triply ionized
KSLEK*SIPESIKVYGAIF (751.9 m/z) peptide (K* indicates lysine at position 19 in the protein sequence) of the hGLYATL2 wild-type protein expressed in HEK293
cells.
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protein (Fig. 5A).Mutation of the lysine 19 to glutamine (K19Q)
resulted in a 50% decrease of acyltransferase activity, whereas
K19R resulted in an 80% reduction in enzyme activity (Fig. 5A).
Similarly, the wild-type enzyme activity with C20:4-CoA was
calculated to be�350 nmol/min/mg of protein (Fig. 5B).Muta-
tion of the lysine 19 to glutamine (K19Q) resulted in a 72%
reduction in enzyme activity, with almost no detectable activity
remaining when Lys-19 wasmutated to arginine (K19R). These
results show the importance of the lysine residue in position 19
of hGLYATL2 for the enzyme function.
The wild-type enzyme has a calculated Km of 4.4 �M and a

Vmax of 933 nmol/min/mg (14). We first measured the Km and
Vmax with the K19Q and K19R mutants using oleoyl-CoA as
substrate. These mutations resulted in an increase of the Km
value (8.7 �M) and a similar Vmax 948.3 nmol/min/mg for the
K19Q mutant with oleoyl-CoA, whereas the K19R mutant

showed a high increase in Km to 25.3 �M as well as Vmax 1928
nmol/min/mg compared with wild type (Fig. 5C and mean cal-
culated values shown in Table 1). The Km and Vmax was also
measured using arachidonoyl-CoA for wild-type hGLYATL2
and the K19Q mutant; however, it was not possible to deter-
mineKm andVmax values for the K19Rmutant due to undetect-
able activity with arachidonoyl-CoA. The wild-type enzyme
had a calculatedKm value of 5.3�Mwith arachidonoyl-CoA and
aVmax of 323.3 nmol/min/mg, and the K19Qmutation resulted
in an increase ofKm to 60.3�Mwith theVmax increasing slightly
to 380.2 nmol/min/mg (Fig. 5D and mean calculated values
shown in Table 1).
Overall, these data indicate the importance of the conserva-

tion of a lysine at position 19 in hGLYATL2, as mutation of this
residue results in reduced enzyme activity. Themass spectrom-
etry data (Figs. 2 and 3B) support that the deacetylation of lysine

FIGURE 3. Lysine 19 in human GLYATL2 is acetylated/deacetylated in response to treatment with the deacetylase inhibitor NAM. A, recombinant
hGLYATL2 was produced in E. coli and affinity-purified as outlined under “Experimental Procedures.” Mass spectrum of the KSLEKSIPESIKVY peptide (K
indicates lysine at position 19 in the protein sequence) from the wild-type hGLYATL2 protein, with different levels of ionization. The peptide targeted for
MS/MS analysis is marked with a star. B, fragmentation ETD tandem mass spectrum of the KSLEK*SIPESIKVY peptide from the hGLYATL2 wild-type protein;
lysine 19 is not acetylated. C, recombinant hGLYATL2 was produced in the presence of 5 mM deacetylase inhibitor NAM, and ETD MS/MS analysis was carried
out on the KSLEKSIPESIKVY peptide from the NAM-treated hGLYATL2. The peptide chosen for further MS/MS analysis is marked with a star. D, CID tandem mass
spectrum of the peptide shows an acetylated peptide with the sequence KSLEKAcSIPESIKVY, where KAc indicates an acetylated lysine at position 19 (Lys-19).

FIGURE 4. Quantitative analysis of acetylation levels in the KSLEKSIPESIKVY peptide of hGLYATL2 by LC/MS/MS. The peptides KSLEKSIPESIKVY where
lysine 19 is not acetylated elute earlier than the same peptides with modified lysine 19. The ratio of acetylated/non-acetylated lysines in the KSLEKSIPESIKVY
peptide in wild-type hGLYATL2 and NAM-treated hGLYATL2 were calculated by measuring the area under the peaks.
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19 is necessary for full activity of hGLYATL2, and itmay be that
the enzyme is regulated by acetylation/deacetylation.
Treatment with Deacetylase Inhibitor NAM Reduces

hGLYATL2 Enzymatic Activity—Our results presented above
show that lysine 19 in wild-type hGLYATL2 is not acetylated
(Figs. 2 and Fig. 3B), and therefore, deacetylation is likely
important for hGLYATL2 enzyme activity. Recombinant wild-
type hGLYATL2 was, therefore, produced in the presence of
the deacetylase inhibitor NAM. Mass spectrometry analysis of
wild-type hGLYATL2 revealed four acetylated lysine residues
in the protein, whereas analysis of NAM-treated wild-type
hGLYATL2 showed the acetylation of nine residues (data not
shown); thus, as expected, NAM treatment increased the over-
all acetylation status of hGLYATL2, including acetylation of
lysine 19 (Fig. 3D). Treatment of wild-type hGLYATL2 with
NAMdecreased the enzyme activity with oleoyl-CoA by �45%
(Fig. 6A) and with N-arachidonoyl glycine by �65% (Fig. 6B).
These data together with the mass spectrometry data support
that deacetylation of lysine 19 is important for enzyme func-
tion, as treatment with NAM results in acetylation of lysine 19
and a reduced enzyme activity. However, it may also be that the
overall acetylation status of hGLYATL2 could affect the
enzyme activity.
Therefore, to examine if lysine 19 is the important lysine

residue in regulating hGLYATL2 or if the overall acetylation
status of hGLYATL2 affects enzyme activity, the K19Q and
K19Rproteinswere produced in the presence of the deacetylase
inhibitor NAM. K19Q cannot be acetylated at lysine 19, but
substitution of lysine with glutamine (K19Q) mimics acetyla-
tion. As shown in Fig. 5, A and B, mutation of K19Q reduced
enzyme activity. Interestingly, the enzyme activities for the
K19Q mutant (with 9 acetylated lysines; data not shown) and
NAM-treated K19Q were similar, and both activities were
about 45–50% lower than wild-type hGLYATL2 activity (Fig.
6A), showing that the overall acetylation status of hGLYATL2
by NAM treatment does not affect enzyme activity but that the
reduction in enzyme activity is due tomutation of lysine 19. The
K19R mutant retains a positive charge, but again, the residue
cannot be acetylated. Treatment of the K19R mutant protein

with NAM resulted in a large increase in overall protein acety-
lation (18 acetylated lysine residues; data not shown), and
determination of enzyme activity of K19R in the absence and
presence of NAM showed a similar activity with oleoyl-CoA,
again showing that the overall acetylation status does not affect
enzyme activity but that lysine is an important residue at posi-
tion 19 in hGLYATL2. Due to the low activity of K19R with
arachidonoyl-CoA, we could not determine the activity of
K19R in the presence of NAM. Similar experiments were car-
ried out with arachidonoyl-CoA on wild-type and the K19Q
mutant. TheNAM-treatedwild-type andK19Qmutant protein
activity were both reduced by�70/75%. This data strongly sup-
port that lysine 19 is the most important lysine residue for reg-
ulating hGLYATL2 activity and that deacetylation of this resi-
due also is necessary for full enzyme activity.

DISCUSSION

Lysine residues in proteins may be acetylated, methylated,
ubiquitinated, biotinylated, lipoylated, and hydroxylated (21).
Lysine acetylation of non-histone proteins has recently
emerged as an important post-translational modification in the
regulation of metabolic enzymes (2). However, post-transla-
tional modifications are mutually exclusive on the same lysine
and generate a great potential for cross-regulation. Interest-
ingly cross-talk between lysine acetylation and other modifica-
tions such as phosphorylation occur, as has been shown on
histoneH3 at Lys-9 and Lys-27, with phosphorylation of Ser-10
and Ser-28, respectively (22). Yang et al. (for review, see Ref. 2)
also pointed out in a recent review that histone H3, p53, and
several transcription factors such as FoxO1 and C/EBPb all
contain serine residues adjacent to acetylated lysines. In a sim-
ilar way, the hGLYATL2 amino acid sequence contains a serine
at position 20 (Ser-20), which is adjacent to Lys-19 (Fig. 1),
which could indicate a potential cross-talk between acetylation
and phosphorylation of this protein. Our results show that ser-
ine 20 is phosphorylated in hGLYATL2when lysine 19 is acety-
lated (following NAM treatment), but in wild-type hGLYATL2
not treated with NAM, both residues are unmodified. The reg-
ulation of hGLYATL2 by acetylation/deacetylation and/or

FIGURE 5. Lysine 19 is an important residue in regulation of hGLYATL2 enzyme activity. A, �1 �g of hGLYATL2 (wild type), K19Q, and K19R mutant
proteins was incubated with 50 �M C18:1-CoA, 50 �M C20:4-CoA, 50 mM glycine with the addition of BSA in a molar ratio of 1:5.5 BSA:acyl-CoA as outlined under
“Experimental Procedures.” A, N-oleoyl glycine conjugates formed. B, N-arachidonoyl glycine conjugates formed and were quantified using ESI-MS. The
experiment was repeated four times (three times for the K19Q mutant), and the mean � S.D. is shown. C, recombinant K19Q and K19R proteins (�1 �g) were
incubated for 2 min at various concentrations of oleoyl-CoA (5–100 �M) (C) or N-arachidonoyl-CoA (5–100 �M) (D) with the addition of BSA in a molar ratio of
1:5.5 BSA:acyl-CoA in the presence of glycine (50 mM). N-Arachidonoyl glycine was added as an internal standard (5 �M) to reactions where N-oleoyl glycine is
the product formed, and N-oleoyl glycine was added as an internal standard (5 �M) to reactions where N-arachidonoyl glycine is the product formed. Samples
were purified on Evolute columns, analyzed by ESI-MS, and quantified according to the internal standard. Km (�M) and Vmax (nmol/min/mg) were calculated
using Sigma Plot Enzyme Kinetics program. The experiments were repeated twice, and one representative experiment is shown.

TABLE 1
The calculated Km and Vmax of human GLYATL2 wild type and the K19Q and K19R mutants with N-oleoyl-CoA, N-arachidonoyl-CoA, and glycine
Km and Vmax values for N-oleoyl-CoA, N-arachidonoyl-CoA, and glycine were calculated based on two or three independent protein purifications using the Sigma Plot
Enzyme Kinetics program. Data shown are the mean � S.E. The ratio of Vmax/Km is shown. ND, not determined.

hGLYATL2 N-Oleoyl-CoA (C18:1-CoA) N-Arachidonoyl-CoA (C20:4-CoA) Glycine
Km Vmax Vmax/Km Km Vmax Vmax/Km Km Vmax/Km

�M nmol/min/mg �M nmol/min/mg mM mmol/min/mg

Wild type 4.3 � 0.3 929.1 � 18.6 215.8 6.8 � 1.0 333.1 � 15.8 49.0 11.2 � 2.4 1230.0 � 88.0
K19Q mutant 9.6 � 0.9 1102.2 � 153.8 114.3 62.0 � 16.7 390.0 � 61.4 6.3 ND ND
K19R mutant 28.7 � 2.0 2037.7 � 91.3 71.3 ND ND ND ND
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phosphorylation suggests a link between post-translational
modifications and the production of bioactive signaling mole-
cules, especially N-oleoyl glycine (C18:1-glycine) and N-arachi-
donoyl glycine (C20:4-glycine). Signaling pathways activated by
N-oleoyl glycine are not fully understood, but administration of
N-oleoyl glycine to rats resulted in reduced motor activity and
lowered body temperature (23).N-Oleoyl glycinewas first iden-
tified in N18TG2 cells by Merkler et al. (24) and was proposed
to be involved in the biosynthesis of oleamide, a primary fatty
acid amide. Acetylation/deacetylation of hGLYATL2 would
thus result in a rapid regulation of N-oleoyl glycine levels by
modulating the activity of hGLYATL2 and may also further
regulate the production of oleamide from N-oleoyl glycine.
Oleamide has cannabinoid-like actions and is involved in sleep
induction (25) and acts as a vasodilator in the cardiovascular
system (26). N-Arachidonoyl glycine has been identified in rat
brain and other tissues (17) and is synthesized by several path-
ways including an enzymatic conjugation of arachidonoyl-CoA
with glycine (14), synthesis by cytochrome c in the presence of
arachidonoyl-CoA and hydrogen peroxide (27), and finally by
oxidation of anandamide (an endocannabinoid) by alcohol and
aldehyde dehydrogenases (28). N-Arachidonoyl glycine is a
ligand for G protein-coupled receptors GPR18 (29), GPR92
(30), and GPR72 (31) and is antiproliferative in mouse macro-
phage RAW cells (32).

Recent studies show that most intermediate metabolic
enzymes are acetylated and that acetylation can directly affect
the enzyme activity, translocation, or stability (33, 34). Lysine
acetylation effects can be classified into three groups: (a) single
residue acetylation, where acetylation acts as a simple on/off
switch such as in the inactivation of the acetyl-CoA synthe-
tase-2 (20); (b) where acetylation may cover charged patches,
where it is the number of acetylated residues that count and not
which particular residue in the charged patch is modified, e.g.
cortactin (a protein that regulates cell motility) is acetylated on
about 10 lysine residues in a repeat domain, with each repeat
having at least one lysine (35); (c) where acetylation may result
in a site-specific effect that influences the affinity for interacting
partners, e.g. the activity of the ornithine carbamoyltransferase
toward one of its substrates, carbamoyl phosphate, is regulated
by acetylation of Lys-88 in the enzyme (19). Lysine 19 in
GLYAT enzymes is highly conserved through many species,
and mutation of lysine 19 (K19Q and K19R) in hGLYATL2
significantly affected the enzyme activity and production of
N-oleoyl glycine andN-arachidonoyl glycine. Our results based
on tandem mass spectrometry analysis indicate that Lys-19 is
not the only acetylated lysine residue in hGLYATL2. This pro-
tein contains almost 10% lysine residues: 28 of 294 amino acids,
with a number of these residues being acetylated. The highest
enzymatic activity forN-oleoyl glycine andN-arachidonoyl gly-
cine production was observed with wild-type hGLYATL2,
where 4 lysines are acetylated, with Lys-19 not being acetylated.
However, mutation of Lys-19 confirmed the importance of this
residue for the function of hGLYATL2. Interestingly, treatment
of the K19Q and K19R mutants of hGLYATL2 with NAM did
not further affect the enzyme activity, showing that Lys-19 is
the dominant lysine involved in regulation and that acetylation/
deacetylation of Lys-19 is important but that the overall acety-
lation status does not affect enzyme function. The crystal struc-
ture of GLYAT proteins in any species has yet to be solved,
making it difficult to predict where Lys-19 would be located/
oriented in the three-dimensional structure of the protein, e.g. if
it is located close to the active site or is involved in substrate
(acyl-CoA) or acceptor (glycine) binding. A recent study by
Badenhorst et al. (36) has revealed glutamic acid 226 as being
catalytically important in bovine GLYAT, and the suggested
catalytic mechanism is that Glu-226 functions to deprotonate
glycine, facilitating a nucleophilic attack on the acyl-CoA.
In conclusion, we identified that acetylation/deacetylation of

lysine 19 of hGLYATL2, which is conserved in most species, is
important for the enzyme function. This study suggests a
potential mechanism by which cells could regulate production
of N-acyl glycines through acetylation/deacetylation as a post-
translational process that is a highly conservedmodification on
proteins throughout many organisms (37). Our study also links
the post-translational modification of proteins with the pro-
duction of N-acyl glycines, thus allowing a rapid regulation of
hGLYATL2 in response to lipid signaling requirements.

Acknowledgment—We gratefully acknowledge Professor Stefan Alex-
son, Karolinska Institutet, for use of the electrospray mass
spectrometer.

FIGURE 6. Acetylation/deacetylation of hGLYATL2 regulates enzyme
activity. Wild-type hGLYATL2, K19Q, and K19R mutant proteins were pro-
duced in BL21(DE3) pLysS cells in the absence/presence of 5 mM NAM, a
deacetylase inhibitor. �1 �g of hGLYATL2 (wild type), K19Q, and K19R
mutant proteins was incubated with 50 �M oleoyl-CoA, arachidonoyl-CoA, 50
mM glycine with the addition of BSA in a molar ratio of 1:5.5 BSA:acyl-CoA as
outlined under “Experimental Procedures,” and the N-oleoyl glycine (A) or
N-arachidonoyl glycine (B) conjugates formed were quantified using ESI-MS.
The experiment was repeated four times (three times for NAM-treated K19Q
and K19R mutants), and the mean � S.D. is shown.
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