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ORIGINAL ARTICLE

Wild-type Measles Virus Infection Upregulates Poliovirus
ReceptorYRelated 4 and Causes Apoptosis in Brain Endothelial

Cells by Induction of Tumor Necrosis FactorYRelated
Apoptosis-Inducing Ligand

Hani’ah Abdullah, PhD, Brenda Brankin, PhD, Clare Brady, BSc,
and Sara Louise Cosby, PhD, FRCPath, FSB

Abstract
Small numbers of brain endothelial cells (BECs) are infected in

children with neurologic complications of measles virus (MV) in-
fection. This may provide a mechanism for virus entry into the
central nervous system, but the mechanisms are unclear. Both in vitro
culture systems and animal models are required to elucidate events in
the endothelium. We compared the ability of wild-type (WT), vac-
cine, and rodent-adapted MV strains to infect, replicate, and induce
apoptosis in human and murine brain endothelial cells (HBECs and
MBECs, respectively). Mice also were infected intracerebrally. All
MV stains productively infected HBECs and induced the MV re-
ceptor PVRL4. Efficient WT MV production also occurred in
MBECs. Extensive monolayer destruction associated with activated
caspase 3 staining was observed in HBECs and MBECs, most
markedly with WT MV. Tumor necrosis factorYrelated apoptosis-
inducing ligand (TRAIL), but not Fas ligand, was induced by MV
infection. Treatment of MBECs with supernatants from MV-
infected MBEC cultures with an anti-TRAIL antibody blocked
caspase 3 expression and monolayer destruction. TRAIL was also
expressed in the endothelium and other cell types in infected murine
brains. This is the first demonstration that infection of low numbers
of BECs with WT MV allows efficient virus production, induction
of TRAIL, and subsequent widespread apoptosis.

Key Words: Apoptosis, Brain endothelial cells, CNS, Measles virus,
PVRL4, Subacute sclerosing panencephalitis (SSPE), TRAIL.

INTRODUCTION
In systemic measles virus (MV) infection, lesions are

centered on small venules, but virus has not been detected in
brain parenchyma in healthy individuals without neurologic
complications or in postinfection MV encephalomyelitis (1).
However, Esolen et al (2) found MV RNA in the brain endo-
thelial cells (BECs) of children who died with severe acute
measles encephalitis 3 to 10 days after the onset of a rash.
Measles virus infection in children who are immunocompro-
mised frequently results in virus infection of neural tissue, most
likely as a result of damage to the blood-brain barrier (BBB),
with subsequent development of measles inclusion body en-
cephalitis (MIBE) (3, 4). We previously found that a small
number of cells in the cerebral endothelium of some blood
vessels are infected in the long-term MV complication sub-
acute sclerosing panencephalitis (SSPE) (5). In both diseases,
BEC infection is likely to play a major role in viral spread into
surrounding brain tissue, which is facilitated by damage to the
BBB by virus-induced apoptosis.

Transport of MV into the brain in virus-infected leuko-
cytes has been suggested as an alternative mechanism to direct
infection of BECs. Both mechanisms likely occur, but to dif-
ferent extents, and both have been demonstrated in an experi-
mental canine distemper virus model (6). Dittmar et al (7)
showed that transendothelial cell migration of infected T cells
is strongly inhibited, but virus was transferred from T cells to
polarized human BECs (HBECs) with subsequent release from
both apical and bipolar surfaces. Therefore, the latter may be
the major mechanism involved in MV entry into the central
nervous system (CNS) parenchyma.

Although HBEC cultures may closely reflect infection of
the human cerebral endothelium, small animal models are re-
quired to understand how MV spreads from infected endothe-
lium to other cell types in the CNS as well as the associated
immune response. We have previously shown that, unlike the
rodent-adapted strain, which causes acute encephalitis, wild-type
(WT) MV causes a persistent infection without clinical signs.
Using both in vitro and ex vivo infection models, we showed
that WT MV infected neurons and oligodendrocytes and, to a
lesser extent, astrocytes in the murine CNS (8). Therefore, this
model reflects the situation in the early stages of SSPE and
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MIBE. However, infection of the murine endothelium in this
model was not examined.

We previously reported that the Hu2 vaccine strain of
MV can infect murine brain endothelial cells (MBECs) in
vitro and enhance adhesion of leukocytes to these cells in
a manner similar to what occurs in HBECs (9, 10). Human
BECs in vivo show a high level of expression of the cell entry
receptor for vaccine strains of MV, CD46 (11, 12), and these
cells can be infected in vitro to a high level by MV vaccine
strains, probably because of their high affinity for this molecule.
The percentage of infected HBECs with WT MV strains is
generally considerably lower (13), probably because these
viruses do not use CD46 as a receptor and endothelial cells
(ECs) do not express signaling lymphocyte activation molecule
(SLAM), the cell receptor used by WT viruses on immune
cells (14, 15). Murine BECs, like other murine cells, do not
express forms of SLAM or CD46. Therefore, cell entry by WT
virus in HBEC and all MV strains in MBEC is both CD46
and SLAM independent. It is not known if BECs express the
newly recognized receptor for WT MV (on polarized epithe-
lial cells), polio receptor-related 4 (PVRL 4), also known as
Nectin-4 (16, 17).

In contrast to other WT MV stains examined, the WT
W44797 strain has been reported to give higher infection levels
in HBECs. It remains unclear as to why certain WT strains
spread better in these cells than others (13). In view of this, we
investigated WT MV infection in these cells. Furthermore, if
WT MV infection in HBECs and MBECs show similar char-
acteristics, this would validate the use of a murine in vivo
model for the study of infection at the BBB.

Here, our aim was to establish parallel in vitro and in vivo
murine model systems of WTMV infection to reflect the human
diseases SSPE and MIBE and to use these systems to examine
the mechanism of BEC damage and subsequent virus spread.
This may also be relevant to other viral infections that gain entry
to the CNS through the BBB. We compared infection of a strain
of WT MV, Dublin 3267 (not previously used to infect BEC),

with vaccine and rodent-adapted viruses in both HBECs and
MBECs. We also examined the mechanism of apoptosis in these
cell lines as well as in the infected murine CNS.

MATERIALS AND METHODS

Cell and Virus Stocks
Human BECs were obtained from 3H Biomedical

(Uppsala, Sweden) and grown in EC medium with EC growth
supplement (containing 5% fetal calf serum, 1% penicillin/
streptomycin, and EC growth supplement) from the same
company. The isolation and characterization of primary cultures
of MBECs from mice were carried out as previously described
(9). Briefly, EC cells were sorted by fluorescence-activated cell
sorting (FACS-IV; Becton-Dickinson, Mountain View, CA)
using the plant lectin Griffonia (Bandieraea) simplicifolia IB4
(GSA-l), which is specific for murine EC in vitro and in vivo.
Astrocyte contamination was ruled out by using antiYglial
fibrillary acidic protein antibody (Ab) (Dako, Carpinteria, CA).
In addition, confluent monolayers of MBECs were stained
before use for Ulex europaeus agglutinin I, a specific marker
that distinguishes ECs from other cell types including astro-
cytes and pericytes. Murine BEC preparations used in these
experiments were routinely 95% to 99% pure and used between
passages 6 and 12. CHO-PVRL4 cells were a kind gift from
Dr. Christopher Richardson (Dalhousie University, Halifax,
Canada). MBEC and Vero/Vero human SLAM (VeroHSLAM)
cells were passaged and maintained in high-glucose DMEM
supplied with 20% or 10% heat-inactivated fetal bovine
serum (Gibco, Carlsbad, CA), respectively, and 1% penicillin/
streptomycin (PAA; Pasching, AT). CHO-PVRL-4 and B95a
cells were passaged and maintained as for the other cell lines
except F12 medium (Gibco) and RPMI-1640 (Gibco) were used,
respectively. VeroHSLAM and CHO-PVRL4 cells require
medium containing 400 Kg/ml geneticin (Gibco) to retain the
SLAM and PVRL4 plasmids respectively. Virus stocks of
Edmonston MV vaccine, Schwarz GFP vaccine (a kind gift

TABLE. Antibodies Used for Immunofluorescence
Primary Antibodies

Cell Marker Detected Structure Host Species Dilution Supplier (Catalog No.) Reference

Anti-PVRL4 Membrane Mouse monoclonal 1:100 Abcam, Cambridge, UK (ab57873)

Anti-PVRL4 Membrane Rabbit polyclonal 1:100 Abcam (ab155692)

Anti-CD34 Membrane Rat monoclonal 1:50 Abcam (ab8158) (22)

Anti-TRAIL Membrane Mouse monoclonal 1:100 Abcam (ab10516) (23)

Anti-caspase 3 Cleavage site of human caspase 3 Rabbit polyclonal 1:500 Sigma, St. Louis, MO (C8487) (24)

Anti-measles Nucleocapsid protein Mouse monoclonal 1:100 Oxford Biotechnology, Oxford, UK (OBT0055) (8)

Anti-MAP-2 Microtubules Mouse monoclonal 1:100 Chemicon/Millipore, (1284959) (8)

Anti-GFAP Intermediate filament Rabbit polyclonal 1:200 DakoCytomation (Z0334) (8)

Fluorochromes

Type Dilution Supplier (Catalog No.) Reference

Alexa Fluor 568 goat anti-mouse IgG 1:500 Life Technologies, Grand Island, NY (A-11004) (25)

Alexa Fluor 568 goat anti-rabbit IgG 1:500 Life Technologies (A-11036) (26)

Alexa Fluor 488 goat anti-mouse IgG 1:500 Life Technologies (A-11001) (27)

Alexa Fluor 488 goat anti-rabbit IgG 1:500 Life Technologies (A-11008) (28)

Alexa Fluor 568 goat anti-rat IgG 1:200 Life Technologies (A-11077) (29)

TRAIL, tumor necrosis factorYrelated apoptosis-inducing ligand.
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from Prof. Frederick Tangy, Pasteur Institute, Paris, France)
(18) and CAM/RB rodent-adapted MV (19) were grown in Vero
cells. The WT MV strain, Dublin-3267 (20), was grown and
titered in B95a cells. All experimental infections and treatments
were carried out at least in triplicate.

Mouse Infections
Two- to three-day-old C57BL6 mice were obtained from

in-house breeding colonies in the Biological Research Unit,
Queen’s University Belfast and were used in animal experi-
mentation under approved university regulations and a UK
Home Office License. Mice were killed by lethal injection of
anesthetic (pentobarbital euthanasia). At least 3 mice were
inoculated intracerebrally with 104 TCID50 of each virus in
25-Kl volumes. Mouse brains were fixed in 10% formol saline.

Immunohistochemistry
Whole brain sections (8-mm thick) were cut from 3 levels

of paraffin-embedded brain tissue using a microtome. The
levels were cut to an approximate depth of 100 mm and were
separated by 50 mm. Formalin-fixed sections were dewaxed
and pretreated, as previously described (21). Sections were
incubated with monoclonal mouse anti-measles (OBT0055;
Oxford Biotechnology, Oxford, UK) diluted 1:2000 followed
by the EnVision + system HRP with diaminobenzidine DAB
staining (DakoCytomation, Glostrop, Denmark) according to
the protocol supplied by the manufacturer and stained with
hematoxylin. Sections from normal mouse brain were treated
in the same way, and negative control sections were treated
with buffer rather than primary Ab.

Immunocytochemistry/Immunofluorescence
Brain endothelial cells were grown on coverslips and

infected or mock infected (with medium). Coverslips cultures
were fixed with 4% paraformaldehyde and permeabilized with
0.1% Triton X-100 (Sigma, Dorset, UK) then washed and
blocked with 0.5% bovine serum albumin (Sigma). Immuno-
cytochemistry for EC-specific staining was carried out using
biotinylated U. europaeus agglutinin (Vector Laboratories,
Peterborough, UK) diluted 1:500. Primary and secondary anti-
bodies used for immunofluorescence, dilutions, and references
are listed in the Table (8, 22Y29). Coverslips were mounted in
Vectashield mounting medium with DAPI (Vector Laborato-
ries). Activated caspase 3 antigen expression was examined
using an APO Active 3 kit according to the manufacturer’s
instructions (Cell Technology, Mountain View, CA). Staining
of mock-infected culture controls was carried out using the
secondary Ab either with an isotype control or without pri-
mary Ab. Positive cells were counted in 10 fields selected at
random in each of 3 cultures. The percentages of positive
cells were estimated, and an average was taken for the total
number of fields. Images were examined under a confocal
laser scanning microscopy (TCS SP5 Leica) or a TE2000-U
(Nikon, UK) microscope.

Ultraviolet Inactivation of Virus
Supernatants isolated from infected or uninfected cul-

tures were centrifuged at 1,000 rpm for 5 minutes to remove cell
debris. One-milliliter samples of each supernatant were then
placed in 400mm Petri dishes and ultraviolet (UV)-inactivated at

12.11 J for 10minutes in aUV cross-linker (Syngene, Cambridge,
UK) to inactivate the infectivity of the virus. Samples were
tested for infectivity by inoculating VeroHSLAM cell cultures
and examining these for a cytopathic effect for 7 days.

Quantitative Measurement of Tumor Necrosis
FactorYRelated Apoptosis-Inducing Ligand

The level of soluble tumor necrosis factorYrelated
apoptosis-inducing ligand (TRAIL) in cell supernatants was
measured by sandwich enzyme immunoassay ELISA (USCN
Life Science, Inc., Wuhan, China), according to the manufac-
turer’s instructions, with a detection range of 0.156 to 10 ng/ml.
The optical density was measured in a Mitras LB 940 (Berthold
Technology, Bad Wildbad, Germany).

Soluble TRAIL Treatment
Approximately 80% to 90% confluent MBECmonolayers

were treated with soluble mouse TRAIL (Enzo Life Sciences,
Exeter, UK) at concentrations of 1, 50, 100, 500, and 1,000 ng/ml
for 24 hours.

Reverse TranscriptionYPolymerase
Chain Reaction

Primers and reverse transcriptionYpolymerase chain re-
action (RT-PCR) conditions for Fas and Fas ligand (FasL)
were carried out as described by Fleck et al (30) and for
TRAIL as described by Fang et al (31). Primers and condi-
tions for #-actin (21) and for full-length PVRL4 (32) have
been previously described.

Anti-TRAIL Treatment of Supernatants
Murine BECs were infected with WT MV at a multi-

plicity of infection of 5. At 6 days post infection (dpi), the su-
pernatants were collected and UV inactivated and aliquots
were treated with mouse monoclonal anti-TRAIL Ab (Abcam)
at concentrations of 5, 10, and 20 Kg/ml before adding to the
MBECs. Controls of no Ab or treatment with 20 Kg/ml of a
non-immune mouse IgG1 isotype (X0931; Dako) were used.

Statistical Analysis
Statistical analysis was carried out using the t-test and

the Mann-Whitney U test. Values of p G 0.05 were considered
significant (*), p G 0.01 very significant (**), and p G 0.001
highly significant (***).

RESULTS

HBECs and MBECs Are Susceptible to
All MV Strains

Human BECs were characterized by the supplier. In
addition to full characterization at the time of isolation (9),
confluent monolayers of MBECs were stained before use for
U. europaeus agglutinin I; 100% of the cells were shown to
be positive (Fig. 1A). Both MBECs and HBECs were infected
with Edmonston, CAM/RB, or WT virus at a multiplicity of
infection of 5 for 24, 48, and 72 hours and were stained for
MV. Syncytia formation was not detected in MBECs infected
with these 3 viruses, whereas both Edmonston and the CAM/
RB virus induced extensive infection in HBECs with syncytia
formation. Wild-type MV antigen was distributed throughout
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FIGURE 1.Wild-type (WT)measles virus (MV) infects brain endothelial cells (BECs) with induction of PVRL4 in human BECs (HBECs). (A)
Immunocytochemistry for Ulex europaeus agglutinin in uninfected murine BECs (MBECs). (B-D)MBECs and HBECs were infected at a
multiplicity of infection (MOI) of 5 with CAM/RB, Edmonston, and WT MV strains and immunofluorescence staining was carried out.
Measles virus (green), PVRL4 (red), and staining of cell nuclei with DAPI (blue) at 72 hours post infection. (B) MBECs and HBECs
stained for virus. (C) HBECs stained for PVRL4; first and second panels show polyclonal antibody (Ab); third panel showsmonoclonal Ab.
(D)HBECs double stained forMV and PVRL-4. (E) RNAwas extracted frommock infected andWTMV-infected HBEC and RT-PCR carried
out for PVRL4 and A actin. Lane 1, mock infected; lane 2, infected. Magnifications: (A) 200�; (B)MBEC 400�, HBEC 200�; (D) 200�.
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the monolayer, but the fluorescence was less intense, reflecting
lower levels in cells compared to infection with CAM/RB or
Edmonston. Although there was no syncytia formation, cells
began to round up and the monolayer disintegrated (Fig. 1B).

In MBECs, approximately 2% of cells showed staining
for both WT and CAM/RB at 72 hours post infection (hpi).
Edmonston infection showed a significantly lower percentage
of antigen-positive cells (Fig. 2A). Wild-type and CAM/RB
infection was also compared in HBEC. At 48 hpi, 40% of cells
were positive for WT viral antigen. This increased to nearly
60% by 72 hpi. At this time point, 80% of cells were positive in
CAM/RB MV cultures (Fig. 2B). Virus titers were measured
by TCID50. Less than 1 log of infectious virus was detected in
Edmonston or CAM/RB virus-infected MBECs up to 72 hpi

(data not shown). The titer of WT MV increased over time,
reaching a mean of 103.1 TCID50/ml at 48 hpi (Fig. 2C). Because
both the Edmonston vaccine strain and the vaccine-derived
rodent adapted CAM/RB strain show extensive infection in
HBECs (probably due to the use of the CD46 receptor), only
titers of WTMV were examined in these cells. Titers reached a
level similar to those in MBEC of approximately 103.5 TCID50

by 72 hpi (Fig. 2D).
To determine whether PVRL 4 is expressed on HBEC

and/or MBEC and could therefore be potentially used as a virus
receptor forWTMV,we carried out immunofluorescence staining
for PVRL4 on uninfected cells as well as on cells infected with
each MV strain at 72 hpi. CHO-PVRL4 cells were used as a
positive control. There was no staining for PVRL4 on uninfected

FIGURE 2. Efficient production of wild-type (WT) measles virus (MV) by a low percentage of virus antigen-positive murine brain
endothelial cells (MBECs). MBECs and human BECs (HBECs) were infected at a multiplicity of infection (MOI) of 5 with CAM/RB,
Edmonston, and WTMV strains; MV antigen detection was carried out by immunofluorescence. (A, B) Ten or more fields in each of 3
infected cultures were counted at 24, 48, and 72 hours post infection (hpi) to determine the percentage of MV antigen-positive cells;
MBEC (A) and HBEC (B). (C, D) Total virus samples were collected from WT-infected cultures up to 72 hpi. TCID50 titrations were
performed in Vero human SLAM (VeroHSLAM) cells; MBEC (C) and HBEC (D); mean and SD from 3 separate experiments are shown.
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FIGURE 3. Extensive apoptosis occurs in noninfected cells in wild-type (WT) measles virus (MV)Yinfected cultures. (A)Murine brain
endothelial cells (MBECs) were infected with the Schwarz-GFP vaccine virus at a multiplicity of infection (MOI) of 1. Spread of MV
infection in MBEC was monitored over time by examining the same field at 40, 93,140, 170, and 240 hours post infection (hpi).
(B) Infected cells were overlaid with Vero cells (permissive for vaccine strains of MV) at 72 hpi. The spread of green fluorescent
protein (GFP) was monitored at 24 and 96 hours post overlay (hpo). UV and phase-contrast microscopy images are combined with
UV microscopy. (C, D) MBEC monolayers were infected with CAM/RB, WT, and Edmonston virus strains at an MOI of 5 and
monitored up to 211 hpi. (C) The percentage of rounded cells in monolayers was determined by counting 10 fields in each of 3
cultures. (D) Dark field microscopy of representative monolayers demonstrates apoptosis in CAM/RB- and WT-infected cultures.
Magnification: 200�.
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HBECs, but surprisingly, localized areas of staining occurred in
cells infected with all strains ofMVwhen either single (Fig. 1C)
or double staining for MV and PVRL4 (Fig. 1D) was per-
formed. This was demonstrated with both polyclonal and
monoclonal antibodies to PVRL4 (Fig. 1C) and was shown to
be specific as cultures treated with isotype control antibodies
were negative (not shown). No staining for PVRL4 using the
cross-reactive polyclonal Ab was seen in either infected or
uninfected MBEC (not shown). Reverse transcriptionYPCR was
carried out on RNA extracted from both infected and mock-
infected HBECs. A PCR product was obtained in infected cells,
but only a very weak band in mock-infected cultures (Fig. 1E).

Extensive Apoptosis Occurs in Noninfected Cells
in WT MV-Infected MBEC Cultures

To determine whether MBEC underwent destruction at
a later time than in HBEC cultures, MBECs infected with the
3 virus strains were examined for a prolonged period. In addi-
tion, the Schwarz MV vaccine strain, which expresses green
fluorescent protein (GFP), also produced negligible amounts of
infectious virus (not shown) and was used to follow infection in
real time. Schwarz GFP virus remained localized with infec-
tious foci, disappearing by 240 hpi (Fig. 3A). However, when
MBECs were overlaid with Vero cells at 24 hpi, virus spread to
the latter; infection spread with production of syncytia, which
increased in size by 96 hours post overlay (hpo) (Fig. 3B).
Between 116 and 211 hpi, there was rounding of cells in
monolayers infected with CAM/RB. Cell rounding with WT
virus was not observed until 191 hpi but reached similar levels
to CAM/RB at 211 hours. Similar extents of cell rounding
occurred with the Edmonston vaccine strain compared to
mock-infected cultures. The percentage of rounded cells in
monolayers was determined by counting 10 fields in each of
3 cultures (Fig. 3C). Representative monolayers are shown in
Figure 3D.

To determine whether cell death was caused by apoptosis,
immunofluorescence staining for activated caspase 3 was car-
ried out in WT-infected MBECs at 144 hpi. 50.8% T 7.4% (SE)
of the cells were caspase 3 positive compared to less than 1% of
cells in mock-infected cultures (Fig. 4A). We compared caspase
3 staining in HBECs infected with the 3 MV strains at 72 hpi.
Double staining for virus and caspase 3 showed colocalization,
but nearby virus-negative cells were also caspase 3 positive.
Caspase 3 staining was widely distributed in the monolayer in
WT-infected monolayers, which had low levels of viral antigen
throughout. Caspase 3 staining in cultures infected with the
other 2 viruses was localized in foci of virus infection (Fig. 4B).
Mock-infected cells were caspase 3 negative (not shown).

Virus-Induced Soluble Factors Cause Apoptosis
in MBEC Monolayers

The results suggested that a soluble factor in infected
BEC cultures may be responsible for cell rounding and death.
This was further investigated by collecting the supernatants
from infected MBEC cultures at time points from 24 to 216
hpi and UV radiating them to inactivate the virus. The
inactivated supernatants (which were not frozen) were added
to fresh monolayers of MBEC and the cultures monitored up
to 216 hours. Control supernatants were prepared from mock-

infected cells at the same time points. UV-inactivated super-
natants removed from all virus-infected cultures earlier than
96 hpi resulted in no or very minimal effects on fresh cells.
Supernatants removed from CAM/RB, WT, and Schwarz-
GFP virus-infected cultures at 96 hpi caused cell rounding on
fresh monolayers of MBEC between 144 and 216 hours
post treatment (hpt). Supernatants removed from WT-infected
cultures at 216 hours produced 30.75% T 4.38% (SE) rounded
cells at 144 hpt; supernatants removed at 216 hpi caused
total destruction of MBEC monolayers with loss of all cells
by 216 hpt. Supernatants isolated from cultures infected with
Edmonston virus at 216 hpi showed similar levels of cell
rounding (29.7% T 3.74%) at 144 hpt, and this increased to
39.5% T 5.12% at 216 hpt. Representative results for WT
and Edmonston MV strains are shown in Figure 5A and B,
respectively.

To determine whether the factor in the UV-inactivated
supernatants was causing apoptosis, we examined monolayers

FIGURE 4. Activated caspase 3 is expressed in virus-infected
cultures. Human brain endothelial cell (HBEC) monolayers were
infected with CAM/RB, wild-type (WT), and Edmonston virus
measles virus (MV) strains and murine brain endothelial cells
(MBECs) with WT MV at a multiplicity of infection (MOI) of 5.
Immunofluorescence staining was carried out in infected and
mock-infected cultures. (A) MBECs at 144 hours post infection
(hpi) stained for activated caspase 3 (red). (B) HBECs at 72 hpi
double stained for virus (green) and caspase 3 (red). Nuclei are
stained with DAPI (blue). Magnifications: (A) 200�; (B) 400�.
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FIGURE 5. Virus-induced soluble factors cause apoptosis in monolayers of murine brain endothelial cells (MBECs). Supernatants (S)
were collected from MBEC monolayers infected with the wild-type (WT) and Edmonston strains of measles virus (MV) at 72, 96,
144, and 216 hours post infection (hpi) as well as from mock-infected cultures at the same time points. These were UV inactivated
and added to fresh MBEC cultures. (A, B) Cultures were monitored by phase-contrast microscopy at 72, 144, and 216 hours post
treatment (hpt). (A, B) WT (A) WT and (B) Edmonston MV. (C) Immunofluorescence at 144 hpt for caspase 3 (red) and DAPI for
nuclei (blue) in MBEC cultures treated with UV-inactivated S removed from WT MV and mock-infected cells at 96 hpi. Magnifi-
cations: (A, B) 200�; (C) 400�.
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FIGURE 6. Soluble tumor necrosis factorYrelated apoptosis-inducing ligand (TRAIL) is induced by measles virus (MV) infection.
Cultures were infected at a multiplicity of infection (MOI) of 5 with wild-type (WT) and Edmonston MV (human [HBECs] and murine
[MBECs] brain endothelial cells) and CAM/RB (HBEC). RNA was prepared from WT MV-infected HBEC and MBEC monolayers; RT-
PCR was carried out for Fas, Fas ligand (FasL), TRAIL, and A-actin mRNA. (A) MBEC: lane 1, mock infected; lane 2, WT MV 72 hpi;
lane 3, WT MV 96 hpi; and lane 4, WT MV 120 hpi. (B) HBEC: Lane 1, mock infected; Lane 2 WT MV, 72 hpi. (C) Immunofluo-
rescence was carried out on HBECs at 72 hpi for viral antigen (green), TRAIL (red), and nuclei (blue). Magnification: 200�.
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treated for 144 hours with supernatants removed from WT
MV-infected and mock-infected cells at 96 hpi for caspase
3Ypositive cells. No caspase 3 staining was seen in mock- or
isotype Ab control-treated monolayers, whereas a mean of
13% T 1.35% of cells counted in 10 fields in each of 3 cultures
was caspase 3Ypositive in infected cell supernatant-treated
monolayers (Fig. 5C).

Soluble TRAIL Induced by MV Infection Causes
Apoptosis

To identify the factor(s) responsible for causing apopto-
sis, RNA was extracted from MBEC cultures mock infected
or infected with the WTMV strain at 72, 96, and 120 hpi and in
HBEC cultures at 72 hpi. Reverse transcriptionYPCR was car-
ried out for Fas, FasL, and TRAIL. Fas mRNA was detected at
similar levels in both infected and mock-infected cultures,
whereas no FasL mRNA was detected in either case. Poly-
merase chain reaction products for TRAIL were obtained for all
cultures, but only a weak band was observed for mock-infected
cells (Fig. 6A, B).

To confirm that TRAIL was also induced by virus in-
fection in HBEC, cultures were infected with the 3 MV strains
for 72 hours and double stained for viral antigen and TRAIL.
Wild-type MV again produced lower levels of antigen with
no syncytia formation compared to the 2 vaccine-derived
strains. TRAIL staining colocalized with viral antigen in all
cases (Fig. 6C). TRAIL-positive cells were not observed in
noninfected monolayers (not shown).

Ultraviolet-inactivated supernatants from mock-, WT-,
and Edmonston MV-infected MBEC cultures were examined
for soluble TRAIL from 2 to 5 dpi using an ELISA to determine
whether the cells were excreting this factor. As expected, we
detected higher expression of TRAIL in WT MV supernatants
compared to the Edmonston or mock supernatants at all time
points. In WT MV supernatants, TRAIL was significantly
higher by 2 dpi than in mock-infected cultures and continued to
rise to a mean of 1 ng/ml (equivalent to an optical density of
0.18) at 5 dpi. Significantly higher levels compared to mock-
infected cells were only found at 5 dpi with Edmonston MV
supernatants (Fig. 7A).

To confirm that TRAIL was inducing apoptosis, UV-
inactivated supernatants isolated from WT MV-infected
MBEC cultures at 96 hpi were untreated, treated with anti-
TRAIL Ab (at different concentrations ranging from 5 to
20 Kg/ml), or treated with 20 Kg/ml of an isotype nonimmune
Ab before adding to fresh MBECs. Cells were incubated for
140 hours, and the monolayers were examined. Extensive cell
rounding occurred in cultures exposed to untreated (Fig. 7B)
or isotype Ab-treated (not shown) supernatants. Rounding
was decreased in monolayers exposed to supernatants treated
with 5 and 10 Kg/ml of Ab; treatment with 20 Kg/ml of anti-
TRAIL resulted in monolayers comparable to control cultures
with no supernatant treatment (Fig. 7B). Cells were stained for
caspase 3, and the percentage of positive cells was assessed.
Anti-TRAIL treatment of supernatants at the concentrations of
10 and 20 Kg/ml reduced the percentage of caspase 3Ypositive
cells to a highly significant level compared to the untreated or
isotype Ab-treated supernatants (Fig. 7C). To further confirm
the role of TRAIL in apoptosis in MBECs, cells were treated

with different concentrations of soluble murine TRAIL rang-
ing from 1 to 1,000 ng/ml for 24 hours. The percentage of
caspase 3Ypositive cells in monolayers was very significantly
higher compared to the mock-treated cells even at a concen-
tration of TRAIL of 1 ng/ml where a mean of 8% of the cells
were caspase positive (Fig. 7D). This observation agreed with
the concentration of TRAIL found in supernatants from WT
MV-infected cells at 5 dpi (Fig. 7B). The percentage of cell
loss from each culture was also determined. This increased to
35% in cultures treated with 1,000 ng/ml compared to
nontreated cultures (Fig. 7E).

TRAIL Is Induced by MV infection
of the Murine CNS

To determine whether findings in vitro for TRAIL in-
duction by MV reflected the situation in vivo, we infected
groups of at least 3 mice intracerebrally with WT, Edmonston,
and CAM/RB viruses for 4 days. Control animals were mock
infected. CAM/RB-infected mice developed initial clinical
signs of hyperactivity, followed by disorientation, awkward
gait, and finally hind leg paralysis, and they become moribund
by Day 4 or 5. Wild-typeY and Edmonston MV-infected mice
remained healthy. Immunoperoxidase staining for MV was
carried to examine the location of virus infection and the mor-
phology of infected cell types. In CAM/RBMV-infected brains,
there was widespread staining in the cerebral cortex and hippo-
campus, as previously described (8, 21) (Fig. 8A, B). Most
infected cells had a neuronal morphology. Noninfected inflam-
matory cells were seen infiltrating infected areas (Fig. 8A, B).
In sections from WT (Fig, 8C, D) and Edmonston MV (not
shown)-infected mice, there were many more isolated areas of
infection with less inflammation. Cells with neuronal morphol-
ogy were again the predominantly stained cell type. Infection of
blood vessels was observed in both CAM/RB- and in WT MV-
infected mice (Fig. 8A, C).

Brain sections were then double stained for cell-specific
markers and virus and examined by confocal microscopy. This
confirmed that infection occurred predominantly in neurons
(Fig. 8E). In contrast, astrocyte infection was not observed
(Fig. 8F). Despite extensive efforts using several different an-
tibodies, we were unable to stain oligodendrocytes or microglia;
however, we have previously shown using double staining
that oligodendrocytes in ex vivo cultures from mice infected
with all 3 MV strains are positive for viral antigen (8). Double
staining for virus and CD34 demonstrated that ECs are infected
in both WT- and CAM/RB MV-infected brains (Fig. 8G).
Autofluorescing red blood cells were observed within the ves-
sel lumen, but MV staining was demonstrated within the cy-
toplasm of cells in the vessel wall that also showed CD34
staining in their membranes.

Parallel sections were also were double stained for
MV and TRAIL (Fig. 9). TRAIL staining was observed pre-
dominantly in blood vessels with CAM/RB MV infection
(Fig. 9A). Very few infected cells were observed in Edmonston
vaccine strainYinfected mice with associated low levels of
TRAIL (Fig. 9B). Infection with WT virus resulted in focal
areas of infection in the brain parenchyma. Many of these cells
were double stained for TRAIL, but there were also virus-
negative cells around the infected foci that were positive for
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FIGURE 7. Tumor necrosis factorYrelated apoptosis-inducing ligand (TRAIL) induces apoptosis in brain endothelial cells (BEC).
Murine BECs (MBECs) were infected at a multiplicity of infection (MOI) of 5 with wild-type (WT) or Edmonston measles virus (MV).
Supernatants (S) were collected at 72 to 216 hours post infection (hpi) and UV-inactivated. (A) TRAIL in S was measured by
sandwich ELISA. Mean and SD for 3 separate experiments are shown. (B, C) S aliquots removed at 96 hpi were untreated, treated
with increasing concentrations of anti-TRAIL antibody (5, 10, and 20 Kg/ml), or treated with 20 Kg/ml of a nonimmune isotype
before adding to fresh MBEC monolayers. (B) Cultures were incubated for 144 hpi and examined by phase-contrast microscopy
(magnification: 200�) or (C) stained for activated caspase 3; 10 or more fields were counted, and the percentage of positive cells
was determined. (D, E) MBECs were untreated or treated with increasing concentrations of soluble TRAIL (1, 50, 100, 500, and
1,000 ng/ml) for 24 hours. (D) Cells were stained for activated caspase 3; 10 or more fields were counted, and the percentage of
positive cells was determined. (E) The percentages of cell loss relative to mock-treated cultures were determined. The mean and SD
for 3 separate experiments are shown. *, p G 0.05; **, p G 0.01; ***, p G 0.001.
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FIGURE 8. Measles virus (MV) antigen in neurons and endothelial cells in MV-infected mice. Two- to three-day-old mice were
infected with 104 TCID50 of CAM/RB or wild-type (WT) MV strains for 4 days. (AYD) Immunoperoxidase staining was carried out
for MV; the sections were counterstained with hematoxylin. Brain sections from (A,B) CAM/RB MV -infected and (C,D) WT MV-
infected mice are shown. (EYG) Double staining for MV and (E)MAP-2 for neurons (red), (F) GFAP for astrocytes (green), and (G)
CD34 for endothelial cells (red). Magnifications: (A, C) 100�; (B, DF) 400�; (G) 630x.
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FIGURE 9. Tumor necrosis factorYrelated apoptosis-inducing ligand (TRAIL) is induced in murine cerebral endothelium by measles
virus (MV) infection. Two- to three-day-old mice were infected with 104 TCID50 of CAM/RB, Edmonston (Edm), or wild-type (WT)
MV strains for 4 days. (AYD) Double immunofluorescent staining was carried out for MV and TRAIL. White arrows indicate blood
vessels in (A) and (B). A WT MV-infected focus and blood vessel showing WT MV antigen are shown in (C) and (D), respectively.
Magnifications: (AYC) 200�; (D) 400�.
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TRAIL (Fig. 9C). For CAM/RB infection, TRAIL staining was
also observed in blood vessels some of which were also posi-
tive for viral antigen (Fig. 9D). No TRAIL staining was ob-
served in control brains (not shown).

DISCUSSION
It has been postulated that parenchymal cells adjacent to

infected ECs may occasionally become infected at the time of
primary measles infection (2) and that this is the likely route
of infection in individuals who develop MIBE and SSPE.
Reports also suggest the important contribution of BECs to
the process of spread of other viruses from the bloodstream to
the surrounding tissues in the brain. These include HIV,
Semliki Forest, West Nile, and human T-cell leukemia virus
type 1 viruses (33Y36).

Studies on HBEC have previously been carried out to
examine infection with WT MV strains and transmigration of
lymphocytes through ECs, but apoptotic mechanisms in these
cells have not been addressed (7, 13). Furthermore, no suit-
able in vivo models of MV endothelial infection have previ-
ously been described. Therefore, we initially compared
infection and apoptosis induced by WT, rodent-adapted, and
vaccine strains of MV in HBEC and MBEC. The similarities
observed, particularly with WT virus, validated subsequent in
vivo infection of mice to model events at the BBB in SSPE
and MIBE.

In MBECs, which do not express CD46, all viruses pro-
duced a low percentage of antigen-positive cells, as infection
appeared to be restricted to a subpopulation of cells. Spread to
other cells was possible when MBECs were overlaid with per-
missive Vero cells; this supports the view of lack of suscepti-
bility of adjacent MBECs in the culture. Murine BECs are
unlikely to be a homogeneous population because some cells in
cultures have been shown to be more sensitive to radiation than
others (37). It is possible that there are distinct phenotypes of
BECs with each differing in permissiveness to infection. Al-
ternatively, the cell cycle may affect virus replication because
of the compartmental distribution at different stages.

In contrast to MBECs, up to 60% of HBECs were virus
antigen positive for WT virus. These results are similar to
those previously obtained for the W44797 MV strain of MV
that was shown to have relatively high levels both of binding
to and infection of HBEC compared to other WT strains (13).
However, both the W44797 strain (13) and the Dublin 3267
strain used in the current study had lower levels of infection
than vaccine-derived strains that can use CD46 as a receptor.
It is possible that 1 or more receptors for WT MV are
expressed on a higher percentage of HBECs than MBECs or
that a different receptor is used in the latter. Surprisingly, in
infected HBECs (but not MBECs) PVRL4 staining occurred
in areas of virus infection, suggesting that the virus was
upregulating this molecule in these cells. It has been observed
that MV infection temporarily initially upregulates the virus
receptor SLAM in monocytes and alveolar macrophages
(15, 38, 39). Further studies will be necessary to determine
whether PVRL4 is a receptor for MV in HBECs and if dif-
ferent WT virus strains can upregulate or use this molecule
to different extents.

Extensive monolayer destruction was observed in infected
cultures, most marked with WT MV. This suggested the pro-
duction of 1 or more soluble factors that act on noninfected
cells and was confirmed by treating fresh MBEC monolayers
with UV infectivity-inactivated supernatants. Staining for acti-
vated caspase 3 inMBECs andHBECswas consistent with death
by apoptosis. A recent study of a clinical isolate of dengue virus
infection in human EC reported that apoptosis occurred through
both caspase-dependent and -independent pathways (40). Similar
to the studies of MV infection in dendritic cells (41Y43), we
could not detect FasL mRNA in uninfected cultures or induct-
ion after infection. Wosilk et al (44) reported that Fas (the FasL
receptor) but not FasL was expressed on HBECs. We detected
similar levels of Fas mRNA in both uninfected and infected
MBECs and HBECs.

There is conflicting evidence as to whether TRAIL
protects or causes apoptosis in peripheral ECs (45, 46). It has
been shown recently that TRAIL death receptors DR4 and
DR5 specifically mediate oligomeric amyloid A induction of
extrinsic apoptotic pathways in HBECs with activation of
both caspase 8 and caspase 9 (47). In the current study, we
found that treatment of virally induced supernatants with anti-
TRAIL Ab successfully blocked caspase 3 expression and
MBEC destruction in a dose-dependent manner. TRAIL-
specific antibodies have also been shown to inhibit apoptosis
in human peripheral ECs treated with statins (48). Treatment
of MBECs with murine TRAIL also confirmed the role of this
factor in apoptosis. A recent study has shown that TRAIL
mRNA is induced in HBECs by thrombospondin 1 (49), and
we show that TRAIL protein expression is induced in both
HBECs and MBECs after MV infection.

We have previously reported that apoptosis can be ob-
served in both MV-infected human and murine brain (50) but
did not specifically examine BEC. Mice only have 1 full-length
TRAIL receptor, which has facilitated the production of
knockout transgenics used in virus studies, but CNS infection
has not been studied (51). We show that MV infection in the
normal murine CNS is associated with TRAIL production,
particularly in the endothelium, regardless of the level of pa-
renchymal infection. TRAIL expression was detected in both
infected and noninfected blood vessels in both CAM/RB- and
WT MV-infected brains. Failure to detect virus in all TRAIL-
positive ECs may relate to either the sensitivity of viral antigen
detection or alternatively induction of TRAIL by soluble fac-
tors released from more distant infected cells.

In conclusion, our data are the first demonstration that
infection of a low percentage of MBECs with WT MV allows
efficient virus production as well as induction of TRAIL
and subsequent widespread apoptosis. Whereas only a few
infected BECs have been detected in SSPE brain tissue (5),
these are likely to have a major effect on the disease process
through both local virus production and virus-induced apo-
ptosis. Endothelial cells have very low proliferation rates
(52, 53), and therefore, small numbers of apoptotic cells
would have a major effect with regard to breakdown of the
BBB. Wild-type MV infection of BECs is likely to allow vi-
rus to invade the brain parenchyma in immunocompromised
or other susceptible individuals with resultant bystander
effects on neural cells. We have shown that WT MV infection
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of MBEC appears to be very similar to that in HBEC and that
infection of the endothelium and TRAIL production occurs in
the murine CNS. These parallel in vitro and in vivo WT MV
models can be used to develop therapeutic approaches, par-
ticularly for immunosuppressed individuals exposed to MV.
This strategy may also be applicable to other virus infections.
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