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New Bounds on the Real Polynomial

Roots

Emil M. Prodanov

School of Mathematical Sciences, Technological University Dublin,

City Campus, Kevin Street, Dublin, D08 NF82, Ireland,

E-Mail: emil.prodanov@tudublin.ie

Abstract

The presented analysis determines several new bounds on the roots of the equation
anx

n + an−1x
n−1 + · · · + a0 = 0 (with an > 0). All proposed new bounds are

lower than the Cauchy bound max{1,
∑n−1

j=0 |aj/an|}. Firstly, the Cauchy bound
formula is derived by presenting it in a new light — through a recursion. It is shown
that this recursion could be exited at earlier stages and, the earlier the recursion is
terminated, the lower the resulting root bound will be. Following a separate analysis,
it is further demonstrated that a significantly lower root bound can be found if the
summation in the Cauchy bound formula is made not over each one of the coefficients
a0, a1, . . . , an−1, but only over the negative ones. The sharpest root bound in this
line of analysis is shown to be the larger of 1 and the sum of the absolute values
of all negative coefficients of the equation divided by the largest positive coefficient.
The following bounds are also found in this paper: max{1, (

∑q
j=1Bj/Al)

1/(l−k)},
where B1, B2, . . . Bq are the absolute values of all of the negative coefficients in the
equation, k is the highest degree of a monomial with a negative coefficient, Al is the
positive coefficient of the term Alx

l for which k < l ≤ n.
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The roots of the equation anx
n + an−1x

n−1 + · · ·+ a0 = 0 are bound from above by the
unique positive root of the associated Cauchy polynomial |an|xn − |an−1|xn−1 − · · · −
|a0|. The Cauchy formula yields that the upper bound of the roots of the equation is
max{1,

∑n−1
j=0 |aj/an|} — see section 8.1 in [1]. In the first part of the analysis presented

in this paper, this formula is derived from a different perspective — through a recursion,
— following the idea of splitting polynomials into two parts and studying the “interac-
tion” between these parts [2] (i.e. studying the intersection points of their graphs) — a
method successfully used also for the full classification of the roots of the cubic [2] and
the quartic equation [3] in terms of the equation coefficients. This recursion involves
bounding the unique positive root of a particular equation with the unique positive root
of a subsidiary equation of degree one less. The recursion ends with the determination of
the root of a linear equation and this root is exactly

∑n−1
j=0 |aj/an|. If, instead, the recur-

sion is terminated at an earlier stage — that of a quadratic, cubic, or quartic equation
— the resulting root bound will be lower, as shown in this work. All of these analytically
determinable new bounds are lower than the Cauchy bound.
It is separately shown, following a different line of analysis, that one does not have to sum
over all coefficients aj in

∑n−1
j=0 |aj/an|, but only over the negative ones. This results in

a significantly lower root bound that the Cauchy bound. It is demonstrated further that
this new bound can be made even lower by finding a denominator, greater than |an|. The
sharpest upper bound of the roots of the general polynomial anx

n + an−1x
n−1 + · · ·+ a0

with an > 0 that can be found following this analysis, is either 1 or the smallest of the
unique positive roots of all Cauchy polynomials that can be extracted form this poly-
nomial with preservation of all terms with negative coefficients — whichever is larger.
The latter is the sum of the absolute values of all negative coefficients of the equation
divided by the largest positive coefficient.
The following bounds are also found in this paper: max{1, (

∑q
j=1Bj/Al)

1/(l−k)}, where
B1, B2, . . . Bq are the absolute values of all of the negative coefficients in the equation,
k is the highest degree of a monomial with a negative coefficient, Al is the positive co-
efficient of the term Alx

l with k < l ≤ n.
The lower bound on the unique positive root of a Cauchy polynomial is also determined.

A Cauchy polynomial of degree n is defined [1] as a polynomial in x such that the
coefficient of xn is positive and the coefficients of all of its remaining terms — negative.
That is, the Cauchy polynomial has the form |an|xn − |an−1|xn−1 − · · · − |a0|. As there
must be at least one term with negative coefficient, a monomial cannot be a Cauchy
polynomial.
The Cauchy polynomial has, by Descartes’ rule of signs, a unique positive root, say µ
(as there is only one sign change in the sequence of its coefficients), and, by Cauchy’s
theorem [1], the root µ provides the Cauchy bound on the roots of the general polynomial
equation of degree n

anx
n + an−1x

n−1 + · · ·+ a0 = 0. (1)
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In this equation an 6= 0 and, without losing generality, it will be assumed further that
an > 0.
If all of the coefficients of this equation have the same sign, then it will not have positive
roots and therefore 0 will be the upper bound of the roots (if real roots exist). This
special case will not be considered further.
Before addressing the general equation (1), re-write the Cauchy polynomial as αnx

n −
αn−1x

n−1−· · ·−α0, where all coefficients αj are positive (the number of terms αjx
j for

which j < n may be between 1 and n), and consider the associated equation

αnx
n − αn−1xn−1 − · · · − α0 = 0. (2)

As the unique positive root of this equation is sought, one can assume, without loss of
generality, that α0 6= 0. (If α0 happens to be zero, one identifies 0 as a root, reduces
everywhere the powers of x and the indexes of the coefficients by one unit and arrives
at an equation of the same type, but of degree n − 1. If the “new” α0 also happens to
be zero, this procedure should be repeated until a non-zero coefficient is encountered —
it is guaranteed to exist by the definition.)
Equation (2) can be viewed as

fn(x) = α0, (3)

where fn(x) ≡ αnxn − αn−1xn−1 − · · · − α1x, and also as

xfn−1(x) = α0, (4)

where fn−1(x) ≡ αnxn−1 − αn−1xn−2 − · · · − α1 (since x 6= 0).
Due to fn(x) = xfn−1(x), the two polynomials fn(x) and fn−1(x) have the same unique
positive root r, that is, the graphs of the two functions fn(x) and fn−1(x) cross each
other at point r on the abscissa.
There is another intersection point between fn(x) and fn−1(x) for positive x and this
intersection always happens at x = 1. This can be easily seen from

fn(1) = αn − αn−1 − · · · − α1 = fn−1(1). (5)

Thus, the coordinates of the two points of intersection between fn(x) and fn−1(x) are
(r, 0) and (1, y0), where y0 = αn − αn−1 − · · · − α1. Next, one has to determine where
point y0 is with respect to the “level” y = α0 > 0, prescribed by the free term of the
Cauchy polynomial.
Clearly, when y0 = αn − αn−1 − · · · − α1 < 0, this intersection point is in the fourth
quadrant, when y0 = αn − αn−1 − · · · − α1 > 0, it is in the first quadrant, and when
y0 = αn − αn−1 − · · · − α1 = 0, then the functions fn(x) and fn−1(x) cross only once at
the abscissa at r = 1, i.e. r = 1 is a double root of fn(x) = fn−1(x) .
As α0 > 0, there are three possible situations: either 0 ≤ y0 ≤ α0 (Figure 1), or
y0 ≤ 0 ≤ α0 (Figure 2), or 0 < α0 < y0 (Figure 3).
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Figure 1 Figure 2 Figure 3

0 ≤ y0 ≤ α0

When α0 ≥ αn − αn−1 − · · · −
α1 ≥ 0, the upper bound of µn
is µn−1 and the lower bound of
µn is 1.

y0 ≤ 0 ≤ α0

When α0 ≥ 0 ≥ αn − αn−1 −
· · · − α1, the upper bound of µn
is µn−1 and the lower bound of
µn is 1.

0 < α0 < y0

When 0 < α0 < αn − αn−1 −
· · · − α1, the upper bound of µn
is 1 and the lower bound of µn is
µn−1.

Let µn denote the unique positive root of fn(x) = α0 (note that µ = µn) and µn−1 — the
unique positive root of fn−1(x) = α0. It is quite clear that in the first two cases (Figures
1 and 2) one has 1 < µn < µn−1, while in the third case (Figure 3), µn−1 < µn < 1 holds.
Thus, when α0 ≥ αn−αn−1−· · ·−α1, one has that µn−1 is an upper bound of µn (or µ)
and 1 is a lower bound µn (or µ). On the contrary, when α0 < αn−αn−1−· · ·−α1, one
has that µn−1 is the lower bound of µn (or µ) and 1 is the upper bound µn (or µ). In
the last case, one does not need to proceed further and should just take 1 as the upper
bound of the unique positive root µ of the Cauchy polynomial and, hence, as the upper
bound of the roots of the general equation (1).
If, however, the free term α0 of the Cauchy polynomial is such that a0 ≥ αn − αn−1 −
· · ·−α1, one needs to find an upper bound of µn−1 and this, in turn, will serve as upper
bound of µn = µ and, hence, on the roots of (1). This means to continue recursively by
considering the equation fn−1(x) = α0 and re-writing it as

gn−1(x) = α′0 (6)

where gn−1(x) = αnx
n−1 − αn−1xn−2 − · · · − α2x = fn−1(x) + α1 and α′0 = α0 + α1, on

one hand, and as

xgn−2(x) = α′0, (7)

with gn−2(x) = αnx
n−2 − αn−1xn−3 − · · · − α2, on the other hand.

As before, since gn−1(x) = xgn−2(x), the polynomials gn−1(x) and gn−2(x) have the same
unique positive root r′, that is, the graphs of the two functions gn−1(x) and gn−2(x) cross
each other at point r′ on the abscissa. Also as before, there is another intersection point
between gn−1(x) and gn−2(x) for positive x and this intersection point is again x = 1:

gn−1(1) = αn − αn−1 − · · · − α2 = gn−2(1). (8)

4



Equations (6) and (7) have the same unique positive root µn−1. Let µn−2 denote the
unique positive root of gn−2(x) = α′0. This positive root is an upper bound for µn−2
provided that α′0 ≥ αn−αn−1− · · ·−α2. The latter is simply a0 ≥ αn−αn−1− · · ·−α1

and this is indeed the case, as it was presumed to hold when the recursion started.
The equation gn−2(x) = α′0 is, in fact,

αnx
n−2 − αn−1xn−3 − · · · − α3x− α2 − α1 = α0. (9)

Continuing in the vein of recursively bounding the root of each of these equations with
the root of an equation of degree reduced by one unit, the linear equation

αnx− αn−1 − αn−2 − · · · − α0 = 0, (10)

which terminates the recursion, immediately follows. The exact unique positive root of
this equation is

µ1 =
αn−1 + αn−2 + · · ·+ α0

αn
. (11)

Thus, one naturally arrives at the Cauchy bound

ρ = max {1, µ1} = max

1,
n−1∑
j=0

αj
αn

 (12)

for the roots of the general equation (1) — see (8.1.10) in [1] (there are no absolute
values in the above formula as the α’s are taken as positive).
Next, sharper bounds than (12) will be found.
The recursion which led to (11) could be exited earlier. For example, if one ends at the
stage of quadratic equation (preceding that of the linear equation whose root is µ1), the
unique positive root µ2 of this quadratic equation will be smaller than µ1 and hence,
it will provide a sharper bound. That is, a sharper bound is provided by the unique
positive root of

αnx
2 − αn−1x− αn−2 − · · · − α0 = 0, (13)

namely

µ2 =
1

2αn

[
αn−1 +

√
α2
n−1 + 4αn(αn−2 + αn−3 + · · ·+ α0)

]
. (14)

The recursion can be exited earlier than this — at the stage of the cubic equation

αnx
3 − αn−1x2 − αn−2x− αn−3 − · · · − α0 = 0. (15)

Its unique positive root µ3 which is such that µ3 < µ2 < µ1, provides an even sharper
bound.
Finally, µ4, the unique positive root of the quartic equation

αnx
4 − αn−1x3 − αn−2x2 − αn−3x− αn−4 − · · · − α0 = 0 (16)
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provides the sharpest bound that can be found analytically by the recursion.
The Cauchy bound (12) can be made significantly sharper by following a different line
of analysis.
Suppose that the number of terms with positive coefficients in the general equation (1)
is p and that the number of terms with negative coefficients is q. Clearly, p+ q ≤ n+ 1
(equality is achieved if none of the coefficients of the general equation (1) is equal to
zero). For the coefficients aj > 0, write Aj instead, and for the coefficients aj < 0, write
(−Bj) instead. Clearly, An ≡ an > 0 and all the rest of the A’s are non-negative. At
least one of the B’s is positive, the rest — non-negative (equation in which all coefficients
have the same sign is no longer of interest).
Following the ideas, presented in [2], of splitting a polynomial into two parts and
analysing the “interaction” between these parts in order to study the roots of the poly-
nomial, one can re-write the general equation (1) as

Alx
l −Bn−m1x

n−m1 −Bn−m2x
n−m2 − · · · −Bn−mqx

n−mq

= −Anxn −An−k1xn−k1 − · · · − Âlxl − · · · −An−kp−1x
n−kp−1 , (17)

where {k1 < k2 < . . . < kp−1,m1 < m2 < . . . < mq} is a permutation of {1, 2, . . . , n}, l
is such that n−m1 < l ≤ n, and the hat on Al indicates that the term Alx

l is missing
from the right-hand side. At least one monomial Alx

l with n −m1 < l ≤ n exists —
Anx

n.
The polynomial on left-hand side of (17) is a Cauchy polynomial with unique positive
root µ (if the free term of the equation happens to be positive, then the resulting Cauchy
polynomial will have zero as a root). This polynomial, due to having a positive coefficient
in its leading term, is strictly positive for all x > µ. The polynomial on the right-hand
side of the equation is strictly negative for all x > 0 (should the free term of the original
equation happen to be negative, the polynomial on the right-hand side will have 0 as a
root). For all x > µ, the two sides have opposite sign and therefore, there can be no
roots of the equation for x > µ, i.e. the root bound for the general equation (1) is µ —
the unique positive root of the Cauchy polynomial extracted from the given polynomial.
Of course, different choices of l in Alx

l will lead to different Cauchy polynomials with
different roots on the left-hand side of (17). It will be the unique positive root of the
particular Cauchy polynomial appearing on the left-hand side of (17) that will provide
a bound for the roots of the general equation (1).
Suppose now that on the left-hand side of (17) the term −Bl−1xl−1 − Bl−2xl−2 − · · · −
Bm−n1+1x

n−m1+1 with Bl−1 = Bl−2 = . . . = Bm−n1+1 = 0 has been added to the Cauchy
polynomial. Following the analysis that lead to the derivation of (11) and (12), it can be
seen that, instead of the bound given by the Cauchy formula (12), a significantly lower
bound can be used

ρ′l = max

1,
q∑
j=1

Bn−mj

Al

 . (18)

The summation is no longer over all coefficients of the equation (as in the Cauchy
formula), but only over the absolute values of the negative ones (in units of Al). There
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will be different bounds ρ′l for different choices of l.
Clearly, the sharpest of these bounds will be the one with the biggest denominator:
Amax = max{Al |n ≥ l > n−m1}:

ρ′ = max

1,
q∑
j=1

Bn−mj

Amax

 . (19)

It should also be noted that, instead of introducing the “ghost” termBl−1x
l−1−Bl−2xl−2−

· · ·−Bm−n1+1 with Bl−1 = Bl−2 = . . . = Bm−n1+1 = 0, a sharper bound can be obtained
if one terminates the recursion when the equation

Alx
l−n−m1 −Bn−m1 −Bn−m2 − · · · −Bn−mq = 0 (20)

is reached. The obtained in such way bound, for different values of l, is

ρ′′l = max

1,

 q∑
j=1

Bn−mj

Al

 1
l−n−m1

 , n−m1 < l ≤ n. (21)

From here, one can find ρ′′ as the minimum of the above.
The above arguments prove the following theorem

An upper bound of the roots of the general polynomial anx
n + an−1x

n−1 +
· · ·+ a0 with an > 0 is the smallest of the unique positive roots of all Cauchy
polynomials that can be extracted form this polynomial with preservation of all
terms with negative coefficients.

To determine the lower bound of the unique positive root of the Cauchy polynomial,
re-write equation (2) for positive x as

xn
(
αn − αn−1

1

x
− · · · − α0

1

xn

)
= 0. (22)

In variable y = 1/x, this equation becomes:

α0y
n + α1y

n−1 + · · ·+ αn−1y − αn = 0. (23)

As there are n Cauchy polynomials αn−ty
t − αn (t = 1, 2, . . . , n) that can be extracted

from α0y
n + α1y

n−1 + · · · + αn−1y − αn, equation (23) can be written in n equivalent
ways:

−αn + αn−ty
t = −α0y

n − α1y
n−1 − · · · − α̂n−tyt − · · · − αn−1y. (24)

For each of these, the unique positive root (αn/αn−t)
1/t of the Cauchy polynomial

αn−ty
t − αn provides an upper bound on the roots of equation (23). The full set of

the obtained in this way bounds on the roots of this equation is{
αn
αn−1

,

(
αn
αn−2

) 1
2

, . . . ,

(
αn
α0

) 1
n

}
. (25)
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Thus, the sharpest upper bound on the roots of equation (23) is, obviously, the smallest
of all these numbers. This is a Lagrange type of bound (the Lagrange bound is the sum
of the two largest values of this sequence).
The sharpest lower bound of the unique positive root of the Cauchy equation (2) will
thus be the largest of the reciprocals of the numbers in the sequence (25).
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