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An investigation of the role of spatial ability in representing and 
solving word problems among engineering students1 

 

Gavin Duffya, Sheryl Sorbyb, Brian Bowea 

aTechnological University Dublin, bUniversity of Cincinnati 

Abstract 

Background 

Spatial ability is significantly related to performance in engineering education.  Problem 

solving, an activity that is highly relevant to engineering education, has been linked to 

spatial ability. 

Purpose/Hypothesis 

To what extent is spatial ability related to problem solving among engineering students and 

how do approaches to problem representation and solution vary with spatial ability level? 

Design/Method 

Three instruments – a spatial ability test, word math problems and accompanying core math 

competency questions – were administered to two samples of first year engineering 

students in two different countries.  Data were analyzed at the test level to evaluate the 

relationship of spatial ability to problem representation and solution.  A detailed item level 

analysis was conducted to compare approach to problem solving with spatial ability level. 

Results 

Spatial ability was found to be significantly related to problem solving but not to the core 

competency questions indicating the relationship was limited to the problem representation 

phase and not the solution phase.  Key aspects of representation were identified for each 

problem to reveal a more pronounced relationship between representation and spatial 

ability than between problem solving (representation and solution) and spatial ability. 

Conclusions 

Problem solving can be considered to consist of two cognitively distinct phases: spatial 

ability is significantly related to problem representation but not to problem solution.  Hence, 

this study shows that spatial ability plays a key role in engineering education that is not 

limited to visualization of imagery but extends to thinking during problem solving, a non-

routine activity that requires mental representation. 

Introduction 

Long considered to be a primary factor of intelligence (e.g., Thurstone, 1938), spatial ability 

relates to visualization and mental processing of images and is required for everyday 

thinking (e.g., navigation) and to support learning (e.g., visualize the number line when 

                                                      
1 This is the submitted for review version of the paper. Final version available at 
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learning math).  It occupies a prominent role in several models of intelligence (Lohman, 

1996) and working memory (Baddeley & Logie, 1999).  The role of spatial ability in shaping 

education and career choice was thoroughly documented through Project TALENT, a very 

large scale (n ≈ 400,000) longitudinal study conducted in the US (Wai, Lubinski, & Benbow, 

2009).  In this study, spatial, verbal and mathematical abilities were measured in high school 

and participants were followed up 11 years later to find out what career choices they made.  

Retrieving their cognitive ability data from adolescence, those who pursued education and 

careers in humanities had a very different cognitive ability profile compared to those 

destined for engineering.  Broadly similar in verbal ability, these two groups were separated 

by their math and spatial abilities with the biggest difference to be found in the latter.  

“Spatial ability is a salient psychological characteristic among adolescents who subsequently 

go on to achieve advanced educational and occupational credentials in STEM [science, 

technology, engineering and mathematics]” (Wai et al., 2009, p. 827).  Supported by other 

studies, these findings have prompted the US National Science Board to call for greater 

attention to be paid to spatial ability in identification of STEM talent (National Science 

Board, 2010). 

Some reasons why spatial ability is connected to success in engineering education can be 

found in studies that have focused on particular curriculum components, including physics, 

electric circuits, chemistry and math.  Using concept tests as a measure of subject 

knowledge, a significant relationship between spatial ability and Newtonian mechanics has 

been measured (Kozhevnikov, Motes, & Hegarty, 2007; Kozhevnikov & Thornton, 2006).  

Tasks included those found on the Force and Motion Concept Inventory (Thornton & 

Sokoloff, 1998) such as frame of reference problems and interpreting graphs of velocity and 

acceleration over time.  Understanding concepts associated with physical aspects of simple 

direct current electric circuits was found to be significantly correlated with spatial ability 

(Duffy, 2017; Duffy & O’Dwyer, 2015), a study that used the DIRECT concept test 

(Engelhardt & Beichner, 2004).  Based mostly on data collected from course grades, Bodner 

and colleagues (Bodner, 2015; Carter, LaRussa, & Bodner, 1987; Pribyl & Bodner, 1987) have 

found high spatial ability students to have an advantage when mentally manipulating 2-D 

representations of molecules and when problem solving skills are required.  

“The relation between spatial ability and mathematics is so well established that it no longer 

makes sense to ask whether they are related”, according to Mix & Cheng (2012, p. 206) who 

list several findings from research including that visuospatial working memory (VSWM) was 

found to be related to counting tasks, nonverbal problem solving and reasoning tasks 

among school children and mental rotation was found to be related to word problem 

solving among 6th graders.  Some of this research is motivated by the widely reported 

gender gap in spatial ability in favor of males (Lippa, Collaer, & Peters, 2010) such as the 

study by Casey, Nuttall, & Pezaris (2001) which found significant correlations between 

spatial ability and two math subsets, one which favored males and had higher imagery 

ratings than the other which was more procedural and favoured females.  The correlations 

with spatial ability were much higher for the male math subset (.44 to .55) than for the 

female subset (.17 to .29) indicating the strength of the relationship depends on the 

particular math task. 

What emerges from these studies is that spatial ability is relevant when tasks require 

visualization of images, reasoning about questions on concept tests and non-routine 

activities such as problem solving.  A common theme appears to be that those with high 



levels of spatial ability appear to perform well when reasoning about problem scenarios that 

often, but not always, include well-structured images.  While this contributes towards 

explaining the overall relationship unearthed by Project Talent, two observations are worth 

making which are relevant to the rationale for this study.  First, based on definitions of 

spatial ability found in the factorial models of intelligence (e.g., Carroll, 1993; Linn & 

Petersen, 1985; McGee, 1979), only tasks that require visualization should be related to 

spatial ability.  Yet, some findings suggest this limitation is too narrow as performance on 

tasks that do not contain images can also be related to spatial ability.  Second, findings 

related to the relationship between spatial ability and math performance have mostly 

emerged from studies using samples of children with few, if any, reports in the literature of 

the role of spatial ability in problem solving among samples of engineering students. 

Another motivation for this study is that, despite the trend revealed by Project Talent, not 

all engineering students have high spatial ability.  It has been shown that a sizeable minority 

of first year engineering students – in the range of 10 to 20 % (Sorby & Veurink, 2010a) – 

can fail a spatial test.  In terms of cognitive ability profile, these students are more similar to 

their peers in humanities than engineering.  In addition, this group is over represented by 

women given the gender gap in spatial ability (Lippa et al., 2010).  To illustrate, a sample of 

535 engineering students that was 17 % female contained a low spatial ability group that 

was almost 50 % female (Sorby, 2009).  It is likely these low spatial students – male and 

female - face greater challenges in interpreting graphs, reasoning about frame of reference 

scenarios, completing electric circuit tasks and solving math and chemistry problems.  A 

better understanding of the relationship of spatial ability to performance in engineering 

education would facilitate the development of learning, teaching and assessment activities 

to better support these students. 

Should curricula be reformed to cater for low spatial students or should they learn ways to 

cope with these challenges?  Spatial ability is malleable, it can be developed through 

focused intervention (Uttal et al., 2013).  Spatial ability training has been shown by Sorby 

and colleagues to lead to significant gains in spatial ability, retention rates and grades in 

certain subjects among first year engineering students (Sorby, 2012; Sorby, Casey, Veurink, 

& Dulaney, 2013; Sorby & Veurink, 2010b).  Since engineering curricula are already 

struggling to cover everything science has discovered since Galileo made his telescope and 

more, adding another course can be difficult or impossible.  Alternatively, students weak in 

spatial ability could be guided in ways to cope with the tasks that have been shown to be 

related to spatial ability. 

To inform such decisions, a clearer understanding of the role spatial ability plays in carrying 

out engineering activities is needed. Without that knowledge, both evaluation of spatial 

ability development and ways to develop coping strategies may be misguided.  In the case of 

the math-spatial relationship, it may not be appropriate to apply findings from samples of 

6th grade children to engineering students as these populations differ in two ways.  First, the 

age gap coincides with the teenage years, a period in life of much cognitive development – 

12 year olds are cognitively different to 18 year olds.  Second, as shown through Project 

Talent, engineering students have a different cognitive profile compared to the general 

population.  Hence, there is a need to study the math-spatial relationship among 

engineering students and, if found to be present, to learn as much as possible about the 

nature of this relationship. 



Solving word problems in mathematics 

Despite achieving very high grades in mathematics courses, engineering students can 

struggle to solve relatively simple math problems as shown by Clement (1982) who 

administered the following problem and instructions to 150 freshman engineering students: 

“Write an equation using the variables C and S to represent the following 

statement: 

At Mindy’s restaurant, for every four people who ordered cheesecake, 

there are five people who ordered strudel. 

Let C represent the number of cheesecakes and S the number of strudels.” 

(Clement, 1982, p. 17) 

The success rate on this problem was 27 % - approximately two thirds of the class failed to 

convert the word statement into the correct equation (5C = 4S).  The most common 

incorrect response (68 %) was 4C = 5S which can be obtained by translating one word at a 

time in the order of appearance without comprehending the entire statement.  Several 

other studies have shown how rephrasing a problem without changing the mathematical 

properties can have a large effect on success rate (e.g., Coquin-Viennot & Moreau, 2003; 

Hegarty, Mayer, & Green, 1992).  This literature illustrates that, for many, a problem that is 

simple in mathematical content can be very difficult to solve; comprehending and 

translating the problem statement can be very difficult even when the mathematical 

procedures are simple. 

Solving problems is theorized in cognitive psychology to begin with a representation phase, 

which draws on linguistic, semantic and schematic knowledge, followed by a solution phase 

in which core competencies are deployed guided by strategic knowledge (Mayer, 1992).  In 

examining the relationship between visualization and problem solving among 6th grade 

children, both Hegarty & Kozhevnikov (1999) and Boonen, van Wesel, Jolles, & van der 

Schoot (2014) found a large variation in the quality of visualizations produced during 

problem solving.  Some participants provided ‘pictorial’ visualizations that included images 

of the objects or persons contained in the problem statement but failed to include the 

relations between them.  Others provided accurate, schematic visualizations that included 

both objects and relations and these participants had significantly higher success rates than 

those who produced pictorial imagery.  To some extent, the variation in visualization quality 

contained within these samples was accounted for by variation in spatial ability. Mental 

representation, as evidenced by visualization, varied among the samples and contributed 

towards explaining differences in success rates but an association between quality in mental 

representation and high spatial ability was only partially supported among these samples of 

6th graders. 

Research questions 

The purpose of this study was to contribute to knowledge of the relationship between 

spatial ability and problem solving skills of engineering students.  While problem solving is 

relevant to many discipline specific subjects in engineering education, the emphasis in this 

study was on word problems in mathematics because (i) it is a subject area that is common 

to all engineering disciplines, (ii) very basic core competencies in mathematics are needed 

to solve these problems and (iii) findings could be compared to the existing literature on the 

relationship between spatial ability and math problem solving. 



The research questions addressed in this study are as follows: 

1. To what extent is math word problem solving related to spatial ability among 

engineering students? 

2. If significant, which particular phase in problem solving (representation, solution) is 

this relationship associated with? 

3. For an individual word problem, what representation is required to solve the 

problem and how is ability to produce this representation related to spatial ability? 

Method 

A mixed methods design was employed to first expose a relationship using quantitative 

methods and then investigate the nature of that relationship using an interpretive approach 

to coding problem solutions.  Once the solutions were coded, quantitative methods were 

employed to describe spatial ability differences between those whose solutions did and did 

not satisfy these codes. 

Participants 

A sample of 115 participants enrolled in first year engineering in two universities was 

recruited for this study.  Sixty-two students enrolled in the general first year engineering 

program at a university in Ireland participated in the study along with 53 students from first 

year engineering at a university in the US.  Ethical approval was obtained from each 

institution prior to data collection, each participant was fully informed about the study and 

each signed a consent form before participating.  The US participants were recruited from 

those enrolled in a spatial skills development course in the Fall semester of 2016.  These 

students were offered this course based on achieving a low score on the spatial test during 

orientation in August 2016, hence the low average spatial score for this group and the 

relatively high proportion of ‘weak visualizers’ when the samples are combined.  The sample 

therefore represented engineering students from two universities in two countries and 

contained a wide distribution in spatial ability. 

Procedure 

Both samples were administered three instruments: the Purdue Spatial Visualization Test: 

Rotations (PSVT:R, Guay, 1976), a set of 6 math problems and a set of 6 math questions.  

Data from the Ireland sample were collected during a regular class session in April 2016.  

Spatial ability data were collected from this sample during orientation in September 2015.  

The US sample was administered the spatial test during orientation in July/early August 

2016 and the math problems and questions were administered individually in August 2016.   

Instruments 

Spatial test 

The PSVT:R consists of multiple choice questions designed to measure 3-D mental rotation 

ability.  The test was timed with 20 minutes allowed so the participant’s speed and accuracy 

are assessed.  Each question shows a target figure in original and rotated positions.  A 

second 3D shape is then presented in its original position and participants select one of five 

possible rotated versions to match the target rotation.  One of the two practice questions 

from the test is shown in Figure 1.  This question involves the rotation of the object by 90° 



around the vertical axis. There are 30 questions on the test with rotations varying around 

one, two and three axes.  Reliability measures for the PSVT:R are reported by (Yoon, 2011) 

with Cronbach’s α = .81 measured using data collected from a sample of 180 education 

major undergraduate students enrolled in mathematics courses.  Average scores on this test 

have been measured to be 21.32 for females and 24.62 for males among a sample of US first 

year engineering students (Sorby et al., 2013). 

 

Figure 1. Sample question from the PSVT:R (Guay, 1976) 

Word Problems 

A pilot study was conducted with a sample of 13 participants from the engineering 

undergraduate teaching assistant pool at the US university.  Based on the results from the 

pilot study, 6 problems were selected based on: a) each taking approximately 5 minutes to 

solve, and b) ability to discriminate by spatial ability.  The data collected by administering 

the set of 6 problems to the 115 engineering students were found to be normally 

distributed.  The internal consistency of the set of problems was found to be medium 

(Cronbach’s α = .49, 6 items) which reflects how each problem is distinct to some extent.  

The 6 problems are provided in Table 1. 

Core Competency Questions 

A set of 6 questions was developed to assess the math competencies needed to solve the 

problems.  For example, the Lawn problem required the creation and solution of a quadratic 

equation.  Hence, a core competency was identified - obtain the factors of a quadratic 

equation – and a question was created that presented a quadratic in x, with the same 

structure but different constants as the problem quadratic, and asked the participant to find 

the factors. Internal reliability of this test was found to be medium (Cronbach’s α = .61, 6 

items) but there was significant skew in the distribution to the upper end of the range as the 

average score on this test was high.  The 6 questions are provided in Table 1. 



Table 1. Set of problems and accompanying set of questions used in the study 

Problem Question 

1. A square lawn was extended in width by 2 m and in length by 3 m.  

The area of the new lawn is twice as big as the area of the old lawn.  

What are the dimensions of the old lawn? 

1. Find the roots of 2x2 + 6x - 8 = 0 using 

factoring. 

2. Stainless steel cylindrical jugs are made to hold a volume of 2 litres 

(2000 cm3).  If the 1 litre mark is at 8.84 cm what is the radius of the 

jug to the nearest centimetre? 

2. What is the volume of this cylinder? 

 
(Also needed for Problems 4 and 6) 

3. Drink cans are made by stamping out circular discs from a sheet of 

metal.  The rectangular sheet from which the discs are stamped out 

measures 1 m by 2 m.  If the cans have a radius of 10 cm, how many 

discs can be made from this sheet of metal? 

3. How many centimetres are in a metre? 

 
4. The diagram above shows the dimensions of a flat roofed 

commercial shed.  During one week 5 mm of rain fell on the roof of 

the shed.  The rain was collected by gutters that flowed into a 

cylindrical water barrel with a diameter of 1 m.  By how much did the 

depth of the water in the barrel increase as a result of this rain? 

4. What is the equation for the area of a 

circle? 

(Also needed for Problems 2 and 6) 

5. I have some pencils and some jars.  If I put 4 pencils into each jar I 

will have one jar left over.  If I put 3 pencils into each jar I will have 

one pencil left over. 

How many pencils and how many jars are there? 

5. What is the volume of this tank? 

 
6. When blood samples are centrifuged the blood separates into two 

distinct layers – one made up mainly of plasma and the other made up 

of red blood cells. 

A sample of blood was put in a flat bottomed test tube with a 

diameter of 3 cm.  When the blood sample was added to the tube it 

filled the tube to a depth of 7.5 cm.  After centrifuging, the red blood 

layer was 1.5 cm deep.  What volume of plasma was in the sample? 

6. Determine the value of x and y by solving 

these two equations 

x + y = 6 

−3x + y = 2 

 

Data analysis 

Relationships at the Test Level 

In order to address the first two research questions, answers to both the set of 6 problems 

and the set of 6 questions were scored as either correct or incorrect.  Answers to the PSVT:R 

questions were also scored as correct/incorrect.  These data were examined using 

frequency plots and checked for normality.  Depending on the normality of the distributions, 

correlations between the measures were calculated using either the Pearson or the 

Spearman coefficient.  Then, for each problem and question, the sample was grouped as 

being correct or incorrect and the spatial test scores of each group were compared using an 

independent samples t-test.  Finally, cases were excluded if the answer to the core 

competency question was incorrect in order isolate procedural mathematical knowledge as 

a determining factor in problem solving.  The sample was again grouped as correct or 



incorrect on each problem and the spatial test scores of each group were compared using 

an independent samples t-test. 

Identifying a key aspect of representation for each problem 

To answer the third research question, a second round of analysis focused on the solutions 

to the problems only.  No cases were excluded in this analysis based on the assumption that 

a problem can be represented even if a participant lacks procedural knowledge required in 

the solution phase.   

All solutions to all problems were analysed based on a coding scheme developed from 

Mayer’s framework for problem solving (Mayer, 1992) which consists of several types of 

knowledge that are required to solve math problems.  This was tailored for each problem as 

each problem was different and had a different solution path.  An illustration of how this 

was tailored for the Lawn problem is outlined in Table 2. 

Table 2. Mayer framework (Mayer, 1992) for math problem solving applied to the Lawn 

problem 

Type of knowledge Application to the Lawn problem 

Linguistic knowledge ability to understand the words used in the problem, e.g. the lawn is square, area of new 

lawn is twice the old area, new width equals old width plus 2, new length equals old length 

plus 3 

Semantic knowledge ability to draw on common sense or knowledge that is taken for granted, e.g. a square has 

four equal sides, a lawn is an area of grass beside a house (this definition was provided in the 

problem statement) that is 2 dimensional (not provided) 

Schematic knowledge ability to draw on knowledge of schema, i.e. that have been previously learnt; in this case, a 

schema that is required is that area = length x width 

Strategic knowledge ability to set subgoals in the problem solving process and to monitor progress, in this case 

one should develop an equation for one unknown – the side of the original square – and 

then solve for this unknown using algebra 

Procedural knowledge ability to perform standard mathematical procedures; in this case, an important procedure is 

to factorise a quadratic, (hence the core competency question testing this skill) 

 

Each transcript was studied in turn while checking for evidence of these actions in each 

participant’s written solutions to the Lawn problem.  In practice, the above table was 

broken up and simplified to allow the coding to proceed more efficiently with some 

modification of codes required.  For example, every participant that showed evidence of the 

lawn being extended in width by 2 m also showed evidence of it being extended in length by 

3 m, hence these codes were combined into one.  In the case of the Lawn problem, this 

process led to the final set of codes shown in Table 3.  The same process was followed for 

each problem so that a unique table of codes was prepared and used to score each solution.  

Problem representation was based on problem solving actions and, for each problem, the 

full set of actions evident in the data set was identified and used as a checklist for each 

problem solution. 



Table 3. Codes for the Lawn Problem 

No. Code 1 if participant 0 if Type of knowledge 

1 Square Lawn Discerns lawn is a square Does not, e.g. 

rectangle 

Linguistic Assignment 

2 Area change Discerns ANew=2xAOld Does not Linguistic Relational 

3 Size change Discerns correct change in width and 

length 

Does not Linguistic Relational 

4 Apply 1, 2 and 3 Gets all three linguistic ingredients Gets less than 3 Linguistic 

5 A=WxL Includes Area = width x length Does not Schematic 

6 Combine 4 & 5  Get all 4 ingredients needed to write 

the equation  

Does not Representation – 

schematic & linguistic 

7 Correct equation Write the correct equation Makes error Procedural 

8 Solve equation Correctly solve the equation through 

factoring 

Makes error Procedural 

 

In order to measure the relationship between spatial ability and problem solving actions the 

sample was split into two groups – low (PSVT:R ≤ 18 ) and high (PSVT:R ≥ 19) spatial ability – 

and the number in each group who did and did not show evidence of each action was 

summed.  This low/high categorisation was used previously by Sorby & Baartmans (1996).  

Rather than having a psychological basis, this approach is consistent with a commonly used 

pass/fail threshold of 60 % on the PSVT:R.  Dividing the sample at this point was very close 

to having a median split as the median score was 19 with four participants having this score, 

55 below and 56 above the median.  Kozhevnikov & Thornton (2006) classified the sample in 

their study as either low or high in spatial ability on the basis of a median split.  In addition, 

for each problem solving code, the sample was divided into those who did and didn’t show 

evidence of this action and the difference in spatial level of each group was tested for 

significance. 

The outcome of this analysis was an aspect of representation that was unique to each 

problem but was essential for the problem to be solved successfully, i.e. the problem could 

not be solved without this aspect of representation. 

Results and analysis 

Descriptive statistics and correlations between measures 

Descriptive statistics are presented separately for each and combined samples in Table 4. 

Table 4. Descriptive statistics for the variables measured 

Sample 

n 

Total 

n 

Male 

n 

Female Age 

PSVT:R 

Mean 

(S.D.) 

Problems 

Mean 

(S.D.) 

Questions 

Mean 

(S.D.) 

n 

Low-

spatial 

n 

High-

spatial 

Ireland 62 53 9 
20.4 

(4.1) 

22.37 

(5.53) 

2.85 

(1.48) 

5.00 

(1.22) 
10 52 

US 53 25 28  
16.58 

(3.86) 

1.91 

(1.32) 

5.68 

(1.47) 
45 8 

Combined 115 78 37  
19.70 

(5.61) 

2.42 

(1.48) 

5.31 

(1.37) 
55 60 

 

The lower spatial test score for the US university reflects the sample being recruited from 

those enrolled in the spatial skills development course.  The combined samples contained 

almost equal numbers of low and high-spatial participants.  Performance on the math 



questions was very high – very few made errors on these questions – whereas performance 

on the math problems was more varied.  The extent to which variation in each variable was 

shared with the other was measured by determining a Pearson correlation coefficient for 

each pairing of the variables.  Given the non-normal distribution of the math question data, 

correlations related to this variable were also determined using the Spearman correlation 

coefficient.  As shown in Table 5, a significant amount of variation in the spatial test data is 

shared with the problem solving measure but not with the math question data. 

Table 5. Correlation matrix for scores on the PSVT:R, math problems and math questions. 

 

Math Problems 

r (Pearson) 

Math Questions 

r (Pearson) 

Math Questions 

rS (Spearman) 

PSVT:R .544*** .131 .153 

Math Problems  .418*** .459*** 

** significant at p < .01 

*** significant at p < .001 

 

 

Further statistical analysis was conducted to examine how spatial ability was related to 

performance on each individual problem.  This was first examined by determining point bi-

serial correlations between individual problem score (0 or 1) and the spatial test data and 

these results are presented in Table 6.  For problems 2, 3, 4 and 6, the correlation was found 

to be significant at the p < .01 level, for problem 1, it was significant at the p < .05 level and 

for problem 5 the correlation was small and insignificant. 

Table 6. Point bi-serial correlation between PSVT:R and each math problem. 

Problem 1 2 3 4 5 6 

PSVT:R .203* .414** .362** .336** -.072 .395** 
*. Correlation is significant at the 0.05 level (2-tailed). 
**. Correlation is significant at the 0.01 level (2-tailed). 

 

Another way to present the relationship between performance on each problem and spatial 

ability is to group the sample into correct and incorrect response and compare the PSVT:R 

scores of these two groups using an independent samples t-test.  These results, shown in 

Table 7, exhibit the same pattern as the point bi-serial correlations, as expected. 

Table 7. Comparison of means of PSVT:R scores for those correct and incorrect on each 

math problem. 

 Correct  Incorrect     

Problem/ 

Question n M SD  n M SD  t-test 

Sig (2-

tailed) 

Cohen’s d 

(Size) 

P1 Lawn 30 21.53 5.53  85 19.06 5.53  -2.107 .037* 0.45 (Medium) 

P2 Jug 69 21.59 4.93  46 16.87 5.43  -4.837 .000** 0.92 (Large) 

P3 Cans 45 22.16 4.73  70 18.13 5.60  -3.993 .000** 0.78 (Large) 

P4 Rain 33 22.67 4.35  80 18.44 5.79  -3.776 .000** 0.83 (Large) 

P5 Jars 43 19.19 5.24  72 20.01 5.84  .764 .447 0.15 (Small) 

P6 Blood 62 21.76 4.71  53 17.30 5.67  -4.604 .000** 0.86 (Large) 

*. Correlation is significant at the 0.05 level (2-tailed). 
**. Correlation is significant at the 0.01 level (2-tailed). 

 

Cases were next excluded from the problem data set if the answer to the corresponding 

math question was incorrect.  For example, if a participant was incorrect in the question on 



factoring a quadratic equation, s/he was removed from the Lawn problem data as this 

problem required this math competency.  Since this was done separately for each problem 

the number of cases now varied per problem and it was not possible to determine a second 

correlation matrix.  However, it was possible to redo independent samples t-tests for each 

problem, grouping the sample as before into correct and incorrect groups.  As shown in 

Table 8, the pattern found earlier still holds – large, significant differences in spatial test 

score between those correct and incorrect on problems 2, 3, 4 and 6, medium to large, 

significant difference on problem 1 and a small, insignificant difference on problem 5.  

Excluding cases based on errors in math competencies did not alter the previous findings. 

Table 8. Comparison of means of PSVT:R scores for those correct and incorrect on each 

math problem with cases excluded if the answer to the corresponding question is 

incorrect (n varies by problem) 

 Correct Incorrect    

Problem n M SD n M SD t-test 
Sig (2-

tailed) 

Cohen’s d 

(Size) 

P1 Lawn (Q1=1) 27 22.30 5.74 62 19.48 5.29 -2.247 .027* 0.52 (Large) 

P2 Jug (Q2=1) 64 21.88 4.85 22 16.41 5.24 -4.470 .000** 1.09 (Large) 

P3 Cans (No Q) 44 22.27 4.72 71 18.11 5.56 -4.125 .000** 0.81 (Large) 

P4 Rain (Q2 & 5=1) 27 22.41 4.45 41 18.27 5.48 -3.277 .002** 0.83 (Large) 

P5 Jars (Q6=1) 36 19.03 5.33 60 20.30 5.73 1.080 .283 0.23 (Small) 

P6 Blood (Q2=1) 59 21.81 4.80 27 17.30 5.97 -3.744 .000** 0.84 (Large) 

*. Correlation is significant at the 0.05 level (2-tailed). 
**. Correlation is significant at the 0.01 level (2-tailed). 

 

Problem Representation 

Results from the analysis of approach to problem solving are presented for the Lawn 

problem in Table 9.  Errors were made by both low and high-spatial participants at each step 

in solving this problem but the percentage of the low-spatial category failing at each step 

was always higher as shown in Table 10.  In order to write the correct equation, a 

participant had to extract four key ingredients from the problem statement – (i) the original 

lawn is square (an assignment statement), (ii) the change in width and length (a relational 

statement), (iii) change in area (a relational statement) and (iv) area = width x length.  

According to Mayer’s framework, the first three relate to linguistic knowledge and the last 

to schematic knowledge.  This latter piece of schematic knowledge was in evidence in the 

solution of all but 8 participants, presumably because the problem statement contains many 

cues for this schema through words such as ‘square’, ‘width’, ‘length’ and ‘new area’, for 

example.  There was little difference between the number who correctly translated all three 

linguistic ingredients but failed to apply the correct schema and the number who were 

correct in all of these aspects.  It was therefore decided that the key aspect of 

representation of this problem that presented a challenge to this sample was the sum of 

square lawn, area change and size change.  



Table 9. Success rates and differences in spatial ability for each code in the Lawn Problem 

  n Low-

spatial 

n High-

spatial 

PSVT:R M (SD)   

No. Code 1 0   1 0 t (p) Cohen’s d 

1 Square lawn 31 24 42 18 20.27 (5.38) 18.71 (5.93) -1.441 0.28 (Medium) 

2 Area change 43 12 51 9 20.34 (5.49) 16.86 (5.41) -2.637* 0.64 (Large) 

3 Size change 41 14 53 7 20.43 (5.36) 16.48 (5.72) -3.017** 0.72 (Large) 

4 Apply 1, 2 and 3 21 34 33 27 21.22 (5.24) 18.36 (5.63) -2.810** 0.53 (Large) 

5 Apply A=WxL 49 6 58 2 20.05 (5.52) 15.13 (5.06) -2.444* 0.93 (Large) 

6 Combine 4 & 5 20 35 32 28 21.29 (5.29) 18.40 (5.58) -2.833** 0.54 (Large) 

7 Correct Equation 9 46 22 38 22.13 (5.26) 18.81 (5.50) -2.904** 0.62 (Large) 

8 Solve 6 49 17 43 22.43 (5.52) 19.02 (5.46) -2.678** 0.63 (Large) 

* Significant at the p < .05 level 

** Significant at the p < .01 level 

 

The largest contrast in representation error between low and high-spatial participants was 

to be found not in each individual linguistic item but in the combination of all three, i.e. 

high-spatial participants were significantly more likely to correctly identify all three linguistic 

items than low-spatial.  Hence, the finding from this round of analysis of the Lawn problem 

was the key aspect of representation that was discriminating and revealed a significant 

difference in spatial ability related to extracting and translating assignment and relational 

statements from word to mathematical form. 

Table 10. Numbers of all, weak and strong visualizers who failed to show evidence of 

Lawn problem solving codes 

  Error rate (%)  

Action Description All Low-

spatial 

High-

spatial 

Cohen’s d 

1 Treat lawn as square 37 44 30 .28 

2 Size change 18 25 12 .72** 

3 Apply Anew=2xAold 18 22 15 .64* 

4 Apply 1, 2 and 3 53 62 45 .53** 

5 Apply A = W x L 7 11 3 .93* 

6 Combine 4 & 5, get all 4 ingredients 55 64 47 .54** 

7 Write correct equation 73 84 63 .62** 

8 Solve equation 80 89 72 .63** 

* Significant at the p < .05 level 

** Significant at the p < .01 level 

    

 

This approach to analyzing the data was followed for each problem in turn so that a key 

code for each problem could be identified that (i) was essential for solving the problem and 

(ii) revealed individual differences in performance.  Presented in Table 11 are the results of 

the second round of analysis – a key representation code from each problem, the 

percentage of low and high-spatial participants that failed to show evidence of this code in 

their solutions, the effect size (Cohen’s d) for the difference between the spatial test scores 

of those who did and didn’t show this code and the type of knowledge required for this 

aspect of representation to be possible (Mayer, 1992). 



Table 11. Key codes extracted from each problem. 

  Error rate (%)   

Problem Key code Low-

spatial 

High-

spatial 

Cohen’s d Knowledge type 

Lawn Combination of applying lawn is 

square, width + 2 and Anew = 2 x Aold. 

62 45 .53** Linguistic 

Jug Correctly match height with volume 29 12 .93** Linguistic 

Cans Apply any grid layout schema 60 29 .81** Schematic 

Rain Adopt volume is conserved schema 59 27 .89** Schematic 

Pencils & Jars Algebraic model attempted 62 45 .50** Schematic 

Blood Cylinder volume schema 31 10 .99** Schematic 

** Significant at the p < .01 level 

 

Discussion 

Spatial ability is a primary factor of intelligence that has been shown to be significantly 

related to success in STEM education (Wai et al., 2009).  The purpose of this study was to 

both quantify the relationship between spatial ability and word problem solving among 

engineering students and, by examining differences in approach to problem solving that 

varied with spatial ability, provide reasons to explain this relationship.  In this section we 

discuss themes that emerged from answering the research questions: (i) the role of spatial 

ability in problem representation, (ii) what this suggests more broadly about the relevance 

of spatial ability to engineering education, and (iii) the implications of transferring findings 

from this research into engineering education practice.  Each theme is discussed below. 

The role of spatial ability in problem representation 

We believe that most engineering faculty would describe the math word problems used in 

this study as basic, simple and easy to solve.  However, they presented a difficulty to the 

some of the sample recruited for this study.  As shown by the core competency data, that 

difficulty was not a mathematical one as the mean score on this test was 5.31 out of 6 or 

89%.  These students had the mathematical knowledge to perform well on these problems 

yet many failed to do so.  The first research question asked to what extent spatial ability is 

related to the ability to represent and solve word problems in mathematics among this 

sample of first year engineering students.  Problem solving was found to be significantly 

related to spatial ability (r(113) = .544, p < .001) but for reasons other than math core 

competency as it was found to have a small and insignificant relationship with spatial ability 

(rs(113) = .153, N.S.).  The challenge faced by participants was in problem representation 

and it was this phase in the problem solving process that contained the relationship with 

spatial ability. 

Analyzing the data at the item level revealed the individual steps – both correct and 

incorrect – taken by all participants in the sample when solving each problem.  This analysis 

began with a set of codes based on Mayer’s (1992) knowledge framework for problem 

solving but this was updated, with scripts scored retrospectively, as the data were 

examined.  It emerged that spatial ability was relevant to the application of linguistic 

knowledge to translating assignment and relational statements and also to selecting 

schemata but this varied across problems.  For two – Lawn and Jug - schema selection 

appeared to be trivial as almost all participants selected the correct schema in each case.  

For these problems, the difficulty lay in correctly and consistently translating statements 



that assigned values to variables and related variables to each other.  While these 

statements were clearly written and not ambiguous, high spatial ability students performed 

significantly better than low spatial students at this level. 

For three problems – Cans, Rain and Blood – schema selection was a discriminating factor 

and, again, high spatial students were significantly more successful than low spatial students 

in selecting the correct schema during problem representation.  Perhaps visualizing the 

shapes referred to in the problem statements facilitated schema selection, hence the 

correlation with spatial ability.  It is worth comparing the Jug and the Rain problems as both 

statements explicitly referred to cylindrical shapes but the Rain problem also included a 

prism of water on the shed roof.  In the Jug problem, the challenge was not to match a 

height and volume but to do so correctly in one of two ways.  In the Rain problem, the 

challenge was to include the transfer of volume from one container to another but 27 

participants, 19 with low spatial ability, failed to include the roof in the problem solution, 

assuming instead that the barrel height increased by the rainfall amount of 5 mm. 

Of the six problems used in this study, Pencils & Jars is the only problem for which success 

was not related to spatial ability.  A difference in spatial ability did emerge in terms of 

approach: strong visualizers favoured an algebraic approach (d = .50, p<.01) whereas weak 

visualizers favoured solving by guess and check (d = .89, p<.001).  Participants were not 

instructed to use algebra to solve this problem although it had been incorrectly assumed in 

the research design phase that they would.  This suggests that when direction is not 

provided, the decision to use modelling is related to spatial ability.  It is possible that guess 

and check facilitated an approach that placed a lower demand on working memory so 

variation in guess and check performance was not shared with spatial ability.  However, 

further work is needed to investigate these possibilities. 

This finding is also supported by the literature as other studies have highlighted this 

relationship even where a separate assessment of procedural knowledge was not included.  

For example, Boonen et al. (2014) and Hegarty & Kozhevnikov (1999) found qualitative 

differences in the nature of visualizing word problems during the problem representation 

phase with accurate and schematic visualizations more likely to lead to a correct answer and 

a significant relationship between frequency of using such visualizations and spatial ability.  

However, visualization quality did not account for all of the data as approximately two thirds 

of the solutions did not appear to be accompanied by any visualization yet the success rate 

for these was close to 50 % (Boonen et al., 2014).  As shown by this study, the application of 

linguistic and schematic knowledge during problem representation provides a more 

fundamental account for the spatial- problem solving relationship.  Visualization may be 

embedded in this process or may be a product of representation.  While visualization quality 

is associated with success and problem solvers are well-advised to practice creating 

visualizations, it does not fully account for the spatial-problem solving relationship.   

Relevance of these findings to the role of spatial ability in engineering education 

Based on the findings of this study, the role of spatial ability in engineering education is not 

limited to tasks related to visualizing and transforming well-structured images, as factorial 

models of intelligence would suggest, but extends to representing word problem 

statements.  Key to these tasks is that they are problems, i.e. prior knowledge does not 

contain a solution path, interpretation of and reasoning about the problem scenario is 

required, a task that is non-routine to the problem solver.  Low spatial ability students are, 



therefore, likely to be challenged in the engineering curriculum for two reasons – spatial 

visualization and problem representation.  While tasks related to processing well-structured 

images may be easy to identify, a more intimate knowledge of both the engineering 

curriculum and the students’ prior experiences are required to judge where the tasks are in 

the curriculum that require thinking about non-routine problem scenarios. 

Identifying non-routine problem solving activities may be difficult for a number of reasons.  

First, the term ‘problem’ can be loosely defined among engineering educators.  For 

example, textbooks often contain questions that have little or no ambiguity with regard to 

solution path and are essentially tests of routine procedure yet are labelled problems.  

Second, prior knowledge of the student determines whether a task is routine or non-

routine.  If the problem set used in this study were to be administered to another sample 

that had extensively practiced very similar problems then a correlation with spatial ability 

may not emerge.  Finally, in an engineering class with a small minority of low-spatial ability 

students a high average performance may mask the relationship; a keen eye may be needed 

to notice the few that are being challenged to form appropriate representations of non-

routine scenarios. 

As mastery is developed, spatial ability becomes less important, as observed in fields such as 

geology, chemistry, geometry and chess playing (Uttal & Cohen, 2012). For example, a 

correlation between spatial ability and FMCE performance observed among novices 

(Kozhevnikov et al., 2007) may disappear in a sample that has reached a high level of 

conceptual understanding of Newtonian mechanics.  Statistically, both variables must have 

variation in order for some of that to be shared; if there is little variation in FMCE scores, for 

example, there is little to share.  At a psychological level, this is explained by the FMCE tasks 

changing from non-routine to routine – the items on the FMCE were initially problems but 

have now become procedural.  Among those that persist and achieve mastery, spatial ability 

is unlikely to be related to performance. 

To those who would like to identify curriculum components that are likely to reveal a 

significant relationship with spatial ability we advise they search for tasks that require the 

student to: 

• Create a visualization of a well-structured image and mentally manipulate this 

visualization 

• Create a visualization of a scenario from a word statement 

• Produce a mental representation of a word problem statement that contains many 

pieces of information that must interpret at a linguistic level and is ambiguous with 

regard to schema 

• Reason and think about non-routine scenarios that have not been seen before and 

where the challenge lies in the novelty rather than the level of discipline knowledge 

It is possible that tasks such as these are not easily isolated but are embedded in larger 

assessments or hidden in the course and yet must be overcome for the novice to progress 

to mastery. 

Implications for teaching practice 

A motivation for this research was to improve the experience of a large minority - 10 to 20% 

- of students that join engineering programs with low levels of spatial ability, a group that is 



over represented by female students (Sorby & Veurink, 2010a).  What can we learn from 

this study that might help guide interventions to better prepare low spatial ability students 

for non-routine problem solving in the engineering curriculum?  Two strategies are 

suggested – one is to learn how to cope with low spatial ability and the other to improve 

spatial ability.  These options, including the assumption of causality implied in the latter, are 

discussed below. 

Strategies to help these students should be designed with the knowledge that spatial ability 

is related to problem representation but not solution.  This cognitive distinction between 

problem representation and solution implies that problem solving contains two very 

different learning outcome areas and the cognitive gap between them is so large that each 

may need very different learning, teaching and assessment methods.  As a learning 

outcome, problem solution relates to knowing and being able to apply procedures and low 

spatial students are not necessarily challenged at this level.  This can arguably be well 

addressed using traditional or behaviourist learning and teaching methods as procedures, 

such as factoring a quadratic equation, for example, tend to consist of relatively well defined 

rules and methods. 

Problem representation, in contrast, is a very different learning outcome as this process not 

only draws on and integrates several different types of knowledge but also requires more 

judgment.  As shown by Boonen et al. (2014) and Hegarty & Kozhevnikov (1999), success 

rates in problem solving are highest when the visualization is both accurate and schematic.  

Hence, to improve representation ability, students should become aware of visualization as 

an important tool in problem solving, practice creating accurate, schematic visualizations of 

word statements and get feedback on these visualizations.  However, in the study by 

Boonen et al. (2014), two thirds of the solutions provided by the sample did not contain any 

evidence of visualization yet there was still a correlation between spatial ability and 

problem solving.  As our findings have shown, the ability to apply linguistic and schematic 

knowledge is related to spatial ability.  Which comes first – visualization or representation – 

or do they support each other?  Is visualization essential to the correct translation of all 

assignment and relational statements in the problem?  Is it more relevant to schema 

selection?  Perhaps visualization is more relevant to some aspects of representation than 

others. 

Memory models of cognition offer an alternative explanation of the role of spatial ability in 

problem representation.  Translating problem statements is a non-routine activity for which 

there is no readily available procedure stored in long term memory.  Such tasks are, 

therefore, heavily dependent on working memory.  If the process is sufficiently demanding 

to cause working memory overload, key information is dropped leading to inaccurate 

representation.  As shown by Miller (1956), working memory capacity is notoriously limited 

and, according to more recent work (Baddeley & Logie, 1999), visuospatial ability is a central 

component of working memory.  Assuming the PSVT:R provides a measure of visuospatial 

working memory (Kyttälä & Lehto, 2008), high visualizers in this study were more successful 

at problem representation because they had higher working memory capacity which led to 

fewer errors being made in problem representation. 

Hence, two approaches to coping are possible – one is to employ problem-solving heuristics 

that emphasise the creation of accurate, schematic visualizations and the other is to avoid 

working memory overload.  Choosing between them depends on the ontology of spatial 

ability and human thinking.  Factorial models of intelligence are consistent with the creation 



of visualizations whereas the literature on working memory would advocate the latter 

approach.  Working memory overload could be avoided by methodically searching for 

individual components in the problem statement.  Rather than attempt to grasp the 

statement as a whole and risk dropping key information, the problem solver would identify 

each assignment and relational statement and translate them one at a time before putting 

them aside and devoting all attention to schema selection.  Creating visualizations may then 

support the integration of these translations to form a complete representation. 

Rather than develop coping strategies, low-spatial students could take courses on spatial 

skills development in the hope such development will transfer to performance in other 

areas.  Based on a meta-analysis of training studies Uttal et al. (2013) found evidence to 

support the claim that spatial ability can be improved through tailored learning 

interventions.  Spatial ability training has been shown by Sorby and colleagues at Michigan 

Technological University to lead to significant gains in spatial ability, retention rates and 

grades in certain subjects among first year engineering students (Sorby, 2012; Sorby, Casey, 

Veurink, & Dulaney, 2013; Sorby & Veurink, 2010).  Spanning a couple of decades, this 

research has shown the positive impact spatial skills training can have in terms of broad 

measures of performance in engineering education.  In a recent intervention study in 

Australia, a 10 week spatial training course developed collaboratively with teachers and 

delivered to 6th grade students was found to result in significant gains in both spatial ability 

and mathematics (Lowrie, Logan, & Ramful, 2017).  Cheng & Mix (2014) observed transfer of 

spatial training to a particular, well-defined math task but in a similar study using a 

randomized control trial this finding was contradicted (Hawes, Moss, Caswell, & Poliszczuk, 

2015). While research has shown spatial training can transfer to performance in STEM 

education, more studies are needed to examine causal aspects of the relationship (Stieff & 

Uttal, 2015). 

Conclusions 

Spatial ability is significantly related to the process of creating mental representations of 

mathematically simple word problems among first year engineering students.  High spatial 

students demonstrate much greater proficiency and consistency in translating assignment 

and relational statements and in selecting appropriate schemata during problem 

representation than low spatial students.  Our study has shown that this relationship, 

revealed by others in much younger samples of 6th grade students (e.g., Boonen et al., 

2014), is also present at a later stage in development indicating the relationship persists 

throughout adolescence.  Hence, the findings of this study are relevant to those involved in 

all stages of adolescent education. 

Problem solving consists of two cognitively distinct phases with spatial ability relevant to 

problem representation but not to problem solution.  When problem representation can be 

simplified through guess and check, its relationship with spatial ability becomes 

insignificant.  From a cognitive point of view, problem solving is a highly nuanced process 

that requires certain conditions for it to have a relationship with spatial ability which include 

ambiguity with regard to solution path, translation of assignment and relational statements 

and schema selection and representation which cannot be simplified through guess and 

check.  We suggest that those who teach problem solving examine how these conditions 

apply in their subject area and consider how well learning, teaching and assessment 

activities are aligned with the cognitive features of problem representation and solution. 



In engineering education, spatial ability is not limited to visualization and transformation of 

well-structured images as factorial models of intelligence might suggest.  It is manifest in the 

ability to mentally organise information from sources that vary from well-structured images 

to word descriptions of quantities, that are sufficiently novel or non-routine to place a high 

demand on working memory, and rearrange this information into a new format that is 

consistent with the original form and to do so promptly. 

It is claimed that low spatial students face their greatest challenge in early stages of STEM 

higher education and, as mastery is developed, the relationship between spatial ability and 

performance in STEM fades away (Uttal & Cohen, 2012).  Our findings may contribute to 

explaining why: during this phase of education topics are often novel and non-routine, those 

with high-spatial ability are better matched at a cognitive level to these demands and, 

therefore, more likely to succeed and persist. 
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