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RESEARCH ARTICLE

Anti-biofilm activity of antibody directed against
surface antigen complement receptor 3-related
protein—comparison of Candida albicans and Candida
dubliniensis
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One sentence summary: Antibody directed against complement-receptor 3 related protein (CR3-RP) interfere with biofilm formation in Candida albicans
and Candida dubliniensis.
Editor: Tom Coenye

ABSTRACT

Candida albicans and C. dubliniensis are related yeasts that differ in the expression of virulence-associated proteins involved
in adherence and biofilm development. CR3-RP (complement receptor 3-related protein) is one of the surface antigens
expressed by Candida species. The main objective of this research was to elucidate the effect of the polyclonal anti-CR3-RP
antibody (Ab) on adherence and the biofilm formed by C. albicans SC5314 and C. dubliniensis CBS 7987 and two clinical
isolates in vitro, ex vivo and in vivo. A comparison of species, and of treated vs. non-treated with the anti-CR3-RP Ab showed
a reduction in adherence (22%–41%) that was dependent on the time point of evaluation (60, 90 or 120 min), but did not
prove to be species-dependent. Confocal microscopy revealed a decreased thickness in biofilms formed by both species
after pre-treatment with the anti-CR3-RP Ab. This observation was confirmed ex vivo by immunohistochemistry analysis of
biofilms formed on mouse tongues. Moreover, anti-CR3-RP Ab administration, 1 h post-infection, has been shown to
promote larval survival compared to the control group in a Galleria mellonella infection model. Our data suggest a potential
activity of the anti-CR3-RP Ab relevant to immunotherapy or vaccine development against biofilm-associated Candida
infections.
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INTRODUCTION

Candida species (spp.) are a part of the normal human micro-
biota. Candida dubliniensismostly colonizes the oral cavity and/or
respiratory tract (Mahelová and Růžička 2017), especially in HIV-
infected individuals (Coleman et al. 1997; Sullivan et al. 2004;
Wahab et al. 2014), while Candida albicans is a common inhabi-
tant of the gastrointestinal tract, urogenital tract and oral cavity
(Sardi et al. 2013; Höfs, Mogavero and Hube 2016). Candidiasis
is the most common global fungal infection (Sardi et al. 2013).
Candida albicans has been isolated in more than 50% of candidi-
asis; however, the number of non-albicans spp. able to cause se-
rious candidiasis has increased in recent years (Yapar 2014; Pu
et al. 2015; Sandhu et al. 2017). Although C. dubliniensis is phylo-
genetically very similar to C. albicans, it differs in some genes, es-
pecially those coding for virulence-associated proteins. Candida
dubliniensis lacksmore than 168 genes characteristic of its ‘yeast-
cousin’ C. albicans (Jackson et al. 2009), the majority of them en-
coding proteins related to the yeast-to-hyphae transition, tissue
invasion or biofilm development (Moran et al. 2004; Jackson et al.
2009; Moran, Coleman and Sullivan 2012). Moreover, C. dublinien-
sismanifests a higher predisposition to develop resistance to flu-
conazole (Sullivan et al. 1995; Moran, Coleman and Sullivan 2012;
Jordan et al. 2014). On the other hand, both C. albincans and C.
dubliniensis are able to form a biofilm (Sullivan et al. 2004; Borghi
et al. 2014). Adherence is the first andmost crucial step in biofilm
development, and various surface antigens participate in this
process (Chaffin 2008; Gow and Hube 2012; Hebecker et al. 2014).
CR3-RP (complement receptor 3-related protein) is one of the cell
surface antigens of Candida spp. with functional and structural
similarity to the human complement receptor 3 (CR3) expressed
on neutrophils, macrophages and monocytes. CR3-RP has been
demonstrated to bind human complement fragment iC3b and
to mediate leukocyte diapedesis (Heidenreich and Dierich 1985;
Bujdáková et al. 1997). Additionally, CR3-RP seems to be an im-
portant immunogenic mannoprotein participating in adhesion
and biofilm development (Bujdáková et al. 2008, 2010). A frag-
ment of CR3-RP was sequenced (DINGGGATLPQ), and according
to this sequence, CR3-RP was categorized into the DING pro-
tein family (named after DINGGG N termini) (Bujdáková et al.
2008; Bernier 2013). Some other surface proteins contributing
to biofilm development have been described, such as Eap pro-
tein, the Als protein family, the Hwp1 or MP65 proteins (Gomez
et al. 1996; Nailis et al. 2010; Finkel and Mitchell 2011; Araújo,
Henriques and Silva 2017). Additionally, antibodies generated af-
ter the immunization of animals with some of the above pro-
teins seems to be promising in tools focused on fighting yeast
infections (Fujibayashi et al. 2009; Mishra, Ali and Shukla 2015;

Torosantucci et al. 2017). Recent studies showed that antibod-
ies targeting Als3 (Coleman et al. 2009), MP65 (De Bernardis et al.
2007) or another 42.7 kDa unnamed surface antigen in the Can-
dida cell wall (Mishra, Ali and Shukla 2015) decreased adhesion
and biofilm formation.

This study is the continuation of a previous work (Bujdáková
et al. 2008, 2010) investigating the role of CR3-RP in Candida ad-
herence, the first stage of biofilm development, and provides
new information about the therapeutic potential of the anti-
CR3-RP antibody (Ab). This work tried to obtain knowledge about
the role of CR3-RP and anti-biofilm properties of the anti-CR3-
RP Ab against C. albicans and C. dubliniensis. The results also as-
sessed the virulence power of C. albicans and C. dubliniensis in
vitro, ex vivo on mouse tongue biofilms and in vivo, in the Galleria
mellonella model of invasive candidiasis.

MATERIALS AND METHODS

Candida strains and growth conditions

Clinical isolates and reference strains of C. albicans and C. dublin-
iensis used in experimental research are included in Table 1. All
strains were preserved at –80◦C in 1 mL of yeast extract peptone
dextrose broth (YPD broth, 1% yeast extract, 2% peptone, 2% D-
glucose; all from Biolife, Milan, Italy) supplemented with 30%
sterile glycerol (Centralchem, Bratislava, Slovakia). Afterwards,
strains were subcultured on an YPD agar plate (YPD medium
supplemented with 2% agar, Biolife, Milan, Italy). Prior to ex-
perimental work, strains were cultured on selective CHROMagar
Candida (Becton, Dickinson, Germany). The correct identifica-
tion of all strains was confirmed by specific PCR (Tamura et al.
2001) discriminating between C. albicans and C. dubliniensis. The
protocol and results are in Supplementary material 1, Support-
ing Information. For some experiments, two reference strains
(C. albicans SC5314 and C. dubliniensis CBS 7987) and two clinical
isolates (C. albicans H2 and C. dubliniensis 29) were selected.

CR3-RP expression and quantification

The polyclonal antibody anti-CR3-RP (anti-CR3-RP Ab) was used
(Bujdáková et al. 2008) in the experiments to block CR3-RP
function. The antibody was diluted 1:100 in sterile phosphate-
buffered saline (PBS, 137mMNaCl, 2.7mMKCl, 10mMNa2HPO4,
2 mM KH2PO4, pH 7.4, all chemicals from AppliChem, Darm-
stadt, Germany) freshly prepared before each experiment.

The presence of CR3-RP was determined in yeast lysates
by sodium dodecyl sulfate polyacrylamide gel electrophoresis
(SDS-PAGE) and by western blot using an appropriate dilution

Table 1. List of tested strains and their origin.

Strain Origin

Candida albicans SC5314 Reference strain (Gillum, Tsay and Kirsch 1984)
Candida albicans H1 Clinical isolate (HIV + patient, Slovakiaa)
Candida albicans H2 Clinical isolate (HIV + patient, Slovakiaa)
Candida albicans H3 Clinical isolate (HIV + patient, Slovakiaa)
Candida albicans H4 Clinical isolate (HIV + patient, Slovakiaa)
Candida dubliniensis CBS 7987 Reference strain (Centraal Bureau voor Schimmelcultures, Delft, The Netherlands)
Candida dubliniensis CD 36 Clinical isolate (HIV + patient, Dublin, Ireland, kindly provided by prof. Derek Sullivan)
Candida dubliniensis 29 Clinical isolate (HIV + patient, Slovakiaa)
Candida dubliniensis 9382/1 Clinical isolate (HIV + patient, Slovakiaa)
Candida dubliniensis 11663/2 Clinical isolate (HIV + patient, Slovakiaa)

aClinical isolates were obtained from the Clinic of Infectology and Geographical Medicine, University Hospital Bratislava, Slovakia.
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of anti-CR3-PR Ab. CR3-RP expression was quantified using
an Enzyme-linked immunosorbent assay (ELISA). These exper-
iments were performed according to a previously described
procedure (Bujdáková et al. 2008; Paulovičová et al. 2015). The de-
tailed protocol and results are described in Supplementary ma-
terial 2, Supporting Information.

Effectiveness of anti-CR3-RP Ab on adherence
and biofilm formation in vitro

All strains were tested for biofilm-forming ability by XTT reduc-
tion assay (Ramage et al. 2001; Li, Yan and Xu 2003). The detailed
protocol and results are provided in Supplementary material 3,
Supporting Information. After the initial screening, the refer-
ence strains C. albicans SC5314 and C. dubliniensis CBS 7987 and
two clinical isolates, C. albicans H2 and C. dubliniensis 29, were
selected for further experiments.

One loopful of single colonies was transferred to 20 mL of
YPD broth and cultivated for 16 h at 37◦C with gentle shaking
(100 rpm, Orbital Shaker OS-20, Biosan, Riga, Lithuania). Cells
were harvested by centrifugation (5 min, 3000× g, 15◦C, Uni-
versal 32 R Hettich Zentrifugen, Tuttlingen, Germany), followed
by two-step washing with 20 mL of PBS. Pellets were then re-
suspended in 10 mL of PBS, counted using a hemocytometer
and adjusted to a final concentration of 1 × 107 cells/mL. One
milliliter of the obtained suspensions were centrifuged, and the
pellets were first incubated with 100 μL of 10% gelatine (Oxoid,
Hampshire, UK) in PBS (v/v) at room temperature (RT) with shak-
ing (130 rpm). After 1 h, cells were washed twice with PBS and
pre-incubated with the anti-CR3-RP Ab. The control sample was
prepared by PBS treatment without antibody. All suspensions
were incubated for 1 h at 4◦C with shaking (130 rpm, 5 min), and
then washed twice with 100 μL of PBS. After washing, cells were
adjusted to a density of 1 × 106 cells/mL in fresh RPMI-MOPS
medium—Roswell Park Memorial Institute 1640 medium (RPMI
1640medium, Biowest, Nuaillé, France) without phenol red, sup-
plemented with 2% D-glucose and buffered to pH 7.0 with 0.165
M morpholinopropane sulfonic acid (MOPS, Serva, Heidelberg,
Germany).

The kinetics of adhesion were assessed in polystyrene 96-
well plates (Sarstedt, Nümbrecht, Germany) at five selected time
points (0, 30, 60, 90, 120 min), according to the protocol of Sohn
et al. (2006) with some modifications. Briefly, 100 μL aliquots of
suspensions (treated with Ab and untreated) were pipetted to
96-well plates and evaluated for adherence (at 37◦C). At every
time point, non-adherent cells were removed by two washing
steps with PBS. The viability of adherent cells was evaluated by
measuring their ability to reduce 2,3-bis(2-methoxy-4-nitro-5-
sulfophenyl)-2H-tetrazolium-5-carboxanilide sodium salt (XTT,
Sigma-Aldrich, St. Louis, USA) to water-soluble formazan—XTT
reduction assay. Briefly, 100 μL of XTT solution (0.5 mg mL−1

of XTT; 1 μM Menadion, Sigma-Aldrich, St. Louis, USA) was
added in each well and incubated for 1 h at RT in the dark. The
metabolic activity of cells was measured at 490 nm with a mi-
croplate reader (MRX II, Dynex, USA). Results were calculated as
amean value± standard deviation (SD) from at least five parallel
wells and from two independent experiments.

Biofilm-forming ability was assessed according to the modi-
fied protocol described by Li, Yan and Xu (2003). Yeast cell sus-
pensions (treated with Ab and untreated), prepared as described
above, were adjusted to a final concentration of 1 × 106 cells/mL
in fresh RPMI-MOPSmedium. An aliquot of 100 μL/well was then
seeded into 96-well plates (flat bottom, Sarstedt, Nümbrecht,

Germany) and incubated for 90 min at 37◦C. After the adher-
ence phase, non-adherent cells were removed and adherent
cells were washed twice with PBS. Adherent cells were then
overlaidwith 100 μL of fresh RPMI-MOPSmedium and incubated
at 37◦C for a further 48 h. The viability of the mature biofilm
was evaluated by XTT reduction assay as described above. Each
experiment was performed in five parallel wells and performed
twice. Data were expressed as mean values ± SD.

Confocal laser scanning microscopy

Fungal biofilms of C. albicans SC5314 and C. dubliniensis CBS 7987,
developed from yeast suspensions treated or untreated with
anti-CR3-RP Ab, were formed on 13-mm-diameter round cov-
erslips (Sarstedt, Germany) placed in a 24-well plate. Biofilm-
forming conditions were the same as for the in vitro biofilm
assay. After incubation at 37◦C for 48 h, coverslips were gen-
tly washed with PBS, stained with Calcofluor White (0.05% v/v;
Sigma Aldrich, Germany), and mounted on a glass coverslip for
confocal laser scanning microscopy (CLSM) visualization (TCS
SP2, Leica, Wetzlar, Germany). Serial sections in the x-y plane
were obtained along the z-axis. Three-dimensional reconstruc-
tions of the biofilm were obtained using the instrument’s soft-
ware.

Ex vivo biofilm assay on mouse tongue

Reference strains C. albicans SC5314 and C. dubliniensis CBS 7987
were selected for this experiment. Experiments were performed
according to the protocol previously described by Černáková
et al. (2015). The yeast cell suspension was pre-incubated with
100 μL of anti-CR3-RP Ab as described above. Afterward, biofilms
were formed on the tongues of BALB/c female 7–8 weeks mice
(Charles River, Germany) for 72 h. Mouse tongues from healthy
animals were incubated, immediately after extraction, in a
Petri dish in 4 mL of RPMI-MOPS medium for 90 min at 37◦C
with shaking (100 rpm) in the presence of the yeast suspen-
sion (1 × 107 cells/mL). After the adhesion phase, tongues
were washed once with PBS to remove non-adherent cells. Fi-
nally, tongues were transferred to a wet chamber and incu-
bated at 37◦C in the presence of 5% CO2 for a further 72 h. Af-
terward, the tongues were transferred into sterile 1.6 mL cry-
otubes (Sarstedt, Nümbrecht, Germany) overlaid with 1 mL of
Cryomount medium (Histolab AB, Askim, Sweden), and stored
in liquid nitrogen until use. Before staining, tongues were cut
in a cryostat (Opticon, Carl Zeiss, Jena, Germany) and 14 μm
sections were placed on Superfrost Plus slides (Gerhard Men-
zel GmBH, Brunswick, Germany) and stained with Periodic Acid
Schiff (PAS, Diapath, Martinengo, Italy). Several sections from
each tongue were evaluated using light microscopy (Carl Zeiss
Microscope AxioLab.A1, Jena, Germany). Two independent ex-
periments were performed with two replicates for each sample.

Galleria mellonella infection model

Sixth instar G. mellonella larvae were purchased from Alleva-
mento Cirà (Como, Italy). Larvae were stored in wood shavings
in the dark at 18◦C until the experiment, and used within 1 week
of being delivered. Sixteen randomly selected G. mellonella larvae
(weight range 200–300 mg) were used per experimental group
in all assays. Experiments were performed with the reference
strains C. albicans SC5314 and C. dubliniensis CBS 7987 as well
as with the clinical isolates of C. albicans H2 and C. dubliniensis
29. The tested anti-CR3-RP Ab was diluted 1:100 in PBS. Larvae
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were inoculated through the last left proleg using a Hamilton sy-
ringe (Hamilton Company, Reno, USA). Multiple injections were
performed through different prolegs. The killing assay was per-
formed as previously described (Fuchs et al. 2010; Borghi et al.
2014). The experimental groups were as follows: larvae inocu-
latedwith 2 × 105 yeast cell/larva and 1 h after infectionwith the
anti-CR3-RP Ab; larvae inoculated with 2 × 105 yeast cell/larva
and 1 h after infection with PBS; larvae inoculated with 10 μL
of the anti-CR3-RP Ab (to evaluate toxicity); larvae inoculated
with PBS (to monitor the injection trauma); untouched larvae
(negative control). Caterpillars were then incubated at 37◦C in
plastic Petri dishes (Sarstedt, Nümbrecht, Germany) for 9 days
and scored daily for survival. Larvaewere considered deadwhen
they displayed nomovement in response to touch. Killing exper-
iments were performed twice.

Statistical analyses

Results were evaluated by statistical analysis using one-way
ANOVA (analysis of variance, free online statistical software
available at http://in-silico.net/). Differences were considered
statistically significant at P< 0.05(∗), highly significant at P< 0.01
(∗∗) and extremely significant at P < 0.001 (∗∗∗).

The G. mellonella killing assay was analyzed using a log rank
test, and Hazard Ratio (HR) was used as the descriptive measure
(GraphPad Prism 7).

RESULTS AND DISCUSSION

Expression and quantification of CR3-RP protein

Candida albicans and C. dubliniensis express many antigens that
are important virulence factors (Jackson et al. 2009; Hoyer and
Cota 2016). CR3-RP is assumed to be one of the cell surface
mimicry proteins participating in the immune response as well
as in adherence during biofilm formation (Bujdáková et al. 2008,
2010). Moreover, its synthetically derived analog seems to repre-
sent a promising immunological tool not only for Candida sero-
diagnostics, but also an interesting target for antifungal ther-
apy (Paulovičová et al. 2015). While the presence of CR3-RP in
C. albicans has been already demonstrated, as well as in C.
glabrata, C. krusei and Saccharomyces cerevisiae (Bujdáková et al.
1997; Paulovičová et al. 2015), data on C. dubliniensis are lacking.
Magee et al. (2008) reported that C. dubliniensis harbors only 29
specific genes compared to C. albicans, which has 168 unique
genes for this species. However, both species have been shown
to be closely related in the expression of proteins involved in ad-
hesion and biofilm development (Sullivan et al. 2004; Magee et al.
2008; Jackson et al. 2009).

In our study, the presence of CR3-RP was confirmed by
SDS-PAGE followed by western blot in all analyzed C. dublinien-
sis strains (Supplementary data 2, Supporting Information; Fig.
S2A and S2B, Supporting Information). The ELISA test revealed
that CR3-RP expression is strain-dependent and not species-
dependent (Supplementary data 2, Supporting Information; Fig.
S2C, Supporting Information). The most significant expression
was determined for the reference strain C. albicans SC5314; its
expression was 50% higher (P < 0.05) than the C. dubliniensis CBS
7987 reference strain. The clinical isolates of C. albicans H2 and
C. dubliniensis 29, used in the further experiments, were also se-
lected on the basis of CR3-RP expression, and were found to
be very similar to the one of C. albicans SC5314. Differences in
protein expression among Candida isolates have already been
reported (Bujdáková, Lell and Gruber 1999). Additionally, Alaei

et al. (1993) suggested differences in the expression of the CR3-RP
with respect to the morphological forms of Candida cultivated at
30◦C, with higher expression of CR3-RP in themycelial form. The
observationswere also later confirmed by Bujdáková et al. (1997).

Effect of the anti-CR3-RP Ab on adherence and biofilm
development in vitro

Previous studies revealed that C. albicans pre-treated with the
anti-CR3-RP Ab is not able to sufficiently adhere to a polystyrene
surface, and to buccal epithelial cells, and to form a biofilm in
vitro. It was postulated that this effect was achieved by an effi-
cient CR3-RP blocking by polyclonal anti-CR3-RP Ab (Bujdáková
et al. 2008, 2010). Taking into account this information, it was in-
teresting to determine whether the anti-CR3-RP Ab is able to ef-
ficiently prevent adherence and biofilm development in both C.
albicans and C. dubliniensis. At first, all strains were screened for
the ability to form a biofilm (Supplementary data 3, Supporting
Information; Fig. S3, Supporting Information). It was observed
that C. albicanswere stronger biofilm producers than C. dublinien-
sis isolates. These observations were also proved by many other
studies comparing the adhesion and biofilm development of C.
albicans and C. dubliniensis (Ásmundsdóttir et al. 2009; Kolecka
et al. 2011; Jordan et al. 2014).

The kinetics of adhesion (Fig. 1), determined by incubating
yeast cells with/without anti-CR3-RP Ab, revealed that the C. al-
bicans SC5314 reference strain and C albicans and C. dubliniensis
clinical isolateswere able to occupy a polystyrene surfacewithin
60 min (Fig. 1C and D). A prolonged incubation time (120 min)
increased the saturation capacity of the C. albicans SC5314 refer-
ence strain (Fig. 1A). At this time point, no differences in adher-
ence capability between clinical isolates and reference strains
were observed. On the other hand, the C. dublinienis CBS 7987
reference strain (Fig. 1B) needed a longer time to achieve a sim-
ilar saturation to that of the other strains. A comparison of the
strains treated and non-treated with the anti CR3-RP Ab showed
a maximal reduction in C. albicans SC5314 (30% in 90 min) and
C. dubliniensis (41% in 90 min). For clinical isolates, the reduc-
tion was 22% (in 60 min) for C. albicans H2 (Fig. 1C) and 27% (120
min) for C. dubliniensis 29 (Fig. 1D). These results corresponded
to an evaluation of the biofilm. The next research compared a
biofilm developed by cells treated with anti-CR3-RP Ab with an
untreated one. Significant differences (P < 0.05 for all samples)
were observed in the biofilm formed by the cells from the sus-
pension pre-incubated with anti-CR3-RP Ab in all tested strains
(Fig. 2). The maximum reduction was 60% for both clinical iso-
lates H2 and 29. Differences were also observed in the standard
strains. The reduction was 30% and 36% for C. albicans SC5314
and for C. dubliniensis CBS 7987, respectively. It is of interest that
the maximal reduction in biofilm viability was observed in the
strains that expressed a higher amount of CR3-RP (C. albicans
SC5314 < C. albicans H2 < C. dubliniensis 29, Fig. S2C, Support-
ing Information). Candida dubliniensis CBS 7987 expressed the
lowest amount of CR3-RP (Supplementary data, Fig. S2C, Sup-
porting Information), thus the reduction was not significant. As
previously reported by Bujdáková, Lell and Gruber (1999), a dif-
ference in the expression of the CR3-RP is associated with the
ability of a yeast to switch to the mycelial form. Indeed, this as-
pect was further investigated in terms of C. albicans vs. C. dublin-
iensis. The CLSM visualization of biofilms formed by both refer-
ence strains is shown in Fig. 3. The C. albicans SC5314 biofilm
was thicker (around 28 μm thick) and characterized mostly by
the presence of hyphae and pseudohyphae (Fig. 3A). In contrast,
the C. dubliniensis CBS 7987 biofilm was thinner (20 μm) and
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Figure 1. Effectiveness of anti-CR3-RP Ab on adherence at the beginning of biofilm formation. Figures represent the ability of the tested strains to adhere onto a
polystyrene surface after treatment with the anti-CR3-RP Ab, compared with control samples treated with PBS. (A) Candida albicans SC5314, (B) C. dubliniensis CBS 7987,

(C) C. albicans H2, (D) C. dubliniensis 29.

Figure 2. Effectiveness of anti CR3-RP Ab on development of biofilm formed by C. albicans SC5314, C. albicans H2, C. dublinienis CBS 7987 and C. dubliniensis 29. Yeast
suspensions were pre-treated with the anti-CR3-RP Ab (light gray columns) and control samples with PBS (dark gray columns—controls) prior to the induction of

biofilm formation. Differences were significant (∗P ≤ 0.05).

consisted mainly of yeast cells (Fig. 3B). Pre-incubation with the
anti-CR3-RP Ab before biofilm formation resulted in a thickness
reduction of about 36% and 40% for C. albicans SC5314 (Fig. 3C)
and C. dubliniensis CBS7987 (Fig. 3D), respectively. Interestingly,
despite differences in the morphological forms characterizing

the biofilms, the proportional reduction was very similar. Previ-
ous studies on in vitro biofilms formed by C. albicans revealed that
the addition of anti-CR3-RP Ab at the beginning of biofilm for-
mation also significantly decreases biofilm viability (Bujdáková
et al. 2008).
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6 Pathogens and Disease, 2018, Vol. 76, No. 1

Figure 3. Confocal microscopy images of biofilms formed by C. albicans SC5314 (A and C) and C. dubliniensis CBS 7987 (B and D). Candida albicans suspensions were
as follows: (A) PBS (control, thickness 28 μm); (C) anti-CR3-RP Ab (thickness 18 μm). Candida dubliniensis suspensions were pre-incubated with the following: (B) PBS

(control, thickness 20 μm); (D) anti-CR3-RP Ab (thickness 12 μm). The full arrow points to the mycelial form and interrupted arrow points to the yeast form. Bars
represent 20 μm.

A decrease in the adhesion of yeasts to human buccal ep-
ithelial cells after treatment with anti-CR3-RP Ab by about 35%
was also observed (Bujdáková et al. 2010). The use of blocking an-
tibodies targeting Candida surface proteins has been described
in many studies as a promising tool for combating Candida in-
fection (De Bernardis et al. 2007; Coleman et al. 2009; Torosan-
tucci et al. 2017). The study by Gomez et al. (1996) described
the cell wall mannoprotein MP65 of C. albicans to be an impor-
tant protein participating in adhesion. Experiments using spe-
cific anti-MP65 antibodies demonstrated a decreased adhesion
of C. albicans to vaginal epithelial cells (De Bernardis et al. 2007).
Fujibayashi et al. (2009) also described the blocking of cell wall
antigens involved in adhesion with three anti-Candida IgY an-
tibodies produced in egg yolk. The authors also suggested a
possible cross-reaction of antibodies with Als3 and Hwp1 pro-
teins, resulting in a decrease in adhesion and biofilm formation
(Fujibayashi et al. 2009). Additionally, Torosantucci et al. (2009)
described the protective properties of the IgG2b isotype of an
anti-β-glucan monoclonal antibody that was able to inhibit in
vitrohyphal growth and adherence to human epithelial cells. It is
of interest that CR3-RP was originally detected through an inter-
actionwith themonoclonal antibody OKM1, isotype IgG2b (Alaei
et al. 1993; Bujdáková et al. 1997), also used for purifying the
fragment of this protein that was subsequently administrated

for the immunization of rabbits and collection of the polyclonal
anti-CR3-RP Ab (Bujdáková et al. 2008).

Participation of CR3-RP in biofilm formed on mouse
tongues

Results from in vitro investigations revealed the participation
of CR3-RP in the adhesion and biofilm development of Candida
spp. This was also confirmed by a newly developed model on
mouse tongues (Fig. 4). This ex vivomodel for biofilm studies was
first described by Černáková et al. (2015). Candida albicans SC5314
and C. dubliniensis CBS 7987 were used for biofilm formation on
tongues. As for in vitro experiments, the biofilm of C. albicans
SC5314 (Fig. 4A) was thick and composed of hyphae or pseudo-
hyphae, whereas the C. dubliniensis CBS 7987 biofilmwas thinner
and formed of yeasts. We observed a decrease in biofilm thick-
ness after anti-CR3-RP Ab pre-treatment (Fig. 4C and D). The two
species exhibited differences in invasiveness; with only C. albi-
cans able to penetrate the inner layers of tongue tissue. This ob-
servation is in agreement with previous studies (Kolecka et al.
2011; Jordan et al. 2014). In particular, by using an ex vivo RHE ‘re-
constituted human epithelium’ model, Kolecka and coworkers
showed that C. dubliniensis is unable to penetrate deeper into the
tissue, and has a lower tendency to filament. The lower ability of
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Figure 4. Cryo cut sections of mouse tongues after 72 h post biofilm-formation by C. albicans SC5314 (A and C) and C. dubliniensis CBS 7987 (B and D). Candida albicans

suspensions were pre-incubated with the following: (A) PBS (control); (C) anti-CR3-RP Ab. Candida dubliniensis suspensions were pre-incubated with the following: (B)

PBS (control); (D) anti-CR3-RP Ab. Bars represent 20 μm.

C. dubliniensis to form a biofilm could be mainly associated with
the expression level of genes encoding the morphological tran-
sition. Candida albicans SC5314 exhibited the upregulation of
hypha-specific genes within 30 min post-inoculation, resulting
in a rapid induction of filamentation and increased RHE damage.
Candida dubliniensis CD36 did not exhibit a detectable upregu-
lation of hypha-specific genes, grew in yeast form and caused
limited RHE damage (Spiering et al. 2010). Besides the differences
in biofilm morphology, our study also confirmed the significant
reduction in biofilm biomass after anti-CR3-RP Ab treatment.

Galleria mellonella survival assay

The use of alternative ethical issue-free models, like the in-
vertebrate G. mellonella, for studying Candida pathogenesis and
the effectiveness of antimicrobial compounds, seems to be very
promising, because of the low cost, easy manipulation and the
potential to provide a great deal of information, as evidenced
by experiments (Borghi et al. 2014; Jacobsen et al. 2014; Rajen-
dran et al. 2015; Maguire, Duggan and Kavanagh 2016). We ini-
tially tested whether the anti-CR3-RP Ab could be toxic for G.
mellonella larvae. No differences in larval survival were observed
compared with both PBS-injected and untouched control group

larvae. After excluding any toxic effects, the anti CR3-RP Ab was
further used as therapeutic treatment 1 h post-infection with
C. albicans and C. dubliniensis. Killing curves demonstrated that
anti-CR3-RP Ab treatment slightly improved the survival of lar-
vae infected with both C albicans (HR 1.49, 95% confidence inter-
val [CI] 0.7237–3.06) and C. dubliniensis (HR 1.41, 95% CI 0.6867–
2.896) reference strains (Fig. 5A and B, respectively). The effec-
tiveness of anti-CR3-RP Ab administration was also shown in
larvae infected with the clinical isolates C. albicans H2 (HR 1.501,
95% CI 0.6474–3.481) (Fig. 5C) and C. dubliniensis 29 (HR 2.132, 95%
CI 0.7449–6.1) (Fig. 5D).

The increase in survival correlated with strain-dependent
differences in adhesion and biofilm formation capabilities. In
agreementwith the previous observation describing a decreased
virulence of C. dubliniensis (Henriques, Azaredo and Oliveira
2006; Jordan et al. 2014), a higher survival of larvae was observed
after infection with C. dubliniensis. We hypothesize that the in-
crease in larvae survival, after treatment with the anti-CR3-RP
Ab, could be caused by negating the functionality of CR3-RP via
its blocking. Vilela et al. (2002) and Ásmundsdóttir (2009) used an
in vivomodel of systemic candidiasis inmice; microscopy analy-
ses of autoptically collected organs revealed that C. albicans was
more virulent and its biofilm was characterized by the presence
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Figure 5. Kaplan–Meier curves showing the effect of anti-CR3-RP Ab-treatment on G. mellonella larval survival after C. albicans or C. dubliniensis systemic infection. (A) C.
albicans SC5314, (B) C. dubliniensis CBS 7987, (C) C. albicans H2 and (D) C. dubliniensis 29. Larvae were primary inoculated with the yeast suspension and 1 h later treated

with (i) PBS (control), (ii) anti-CR3-RP Ab.

of hyphae and pseudohyphae; in contrast, in the C. dubliniensis
biofilm, only yeast cells were visible.

In conclusion, our results confirmed a lower virulence of C.
dubliniensis compared with the phylogenetically similar C. albi-
cans. The Candida surface protein CR3-RP was shown to actively
participate in adhesion and biofilm development. The effective-
ness of the anti-CR3-RP Ab on biofilm formation through a de-
crease in adhesion in both Candida spp. is evident. The precise
mechanism of action is unfortunately still unclear. We hypoth-
esize that the anti-CR3-RP Ab could covalently bind the CR3-
RP protein in the Candida cell wall, affecting its function. Ad-
ditionally, the obtained results with the anti-CR3-RP Ab in all
models, and mainly in vivo in G. mellonella, suggest its possible
use in immunotherapy or vaccine development against biofilm-
associated Candida infections.

SUPPLEMENTARY DATA

Supplementary data are available at FEMSPD online.

ACKNOWLEDGEMENTS

The authorswish to thankKatarı́na Židlı́ková, MSc., for perform-
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tion of the Candida albicans surface antigenin adhesion, the
first phase of biofilm development. FEMS Immunol Med Mic
2010;59:485–92.
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Mahelová M, Růžička F. Methods of Candida dubliniensis identi-
fication and its occurrence in human clinical material. Folia
Microbiol 2017, DOI: 10.1007/s12223-017-0510-2

Mishra NN, Ali S, Shukla PK. A monoclonal antibody against
47,2 kDa cell surface antigen prevents adherence and affects
biofilm formation of Candida albicans.World J Microbiol Biotech-
nol 2015;31:11–21.

Moran G, Stokes C, Thewes S et al. Comparative genomics using
Candida albicans DNAmicroarrays reveals absence and diver-
gence of virulence-associated genes in Candida dubliniensis.
Microbiology 2004;150:3363–82.

Moran GP, Coleman DC, Sullivan DJ. Candida albicans versus Can-
dida dubliniensis: Why is C. albicansmore pathogenic? Int J Mi-
crobiol 2012, DOI: 10.1155/2012/202951
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