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Abstract 
Currently the diagnostic methods used to detect cardiovascular disease largely rely on the 

inference of the presence of arterial stenosis. There is a clinical interest in the 

development of a diagnostic screening technique which can indicate the risk of 

developing cardiovascular disease at an early stage so that non-surgical treatments can be 

applied.  

The goal of this work was to develop and validate a diagnostic screening technique for 

cardiovascular disease using the mechanical biomarker wall shear stress. Improvements 

in wall shear stress measurements were made by using a 2D Fourier transform to extract 

additional spectral information from the ultrasound pulse and decrease the spectral 

variance by integrating across the bandwidth of transmitted frequencies. This technique 

was validated for a series of anatomically realistic flow phantoms which precisely 

mimicked the progression of wall stiffening that characterises cardiovascular disease. 

The newly developed spectral analysis technique demonstrated a higher diagnostic 

performance than the other techniques tested, both in terms of a greater degree of 

significance in detecting differences in vessel wall stiffness and in terms of the sensitivity 

and specificity of the technique. The technique could not be tested in pulsatile flow due 

to hardware limitations, but preliminary testing indicated that the increased performance 

of the technique would likely transfer to a physiological flow regime. 

The results of this work indicated that the algorithm had the potential to rival the 

diagnostic power of the current gold standard while being applicable at an earlier stage 

of cardiovascular disease. 
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Chapter 1: Introduction 

1.1. Context and Motivation 

Cardiovascular disease (CVD) is currently the leading cause of preventable death in the 

world, accounting for 31% of deaths globally [10,11]. Despite this, CVD prevalence can 

be reduced by addressing behavioural risk factors that aggravate the disease such as 

tobacco use, unhealthy diet and obesity, physical inactivity, and excessive alcohol 

consumption [11]. However, the diagnosis of CVDs is largely based on detecting or 

inferring the presence of indicators associated with late stage CVD such as the formation 

of atherosclerotic plaque in the arteries. Given that CVD is currently only diagnosed in 

this manner, this can limit the treatment options for patients to surgical options which 

carry an inherent risk for the patient. There exists, therefore, a clinical interest in 

developing a non-invasive diagnostic screening technique which can be applied early in 

the progression of CVD so that patients can be treated pharmacologically or through a 

change in lifestyle.  

An early part of the development of CVD manifests as damage to the endothelium 

resulting in an increase in vessel stiffness [12]. An indicator of this damage is the 

mechanical biomarker wall shear stress (WSS) which is defined as the product of the 

dynamic viscosity and the gradient of the blood velocity flow profile evaluated as close 

to the vessel wall as possible. The link between WSS and vessel stiffness can be 

understood in the form of elasticity of vessel walls acting as a damping force of the blood 

velocity, with decreased elasticity resulting in less friction on the outermost blood 

fraction. As blood can be thought of as a series of concentric annuli each imposing a 

frictional force on one another, a decrease in vessel elasticity will lead to a decrease in 

frictional damping on the outermost blood fraction, which in turn will lead to a flattening 
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on the blood velocity flow profile, which will manifest as a decrease in measured wall 

shear stress. There are a number of techniques which can be utilised for the precise 

measurement of the blood velocity profile required for calculation of WSS, such as phase 

contrast MRI, particle image velocimetry, and Doppler ultrasound [13]. Each technique 

has certain advantages and disadvantages, but ultrasound represents a strong diagnostic 

basis for the evaluation of WSS due to its low cost, fast scan times, and high degree of 

velocity precision. There are three considerations which need to be taken into account 

when making a WSS measurement, which include the signal-to-noise ratio (SNR), the 

velocity resolution, and the temporal resolution [13]. These values can each significantly 

affect the accuracy of a WSS measurement because it depends so highly on the precise 

measurement of blood velocities close to the vessel wall which are typically both very 

slow moving and exhibit a weak Doppler signal.  

Modern techniques have been developed which can provide a significant improvement to 

the temporal resolution such as UltraFast Doppler ultrasound, a technique available on 

the Aixplorer scanner (Supersonic Imagine, France). This work aims to combine the high 

temporal resolution of the UltraFast imaging mode with custom post-processing code to 

decrease the spectral variance and achieve an increase in the SNR and velocity. This novel 

method of constructing velocity data builds on a theoretical framework first proposed by 

Loupas & Gill [7] to develop a multifrequency UltraFast Doppler spectral analysis 

(MFUDSA) algorithm for use in quantification of WSS for the early diagnosis of CVD. 

1.2. Aims and Objectives 

The aim of this work was to design an algorithm that utilised raw UltraFast Doppler in-

phase quadrature (IQ) data acquired using an Aixplorer scanner, the accuracy of which 

Commented [AM1]: Added based on Kumar’s comment 
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would be investigated by scanning a series of anatomically realistic flow phantoms 

constructed to mimic different stages in the progression of CVD. 

The main objectives and goals of this thesis are summarised below: 

1. Characterisation of the system and measurement protocol, which involved the 

following: 

a. Measurement of the transmission characteristics of the Aixplorer system 

b. Measurement of the display capabilities and inaccuracies in the system, 

including a quantification and cancellation of the intrinsic spectral 

broadening and measurement of the dynamic range 

c. Determining the best protocol for transducer alignment 

2.  Production of a novel phantom testbed which was capable of precisely mimicking 

different stages of CVD, which included: 

a. Manufacturing of: 

i. A vessel mimicking material with a variable stiffness and the 

mechanical characterisation thereof, producing a novel mimic of 

the progression of arterial disease 

ii. A tissue mimicking material for the surrounding material of the 

phantom 

iii. A blood mimicking fluid for the flow system 

b. Verification of the geometric accuracy of the vessels produced as 

compared to the renal artery model they are based on 

c. The acoustic characterisation of the constituent phantom materials 

d. Deploying of custom LabVIEW (National Instruments, USA) code to 

drive the flow system 

3. Development of the novel MFUDSA algorithm, including: 
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a. Writing of custom code to perform the required 2D Fourier analysis and 

frequency integration 

b. Generation of simulated data for validation and optimisation of the code 

c. Writing of custom code to use velocity data in the formation of a sonogram 

d. Extraction and importation of raw IQ data from the Aixplorer system for 

use in the MFUDSA algorithm 

4. Comprehensive flow experimentation, which involved: 

a. Determining the required inlet length for the pump network to minimise 

turbulence in flow 

b. Data collection and analysis with a variety of WSS estimation techniques, 

including the novel MFUDSA algorithm 

c. Analysis of the effectiveness of the examined techniques at diagnosing 

CVD based on WSS values using a novel, anatomically realistic phantom 

testbed representing the different stages of arterial disease through 

variable vessel stiffness matching values reported in vivo for patients 

diagnosed with CVD. 

1.3. Thesis Overview 

The thesis is divided into seven main chapters, detailing the development and 

optimisation of the MFUDSA algorithm as well as the production and characterisation 

steps taken to ensure the reliable and reproducible standard of the results. 

Chapter 2: Theory and Background  

The background literature required for all subsequent chapters is provided in Chapter 2 

in addition to a review of the current diagnostic methods used for assessing CVD. The 

chapter begins with an outline of the current diagnostic approaches in the diagnosis of 



23 
 

CVD, which is followed by a review of the methods which can be used to calculate WSS. 

A review of methods to produce an anatomically realistic arterial flow phantom follows 

including discussion of the vessel mimicking material polyvinyl alcohol cryogel (PVA-

c). PVA-c provides a useful material for vessel construction as it has a precisely tuneable 

Young’s modulus value which can be used to mimic the different stages of progression 

of atherosclerosis. The chapter concludes with a discussion of the mechanical properties 

of tissue and a review of the literature to determine the vessel wall stiffness values 

associated with the progression of CVD.  

Chapter 3: Ultrasound scanning system Calibration  

The system used for the majority of this work was the Aixplorer (Version 11.2, 

Supersonic Imagine, France) ultrasound scanner. This chapter begins with a discussion 

of the effects of ultrasound on tissue in vivo and the importance of ensuring the ultrasound 

system remains within the safety limits. The pulse parameters of the Aixplorer were 

measured, including the central transmission frequency, the frequency bandwidth of the 

pulse, and the acoustic pressure of the pulse. The chapter also includes the measurement 

of the Doppler dynamic range of the transducer used in this work, a quantity which is 

underreported in the literature, and the measurement of the intrinsic spectral broadening. 

The chapter also analyses a new method of intrinsic spectral broadening cancellation 

which is only possible when using UltraFast imaging modes. Finally, the chapter outlines 

and tests a protocol for the positioning of the transducer prior to acquiring velocity data 

to ensure the highest rate of reproducibility in results.   

Chapter 4: Phantom production  

This chapter provides a methodology for the entirety of the production process of the 

novel arterial flow phantoms. The chapter first discusses the PVA-c vessel mimicking 

material and how it has been used in previous studies throughout the literature as well as 
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its typically reported mechanical properties. A point is made that mechanical 

characterisation may not be reliable when using test objects with sufficiently different 

area to volume ratios (SA:Vs). The protocol is included for the production of the vessel 

mimicking material, the tissue mimicking material, and the blood mimicking fluid are 

outlined as well as the geometric fabrication of the moulds used to create the anatomically 

realistic vessels. The chapter then discusses characterisation of the constituent phantom 

materials and measuring the accuracy of the geometric production of the vessels as 

compared to the renal artery model they are based on. 

Chapter 5: Development of the multifrequency UltraFast Doppler spectral analysis (MFUDSA) 

algorithm 

This chapter outlines the procedure used to produce the custom code for the novel 

MFUDSA algorithm. The chapter begins with a discussion of 2D Fourier analysis and 

methods which have been used previously to improve the Doppler signal. The 

methodology outlines the procedure of extracting data and applying the algorithm to the 

data in order to output a velocity spectrum. Detail is given on how the algorithm achieves 

each step in the process. The next section details the procedure for generating simulated 

data and the measurement parameters for the experimental data. An outline of the 

methods used for optimisation of the algorithm is presented, describing the effect of 

changing the pulse transmission parameters and using time domain windowing functions 

to reduce the influence of sidelobes in the frequency space. Finally, a procedure for the 

generation of a Doppler sonogram is outlined using custom code which can interface with 

the MFUDSA algorithm. 

Chapter 6: Comprehensive flow experimentation  

Chapter 6 begins with a discussion of the phantoms used in the flow experiments, 

particularly the stiffness of the vessels used, and the details of the pump network including 

the optimum inlet length. The next section outlines the experimental data collected and 
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the WSS estimation methods used on the data. The details of the analysis follow, 

including discussion of the sensitivity and specificity of the techniques in addition to the 

analysis of significance of results. The chapter also includes a number of example images 

produced of the velocity flow profiles and the WSS along the length of the vessel using 

different techniques.   

Chapter 7: Conclusions 

Finally, Chapter 7 outlines the most important conclusions of the research as well as 

recommendations for future research and potential commercial development and how the 

technique might be improved. 
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Chapter 2: Theory and Background 

2.1. Introduction 

The purpose of this chapter is to provide a detailed synopsis of the theoretical 

underpinnings of the experimental procedures utilised as part of this Ph.D. study and 

described in the subsequent chapters.  Furthermore, the justification, motivation and 

context of this research will be put in context of the current relevant research landscape.  

Cardiovascular disease (CVD) is among the leading cause of deaths in the world [14] and 

is additionally associated with an increased risk a number of conditions such as heart 

failure, hypertension, diabetes mellitus and cerebrovascular disease [15].  

2.1.1. Current diagnostic approach 

A number of different approaches have been used to diagnose CVD and these methods 

are typically utilised after acquiring a detailed clinical history of the patient and their 

family [16].  

Digital subtraction angiography (DSA) was the gold standard for assessment of vascular 

health until recently however discussions in the literature have suggested it should be 

relegated to a secondary diagnostic approach due to its invasive nature and risk of 

complications compared to other techniques, to be replaced with the new primary 

diagnostic approach of duplex ultrasound [17]. It is currently primarily used in assessment 

of below-the-knee arterial disease or in situations where other diagnostic approaches 

disagree [16], this is due to the higher sensitivity of 94% to 100% and specificity of 65% 

to 97%  compared to similar techniques [18,19]. 

Computed tomography angiography (CTA) has the advantage of short examination times, 

which lead to reduced motion artefacts while also providing high resolution, 3D 
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visualisation, and being a widely available technique. However, the drawbacks of CTA 

include: a lack of haemodynamic data, radiation exposure to the patient, and the use of 

iodinated contrast agents which can cause nephrotoxicity in renal-compromised patients 

[16]. Some studies have been carried out into the reduction of contrast agent based 

nephrotoxicity but further research is required [20,21]. 

Magnetic resonance angiography (MRA) can be utilised as a contrast based angiography 

technique (using gadolinium) or as a non-contrast technique using phase contrast or time-

of-flight techniques [16,22]. Using the non-contrast techniques results in reduced 

resolution and an increased susceptibility to artefacts which limits their use on a wide 

scale. However, the non-contrast techniques are particularly useful in patients with mild 

to moderate chronic renal disease as they eliminate the risk of nephrotoxicity from the 

contrast agent. MRA has superior soft tissue resolution over CTA but it has a longer scan 

time, resulting in motion artefacts. MRA also has a greater number of contraindications 

such as pacemakers and other implants which are not categorised as MR safe [16]. An 

additional consideration of MRA is that the relatively small bore of the scanner can be a 

limit to patient comfort in cases of claustrophobia [16]. 

Duplex ultrasound is currently considered the first step in any diagnostic review of the 

vascular system due to its wide availability and low cost [16]. The use of pulsed wave 

(PW) Doppler ultrasound in particular is considered the gold standard technique in the 

detection of arterial stenosis as the increase in peak systolic velocity in the presence of 

arterial obstruction is easily detectable while being both non-ionising and non-invasive 

[16]. 

These techniques, by and large, depend on the detection of obstructions in the vasculature. 

The diagnostic value that they provide is predominantly, therefore, for later stage CVD. 
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The treatment options available for late stage CVD are mostly surgical, and all carry 

inherent risk [16]. Therefore, there exists a need for a new diagnostic method which can 

be utilised to detect an earlier stage of CVD or even the initiation of it by measuring the 

morphological effects of early stage disease. One potential biomarker of these effects is 

wall shear stress which has been linked to arterial wall stiffening and the formation of 

atherosclerotic plaques [15,23]. 

2.2. Wall shear stress 

Wall shear stress (WSS) is defined as the tangential force per unit area that is exerted by 

the flowing blood on the surface of the endothelium and vice versa. This can be expressed 

mathematically as follows: 

𝑊𝑆𝑆 =  −𝜇
𝛿𝑉

𝛿𝑟
|𝑟=𝑅 

(2.1) 

where µ is the dynamic viscosity of blood δV/δr is the velocity flow profile, sometimes 

referred to as the wall shear rate, and R is the vessel radius. WSS has been linked to CVD 

for many years, with several major studies having examined its role in atherogenesis. 

WSS has been shown to be particularly useful in the assessment of vascular reactivity 

[24], wall thickening [25], and atherosclerosis [26,27]. In the 1970s, it was theorised that 

a high WSS would cause damage to the endothelium resulting in the formation of 

atherosclerotic lesions, however Caro et al. [28] proposed that in vivo results indicated 

that low WSS values coincided with areas of increased lesion formation. This was later 

confirmed experimentally in the 1980s and early 1990s through a number of studies, also, 

demonstrating that the measurement of WSS was of critical importance in the early 

diagnosis of renal artery stenosis [29–32]. Malek et al. [27] provides a detailed analysis 

of the historical evolution of the role of WSS in understanding atherosclerosis. In 

addition, Malek et al. states a range of WSS values typically exhibited in vivo, with values 
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of 1 – 7 Pa being characterised as low risk and values in the range -0.4 – 0.4 Pa 

characterised as at risk of developing CVD. Chatzizisis et al. [33] reported similar values 

of WSS for regions at risk of developing atherosclerosis to Malek et al., with WSS values 

above 3 Pa considered to be high and WSS ≤ 1 Pa considered to be low and at risk. 

Palombo et al. [12] outlines a relationship between WSS and arterial stiffness and its role 

in atherogenesis. While Palombo et al. does note that the co-localisation of increased 

arterial stiffness and atherosclerosis may be incidental, they state that the process of 

arterial stiffening is typically characterised by the alteration of the extracellular matrix 

that can lead to pathophysiologic processes which increase the likelihood of lipid 

accumulation at the onset of atherosclerosis [12]. Wentzel et al. [34] describe the role of 

WSS in the development of atherosclerosis as the low and oscillatory WSS values 

suppression of the atheroprotective gene which prevents inflammation and lipid 

accumulation leads to development of CVD.  

There have been a number of methods utilised in the assessment of WSS, the most 

predominant of which will be outlined here. 

2.2.1. Phase contrast MRI 

One methodology which is utilised frequently for the assessment of wall shear stress is 

phase contrast magnetic resonance imaging (PC-MRI). PC-MRI is based on the relative 

phase shift of spins moving along the vessel. By applying a gradient field along the vessel, 

a spatially dependent phase shift in the spins is set up, the region is then imaged a short 

time later and a quantitative blood velocity flow profile can be determined as blood 

velocity will be linearly proportional to its phase shift.  

Shaaban et al. [35] outlined a comprehensive review of PC-MRI. Due to the nature of 

MR imaging, the voxels imaged contain an average value of velocity from all tissue 
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contributions, both moving and stationary. This leads to a large source of error in this 

methodology where the position of the vessel wall in the edge voxel is not known due to 

limited spatial resolution. Osinnski et al. [36] showed that this partial volume error can 

lead to a 34 % underestimation of WSS. Reneman et al. [37] suggested that this limitation 

prevents measurement of blood velocities closer than 1000-1200 µm to the vessel wall.  

Additionally there is a source of error associated with the limited temporal resolution of 

MR imaging, Katritsis et al. [13] has stated that the long scan times of 25-30 seconds of 

MRI result in a number of inaccuracies due to motion of the patient and as a result, special 

precautions must be taken when examining blood flow during dynamic processes.  

Potters et al. [38] proposed that 3D cine PC-MRI represented the best methodology for 

the evaluation of wall shear stress as it is the only technique which allows for non-invasive 

measurement of 3D blood velocity gradients. In this study, a technique was developed 

which allows the researchers to calculate volumetric WSS which they claim provides a 

better clinical biomarker as it can be used to evaluate local variations along the entirety 

of the vessel wall. However, this increased WSS resolution comes at the expense of the 

need for additional velocity measurements and the researchers were forced to use natural 

neighbour interpolation combined with a smoothing spline fit at each point on the vessel 

wall. This technique was validated on in simulation studies before being applied to PC-

MRI data from six healthy volunteers.  

A recent study undertaken by Peng et al. [39] evaluated WSS in hypertensive rats using 

PC-MRI. In this study, a population of 7 hypertensive rats were studied using a 7T animal 

MRI scanner. This study attempted to determine differences in WSS values between two 

models of rats, spontaneous hypertensive rats and Wistar Kyoto rats. In the process of 

undertaking this study, it was found that limitations in spatial resolution posed large 

problems for PC-MRI and there was difficulty in maintaining the level of precision 
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required for completely accurate readings, leading to “unavoidable” underestimation of 

WSS. In order to try and improve the flow measurements, efforts were made to increase 

the spatial resolution (to 0.16 mm), however the corresponding decrease in signal-to-

noise ratio (SNR) required the researchers to acquire more signal averages, lengthening 

the scan time.  

2.2.2. Particle image velocimetry 

Another method which is used to measure WSS is particle image velocimetry (PIV), this 

technique is based on the rapid capture of two sequential digital images; the images are 

acquired using a digital camera. Flow measurements are inferred due to the motion of 

tracer particles between the images, the relative motion of which are computed using 

cross-correlation techniques. The particles are typically fluorescent and are illuminated 

by a thin, two-dimensional plane of well defined, laser light. This method is limited in 

vivo as it is an optical technique and, as such, it has limited penetration depth; this makes 

it unsuitable for flow measurements outside of transparent media, therefore it cannot be 

used for arterial analysis although it can provide insight into WSS variation in different 

flow conditions. 

In one study, carried out by Hochareon et al. [40], PIV was utilised to determine wall 

shear rates in a 50cc artificial heart made of Plexiglas . The images were analysed with a 

multigrid cross-correlation scheme which was developed as part of the study. The work 

shows that PIV can be utilised for rapid accurate determination of wall shear rates and it 

has the additional flexibility to be utilised on a variety of surface geometries. However, 

the author notes that a more accurate shear rate assessment would require higher 

magnification and the utilisation of specialised techniques.  
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In another study, carried out by Natarajan et al. [41], PIV was used in order to examine 

the effect that an arterial stent would have on blood flow using numerical simulations, 

with a particular emphasis on fluid shear rate contours and wall shear stress maps. The 

numerical methods were then compared to experimental results determined from PIV 

analysis. This study utilised three examples of corrugated vessels; a sharp stented vessel, 

a smooth stented vessel, and a non-stented vessel. The sharp stented vessel is designed to 

approximate the vessel immediately after the introduction of the stent and is referred to 

as the “worst-case geometry”. The smooth stented vessel, by contrast, is a representation 

of the stent after time has passed, smoothing the edges and leading to the stent becoming 

endothelialised. The non-stented vessel acts as a control. Flow was visualised using 

neutrally buoyant crystalline particles with a diameter of 150 ± 100µm. The primary 

results of this study showed that wall shear stress values can be increased by as much as 

a factor of three due to the introduction of arterial stents.  

When it comes to application of PIV in vivo, additional factors need to be taken into 

account, for example, the tracer particle size is limited to the scale of the vessel which 

needs to be studied. Vennemann et al. [42]  provides insight into this area by examining 

the blood flow in the beating heart of a chicken embryo. This study proposes the use of 

micro particle image velocimetry (µPIV) for this application as it is capable of measuring 

instantaneous flow fields at sub-millimetre scales in regions of highly unsteady flow. 

Measurements were made at nine discrete points in the cardiac cycle, with a separation 

of 50 ms and each measurement consisting of up to 50 images pairs which were analysed 

using ensemble correlation techniques. The results of this study show that µPIV is capable 

of accurate, rapid visualisation of the flow velocity distribution in a beating embryonic 

avian heart. Additionally, the author outlines the advantages of nanoscale fluorescent 

tracer particles, whose small dimensions allows for light emitted by the particles to be 



33 
 

separated from the light scattered by tissue and erythrocytes. The smaller particle size 

also allows for a greater number of particles, giving µPIV a higher information density 

for the correlation, leading to an overall greater resolution in the velocity flow 

distributions. Finally, the small liposomes or particles (200-400 nm) are more readily able 

to penetrate the cell-depleted layer near the vessel wall and more closely follow the flow 

of plasma close to the vessel wall itself. This allows for a more accurate determination of 

the velocity gradient close to the vessel wall and, consequentially, yields a more accurate 

value for wall shear stress. Despite the significance of these results, the clinical feasibility 

of this technique for humans is not addressed in this study. 

In a study undertaken by Anastasiou et al. [43], µPIV is utilised for the examination of 

blood like fluid flow in a microchannel resembling a bifurcated small artery. By 

examining the flow profiles of both Newtonian and non-Newtonian fluids, the study 

demonstrates that the assumption that blood behaves as a Newtonian fluid is not valid for 

small vessels (600µm in this case), while this is not surprising for vessels where the vessel 

diameter is similar in size to red blood cells (6 µm), this is not expected to be a reliable 

assumption for arterial flow. In addition, the study demonstrated that in bifurcations, the 

outer wall, experiencing a lower WSS than the inner wall, is more prone to development 

of atherosclerotic plaques. 

Although particle imaging velocimetry provides good results, it is limited by its poor 

penetration depth. Phase contrast MRI itself is capable of generating excellent anatomical 

detail, however it suffers from poor spatial resolution for velocity quantification and 

extremely poor temporal resolution. Due to the extremely long scan times, this technique 

could not accurately measure WSS throughout the cardiac cycle in real time, making it 

less attractive than other techniques. 
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2.2.3. Doppler Ultrasound 

While PW Doppler ultrasound can be used to measure WSS directly, there are a number 

of key limitations to the assessment of WSS via PW Doppler ultrasound, each of which 

is related to the difficulty in resolving the precise velocity measurements required for its 

analysis. Firstly, due to the relatively weak backscatter intensity of red blood cells 

combined with the lower concentration of red blood cells near the vessel wall, the 

resulting Doppler signal recorded close to the vessel wall will be proportionally weaker 

than the Doppler signal recorded from the centre of the vessel. This represents a 

significant problem as WSS measurement requires the blood velocity flow profile to be 

evaluated as close to the vessel wall as possible. The second limitation for WSS 

measurements is that of temporal resolution. When using spectral Doppler for WSS 

analysis, there is a limit to the number of velocity measurements which can be acquired 

at a certain time point. A single range gate or, in the case of multigate systems, range 

gates of sufficiently small gate size, must be placed at radial positions in the vessel [3,5]. 

The number of positions that can be covered is limited and, for small gate sizes, there is 

no way to quantify the entire velocity flow profile within a single cardiac cycle. Multigate 

systems can measure an entire profile across a vessel but only at a single longitudinal 

position, necessitating additional measurements to quantify the WSS at different positions 

in the vessel.  This means that when calculating WSS, the velocity flow profile will be 

assembled from a number of triggered acquisitions taken from the same time point in 

different cardiac cycles. While this may not be a problem for phantom measurements, it 

could potentially cause an increase in errors when measuring in vivo due to respiratory 

motion resulting in the position of the vessel shifting between acquisitions. The final 

limitation to be aware of for WSS measurements relates to the velocity resolution of the 

system. Due to the relatively slow-moving blood velocities close to the vessel wall, the 
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changes in velocity at the vessel wall as a result of the wall stiffness variation would be 

small. This means that the system used would ideally have a high level of resolution for 

low velocity variations. 

A possible alternative approach to reduce the effects of these limitations is to eschew 

measuring velocities close to the vessel wall and, instead, analyse velocities measured at 

the centre of the vessel lumen. An estimation of the WSS can still be calculated with these 

measurements and using an alternative approach.  

One potential alternative WSS assessment method was illustrated by Katritsis et al. [13] 

based on Poiseuille’s law. Starting with Poiseuille’s law for volumetric flow rate (Q): 

𝑄 =
𝜋𝑅4(𝑝1 − 𝑝2) 

8𝜇𝐿
  

(2.2) 

 

where R is the lumen radius, p1 and p2 are the pressure values at the beginning and end of 

a vessel segment of length L, and μ is the dynamic viscosity. Poiseuille defines WSS in 

this regime as: 

𝑊𝑆𝑆 =
𝑅(𝑝1 − 𝑝2)

2𝐿
 

 

(2.3) 

By combining these equations, an equation expressing WSS in terms of volumetric flow 

rate is achieved: 

𝑊𝑆𝑆 =
4𝜇𝑄

𝜋𝑅3
 

 

(2.4) 



36 
 

The volumetric flow rate can be taken as the product of the average flow velocity and the 

cross-sectional area of the vessel and, for fully developed and parabolic flow, the average 

velocity is equal to half the maximum velocity. 

This allows the computation of the WSS using the equation [13]: 

 

𝑊𝑆𝑆 =
2𝜇𝑉𝑚𝑎𝑥

𝑅
 

(2.5) 

 

Where: Vmax was the peak velocity recorded at the centre of the vessel. There are two key 

assumptions made with this assessment method:  that there is fully developed flow in 

rigid vessels, and that the liquid behaves as a Newtonian fluid. Depending on the 

circumstances of the measurement being made, there is the potential that neither of these 

assumptions are valid when performing measurements in vivo.  

Another potential method to determine the WSS without having to acquire measurements 

close to the vessel wall was proposed by Blake et al. [9]. This method starts from an 

equation proposed by Womersley [44] for the velocity profile, v(y,t), of a fluid in a long 

rigid pipe: 

𝑣(𝑦, 𝑡) = ∑ 𝑅𝑒

∞

𝑘=0

{𝑉𝑚𝑒𝑎𝑛,𝑘𝑒𝑗(𝑘𝜔𝑡−𝜑𝑘) [
𝐽0(𝜏𝑘 ) −  𝐽0(𝜏𝑘𝑦)

𝐽0(𝜏𝑘 ) −  2𝐽1(𝜏𝑘 )/𝜏𝑘

]} 
(2.6) 

 

Where y is the normalised radial component; t is time; k is a parameter describing flow 

conditions; Re{.} represents the real part of a complex function; Vmean,k are the Fourier 

components of the mean velocity; j is the imaginary number; ω is the angular frequency; 
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φ represents the phase of each harmonic; J0 and J1 are the zeroth and first order Bessel 

functions; and τk is given by: 

𝜏𝑘 = 𝑅√
𝑘𝜔

𝜎
𝑗3/2 

(2.7) 

 

Where R is the vessel radius, and σ is the kinematic viscosity of the fluid. 

The relationship between the Fourier components of the mean velocity can be related to 

the Fourier components of the peak (centre) velocity in the same terms: 

𝑉𝑚𝑒𝑎𝑛,𝑘𝑒−𝑗𝜑𝑘 = 𝑉𝑐𝑒𝑛𝑡𝑟𝑒,𝑘𝑒−𝑗𝜑𝑘 [
𝐽0(𝜏𝑘 ) −  2𝐽1(𝜏𝑘 )/𝜏𝑘

𝐽0(𝜏𝑘 ) − 1
] 

(2.8) 

  

Equation 2.8 can then be inserted into Equation 2.9 to yield an expression for the velocity 

profile in terms of the centreline velocity: 

𝑣(𝑦, 𝑡) = ∑ 𝑅𝑒

∞

𝑘=0

{𝑉𝑐𝑒𝑛𝑡𝑟𝑒,𝑘𝑒𝑗(𝑘𝜔𝑡−𝜑𝑘) [
𝐽0(𝜏𝑘) −  𝐽0(𝜏𝑘𝑦)

𝐽0(𝜏𝑘 ) −  1
]} 

(2.9) 

 

This expression of the velocity profile can then be used to calculate WSS as normal. As 

stated previously, this method relies on the assumption that the flow is laminar in rigid 

vessels and that the fluid is Newtonian. In principle, the Womersley conditions require 

steady flow; however, this is stated by the authors to be of negligible effect given that the 

frequency harmonics are separable. This means that the flow can be thought of as steady 

flow with a series of high frequency harmonics superimposed upon it. The authors tested 

this technique using a series of flow phantoms which were constructed such that 

distension was low, on the order of 1%, indicating that the Womersley conditions were 
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satisfied. This however, poses a challenge for the clinical situation and for methods such 

as in this study where the elasticity of the vessels is of diagnostic significance. While this 

technique has been used successfully in clinical situations to measure WSS [9,45], it has 

not lended itself to the quantification of the variation of WSS due to variation in vessel 

wall stiffness. 

A significant shortcoming associated with these parabolic and Womersley profile 

assumptions is that the blood velocity profile is often not axisymmetric and fully 

developed in vivo which is a requirement for these techniques. This limits their 

applicability to vessels which are particularly long and straight, although is it not 

necessarily true that characteristically long and straight vessels will exhibit fully 

developed flow [46]. A study carried out by Mynard et al. [47] found that measurement 

of WSS using parabolic and Womersley velocity profile assumptions could result in 

errors of 30 – 60%.  

2.2.4. Plane Wave Doppler Ultrasound Imaging 

Another method of utilising ultrasound for the purposes of examining blood flow is to 

use UltraFast ultrasound imaging. Bercoff outlined the key principles behind UltraFast 

ultrasound [48]. In essence, the improved processing capabilities were the result of 

increased demand for performance and graphical display in the video game industry 

which lead to the development of complex multi-core CPU architecture that is the basis 

of UltraFast ultrasound imaging. In 2009, the company SuperSonic Imagine (Aix-en-

Provence, France) released the first fully digital ultrasound scanner, the Aixplorer. The 

Aixplorer was unique in that it does not rely on an increased number of hardware 

processing channels and, instead, processes data entirely on its CPU and GPU. Due to the 

lack of integrated processing channels, the system is not limited by hardware and is 

capable of computing as many channels in parallel as is required, limited only by the 



39 
 

processing potential of the system. For conventional ultrasound systems, the time taken 

to build an image, Timage is given by the following: 

𝑻𝒊𝒎𝒂𝒈𝒆 =
𝑵𝒍𝒊𝒏𝒆𝒔 ∗ 𝟐 ∗ 𝒁

𝒄
 

(2.10) 

where: Z is the image depth, c is the speed of sound in tissue, and Nlines is the number of 

lines in the image. Traditionally, the only way to increase the framerate has been to utilise 

parallelisation schemes which process multiple image lines at once. Multi-line modes can 

intuitively also be used to increase the number of lines computed in an image without 

decreasing the framerate. The advantage of the Aixplorer digital architecture is its ability 

to process all lines in an image simultaneously, therefore, by utilising a plane ultrasound 

wave, UltraFast imaging need only be limited by the time of flight of the ultrasound pulse 

to and from the target depth. Bercoff goes on to suggest that due to the nature of the 

UltraFast regime, Doppler ultrasound can be completely re-envisioned. Instead of 

separate acquisitions of colour flow Doppler and quantitative spectral Doppler, 

quantitative Doppler data can be acquired for each pixel in a colour box in real time. 

In a study carried out by Couture et al. [49], the use of UltraFast ultrasound imaging was 

investigated, specifically with respect to its effects on microbubble contrast agents. In this 

study, the tendency of microbubble contrast agents to rupture under significant acoustic 

radiation pressure was exploited to perform dissolution imaging in a wall-less vessel 

phantom. Lipid shell contrast agents (Bracco Research, Plan-les-ouates, Switzerland) 

were diluted in degassed water, this solution was then made to flow through the phantom 

via a gravity pump. It was stated in this study that, due to the nature of UltraFast imaging, 

there was a trade-off between signal-to-noise ratio and framerate; however, SNR can be 

regained through the use of multiple plane waves emitted at different angles and 

recombining successive backscattered echoes coherently. The study successfully imaged 
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the dissolution of microbubbles using UltraFast acquisition, which would have been 

impossible to achieve using conventional ultrasound imaging. In addition, it was found 

that tracking the dissolution of the microbubbles helped to distinguish microbubbles near 

a wall. Couture et al. suggested that the high temporal resolution could be applied to future 

work, specifically regarding new contrast imaging modalities such as attachment of 

microbubbles to diseased cells. 

It is proposed herein that UltraFast imaging can be utilised in the assessment of WSS to 

overcome one of its key measurement limitations. Namely, the requirement for sufficient 

temporal resolution to evaluate the WSS at a single point in the cardiac cycle. Methods 

have been proposed in the literature to circumvent this problem using estimations based 

on fluid dynamics [9,13], however, this work aims to show that such estimations may not 

be necessary as the UltraFast imaging regime can evaluate the velocity at every point in 

the field of view simultaneously. 

The subject of the minimum imaging capabilities of a particular technique to be 

considered adequate for measurement of WSS is somewhat vague. This section has 

discussed the importance of three particular parameters of note, namely, the spatial 

resolution, the temporal resolution, and the signal-to-noise ratio. The distinction between 

one imaging technique which is considered adequate and another which is not is 

somewhat arbitrary, however for the purposes of this work, the minimum requirements 

were defined thusly:  

 The spatial resolution should be sufficient to allow for a minimum of 6 

velocity values to be recorded in one vessel radius, or 12 measurements 

across the entire vessel diameter. As the expected velocity flow profile 

for fully developed flow is a parabola, which in ideal circumstances can 
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be fully described mathematically with data 3 points, 6 data points being 

twice the mathematical minimum was selected as a somewhat arbitrary 

real-world minimum. This value would allow for two measurements of 

WSS to be calculated, one from each side of the vessel, at each 

longitudinal vessel position while accounting for errors in velocity. For 

the renal artery, with a radius of ~3.6mm this would imply a minimum 

spatial resolution of ~0.6 mm 

 The minimum value of temporal resolution should be such that the 

velocity of an entire region of interest (i.e. the entire vessel in the field of 

view) can be quantified at sufficient speed that the systolic velocity can 

be extracted without influence of the lower diastolic velocity which would 

result in a lower average velocity. It has been assumed previously that 

under a time period of 10 ms or shorter, arterial waveforms can be 

considered to be approximately constant [50]. 

 The minimum signal-to-noise ratio required for a WSS measurement is 

particularly difficult to quantify as it may be patient dependent (depth of 

vessel, overlying fat layers, etc.) therefore it was proposed that the ideal 

assessment technique should have a well-established contrast agent 

enhancement method. This would allow for fine control of SNR on a 

patient-by-patient basis.   
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Table 2.1: The current techniques available for the assessment of WSS with advantages 

and disadvantages of each. 

Technique Advantages Disadvantages 

Phase 

contrast 

MRI 

Superior anatomical detail 

Fully 3D flow imaging 

Prohibitively long scan times 

Limited assessment capability close to 

vessel wall 

High cost 

Particle 

image 

velocimetry 

High precision of flow 

localisation 

Sub-millimetre scale assessment 

of WSS  

Extremely limited penetration depth 

Cannot be utilised in abdomen or in large 

vessels 

Doppler 

ultrasound 

High spatial resolution 

Inexpensive 

Widely accessible 

Limited temporal resolution 

Weak Doppler signal from blood 

Limited velocity resolution 

Plane wave 

Doppler 

ultrasound 

Superior temporal resolution 

Full velocity quantification in 

field of view simultaneously 

Weak Doppler signal from blood 

Limited velocity resolution 
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Table 2.2: The current techniques available for the assessment of WSS with the 

minimum requirements for WSS assessment   

Technique Spatial 

resolution 

Temporal 

resolution  

SNR Scan time 

Phase 

contrast 

MRI 

1 – 1.2 mm 

> 0.6 mm 

25 – 30 s 

> 10 ms 

Can be varied 

by contrast 

agent 

25 – 30 s 

Reasonable for 

patient 

Particle 

image 

velocimetry 

~ 0.1 – 10 μm 

<< 0.6 mm 

~ 1 ms 

< 10 ms 

Cannot be 

varied by 

contrast agent 

450 ms 

Reasonable for 

patient 

Doppler 

ultrasound 

0.5 mm 

< 0.6 mm 

~ 1 ms 

< 10 ms 

Can be varied 

by contrast 

agent 

~ 1 hour 

Not reasonable 

for patient 

Plane wave 

Doppler 

ultrasound 

0.1 mm 

< 0.6 mm 

~ 0.2 ms 

< 10 ms 

Can be varied 

by contrast 

agent 

1 – 2 s 

Reasonable 

for patient 

 

A summary of the discussed techniques in this section as well as their respective 

advantages and disadvantages is included in Table 2.1. It can be seen from this Table that, 

while all techniques provide a good level of accuracy in WSS measurements, PC-MRI 

and PIV have limited usefulness in clinical diagnostics due to limited temporal and spatial 

resolution (PC-MRI) and extremely limited penetration depth (PIV). Doppler ultrasound 

presents a number of disadvantages, one of which can be overcome by utilising plane 

wave acquisitions, namely the limited temporal resolution. It is clear therefore, that the 
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plane wave Doppler ultrasound assessment technique is potentially the most useful 

provided the velocity resolution and SNR can be improved. 

2.3. Use of Test-bed phantoms for validation of new 

imaging techniques 

To validate the efficacy of new Doppler ultrasound analysis techniques, it was necessary 

to develop a robust phantom test bed; this allowed for novel techniques to be tested in a 

reliably consistent test environment designed to be anatomically realistic without the full 

complexities inherent with imaging in vivo. Flow phantoms have been used in ultrasound 

quality assurance and as performance testing tools since the late 1980s and reviews of 

their usage and the materials used to substitute tissue are common [51,52]. The operating 

principle of these phantoms is the imitation of acoustic and mechanical tissue 

characteristics by varying the backscatter and attenuation values of the phantom, arguably 

the most important acoustic parameters for these phantoms to replicate are: acoustic 

velocity; attenuation coefficient; scattering coefficient; and non-linearity parameter. For 

phantoms utilised by elastography, mechanical properties such as Young’s modulus are 

also important.  

To date, many phantom designs have been used for assessment of Doppler ultrasound 

techniques. Law et al. [51] conducted a comprehensive review of early flow phantom 

designs featuring internal tubing composed of materials such as glass, quartz, Teflon, and 

a number of polymers. These materials have varying success at mimicking the acoustic 

behaviour of tissue in vivo as the materials can often cause unwanted distortion and 

attenuation of the ultrasound beam if not sufficiently acoustically analogous to human 

tissue. Consequently some researchers have attempted to reproduce realistic physical 

models of human vasculature through the use of excised vessels from human cadavers 
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[53,54]. It has been shown, however, that excised arteries are susceptible to acoustic and 

geometric changes if not correctly stored and maintained [55]. It is also difficult to 

characterise excised vessels to allow for a high standard of acoustic and geometric 

reproducibility across phantoms. Additionally, the use of excised human tissue requires 

strict adherence to legislation and consideration of biological safety hazards that are not 

a concern when using non-biological materials. It is therefore desirable in the production 

of flow phantoms to use materials which can be well characterised and reproduced 

consistently to a high degree of acoustic and mechanical precision. One such material is 

polyvinyl alcohol cryogel (PVA-c). 

King et al. [56] outlined a procedure for the development of a PVA-c based vessel 

mimicking material (VMM) which can be manipulated into a variety of complex vessel 

geometries and maintains long term stability. PVA-c has the advantage of an adjustable 

mechanical stiffness:  as the PVA-c is subjected to sequential freeze-thaw cycles, the 

material stiffness increases due to molecular cross-linking. The study aimed to test the 

effects of varying the number of freeze thaw cycles for several PVA-c samples of 

different production recipes. For each PVA-c type, 6 samples were produced each 

exposed to a different number of freeze thaw cycles (1-6). Overall it was found that the 

acoustic velocity of the material increased with increasing freeze thaw cycles, increasing 

from 1510 ± 5 m s-1 to 1562 ± 5 m s-1, an approximate acoustic velocity increase of 10 m 

s-1 per f/t cycle. The Young’s modulus was observed to increase with increasing freeze-

thaw cycles, although there was a levelling off after 5 freeze thaw cycles. It was suggested 

that this plateau was the result of the PVA-c reaching a saturation of molecular cross-

linking. Additionally, it was found that the silicon carbide particles had a significant 

sedimentation problem which could not be overcome, resulting in two distinct layers in 

the VMM sample containing SiC. It was because of this sedimentation problem that the 
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optimum VMM recommended did not contain silicon carbide and, instead, it was advised 

that VMM should be made using only PVA-c and an anti-bacterial agent. Based on the 

results for acoustic velocity of the samples, the author recommended using two freeze 

thaw cycles as the speed of sound (1538 m s-1) most closely resembled the speed of sound 

in tissue (1540 m s-1). 

Another study which examined the use of PVA-c as a tissue mimicking material was 

Cournane at al. which used PVA-c in order to reproduce the mechanical characteristics 

of tissue precisely [57]. In this study, PVA-c was used in addition to an anti-bacterial 

agent (benzalkonium chloride), aluminium oxide (Al2O3) acoustic scatterers (0.3µm) to 

provide the Doppler speckle and increase the acoustic attenuation coefficient, and 

glycerol (C3H8O3) to vary the acoustic velocity. The acoustic properties of the PVA-c 

samples were determined using a custom scanning acoustic macroscope system and 

mechanical properties were determined using a LR30KPlus system (Lloyd Instruments, 

UK). The study claimed that the results showed a successful application of low 

concentration PVA-c for mimicking a range of shear elastic modulus and acoustic 

velocity values of the liver. It was stated, however, that because PVA-c is considered to 

be approximately elastic and so doesn’t accurately mimic the shear loss modulus of the 

liver tissue which is considered to have highly lossy viscoelastic properties at a shear 

wave frequency of 50 Hz. Overall, the study concluded that PVA-c worked well as a 

tissue mimicking material (TMM) for representing liver tissue. 

When designing anatomically realistic flow phantoms, one key consideration to take into 

account is the state of disease in the tissue. Of particular interest for this work is the 

production of artificial plaques and stenoses in the vessel itself. Ramnarine et al. [58] 

conducted a study which investigated the use of shear wave elastography on vessel 

phantoms which simulated both soft hard and carotid plaque characteristics. In this study, 
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PVA-c was utilised as a vessel mimicking material to make three sample vessels which 

were submerged in a water-glycerol bath. The vessels produced were: a homogenous 

standard PVA-c vessel; a “hard” phantom which contained a piece of PVA-c within a 

stenosis which had previously undergone two freeze thaw cycles prior to the production 

of the rest of the vessel; and a “soft” phantom in which butter was enclosed in the stenosis. 

Blood mimicking fluid was pumped through these vessel using both steady and pulsatile 

flow conditions. The phantoms were then analysed using shear wave elastography with 

an Aixplorer ultrasound system with L15-4 probe (Supersonic Imagine). The authors 

conclude that the plaques used in this study represent true anatomical conditions which 

were useful in calibration and optimisation of the shear wave elastography settings 

without any time constraint.  

In another study focused on plaque characterisation, shear wave elastography was used 

to characterise hard and soft plaque inclusions in carotid artery phantoms [59]. The soft 

plaque inclusions for this study were created by first moulding a vessel around a bronze 

rod with a diameter of 6 mm and a 1.5 mm extension attached to create a cavity in the 

vessel wall. This PVA-c vessel was then subjected to two freeze thaw cycles. Following 

this, a small sample of the PVA-c solution was injected into the cavity before the entire 

vessel was exposed to an additional freeze thaw cycle. The hard plaque inclusions were 

produced by separately subjecting PVA-c samples to seven freeze thaw cycles before 

placing them in an acrylic mould which had PVA-c poured into it. The vessel was then 

subjected to a further three freeze thaw cycles. Two control vessels were made without 

any plaque inclusions, one for each mould used for the soft and hard plaque inclusion 

vessels. The vessels were then tested using shear wave elastography to attempt to measure 

quantitatively the plaque characteristics and compare the results to mechanical testing 

and, therefore, characterise the mechanical parameters of soft and hard plaques for shear 
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wave elastography. The results show that there was good agreement between the shear 

wave assessment and the mechanical testing, with a slight overestimation in the SWE 

measurements of shear moduli for both soft and hard plaques, and a slight 

underestimation in the SWE measurements of shear moduli in the vessel wall. The study 

concluded that the plaque utilised in the phantoms was a good mimic of the clinical 

setting, however, there were some limitations of the work. It was pointed out, for example, 

that the plaques used in this study were uniformly hard or soft, whereas real 

atherosclerotic plaques are inhomogeneous, consisting of calcified, fibrous, and necrotic 

regions. 

Chatelin et al. [60] introduced a method for producing a fibrous soft tissue analogue using 

PVA-c. The motivation for this study was the inability of phantoms to mimic soft tissue 

which is predominantly composed of fibres, such as muscles tendons, and cerebral 

tissues. The study uses PVA-c due to its highly controllable mechanical parameters; the 

goal of the study was to create an anisotropic PVA hydrogel. This was achieved by first 

subjecting the PVA-c to two freeze thaw cycles. Following this, the sample was subjected 

to a further three freeze thaw cycles while placed in a modified tensile test setup which 

stretched the material to 180% of its original length. This was done so as to promote 

polymer cross-linking in a preferred direction. A second PVA-c sample was prepared 

under the same conditions without being placed in the stretching apparatus to act as a 

control. The anisotropy was then characterised using shear wave elastography on an 

UltraFast Aixplorer system (Supersonic Imagine, Aix-en-Provence, France). It was 

determined that the PVA-c was incompressible for small strains, it was additionally 

assumed that the PVA-c would be linearly elastic, although this was not determined 

during the study. The overall results were a success, with the phantom accurately 

mimicking the desired mechanical anisotropy of biological fibrous tissues. The authors 
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suggest that this makes the phantom ideal for the study of anisotropy and development of 

new techniques based around it, such as new ultrasound probes designed for 

musculoskeletal and cardiac applications.  

 

2.3.1. Acoustic and mechanical properties of tissue mimics 

A full review of physical tissue properties was carried out previously by Duck [4]. 

Mechanical properties of arteries are more difficult to establish. The full elastic properties 

of a human artery vary significantly with respect to the layer of the vessel examined, 

however the layer which is of most concern to the development of atherosclerosis is the 

innermost arterial layer, the intima, which consists of the basal lamina and the endothelial 

cells. McKee et al. [61] showed that there are significant differences between measured 

Young’s modulus values of human arteries in the literature, sometimes spanning several 

orders of magnitude.  When measured using indentation techniques, such as the tip of an 

atomic force microscope, the values recorded for veins and arteries spanned the range of 

6.5 – 560 kPa. However, the same tissues were recorded in the range of 600 – 3500 kPa 

when using tensile mechanical measurements. It was readily concluded that these results 

implied that the elastic properties of tissue are not constant for all length scales and that 

care must be taken to ensure the correct measurement is recorded for the correct 

application. One possible cause of this discrepancy suggested by the author was trapped 

water in tissue which, due to its incompressibility, increased the Young’s modulus of the 

tissue. In the specific case regarding arteries, it is likely that a significant degree of bulk 

elastic properties from the adventitia were offsetting the relatively lower Young’s moduli 

of the media and the intima. This would indicate that a more accurate modulus value to 

aim for is the values of the inner layers exclusively rather than a modulus measurement 

from the entire vessel. Jacot et al. [62] made micro-indentation measurements of the 
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luminal side of an excised human saphenous vein, ~1 cm long, sliced open longitudinally. 

They recorded an elastic modulus of 8.2 ± 3.8 kPa. The measurement was independent of 

position and there was no significant difference detected for subsequent measurements of 

the same position. A similar measurement was made by Engler et al. [63] which showed 

that the Young’s modulus of the medial artery layer was approximately in the range 5 – 

8 kPa.  Another indentation experiment carried out by Lundkvist et al. [64] showed that 

the elastic modulus of the intimal wall of a healthy femoral artery was 34.3 kPa. More 

recently, Rezvani-Sharif et al. [65] have shown that a typical healthy artery will have a 

Young’s modulus of approximately 24.8 – 34.9 kPa from the internal elastic lamina. 

Similarly, the values for diseased and fibrous arterial tissue has been reported to range 

from 182 – 649 kPa [66]. A systematic review of elasticity values reported in the literature 

was carried out by Boesen et al. [67] They found that the Young’s modulus varied from 

39.7 – 83 kPa for healthy vessels, while diseased vessels were found to have values in the 

region 116 – 751 kPa. 

2.4. Summary 

Cardiovascular disease is among the leading causes of death in the world and is associated 

with a number of additional life threatening and life limited conditions. However, the 

methods used in the diagnosis of CVD are largely dependent on detecting the presence of 

arterial stenoses, which are associated with the later stages of the disease. When 

diagnosed, the treatment methods for CVD are largely surgical, which carry inherent risk 

to the patient. 

There exists, therefore, a clinical interest in the development and optimisation of a 

diagnostic screening technique which can be applied earlier in the disease stages to 

indicate a patients risk of further atherogenesis. 
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A potential clinical biomarker which could be used as part of this screening technique is 

wall shear stress, which is related to the blood velocity profile. By precisely measuring 

the velocity of the blood close to the vessel wall, an indicator of arterial health can be 

established which could provide early treatment options which would potentially be 

considerably safer for the patient.  

A number of methods of assessing WSS have been presented each with advantages and 

disadvantages; however, there remains a critical need for a widely available clinical 

technique which can provide an accurate WSS measurement with a high degree of 

precision.  
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Chapter 3: Ultrasound scanning system 

calibration 

3.1. Introduction 

This chapter outlines the calibration and characterisation of the Aixplorer ultrasound 

system (Supersonic Imagine, France) as well as experimentation to determine the 

reproducibility of certain aspects of the data acquisition. When undertaking testing of new 

diagnostic techniques, it was important to ensure that the system was responding 

appropriately and within expected tolerances. The properties of interest for the Aixplorer 

system were the acoustic characteristics of its pulses, the Doppler dynamic range, and the 

intrinsic spectral broadening. The pulse characteristics provided understanding of the 

effect of transmission settings on the pulse bandwidth, an important parameter because it 

determines the limits of integration of multifrequency Fourier analysis in Chapter 4. The 

Doppler dynamic range provides insight into the ability of the Aixplorer system to 

simultaneously display sonogram intensities, as very weak blood signals could be muted 

by adjacent strong velocity and tissue signals and situations in which the signal-to-noise 

ratio is too high for the system could result in the saturation of the Doppler spectrum. It 

was important to measure the intrinsic spectral broadening due to its effect on the 

overestimation of velocity in Doppler ultrasound and the inaccuracies this brings; using 

this data it would be possible to implement a correction factor to ensure that the recorded 

velocities were as accurate as possible. 

Additionally, the geometry of the flow phantoms necessitated the repositioning of the 

transducer multiple times to fully evaluate the blood flow profile at all points in the vessel 

so it was important to ensure that the repositioning of the transducer did not result in 

misalignments which would introduce inaccuracies to the results. 
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3.1.1. Transmission characteristics  

3.1.1.1. Tissue effects 
Ultrasound pulses are mechanical waves which interact with the media they pass through 

by imparting energy in the form of either absorption or reflecting the ultrasound wave. 

This property of ultrasound can be useful and is the basis for a number of diagnostic 

techniques such as measuring fluid viscosity [68], elastography [69], and remote 

palpitation of tissues [70]. This property is also associated with a number of bio-effects 

such as tissue heating, acoustic cavitation and non-linear signal reflection. 

In the absence of bone from the insonation field, the temperature rise in tissue is normally 

not pronounced and expressed in degrees Celsius by the thermal index (TI) of the scanner, 

intended to give a rough guide to the likely maximum temperature rise that might be 

produced after long exposure [71]. The temperature rise in the tissue is proportional to 

beam intensity and so will be greatest at the beam focus. In practice the rate of temperature 

rise at the focus of the beam will equal the rate of temperature loss to conduction to 

surrounding tissues and convection from surrounding blood when equilibrium is reached, 

after  approximately 30 seconds [3]. Over longer scanning times, heating in regions 

insonated by a wider cross-section of the beam will begin to heat up due to not being as 

efficiently cooled by conduction. This effect is compounded close to the transducer 

surface which itself will also begin to heat up over longer periods of insonation [3]. In 

principle, these thermal effects are small and likely not to be of concern for most patients. 

The one area in which the tissue heating may be significant is in routine pre-natal 

ultrasound scanning [72]. 

Aside from the indirect thermal effects of ultrasound beams, the other main effect on 

tissue is that of mechanical effects. A mechanical effect which can be of concern in patient 

imaging is cavitation, whereby the ultrasound waves interacts with gas bubbles in a liquid. 
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Cavitation is typically split into two categories, stables and inertial. In stable cavitation, 

the bubble expands and contracts in response to the pressure variation of the ultrasound 

pulse, resulting in a period “breathing” motion. This can lead to damage of cells which 

are in suspension and can act as cavitation nuclei such as erythrocytes, leucocytes, and 

platelets when the cell membranes rupture from the high shear forces that stable cavitation 

produces. Inertial cavitation, by contrast, is a more violent and potentially destructive 

interaction between ultrasound and suspended nuclei. Inertial cavitation is typically 

caused by large pressures associated with short, high intensity pulses. The strength of 

these pulses cause the suspended bubbles to undergo dramatic size variations and can 

collapse due to the inertia of the surrounding liquid. The potentially harmful effects of 

cavitation led to the development of the mechanical index (MI) which is defined as the 

ratio of the peak negative pressure of the pulse to the square root of the pulse transmission 

frequency. It is believed that for mechanical indices lower than 0.7, the physical 

conditions for inertial cavitation cannot develop [3,73].  Table 3.1 illustrates the 

recommended exposure times and index levels for obstetric and neonatal ultrasound, 

while Table 3.2 illustrates the recommended exposure times and index levels for non-

obstetric and non-neonatal ultrasound. 
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Table 3.1: BMUS recommended exposure limit index values for obstetric and neonatal 

ultrasound [8].  

Application Thermal index value Mechanical index value 

 0 – 0.7 0.7 – 3.0 >3.0 0 – 0.3 >0.3 >0.7 

Obstetrics up 

to 10 weeks 

Safe Time 

limited 

Not 

recommended 

Safe Safe Risk of 

cavitation 

Obstetrics 

more than 10 

weeks 

Safe Time 

limited 

Not 

recommended 

Safe Safe Risk of 

cavitation 

Neonatal – 

transcranial 

and spinal 

Safe Time 

limited 

Not 

recommended 

Safe Safe Risk of 

cavitation 

Neonatal – 

general and 

cardiac 

Safe Time 

limited 

Time limited Safe Time 

limited 

Risk of 

cavitation 

Foetal 

Doppler 

heart 

monitoring 

Safe Safe Safe Safe Safe Safe 
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Table 3.2: BMUS recommended exposure times and index values for non-obstetric and 

non-neonatal ultrasound [8].  

Application Thermal index value Mechanical index value 

 0 – 1.0 >1.0 0 – 0.3 >0.7 

General abdominal Safe Time limited Safe Risk of cavitation 

Peripheral vascular Safe Time limited Safe Risk of cavitation 

Unlisted applications Safe Time limited Safe Risk of cavitation 

Eye Safe Not 

recommended 

Safe Risk of cavitation 

Adult transcranial Safe Time limited Safe Risk of cavitation 

Peripheral pulse 

monitoring 

Safe Safe Safe Safe 

 

In principle, the thermal and mechanical indices allow for ultrasound operators to ensure 

that the transmitted pulses do not exceed dangerous levels. The current BMUS guidelines 

[8] state that for obstetric and neonatal imaging TIs between 0 – 0.7 are typically safe, 

TIs between 0.7 – 3.0 are safe for limited periods of time depending on certain factors 

and what tissue is being imaged, and scanning with TIs above 3.0 is not recommended. 

For non-obstetric and non-neonatal imaging, TIs between 0 – 1.0 for all imaging 

applications. TIs above 1.0 are safe for limited periods of time for most applications 

depending on the tissue being imaged with the exception of the eye, which should not be 

imaged with a TI greater than 1.0. The guidelines also state that mechanical indices < 0.7 

are typically safe outside of general and cardiac neonatal imaging, where indices > 0.3 

can result in lung or intestine damage [8]. 

Another consideration for pulse characteristics is the susceptibility of microbubble 

contrast agents to cavitation effects. As a large enough Doppler pulse pressure could 
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result in the rupture of contrast agents in the region of view and lead to a sudden increase 

in signal-to-noise ratio (SNR), which then falls off. In the case of the SonoVue contrast 

agent, this maximum pressure above which changes to bubble characteristics are observed 

is 150 kPa, and bubble destruction occurs at pressures exceeding 300 kPa [74]. This is an 

important consideration for application of contrast agents to Doppler measurements as 

the destruction of bubbles can be both a hindrance or deliberate to give momentary 

increases in SNR or to observe how inflowing blood perfuses tissue [74]. 

3.1.1.2. Pulse parameters 
The central transmission frequency and the frequency bandwidth can have a significant 

effect on imaging. High transmission frequencies are more strongly attenuated by the 

media they pass through, limiting their maximum penetration depth. The benefit of high 

transmission frequencies is an increase in axial resolution and an increase in velocity 

accuracy in Doppler [3]. This is not a trivial effect for Doppler diagnostics as in order to 

measure the blood flow for larger tumours the frequency must be lowered relative to small 

tumours resulting in higher blood velocities becoming aliased [75]. 

An important part of this work was to develop new spectral analysis methods for Doppler 

ultrasound that allow for greater velocity resolution and SNR over PW Doppler by 

reducing the spectral variance of the received Doppler echoes. It is worth noting that SNR 

is generally based on purely the parameters of the acquisition and cannot be improved 

using post-processing techniques. What this method set out to achieve was to capture 

additional signal information present in the returning pulse that is normally not utilised 

by traditional 1-dimensional Fourier techniques thus the SNR was “increased” over 

standard methods through improved analysis efficiency. The technique developed for this 

was the multifrequency UltraFast Doppler spectral analysis (MFUDSA) algorithm. The 

specifics of this algorithm are given in Chapter 4 but, briefly, the algorithm relied on the 
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extraction of additional spectral information from the full bandwidth of transmitted 

frequencies. The MFUDSA required the integration of the Doppler response in the 

frequency space with the transmitted frequency bandwidth acting as the limits of 

integration. It is well understood that the length of an ultrasound pulse is inversely 

proportional to the bandwidth of transmitted frequencies [76]. This is, more generally, a 

property of all waves and is due to the limitation of distance and frequency resolution 

whereby increasing the former, results in a decrease in the latter. This also means that for 

long pulses with small frequency bandwidths there is also a corresponding increase in 

axial and lateral resolution [3,77]. 

An additional motivation for analysing the pulse parameters of the incident ultrasound 

that would be used later in this work was the application of the so-called UltraFast 

Doppler ultrasound. This is a new diagnostic technique available on the Aixplorer system 

which was first outlined by Bercoff et al.  [78,79]. In principle, a single element transducer 

or a transducer making a flat acquisition would have a maximum frame rate determined 

by the speed of sound of the insonified material and the depth of interest: 

𝑃𝑅𝐹𝑑𝑒𝑝𝑡ℎ =  
𝑐

2𝑍
 (3.1) 

 

Where PRFmax is the maximum frame rate, c is the speed of sound, and Z is the depth. 

This is the maximum frame rate that can physically be achieved by any ultrasound system 

at the cost of significant spatial resolution. Typically, an ultrasound insonation is carried 

out in an element-wise process with each individual element firing and waiting to receive 

an echo, reducing the frame rate substantially but recovering the spatial resolution: 

𝑃𝑅𝐹 =  
𝑐

2𝑍

1

𝑁𝑙𝑖𝑛𝑒𝑠
 

(3.2) 
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Where Nlines is the number of transmitted lines from the transducer. In practice, various 

firing regimes can be applied to increase the effective frame rate by a factor of 2-4, 

however. This process is more complex for Doppler imaging. In colour Doppler, flow 

velocity estimation is carried out by insonating the medium with N pulses (known as the 

ensemble length) set to a fixed pulse repetition frequency (PRF). To avoid aliasing, this 

PRF cannot drop below twice the maximum Doppler frequency: 

𝑃𝑅𝐹𝑓𝑙𝑜𝑤  ≥ 2𝐹𝐷 (3.3) 

 

Where FD is the maximum Doppler frequency. This means that, for colour Doppler, the 

number of lines in an image that can be scanned is limited by the ratio of two PRFs, the 

PRFdepth which is determined by the depth of the vessel and the PRFflow which is 

determined by the maximum velocity of the blood. This means that the maximum number 

of lines that can be insonated before beginning again is the limited to: 

𝑁𝑙𝑖𝑛𝑒𝑠 =  
𝑃𝑅𝐹𝑑𝑒𝑝𝑡ℎ

𝑃𝑅𝐹𝑓𝑙𝑜𝑤
 

(3.4) 

 

In cases where the region of interest is composed of more lines than Nlines, the region must 

be subdivided into a number of segments, Nsegments. It follows that the total number of 

firings necessary to compute a colour Doppler image is: 

𝑁𝑓𝑖𝑟𝑖𝑛𝑔𝑠𝐶 = 𝑁𝑙𝑖𝑛𝑒𝑠  ∗  𝑁𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑠  ∗ 𝑁 (3.5) 
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In UltraFast imaging, the elements of the transducer do not need to be individually fired 

because the entire imaging region is insonated by a series of tilted plane waves at a 

number of angles which can be iteratively reconstructed to recover the spatial resolution. 

The maximum number of tilted plane waves that can be fired is the same as the number 

of lines which can be fired in a conventional scan: 

𝑁𝑎𝑛𝑔𝑙𝑒𝑠 =  
𝑃𝑅𝐹𝑑𝑒𝑝𝑡ℎ

𝑃𝑅𝐹𝑓𝑙𝑜𝑤
 

(3.6) 

 

Because the entire imaging region is insonated instantaneously, there is no need to 

subdivide the image into segments as with conventional imaging, meaning the total 

number of firings necessary to produce the image is given by: 

𝑁𝑓𝑖𝑟𝑖𝑛𝑔𝑠𝑈 = 𝑁𝑎𝑛𝑔𝑙𝑒𝑠  ∗ 𝑁 (3.7) 

 

The factor increase in frame rate associated with UltraFast Doppler is therefore equal to 

Nsegments. For typical colour flow imaging at high flow speeds, Nsegments ≈ 64. For lower 

flow speeds, this gain is less significant (Nsegments = 1 – 3) but there is still significant 

improvement over conventional colour flow imaging as each pixel is insonified many 

more times (a factor of Nangles increase) [79].  

Bercoff et al. [79] carried out a comprehensive analysis of the performance of UltraFast 

Doppler versus conventional colour Doppler and found that the UltraFast mode 

considerably outperformed the conventional mode with a reduction in acquisition time of 

up to a factor of 16 with  no loss in image quality. A secondary experiment was carried 

out where the ensemble length of the UltraFast mode was progressively lowered to 

increase temporal resolution and even at its lowest level, corresponding to a factor of 14 
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increase in temporal resolution, the UltraFast mode still maintained greater image 

fidelity. When examining low flow in small vessels, the UltraFast protocol exhibited a 

decrease in variance by a factor of 14 and greater flow sensitivity. 

3.1.2. Intrinsic Spectral Broadening  

All Doppler ultrasound measurements are subject to an inherent broadening of the 

received Doppler shift frequencies due to a number of physical effects inherent to 

ultrasound imaging. This effect, known as intrinsic spectral broadening (ISB), is caused 

predominantly by two effects, transit time broadening (TTB) and geometric spectral 

broadening (GSB). Early work in the 1970s and 1980s by Newhouse et al. [80–82] 

outlined the physical phenomena behind both factors of spectral broadening. TTB can be 

thought of as a single flow line crossing an incident focused ultrasound beam, a scatterer 

moving through the beam will have a finite transit time due to the finite beam width which 

leads to a broadening of the received echoes from this scatterer [81]. Conversely GSB is 

caused by the fact that two adjacent transducer elements will have slightly different 

insonation angles which results in each element recording a different Doppler frequency 

due to the angle dependence of the Doppler equation [3,80]. It has been observed that for 

beam angles of 60° velocity overestimation of up to 40% has been present [83].  

Newhouse et al provided a theoretical basis for the understanding of ISB in the literature 

and concluded that “[TTB and GSB] were proved to be one and the same effect” [82]. 

This conclusion was a consequence of the discovery that a similar property had been 

found in the related field of laser Doppler radar, known as “Doppler radar ambiguity” and 

“wave vector ambiguity”. Guidi et al. [84] provides a detailed breakdown of the history 

of the literature surrounding TTB and GSB and illustrates a framework for the 

understanding of TTB and GSB as separate phenomena rather than being equivalent. The 

authors states that the beam width of an ultrasound pulse at its focus is related to the ratio 

Commented [AM12]: Added based on kumars comment 



62 
 

of the aperture width and the focal length and as such the distance a scatterer needs to 

cross is directly dependent of the geometric properties of the transducer. Guidi et al. 

therefore concluded that the statement “TTB and GSB are equivalent” should be suffixed 

by the additional qualifier “at the transducer focus”.  

Comprehensive work has been carried out to characterise the degree of velocity 

overestimation for a number of parameters for various Doppler systems. Hoskins 

undertook a large scale test of the response of ISB to various factors [85]. Using a string 

phantom calibrated to have known velocities, 14 transducers across 7 systems were tested 

for a range of velocities, beam filament angles, and depths. The error in maximum 

velocity varied between -4% and +47%. Looking the parameters individually; it was 

founded that the velocity had no effect on ISB for a range of 50 – 250 cm s-1 and the depth 

similarly had no effect across 20 – 150 mm. The beam filament angle on the other hand 

had a dramatic effect with a significant increase in ISB as the angle varied from 40 – 70°. 

Despite the velocity and depth not having an effect on ISB, the system still recorded 

overestimated maximum velocities for the lowest beam filament angle of 20%, indicating 

that there is no critical angle below which there is not an error associated with the 

maximum velocity. 

Hoskins presented a method for correcting the maximum velocity of the Doppler 

spectrum by calibrating each transducer of a scanner using a string phantom of known 

velocity outputs [86]. A correction factor can be made by setting up a string phantom with 

the same acquisitions parameters that will be used for flow measurements (velocity, 

depth, beam angle, and aperture position) and determining the percentage of ISB and the 

percentage velocity error according to the equations: 
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𝐼𝑆𝐵(%) =  (
𝑉𝑚𝑎𝑥 − 𝑉𝑚𝑖𝑛

𝑉𝑚𝑎𝑥 + 𝑉𝑚𝑖𝑛
) ∗ 100 

(3.8) 

  

𝐸𝑟𝑟𝑜𝑟(%) =  ([
𝑉𝑚𝑎𝑥

𝑉𝑠𝑡𝑟𝑖𝑛𝑔

] − 1) ∗ 100 
(3.9) 

 

Where Vmax is the maximum velocity of the Doppler spectrum, Vmin is the minimum 

velocity of the Doppler spectrum, and Vstring is the true velocity of the string phantom. 

These values can be used to apply a correction factor to the Doppler spectrum and 

improve the accuracy of flow based analysis. 

Another option to reduce the influence of ISB was proposed by Osmanski et al [1]. This 

method relies on the fact that for a scatterer of a single velocity interrogated with an 

ultrasound beam of infinitesimal beam width, the Doppler spectrum would be a single 

line corresponding to the Doppler frequency shift of the scatterer velocity. The spectrum 

of Doppler frequencies recorded is due to a number of factors, ISB as previously 

discussed is one factor, but a spread of blood velocities within the range gate would also 

lead to a broadening of the Doppler spectrum. The correction factor method proposed by 

Hoskins attempts to quantify just the ISB by measuring the broadening for a string 

phantom which has only a single velocity. This then allows the ISB to be discounted and 

any remaining broadening in the spectrum is considered to be due to velocity variation. 

Osmanski et al. proposes instead that, when using UltraFast Doppler, it is possible to 

remove the ISB without previously determining the velocity correction factor with a 

string phantom. 
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Figure 3.1: Illustrative diagram of the method proposed by Osmanski et al. Adapted 

from Osmanksi et al. [1]. (a)-(c) three Doppler spectra are extracted from different 

longitudinal positions in a vessel. (d)-(f) the central frequency of each spectra is 

computed. (g) The central frequencies are combined to produce a unified spectra. 

 

This method relies on the UltraFast mode allowing the complete insonation of an imaging 

region simultaneously. This allows for multiple spectra to be selected at different 

longitudinal points in a vessel (but at the same radial position) which should represent the 

same collection of velocities but will have different central frequencies due to the 

variation in velocity present at that radial position. The central frequencies can then be 
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extracted and the remaining spectra discarded. The central frequencies are then combined 

to form a new spectra of which the broadening is only caused by velocity variation and 

no ISB remains. This methodology was tested using an agar based flow phantom and in 

vivo using data recorded from a healthy human carotid artery. The results of this analysis 

found that this cancellation method reduced the ISB by a factor of 7 ± 4 in vitro and 6.5 

± 3 in vivo compared to a theoretical prediction of 5.9 ± 0.2. The author states that the 

slight disagreement between the experimental results and the theoretical value is likely 

due to the assumption that the velocity spectrum is Gaussian in the theoretical model. 

3.1.3. Dynamic Range 

The dynamic range (DR) is a measurement of an ultrasound system’s ability to accurately 

represent the full range of echo intensities present in a received pulse [3]. It can be defined 

as the ratio of the largest echo amplitude which can be measured without causing 

saturation to the smallest echo amplitude that can be detected, a quantity which can be 

calculated using Equation 3.10.  

𝐷𝑅 = 10 log10 (
𝐼2

𝐼1
) 

(3.10) 

In order to accurately represent the detail of objects in the imaging region, the voltages 

recorded by the transducer for a received echo are converted into greyscale values based 

on the size of the voltage, i.e. the intensity of the backscatter. This can pose a problem 

due to the finite bit size devoted to displaying pixel intensities. In most display units the 

greyscale value of a pixel is assigned 8 bits or 256 possible values. This corresponds to a 

maximum difference between the darkest and brightest part of the screen of 

approximately 24 dB. Due to the differences in backscatter between interfaces, there can 

often be very large differences in voltages for different reflections, for example a tissue-

air or a tissue-liver interface would yield a large reflection whereas the signal from blood 
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would comparatively be quite weak. This means that for B-mode scanning, very large 

dynamic ranges are necessary in the transducer architecture to ensure that all the echoes 

can be recorded, often as high as 100 dB [3]. 

The effective dynamic range, when the information is displayed, is often different due to 

the limitations of the display capabilities, so the received voltages are typically passed 

through a compression procedure which uses a non-linear amplifier to boost the signals 

from weak echoes. This means the effective dynamic range is often much less than that 

of the transducer. Similar to B-mode, the Doppler spectrum must also be contained within 

the 24 dB limit of the display unit being used. This means that a flow system which has 

air in it or a large concentration of microbubble contrast agents can quickly become 

saturated and difficult to parse. 

Despite the importance of having a high dynamic range, particularly when utilising 

contrast agents which have a greater chance of saturating the Doppler spectrum, there has 

thus far been limited investigation in the literature into the effective dynamic range of 

Doppler systems or the measurement of this quantity. It is thus believed that the procedure 

presented in this work is an important step in quality assurance for ultrasound scanners 

and the neglection of its measurement represents a gap in the literature. This is despite 

the fact that dynamic range is listed as a parameter which should be prioritised by the 

American Institute for Ultrasound in Medicine (AIUM) and the Institute of Physical 

Sciences in Medicine (currently the Institute of Physics and Engineering in Medicine 

(IPEM)) [87]. 

One method through which the dynamic range can be evaluated is by analysing the effect 

of the Doppler spectrum of increasing the concentration of high-backscatter materials. 

One such material which is a common component in blood mimicking fluid (BMF) is 
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Orgasol®. Ramnarine et al. [2] demonstrated the relative backscatter of Orgasol® 

particles in BMF solutions with varying particle concentrations for a number of particle 

sizes as seen in Figure 3.2. Therefore, a series of BMF solutions could be manufactured 

with a varying concentration of Orgasol® particles and used to test the resolvable limits 

of an ultrasound systems dynamic range.  

 

 

Figure 3.2: The relative backscatter of BMF featuring varying concentrations of 

Orgasol® particles of different sizes. The solid line indicates the backscatter of blood – 

adapted from Ramnarine et al [2]. 
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3.2. Methodology 

3.2.1. Measurement of Aixplorer pulse characteristics 

This experiment was designed to measure the pulse bandwidth and pulse pressure for a 

range of different acquisition regimes. Both the bandwidth and the acoustic pressure of 

the pulse were measured using a needle hydrophone (SN1548, Precision Acoustics, UK) 

in conjunction with a pulse amplifier (PA10019, Precision Acoustics, UK). A hydrophone 

is a passive single element transducer which can precisely measure incident insonation. 

The apparatus for conducting this experiment is shown in Figure 3.3. 

 

Figure 3.3: The apparatus used for the measurement of the Aixplorer pulse 

characteristics. The hydrophone was placed in a container with an acoustically 

transparent window and submerged in deionised water. 

The hydrophone was connected to a mount on a vibration excluding track used for optics 

experiments and then placed in a specially constructed tank featuring an acoustically 

transparent window made of cellophane, positioned parallel to the optical track. The tank 

was filled with deionised water and the SuperLinear™ SL15-4 transducer (Supersonic 

Imagine, France) was clamped and coupled to the acoustically transparent window with 

a layer of ultrasound gel. Using the Aixplorer B-mode imaging as a guide, the hydrophone 
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was carefully manipulated to lie in the imaging plane of the transducer. It was then 

possible to precisely adjust the hydrophones axial position by moving it along the optical 

track; allowing the tip of the hydrophone to be placed exactly at the transducer focus. The 

apparatus was then left overnight to allow the tank water to degas. 

A programme was written in LabVIEW (National Instruments, USA) to control and 

record the hydrophone voltage measurements in response to the incident pulse. The 

programme was designed to initiate the measurement when it received an input trigger 

from the scanner, the hydrophone would then record the signal as an array of voltages 

which would be passed through an amplifier and saved as a .txt file by the LabVIEW 

programme. The amplifier was set by trial and error using the signal display in LabVIEW 

to maximise the signal without saturating it. The parameters for this experiment are given 

in Table 3.3, for each possible combination of parameters three pulses were recorded. 

Table 3.3: Transmission parameters for which pulses were recorded using the 

hydrophone   

Frequency (MHz) 5.0, 5.6, 6.4, 7.5, 9.5, 11.25 

Pulse length (transducer half cycles) 2, 4, 6, 8, 10, 12 

 

An example of the voltage with respect to time recorded by the hydrophone is shown in 

Figure 3.4. 
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Figure 3.4: An example pulse recorded by the hydrophone 

The recorded voltage data was analysed using a custom MATLAB (Mathworks, USA) 

programme. The first half of the programme calculated the frequency bandwidth by 

applying a Welch transform to the recorded signal. Once in frequency space, the 

programme could calculate the full width at half maximum (FWHM) of the central peak 

as a measurement of the frequency bandwidth.  

The second half of the programme was used to calculate the peak positive and negative 

pressures of the pulse. This was done by applying a conversion factor described in [88]. 

This conversion is shown in Equation 3.11. 

𝑃(𝑡) =  ℱ−1 {
ℱ(𝑉(𝑡))

𝑀𝐻(𝜔)
}  

(3.11) 

 

Where P was the pressure, V was the measured voltage, ℱ and  ℱ−1 were the Fourier and 

inverse Fourier transforms, respectively, and MH(ω) was the hydrophone frequency 

response. 
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The sensitivity of the hydrophone was only measured at integer frequencies, the model 

of this systems power function was determined in an earlier study [89],   and this profile 

was used with  the power function to interpolate the data points between these measured 

values. This was done by fitting the data in the calibration certificate (Figure 3.5) with a 

power function:  

  

M(ω) =
S(ω)

J
  

(3.12) 

where S(ω) is the transmit sensitivity, J is the reciprocity parameter, J = 2A/ρc, A is the 

area of the transducer, ρ is the medium density, and c is the speed of sound in the medium 

[89]. 

 

Figure 3.5: The frequency response profile of the hydrophone at integer values between 

1 and 20 MHz (Taken from the calibration certificate). 

The interpolated sensitivity function calculated and used for this analysis was: 
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𝑀𝐻 (𝜔)  =  5𝑥10−5𝜔4 −  0.0024𝜔3 +  0.037𝜔2 −  0.2287𝜔 +  0.8561   (3.13) 

where MH(ω) was the sensitivity of the hydrophone (V/MPa) and ω was the frequency 

(MHz) [89]. 

3.2.2. Intrinsic Spectral Broadening 

Quantification of the intrinsic spectral broadening (ISB) was carried out using a Doppler 

string phantom (model 043, CIRS, USA) pictured in Figure 3.6. The phantom consisted 

of a 20.71 L tank with an acoustically reflective string mounted on a 50 W motor with a 

velocity accuracy stated in the data sheet of ± 1% of stated speed. This phantom could be 

run at constant voltage to provide a constant velocity, a number of periodic test 

waveforms, or a number for pre-programmed physiological waveforms. The phantom 

tank was filled with deionised water and left to degas for 24 hours. The phantom was 

equipped with a corrective setting for use when imaging in water so the speed of sound 

did not need to be altered to minimise errors. The SuperLinear™ SL15-4 transducer 

(Supersonic Imagine, France) was placed in the tank at a known depth and at a 60° beam 

filament angle and clamped to ensure it could not move during testing. For each depth to 

be analysed, the phantom was set to a range of velocities and 5 measurements of the 

maximum and minimum velocities of the Doppler spectrum were recorded for each 

velocity setting. The full range of depths and velocities examined are given in Table 3.4. 

Table 3.4: String Doppler phantom parameters for ISB measurements   

Velocity (cm s-1) 10, 20, 30, 40, 50, 100, 150 

Depth (cm) 1, 2, 3, 4 
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Figure 3.6: A CIRS string phantom consisting of a linear motor and a string with a 

strong acoustic response 

In addition to quantifying the ISB, the ISB cancellation method proposed by Osmanski et 

al [1] was also investigated. The ISB cancellation method relies on discarding all but the 

peak velocity information for a single position in a blood vessel and averaging the peak 

velocities across a range of longitudinal positions in the vessel. As such, the method was 

more easily investigated using a flow phantom instead of a string phantom.  

 To facilitate this investigation a simple walled flow phantom connected to a magnetically 

driven Micropump shoe suction pump head (Michael Smith Engineering Ltd., UK), 

coupled to a DC servo motor (McLennan Servo Supplies Ltd., UK). The servo motor was 

driven by a servo amplifier (Aerotech Ltd., UK), receiving an analogue voltage input 

from a digital-to-analogue conversion (DAC) board. Using a computer, digital voltages 

were output to the DAC board from a programme developed in LabVIEW (National 

Instruments, USA) to have a constant flow velocity of 30 cm s-1. The ultrasound 
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transducer was coupled to the phantom at a 60° beam vessel angle. 5 UltraFast 

insonations were carried out in the Aixplorer scanner research mode to allow for the in-

phase quadrature data to be directly exported via USB. These data were analysed using 

custom code written in MATLAB (Mathworks, USA) to apply the method described by 

Osmanski et al. 5 longitudinal vessel positions were selected and gated to be at the 

equivalent radial positions to one another. The central frequencies from the corresponding 

Doppler spectra were then extracted and combined to produce a new spectrum. 

3.2.3. Dynamic Range 

In this experiment, the Doppler dynamic range (DDR) of the Aixplorer system was 

determined by varying the backscatter intensity of a range of blood mimicking fluids 

(BMFs) which were imaged using spectral Doppler in an ultrasound flow phantom. The 

phantom was an anatomically realistic walled renal artery flow phantom and the BMF 

used was an Orgasol® based solution, both were produced using the same methodology 

outlined in Chapter 4. The Orgasol® particles used were 5µm in size to match the 

diameter of red blood cells, the Orgasol® concentrations tested were 0%, 2%, 3%, 7.5%, 

and 10%. 

The flow phantom was connected to the pump system as in the previous section. The 

pump system was connected to a reservoir containing the specific concentration of BMF, 

for each data point and formed a semi-enclosed pumping circuit. When changing BMF 

reservoirs, the pumping system was connected to a reservoir of deionised water as an 

intermediary to ensure the flow phantom was completely flushed of the previous BMF.  

This experiment was carried out on the SuperLinear™ SL15-4 linear transducer, aligned 

at 60° to the vessel. The phantom was set up so that the vessel was at a depth of 7 cm 

from the transducer. For each concentration of BMF, images of the Doppler spectrum 
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were acquired at three different gain settings; 10%, 20%, and 30%. For each of these 

settings, 10 images were acquired, yielding 150 Doppler spectrum images. 

When the data for this experiment were acquired, it was analysed using the FIJI 

distribution of ImageJ (Wayne Rasband, Public Domain - https://fiji.sc/). First the images 

were converted from DICOM format to PNG format. This allowed for more rapid batch 

processing of the data. For each concentration and gain setting a macro was set up to 

select a rectangular region of interest around the Doppler spectrum, avoiding any 

elements of the UI. The macro then calculated the integrated pixel intensity of the region 

of interest and saved the results to a text file. 

This data was then loaded into MATLAB (Mathworks, USA) where a graph of integrated 

pixel intensity with respect to Orgasol® concentration could be generated. The Doppler 

dynamic range could then be calculated using the linear portion of this graph with 

Equation 3.10.  

3.2.4. Transducer placement 

Due to the curved geometry of the vessels produced for this study and described in detail 

in Chapter 4, acquiring a full velocity map of the entire vessel was not possible in a single 

insonation as parts of the vessel lay out of the plane of the ultrasound beam in any one 

transducer alignment. This meant that it was necessary to re-position the transducer to 

acquire separate velocity maps for the pre- and post-curvature regions of the vessel. This 

created a potential source of error due to misalignment of the transducer during 

repositioning which may have resulted in an incorrect velocity map due to a mismatch in 

insonation angle, or due to the beam subtending the incorrect plane of the vessel, i.e. not 

passing through the centre of the vessel. 

https://fiji.sc/
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The best approach for reducing this potential source of error was to use a rigorous 

procedure to ensure that the transducer was in as good an alignment as possible. Table 

3.5 outlines a checklist of items which were optimised when positioning the transducer. 

The positioning was carried out in B-mode before switching to Doppler or research 

modes. Each parameter was optimised in sequence multiple times in increasingly finer 

detail until no further improvements could be made. 

In order to test the reproducibility of this method a test of the values acquired using this 

method was carried out. A flow phantom featuring a curve was connected to the flow 

system with a steady flow of 30 cm s-1. The transducer was positioned above the linear 

region of the vessel and its alignment was optimised based on the parameters in Table 

3.5. A Doppler sonogram was generated for the centre of the vessel, the range gate size 

was 1.0 mm. 10 measurements of the peak velocity were recorded and the transducer was 

completely removed from the phantom. This process was repeated a total of 5 times in 

which 5 identical acquisitions were made for the curvature region of the vessel. The 

assumption that was made was that only the peak (centreline) velocity needed be taken 

for this evaluation as, if there was a transducer misalignment, the peak velocity would be 

always be reduced which made it a reliable metric for the accuracy of the alignment. 
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Table 3.5: Optimisation parameters for verifying the transducer alignment 

Transducer angle Ensure the transducer is vertical along its intermediate axis, 

apply a 60° insonation angle along the minor axis as normal 

Transducer transverse 

position 

The transducer should be moved back and forward 

perpendicular to the vessel until the vessel diameter at the 

image focus is greatest 

Major axis angle  The transducer should be rotated clockwise and anticlockwise 

in its major axis until both sides of the vessel have similar 

brightness and diameters 

 

These data were analysed using an analysis of variation (ANOVA) statistical test in 

MATLAB (Mathworks, USA) to determine if the populations of velocities were the same 

for each imaging region. The null hypothesis of this test was that the populations of 

velocities were identical. The alternative hypothesis was that the velocities varied 

between individual transducer alignments, indicating that repositioning the transducer 

was introducing errors to the velocity estimation. 

3.3. Results 

3.3.1. Measurement of Aixplorer pulse characteristics 

A representative example of the frequency space spectra is presented in Figure 3.7 for the 

5.6 MHz transmission frequency. For each spectrum, there was a main peak centred at 

the central transmission frequency of 5.6 MHz and, in some cases, additional peaks at 

11.2 MHz and 16.8 MHz which corresponded to the first and second harmonics of the 

pulse, respectively. For each measurement, the peak frequency and bandwidth (taken as 
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the frequency with the largest amplitude and the full width half maximum of the main 

peak) were determined. 

 

Figure 3.7: Representative spectra for central transmission frequency of 5.6 MHz for 

a range of transducer half cycle settings 

The parameter which was of greatest concern for use in the multifrequency UltraFast 

Doppler spectral analysis (MFUDSA) algorithm was the pulse bandwidth. This was taken 

to be the FWHM and this parameter is presented graphically in Figure 3.8. The 

hydrophone data was also used to determine the peak positive and peak negative pressures 

of the pulses; this data is presented in Figure 3.9. 
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Figure 3.8: Bandwidth (FWHM) with respect to transmission frequency for varying 

pulse length settings  
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Figure 3.9: Peak positive and peak negative pressures as a function of transducer half 

cycles for a number of transmission frequencies. 

The measurements of pulse bandwidth were used to compare the performance of the 2D 

Fourier analysis to the 1D Fourier analysis. Two ratios were calculated; the first, RSNR 

was defined as the ratio of the 2D SNR to the 1D SNR. This ratio was plot with respect 

to pulse length in Figure 3.10; where it can be seen that this value was maximised for the 

lowest possible half cycle settings and appeared to trend downward with increasing half 

cycles. The second ratio, RFWHM, was an examination of the velocity resolution (taken as 

the full width half maximum of the resulting Doppler spectrum for each technique) and 

was the ratio of the 1D FWHM to the 2D FWHM. This value is presented in Figure 3.11, 

it can be seen that it was maximised at 2 transducer half cycles. The error bars in Figure 
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3.10 and Figure 3.11 are representative of one standard deviation for each transducer half 

cycle setting. 

 

Figure 3.10: Variation of the ratio of 2D SNR to 1D SNR with respect to pulse length. 

The error bars correspond to one standard deviation. 
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Figure 3.11: Variation of the ratio of 1D velocity resolution (FWHM) to 2D velocity 

resolution with respect to pulse length. The error bars correspond to one standard 

deviation. 

3.3.2. Intrinsic Spectral Broadening 

The intrinsic spectral broadening (ISB) measurements were analysed using MATLAB 

and a number of graphs were produced. An example of the variation of ISB with respect 

to velocity is given in Figure 3.12. The ISB follows a power law with respect to velocity 

with R2 = 0.97 – 0.99 for each depth tested. The percentage ISB varied approximately in 

the range 4 – 10%. The variation of ISB with respect to depth was also investigated and 

a graph of the ISB with respect to depth is included in Figure 3.13.  

To combine the ISB variance with respect to velocity and with respect to depth, a surface 

was fitted to the 3D data of ISB with respect to both velocity and depth. The surface is 

shown in Figure 3.14. This surface is defined by the following equation with an R2 = 0.96: 
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𝑓(𝑉, 𝑑) = 447.4𝑉−1.86 + 0.4203𝑑 + 1.754 (3.14) 

Where V was velocity in cm s-1 and d was depth in cm. This equation differed only slightly 

from the power law expressions which were calculated for the ISB with respect to velocity 

alone due to the ISB only having a very slight linear dependence on depth. In the curve 

the ISB varied approximately in the range of 2 – 10%. The advantage to utilising a surface 

fit like Equation 3.14 is that it can be easily coded into automated velocity estimators to 

simultaneously shift calculated velocities based on their magnitude while also using the 

vertical pixel index of the field of view combined with the resolution of the scanner to 

determine the depth of the velocity measurement and apply an additional correction. 

In addition to quantifying the ISB for the SL15-4 transducer, the method proposed by 

Osmanski et al. [1] was tested to determine the feasibility of ISB cancellation for the same 

transducer. When the cancellation procedure was applied, the ISB measured for the flow 

phantom at a pump velocity of 30 cm s-1 was 0.46% which was a reduction of a factor of 

6.5 ± 0.3.  
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Figure 3.12: ISB with respect to velocity for a depth of 4 cm 
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Figure 3.13: ISB with respect to depth for a number of velocities 

 

Figure 3.14: Interpolated surface for ISB with respect to velocity and depth 



86 
 

3.3.3. Dynamic Range 

As the Orgasol® concentration increased in this experiment, the Doppler spectrum 

became increasingly illuminated to the point of saturation at the highest concentrations. 

The integrated pixel intensity values for each BMF concentration are illustrated in Figure 

3.15. Using the linear region of this surface, the effective Doppler dynamic range was 

calculated as 16.7 ± 0.28 dB. The effect of varying the system gain was minimal as the 

ratios for each curve were largely unchanged with respect to gain setting. 

 

Figure 3.15: Integrated pixel intensity values with respect to BMFs of varying 

Orgasol® concentrations 

3.3.4. Transducer Placement 

The peak velocities recorded for a number of transducer positionings for the linear and 

curvature regions are presented in Figure 3.16 and Figure 3.17. For each region, an 

ANOVA test was carried out for the velocity populations to determine if there was a 

significant difference between the repositionings of the transducer. The results of this test 
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were p = 0.9789 and p = 0.3224 for the linear and curvature region, respectively. In both 

cases, the null hypothesis was accepted and the velocity populations were taken to be 

identical. 

 

Figure 3.16: Box plot of the peak velocities recorded in the linear region of the vessel. 

The red lines represent the median velocity for each population, the notch represents 

the 60% confidence interval. The whiskers represent the 95% confidence interval. 
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Figure 3.17: Box plot of the peak velocities recorded in the curvature region of the 

vessel. The red lines represent the median velocity for each population, the notch 

represents the 60% confidence interval. The whiskers represent the 95% confidence 

interval. 

3.4. Discussion 

3.4.1. Measurement of Aixplorer pulse characteristics 

From the investigation into the pulse characteristics, it was found that the pulse bandwidth 

had a strong dependence on pulse length and frequency while the pulse pressure presented 

little variation with the same parameters. The relationship between pulse length and pulse 

bandwidth is a well-known corollary of the Heisenberg Uncertainty Principle which is 

true for all waves [90], this can be more easily understood by conflating the pulse length 

with time uncertainty and the frequency bandwidth with energy uncertainty. Similarly, 

the observed increased bandwidth with higher transmission frequencies was an effect of 
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the Heisenberg Uncertainty Principle, this could be seen by recalling the pulse length is 

measured in half cycles or one half of a wavelength; therefore for two pulses of different 

half cycle settings, the pulse with the higher transmission frequency would represent a 

shorter time interval due to its half cycles transmitting more rapidly. This effect results in 

shorter pulse lengths for higher frequency pulses of constant half cycles. With a view to 

maximising the effectiveness of the multifrequency Doppler, data were acquired to 

provide a comparison between 2D and 1D Fourier analysis of flow data. The results of 

this showed that, when using 2D Fourier analysis the SNR improved by a factor of 4 – 8 

and the velocity resolution improved by a factor of 1.10 – 1.35. The SNR improvements 

were concentrated where the pulse length was shorter, with the shortest pulse setting (2 

half cycles) showing the largest improvement for all velocities measured. The velocity 

resolution, however, showed the largest improvement for the second shortest pulse length. 

This is likely due to the increased interrogation of velocity information with respect to 

pulse length that is seen in PW Doppler [5]. This indicated that the best pulse length 

setting for use with 2D Fourier analysis was 4 half cycles as it maximised the gain in 

velocity resolution while the gain in SNR remained high. 

The transmission frequency was also an important parameter for the 2D analysis. While 

the hydrophone results would suggest that a higher transmission frequency would be ideal 

due to the fact that it provides additional pulse bandwidth for the 2D analysis; in practice 

this was not an ideal insonation condition as it is well understood that ultrasound 

attenuation increases proportionally to transmission frequency, leading to a lower SNR 

overall. An additional, reason for the use of a lower transmission frequency was found in 

the literature relating to the frequency-based attenuation of the ultrasound pulse intensity. 

Evans & McDicken [5] have reviewed several models presented for the effect of 

frequency-dependent ultrasound attenuation and scattering. The researchers stated that 
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the relative shift in the central frequency of an ultrasonic pulse was proportional to the 

error in velocity estimation of pulsed wave Doppler systems. It was therefore important 

to quantify this effect. The shift in central frequency was modelled for scattering and 

attenuation according to the following equations: 

%∆𝑓𝑐(𝑆𝐶𝐴𝑇) ≈  [{1 +
1

𝑁2

1

ln (2)
}

1/2

− 1] 
(3.15) 

 

%∆𝑓𝑐(𝐴𝑇𝑇𝐸𝑁) ≈  
4.14𝛼0𝑍𝑓𝑐

𝑁2
 

(3.16) 

Where %Δfc(SCAT) is the percentage increase in transmission frequency due to Rayleigh 

scattering from blood, %Δfc(ATTEN) is the percentage change in transmission frequency due 

to frequency-dependent attenuation, N is the number of pulse cycles, α0 is the attenuation 

coefficient (measured in dB cm-1 MHz-1), Z is the depth (in cm), and fc is the central 

transmission frequency (in MHz). Evans & McDicken combined these two models and 

presented a graph of the combination which is reproduced here in Figure 3.18. In Figure 

3.18 the percentage change in central frequency is examined with respect to the number 

of half cycles for a number of values of K = α0Zfc, or the product of the attenuation 

coefficient, the depth, and the central transmission frequency. For low values of K, 

Rayleigh scattering dominated and the received central frequency was increased at low 

numbers of pulse cycles, and for high values of K, attenuation dominates, leading to a 

decrease in the received central frequency. As established previously, the best pulse 

length setting for the multifrequency system was at 4 half cycles or 8 pulse cycles using 

the same convention as Evans & McDicken. It can be seen in Figure 3.18 that for 8 pulse 

cycles, the effect of scattering is negligible and higher K values had a greater effect on 

the central frequency shift and, therefore, the accuracy of the velocity estimation. Of the 
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values affecting K, attenuation coefficient and depth could not be changed in vivo, 

therefore lowering the value of K by utilising a lower transmission frequency was selected 

as the best option to limit any errors in velocity estimation. 

 

Figure 3.18: Percentage change in central transmission frequency of an ultrasonic 

pulse due to scattering and attenuation with respect to number of pulse cycles for 

varying values of K (the product of attenuation coefficient, range, and pulse central 

frequency) – adapted from Evans & McDicken [3]. 

The investigation into pulse characteristics also provided information on the acoustic 

pressure exerted by an UltraFast acquisition on the Aixplorer. The magnitude of the 

highest pressure recorded was 806.59 kPa, however it was important to note that the 

acoustic characteristics of the microbubble contrast agents are only stable up to certain 

pressures. In the case of the SonoVue contrast agent, this maximum pressure above which 

changes to bubble characteristics are observed is 150 kPa, and bubble destruction occurs 

at pressures exceeding 300 kPa [74]. This means that to avoid microbubble destruction, 
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when using UltraFast acquisitions, the acoustic power must be set to a minimum of -4.29 

dB and to avoid changes to bubble characteristics the acoustic power must be set to a 

minimum of -7.31 dB.  

 

3.4.2. Intrinsic Spectral Broadening 

The ISB was evaluated for a range of velocities and depths and was found to have a linear 

dependence with respect to depth and a power law dependence with respect to velocity. 

The relation between each of these parameters was fitted to a surface and the equation of 

that surface was given in Equation 3.14. In these measurements, the ISB of the Aixplorer 

system varied in the range 2 – 10%. This was a considerable improvement over previous 

studies where the ISB is typically in the range of 20 – 30% [85,91–93]. Some examples 

in the literature of considerably lower ISBs are available, such as the study carried out by 

Walker et al. [94] on three cardiac systems which reported one scanner with a consistent 

velocity overestimation of 5% and two scanners with velocities recorded within 

expectations. This suggests that the results for the Aixplorer or not atypical and may just 

be an indication of particularly good engineering and calibration. Looking at previous 

examinations of ISB with respect to velocity, it can be seen that there was not typically a 

reported dependence of ISB on velocity for velocities above 50 cm s-1 [85,91]. This is 

largely in line with what was observed in this work for higher velocities while the power 

law dependency was largely only detected for velocities <40 cm s-1. It is believed that the 

dramatic observed increase in ISB below this velocity threshold is not a product of the 

system itself but, instead, a product of the limited cursor velocity resolution at very low 

velocities leading to an overestimation. Furthermore, the highest values of ISB were 

recorded for the lowest velocities examined and represent velocity errors on the order of 

± 1 cm s-1 which is smaller than the measured velocity resolution for the Aixplorer system. 
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Previous studies into the effect of depth on ISB have concluded that it has no or a 

negligible effect on ISB [85,95] while the results of this work indicate a weak linear 

dependence on depth. When taking a cursory glance at these results, they seem very 

unintuitive. As ISB is a geometric effect, dependent on the difference in insonation angles 

between transducer elements, the logical consequence of increasing depth should be a 

linear reduction in ISB but this is not observed. A potential explanation for this effect was 

described by Hoskins et al. [96] where it was established that different manufacturers of 

ultrasound scanners have specified a wide variety of Doppler aperture sizes and that as 

depth increases, the Doppler aperture also increases. This would explain the observed 

trend of constant ISB with respect to depth and even the results of this study detecting a 

slight linear increase in ISB with respect to depth as the increasing aperture size would 

compensate for the geometric decrease in ISB that should be observed with depth. It 

stands to reason, therefore, that should the gate depth become large enough that the entire 

transducer array is utilised for the Doppler aperture, then increasing depth beyond that 

point would be correlated with a decrease in ISB, however, this threshold depth may be 

so deep as to cause aliasing in all but the slowest velocities meaning it is likely not of 

practical concern.  

One parameter that wasn’t investigated in this work that has a demonstrable effect on 

ISB was Doppler gain. Steinman et al. [95] showed that as Doppler gain was increased, 

there was a proportional increase in ISB, with the largest ISB associated with Doppler 

spectrum saturation. This would firstly indicate that Doppler gain should be minimised 

in quantitative studies to increase accuracy but, additionally, it would be worth 

considering in future studies utilising ultrasound contrast agents as the increase in SNR 

may come with the trade-off of decreased velocity accuracy. 
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A study which investigated in detail the effect of contrast agents on velocity accuracy 

was Browne et al. [97] which investigated specifically the peak velocity measurements 

and the ratio of the peak velocity in a stenotic region to the peak velocity in a pre-

stenotic region. This study showed that the application of contrast agents in Doppler 

ultrasound resulted in an increase in the measured peak velocity, thought to be due to 

the preferential attenuation of higher Doppler shift frequencies and representative of 

real velocities which heretofore had gone unrecorded. This study concluded that the 

application of contrast agents is, therefore, an essential step in acquiring the most 

accurate patient data. This conclusion, combined with that of Steinman et al. indicated 

that while contrast agents increase the value of ISB, they provide an increasingly 

important role in diagnosis, particularly when attenuation is high such as in obese 

patients. Therefore, there is a significant interest in the development of methods which 

can be used to minimise the ISB.  

The ISB cancellation method proposed by Osmanski et al. [1] was evaluated and it was 

found to reduce the ISB of the transducer by a factor of 6.5 ± 0.3. This is comparable to 

the results of Osmanski et al. which achieved ISB reductions of a factor of 7 ± 4 in vitro 

and 4.6 ± 0.9 in vivo. This result showed that for UltraFast acquisitions, the effect of ISB 

can be reduced to the point of being negligible [1]. This was an important result as it 

indicated a potential avenue for the free application of contrast agents without incurring 

negative effects on the velocity accuracy. Consequently, this technique was incorporated 

to the MFUDSA algorithm and used for all further velocity analysis when imaging in 

UltraFast mode. 

3.4.3. Dynamic Range 

The results of this study into the effective Doppler Dynamic range of the Aixplorer system 

were a DDR of 16.7 ± 0.28 dB. This represents approximately 2/3 of the possible pixel 
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intensities of a bit-depth of 8 that is present in most scanners. It has been stated that to 

allow for the simultaneous display of, for example, the liver tissue interface and blood in 

the same image, a dynamic range of 100 dB is required [3]. In principle, this is not 

achievable on an 8 bit intensity display but would in principle be achievable for a 16 bit 

display (65536 pixel intensity values). In order to capture the full range of echoes within 

the confines of an 8 bit display, most ultrasound scanners utilise compression algorithms 

in the form of non-linear amplifiers [3,5]. The results of this study indicate that for the 

Aixplorer system, under its current compression architecture, there is approximately 7 

bits or 128 pixel intensity values available for displaying continuous Doppler intensities. 

This result was important for the application of microbubble contrast agents as a relatively 

small concentration of microbubbles could result in complete saturation of the Doppler 

spectrum. 

3.4.4. Transducer Placement 

There was no significant difference between the velocities recorded for different 

transducer positionings for either the linear or curvature regions within the vessel. 

Although, with p = 0.3224, the results for the curvature region indicated a possible 

introduction of error. This is likely due to the relative short absolute length of this region, 

approximately 2 cm compared to the 5 cm of the linear region, which may have increased 

the difficulty of properly aligning the transducer. Another potential source of error for 

this was that, although care was taken to ensure the vessel was at the transducer focus, 

there may have been effects due to variation in the slice thickness that would increase 

errors in the velocity assessment due to the partial volume effect. Overall, these results 

were taken to mean that the contribution of repositioning the transducer had a negligible 

effect on the systemic errors for the flow experiments. 
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3.5. Conclusion 

The purpose of this chapter was to examine some key parameters for the calibration and 

optimisation of future experiments. The pulse characteristics were evaluated using a 

hydrophone to determine the ideal transmission settings to use in 2D Fourier analysis. It 

was found that the pulse bandwidth had an inverse relationship with pulse length and a 

positive dependence on transmission frequency. Further analysis into the effect of 

transmission parameters on SNR and velocity resolution indicated that the ideal pulse 

length was 4 half cycles to maximise the velocity resolution while maintaining a high 

SNR. While the ideal transmission frequency was as high enough to provide an increased 

pulse bandwidth but low enough that attenuation of the signal didn’t degrade the SNR. 

The transmission parameters used for all further experiments were a transmission 

frequency of 5.6 MHz with a pulse length of 4 half cycles. 

The intrinsic spectral broadening was measured for the transducer which was used for all 

the experiments in this work (SL15-4 linear) and a calibration surface was generated for 

the ISB with respect to depth and velocity. Using the equation of this surface, the code 

used for analysis could be modified to automatically apply a correction factor to the 

Doppler spectrum to shift velocities to their “true” value as measured from the string 

phantom. This correction factor was applied to all further non-research mode acquisitions 

in this work. The method proposed by Osmanski et al. to allow for cancellation of the ISB 

entirely when using UltraFast acquisitions was also evaluated and it was found to provide 

a 6.5 ± 0.3 factor reduction in ISB. This method was effectively capable of cancelling the 

ISB, however it could only be utilised for UltraFast acquisitions which took place in the 

Aixplorer research mode because it required the raw data for the analysis. This method 

was utilised on all further research mode UltraFast acquisitions in this work. 
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The effect of the transducer repositioning was evaluated and found to not have a 

significant bearing on the systemic errors in velocity. In all further flow experiments, the 

protocol outlined in this chapter for positioning the transducer was followed to prevent 

the introduction of uncertainties. 

This chapter has outlined the procedures undertaken to calibrate and characterise the 

systems used in this work to ensure that the data they provide is accurate, precise, and 

understood in the context of the capabilities and limitations of the hardware used. This is 

an important, albeit often overlooked, aspect of medical and scientific measurements 

which provides crucial understanding and traceability for the methodology used 

elsewhere in this work. The pulse characteristics of the Aixplorer SL15-4 transducer were 

of vital importance to the analysis undertaken in Chapter 4, which relied heavily on the 

bandwidth of the transmitted pulses in its calculations. The intrinsic spectral broadening 

was an important consideration for both the analysis in Chapter 4 and the experiments in 

Chapter 5 as it was fundamental to ensuring that the correct velocities were calculated by 

the post-processing algorithms as well as correcting for the velocities displayed by the 

scanner itself. The Doppler dynamic range of the Aixplorer system is an often unexplored 

quantity in the literature, and this work provided a clear understanding of exactly what 

the limits of the system are, this was important to ensure that the spectrum was always 

appropriately concentrated without saturation for the best possible velocity estimation. 

Finally, it was important to ensure that the repositioning of the transducer between 

acquisitions was carried out with as little disruption to the accuracy of the results as 

possible, and a protocol was established for all future acquisitions to enable this. 



98 
 

Chapter 4: Phantom Production 
The contents of this chapter have been accepted, in edited form, for publication in Physica 

Medica pending peer review. 

4.1. Introduction 

This chapter outlines a procedure for the manufacture of a renal artery flow phantom for 

use in Doppler ultrasound. Many phantom designs have been tested for use in Doppler 

flow experiments, as discussed previously, however these designs have not been able to 

create a simulation of the progression of atherosclerosis and, to date, there exists a need 

for a robust and reproducible design for a phantom testbed which can accurately display 

the progression of arterial disease. The motivation behind this work is to outline a protocol 

which can produce a series of geometrically identical walled flow phantoms which 

display varying levels of wall stiffness as an indication of early stage atherosclerosis. This 

phantom production procedure used a poly-vinyl alcohol (PVA) based vessel mimicking 

material (VMM) and used an agar-based tissue mimicking material (TMM) to surround 

the vessel, the materials were selected for production due to their highly tuneable acoustic 

properties to appropriately mimic the situation in vivo while also, in the case of PVA-c, 

having the property of variable Young’s modulus. 

PVA is a synthetic polymer made through the hydrolysis of polyvinyl acetate. PVA has 

been widely utilised as a component in the production of medical phantoms due to the 

fact that its mechanical properties can be precisely controlled through physical and 

chemical cross-linking processes. The most commonly used method to initiate cross-

linking is the application of sequential freeze-thaw cycles to aqueous PVA solutions 

[56,98–101].  When PVA is placed in an aqueous solution and exposed to freeze thaw 

cycles, a polymerisation takes place which results in an increase in material stiffness; the 

material formed by this procedure is a cryogel known as poly-vinyl alcohol cryogel 
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(PVA-c). PVA-c has been widely used as a tissue mimicking material (TMM) for 

ultrasound and MR imaging [100] and its strength and robustness allow for its use in flow 

phantoms as a vessel mimicking material (VMM) [98]. The physical properties of PVA-

c are largely determined by the initial degree of hydrolysis of the PVA, typically varying 

from 80% to greater than 99% hydrolysed [102]. In this work the formulation of PVA 

used was 99%, which allowed for a high degree of polymer crosslinking. 

There have been several studies into the mechanical properties of PVA-c  

[56,57,98,100,103]. Some examples from the literature are included in Table 4.1. It can 

be seen from this table that accurate mimicking of vessel mechanical characteristics has 

been shown to be possible with relatively low concentrations of PVA-c. It has been noted 

in the literature that one of the most important factors in the degree of cross-linking in 

PVA-c is the rate at which the thaw takes place during free-thaw cycles [57,100]. This 

would imply that sample volume is also an important factor which may affect the 

mechanical properties, since the thaw rate is dependent on parameters such as sample 

material, surface area and the involved heat transfer kinetics [57,100].  

Two standards for evaluating the mechanical properties of viscoelastic solids  are 

International Organisation for Standardisation (ISO) no. 7743 and no. 37. ISO 7743 [104] 

specifies that a cylindrical test sample of typical height 12.5 ± 5 mm and diameter 29 ± 

0.5 mm is subjected to 5 compression cycles, with a compression speed no greater than 

50 mm min-1 until a strain of 30% is reached. The Young’s modulus can then be calculated 

from the linear region of a stress strain curve generated using the 5 th compression cycle. 

ISO 37 [105] provides a procedure for tensile mechanical testing, where the test object 

used is dumbbell shaped with a testing region between the flanges of typical thickness 

3.0 ± 0.2 mm, length of 25 ± 0.5 cm, 20 ± 0.5 cm, or 10 ± 0.5 cm, and a width of 6.0 ± 

0.5 mm. 
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Therefore, given the dependence on thaw rate on sample geometry, this raises the question 

as to whether using a relatively large compression test sample, such as those in ISO 7743 

[104], is a valid comparison to what would be relatively small vessel mimicking samples 

of different geometry. As such, ISO 37 may allow for a more accurate estimation of the 

mechanical properties of the vessels, given the similarities in size. One parameter which 

is of use in this area is the sample area to volume ratio (SA:V) ), a large SA:V indicates 

that a material will more rapidly approach a homogenous internal temperature uniform to 

its surroundings. Taking the dimensions of the cylindrical and dumbbell samples, the 

SA:Vs can be calculated as 298 m-1 and 1000 m-1 respectively, indicating that the 

dumbbell samples have a significantly higher ability to reach homogenous temperatures 

relative to their surroundings than the cylindrical samples. This presented the opportunity 

to introduce a method which would allow for an increased degree of certainty in the 

mechanical properties of PVA-c as heretofore no evidence has been presented in the 

literature of a direct comparison between the elastic properties of the test sample 

geometries and the geometries of the vasculature being mimicked. This elevated the 

protocol described in this chapter to novelty as it will have a significantly improved 

certainty that the phantoms are accurately mimicking the situation in vivo. 
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Table 4.1: Young’s elastic modulus values given for various forms of PVA-c as 

compared to values of tissue in vivo. 

Healthy 

vessel 

(kPa) 

Diseased 

vessel 

(kPa) 

Freeze 

thaw 

cycles 

PVA-c  

(5% w/v) 

(kPa) 

PVA-c  

(10% w/v) 

(kPa) 

PVA-c  

(15% w/v) 

(kPa) 

5 – 83 116 – 751  1 2.5 ± 0.09* 

 

24 ± 0.42¶ 

 

19 ± 2† 

 

190‡ 

 

  2 2.7 ± 0.09* 

 

70 ± 1.80¶ 

 

80 ± 16† 

 

346‡ 

 

  3 3.5 ± 0.1* 

 

87 ± 1.85¶ 

 

102 ± 12† 

 

 

  4 5.4 ± 0.12* 

 

115 ± 6.63¶ 

 

136 ± 26† 

 

 

  5  135 ± 9.81¶ 

 

160 ± 42† 

 

1840‡ 

 

  6   164 ± 34† 

 

 

* [57] 

¶ [103] 

† [56] 

‡ [98] 

 

As previously discussed, there has been disagreement as to the true stiffness values of 

arteries, in the literature [61]. When measured using indentation techniques, such as those 

utilising the tip of an atomic force microscope, the values recorded for veins and arteries 

spanned the range of 6.5 – 560 kPa. However, the same tissues were recorded in the range 

of 600 – 3500 kPa when using tensile mechanical measurements. It has been theorised 

that this discrepancy is due to the retention of large quantities of water in excised tissue 

which, due to its incompressibility, results in a large increase in Young’s modulus for 
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measurements over long length scales [61]. Therefore, it can be assumed that, for the 

purposes of flow experiments where small length scales dominate, the stiffness values of 

vessels determined using nanoindentation techniques should be taken as the ground truth. 

With this assumption, the range of vessel stiffness values can be achieved using 10% w/v 

and 15% w/v PVA-c formulations for reasonably low numbers of freeze thaw cycles, as 

indicated in Table 4.1. 

The purpose of this chapter was firstly, to provide a description of the methods used for 

the production of tuneable PVA-c vessel and the corresponding flow phantoms.  

Secondly, the aim was to develop test procedures which incorporate industry test 

standards, utilising these methods to characterise the mimicking properties of the 

materials used in the production of these flow phantoms. This chapter provides the basis 

for the entire work of this thesis as it allows for the development of a reliable testbed that 

closely mimics the ground truth of the in vivo situation.  

4.2. Materials and Methods 

4.2.1. PVA-c vessel mimic production 

The ingredients used in the production of the PVA-c VMM are outlined in Table 4.2. 

When the PVA-c constituents were being developed, the guidelines for the production of 

agar TMM were used as a basis [106,107]. However, the use of silicon carbide particles 

as attenuators was challenging in PVA-c production. The gelling temperature of agar was 

found to be approximately between 35 – 40° C which allowed for the material to become 

significantly more viscous before reaching room temperature, this is unlike PVA-c which 

doesn’t begin to solidify until it has been in the freeze stage of the initial freeze thaw cycle 

for approximately 30 minutes at -30°C. This means that heavy particles, such as silicon 

carbide tended to settle out of solution before the material could solidify. It was decided 
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that using high density particles for the purposes of providing scatter and attenuation 

characteristics would be too challenging and so a liquid silicone emulsion was used in 

this production in addition to lower density aluminium oxide particles which did not 

present a sedimentation problem.    

Two batches of PVA-c were made: a 10% w/v formulation and a 15% w/v formulation. 

The 15% w/v formulation differed only in the percentage of PVA-c (increased 5%) and 

deionised water (decreased 5%). The components used were selected to provide acoustic 

properties analogous to human arteries. Two sizes of aluminium oxide particles were 

included to act as acoustic scatterers and provide speckle in the ultrasound images.  A 

custom 30% emulsion of silicone particles ranging in particle sizes 0.2 – 0.5µm was used 

as an attenuator and to provide appropriate scattering properties.  Benzalkonium chloride 

was used as an anti-fungal agent to preserve the vessels, and glycerol was used as a 

plasticiser to fine tune the speed of the sound of the material.  

Table 4.2: Constituent materials and concentrations used in the production of 10% w/v 

PVA-c VMM 

Component %(W/V) Mass per 1L (g) 

PVAc 10.00 100.0 

Aluminium oxide (0.3µm) 0.73 7.3 

Aluminium oxide (3µm) 0.72 7.2 

Silicone Emulsion 1.50 15.0 

Benzalkonium chloride 0.46 4.6 

Glycerol 5.00 50.0 

Deionised water 81.59 815.9 

 

Commented [AM14]: Updated based on Kumar’s 
comment 
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The components were placed in a metallic beaker and the total mass of the mixture was 

recorded. The beaker was then placed in a water bath at 90°C and continually mixed. The 

temperature of the material was monitored and once it had reached 90°C it was allowed 

to mix thoroughly at 100 rpm for 1 hour. The beaker was then removed from the water 

bath and the mass of the mixture was measured again, any difference is mass was rectified 

by adding deionised water to replace that lost by evaporation. The mixture was then 

placed in an ice bath and mixed continuously until it had cooled to 5°C. The purpose of 

this cooling step is to ensure that the particles in the mixture remain in suspension when 

the material undergoes its first freeze thaw cycle and to avoid sedimentation over a long 

freeze. Once the material was at 5°C, it was syringed into the interstitial space of the two 

part vessel mould and the moulds were placed into the freezer. At the same time, a number 

of smaller cylindrical and dumbbell samples were produced by pouring some of the batch 

directly into casting moulds which were also placed into the freezer. These samples were 

produced in line with ISO 7743 and ISO 37 and had the following dimensions. The 

cylinder samples had a height of 18 ± 0.5 mm and diameter of 30 ± 0.5 mm. The cuboid 

test section of the dumbbell samples had a width of 10 ± 0.5 mm, a depth of 2.5 ± 0.5 mm 

and an effective test length of 15 ± 0.05 cm. These dimensions gave SA:Vs of 244.444 ± 

0.007 m-1 for the cylindrical samples and 1000 ± 0.125 m-1 for the dumbbell samples. 

It is well established in the literature that the most important aspect of the freeze thaw 

cycle is the thawing section, specifically duration of the thawing section [102]. It was 

therefore important to ensure a consistent, homogeneous thaw for all samples. This was 

achieved by placing the samples in an insulated freezer with the door closed. At the 

conclusion of each freeze cycle, the power to the freezer was disconnected. This allowed 

for the samples to transition from -30°C to thermal equilibrium with room temperature 

22°C over a period of 24 hours thereby, prolonging the thaw portion of the cycle and thus 
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inducing more cross-linking. A single freeze thaw cycle lasted 40 hours, consisting of a 

16 hour overnight freeze at -30°C followed by a 24 hour thaw to room temperature. 

Completed samples could be used immediately after freeze thaw cycling or stored in a 

water-glycerol solution to prevent dehydration, a method which has been shown to be 

effective at maintaining the shelf life of PVA-c for up to 2 years [108]. 

4.2.2. Agar tissue mimic production 

The tissue mimicking material was made in accordance with guidelines put forward by 

the International Electrotechnical Commission (IEC) [106,107]. The ingredients used in 

the production of the Agar TMM are outlined in Table 4.3. The purpose of each material 

is the same as in the production of PVA-c VMM, with the exception that silicon carbide 

is used instead of silicone emulsion as an attenuator. The reason for this is that agar TMM 

sets at room temperature and much more rapidly than PVA-c, so the relatively large 

silicon carbide particles are less likely to settle out of the mixture before the material has 

completely set, which is a much larger problem in the production of PVA-c. 

Table 4.3: Constituent materials and concentrations used in the production of 3% w/v 

Agar TMM 

Component %(W/V) Mass per 1L (g) 

Agar 3.00 30.0 

Aluminium Oxide (0.3 µm) 0.88 8.0 

Aluminium Oxide (3 µm) 0.94 9.4 

Silicon Carbide 0.53 5.3 

Benzalkonium chloride 0.46 4.6 

Glycerol 11.21 112.1 

Deionised Water 82.97 829.7 
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The ingredients were weighed out using a precision mass balance (model: PGW 1502e, 

Adam Equipment, UK). The components were placed in a metallic beaker and transferred 

to a water bath at 90°C. The mixture was mixed continuously and temperature was 

monitored. Once the mixture had reached 90°C it was allowed to mix thoroughly at 100 

rpm for 1 hour. The beaker was then removed from the water bath and allowed to continue 

mixing at room temperature while its temperature was monitored. The gelling 

temperature for agar TMM is at approximately 35°C, so the mixture was allowed to cool 

to approximately 45°C before pouring. This was to allow for ease of pouring with a 

relatively non-viscous mixture while limiting the duration the material would spend being 

unmixed before setting in order to prevent sedimentation. The agar TMM was poured into 

the completed phantom as well as cylindrical acoustic testing samples. The material 

would fully set after an hour and the phantom would be top with a layer of water-glycerol 

solution. The acoustic samples were also stored in water-glycerol solution. 

4.2.3. Geometric Fabrication 

A 3D model of the renal artery was previously developed for use in constructing flow 

phantoms which was also utilised in this work [109]. This model was based on CT data 

from a healthy volunteer from whom informed consent was gathered and the analysis was 

given ethical approval. These data were used to produce a number of additional renal 

artery models in the production of the vessel mimicking material. The various renal 

models used in this work are included in Figure 4.1 and the procedure for the production 

is included in Figure 4.2. The original model was adapted by reducing its diameter by 3 

mm and a 20 mm diameter cylindrical section was added 10 mm distal from the vessel 

curvature. The purpose of these adaptions was to allow for a 1.5 mm vessel wall in the 

final vessel and to allow for the insertion of specially designed modular inserts which can 

Commented [AM15]: Added based on Kumar’s comment 



107 
 

finely control the vessel diameter, thus controlling the degree of stenosis in the final 

VMM. Using the adapted renal model, a silicone master mould was produced which 

would allow for the casting of inverse vessel moulds. A low melting point alloy (LMA) 

with a melting point of 47 °C (MCP 47, Mining and Chemical Products Ltd., 

Northamptonshire, UK) was cast in the silicone master moulds to produce a series of 

inverse vessel moulds. Using the original renal artery model, a number of outer vessel 

silicone moulds were constructed featuring a diameter of 10.6 mm. By placing the LMA 

inverse mould inside the outer vessel mould, a negative space is left to form the vessel 

with a wall thickness of 1.5 mm.  
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Figure 4.1: (a) Rapid prototyped model of renal artery based on CT data from a healthy 

volunteer. The diameter of this model was reduced by 3 mm to allow for a 1.5 mm vessel 

wall. This model also featured a 20mm diameter cylindrical section 10 mm distal from 

the curvature. The purpose of this feature was to allow for different modular inserts to 

be placed in the silicone master mould to precisely control the degree of stenosis in the 

LMA inverse mould. (b) Rapid prototyped model of the renal artery based on CT data 

from a healthy volunteer. This model was not altered from the CT data. (c) LMA inverse 

mould produced using the silicone master mould. This model did not feature a stenosis. 

4.2.4. Vessel Production and Implantation 

Once the LMA inverse mould was in place, the PVA-c VMM was syringed into the outer 

vessel mould and the entire mould was clamped and placed in a freezer at -30 ± 0.5 °C to 
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undergo freeze thaw cycling. Once the required number of cycles was complete, the 

vessel was removed and prepared for implantation. 

Implantation preparation consisted of removing any excess PVA-c material that had 

overflowed inside the mould and cleaning the ends of the LMA inverse mould to ensure 

the ends of the vessel were clean and unobstructed. The vessel was then coupled to PVC 

tubing with an internal diameter of 7mm. The vessel and tubing were then placed in a 

sealable plastic container (HPL 818, Lock & Lock, USA) with dimensions of 20.5cm x 

13.4cm x 12.0cm. The entry points for the tubing consisted of 8mm bore holes on adjacent 

sides of the container to facilitate the vessel curvature. These entry points were lined with 

20 ppi sponge FT-T20, Foam Techniques ltd, Northamptonshire, UK) and secured with 

silicone sealant (DY1002, 151 Products Ltd., UK) to reduce leakages. At this point the 

phantom was tested for water tightness by filling it with water and leaving it for several 

hours; if there were no leaks, production was able to proceed. Rubber was layered on the 

bottom of the phantom to reduce strong acoustic reflections from the base of the phantom. 

The container was then filled with the agar based TMM, which was allowed to set 

completely.  

The entire phantom was then placed in a water bath at 60°C for approximately 4 hours. 

This completely melted the LMA inverse mould inside the phantom which was removed 

and collected to allow for it to be recycled in future phantom production. Once the LMA 

had been removed, the tubing and vessel were filled with a water glycerol solution, and a 

layer of this solution was also poured on the top of the phantom. When not in use, the 

phantoms were all stored under these conditions to prevent dehydration and increase shelf 

life. 
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Figure 4.2: (a) Rapid prototyped model of renal artery from CT data of a healthy 

volunteer. (b) Silicone master mould produced using renal artery model. (c) Low 

melting alloy inverse mould of renal artery produced from silicone master mould. (d) 

Vessel mould with inverse mould in place. The vessel mould has an internal diameter 

3mm greater than the inverse mould, giving a vessel wall thickness of 1.5 mm.   
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Figure 4.3: Lumen moulds made of low melting alloy. The vessel mimicking material 

was moulded around these inserts to produce an anatomically realistic vessel lumen. 

The low melting alloy could be removed later by placing the phantom in a water bath 

at 60°C. 

4.2.5. Material Characterisation 

4.2.5.1. Acoustic characterisation 
An important step in ensuring that tissue mimicking materials are truly acoustically 

analogous to human tissue was characterising the acoustic properties of the materials, 

particularly speed of sound and attenuation. As mentioned previously, when TMM or 

VMM was produced, small cylindrical samples (height: 18 ± 0.5 mm, diameter: 30 ± 0.5 

mm) were made at the same time to allow for acoustic characterisation. In order to 

interrogate the acoustic properties of these samples, they were scanned using a scanning 

acoustic macroscope (SAM). The SAM system relies on a pulse-echo substitution 

technique. The SAM system consists of a single element transducer (7.5MHz, V320, 

Panametrics, General Electric, USA), suspended over a water tank with a glass plate at 

the bottom acting as a plane reflector, and a pulse receiver (5052PR, Panametrics, General 
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Electric, USA), and an analogue-to-digital converter card (NI PCI-5124, National 

Instruments, USA). Using a programme developed in LabVIEW (Version 8.1, National 

Instruments, USA) the signal measured from the transducer can be recorded. An 

illustration of the SAM system setup is given in Figure 4.4. By comparing the differences 

in signals between a sample and a reference pulse where the tank is empty, the speed of 

sound and attenuation can be determined from the following equations: 

𝐶𝑠 =
𝐶𝑤

1 + ∆𝑡
𝐶𝑤

2𝑑

 
(4.1) 

  

𝑎(𝑓) =  
20

2𝑑
𝑙𝑜𝑔10

𝐴(𝑓)

𝐴0(𝑓)
 

(4.2) 

 

Where: Cs is the speed of sound in the sample; Cw is the speed of sound in water; Δt is 

the time delay between the reference pulse and the sample pulse; d is the sample 

thickness; a(f) is the attenuation of the sample; A(f) is the pulse amplitude measured from 

the sample pulse, A0(f) is the pulse amplitude measured from the reference pulse.  
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Figure 4.4: The apparatus of the scanning acoustic macroscope (SAM) system. A glass 

plate is submerged in a tank of deionised water which reflects the ultrasound pulse. By 

comparing the returning signals when passing through a material sample with a 

reference signal, acoustic properties can be measured. 

4.2.5.2. Mechanical Characterisation 
During the production of the PVA-c VMM, a number of dumbbell shaped test samples 

were produced using a custom 3D printed mould. The purpose of these samples to allow 

for tensile testing using a material tester (Lloyd Instruments LR30KPlus, Ametek, USA). 

The samples were tested in accordance with ISO 37 [105]. The ISO defined tensile stress 

as the stress applied which causes elongation of the test sample in the direction of 

application of the stress, expressed as the force divided by the original cross-sectional 

area of the test sample. The tensile strain was defined as the elongation of the test sample 

in the direction of the tensile stress divided by the original length of the sample in that 

direction. 

Sample preparation involved the conditioning of the test samples at the temperature of 

testing (18.5 ± 0.5 °C) for a minimum of 3 hours prior to testing. For each of the samples, 

width and depth were measured using a Vernier callipers before being fitted to the grips 

of the materials testing system. The system was then activated manually and the grips 
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moved apart until a non-zero load was detected, indicating the samples were taut. Care 

was taken to ensure the samples were not experiencing a load greater than 0.5N before 

zeroing the system at this position. The length of the sample between the two grips was 

measured and used to calculate the elongation setting. The system was then operated at a 

speed of 50 mm min-1 until a strain of 30% was reached, with the strain automatically 

released back to the zeroed position at a speed of 50 mm min-1 which consisted one tensile 

cycle. Each sample underwent 5 tensile cycles at 30% elongation with a 500N load cell, 

producing 5 stress-strain curves. The analysis of these data was carried out in MATLAB 

(Mathworks, USA). The linear region of each stress-strain curve could be determined by 

performing second order numerical differentiation on the data and evaluating what region 

in the dataset had gone to zero. The Young’s modulus was taken as the slope of the linear 

region of the 5th tensile cycle. 

In order to ensure the validity of the mechanical testing results, a number of vessel-like 

test objects were also produced. These consisted of a standard hollow cylindrical shape 

but did not feature a bend like the vessel mimics so as to limit radial asymmetry. The 

cross sectional area of these samples was calculated by measuring the inner and outer 

diameters and using the formula for the area of an annulus. The samples could then be 

fitted to the grips of the tensile testing system and tested using the same method as a 

dumbbell sample.  

In total, 5 formulations of PVA-c were mechanically characterised, with 5 dumbbell 

samples and 6 vessel samples for each. The formulations tested were: 10% PVA-c 2, 3, 

4, and 6 freeze thaw cycles and 15% PVA-c 2 freeze thaw cycles. The dumbbell and 

vessel samples were tested for correlation using a Pearson correlation analysis in 

MATLAB. The null hypothesis for the analysis was that the two variations of samples 

were not correlated, the alternative hypothesis was that there was a correlation between 
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the samples Young’s modulus values with respect to the number of freeze thaw cycles. 

The null hypothesis was rejected if p > 0.05.  

4.2.6. Blood mimicking fluid production 

In order to accurately model a vascular system for Doppler ultrasound, it was important 

to accurately reproduce the properties of blood both as a fluid and as a Doppler scattering 

agent. The blood mimicking fluid (BMF) used in this work was based on the work carried 

out by Ramnarine et al. [2] in producing a fluid with the correct viscous properties of 

blood and the appropriate red blood cell equivalent to function as a scatterer in the form 

of Orgasol®® particles (Arkema, France). Figure 3.2 previously presented the relative 

backscatter of Orgasol® with respect to blood for three particle sizes; 5, 10, and 20 µm, 

as reported in that previous work. It can be seen from this figure that, for smaller particle 

sizes, a higher concentration of Orgasol® is required to achieve the same backscatter level 

present in blood. For this work, the 5 µm particle was selected as it is approximately the 

same size as red blood cells (6 µm) which function as scatterers in vivo. Therefore, the 

required concentration to achieve the correct backscatter is 1.82% w/v of 5 µm Orgasol®. 

The components used in the production of BMF are outline in Table 4.4. Dextran (Sigma-

Aldrich, USA), a branched complex glucan, formed the base viscosity of the fluid, closely 

matching the fluid dynamics of blood. Synperonic A7 detergent (Conservation Resources, 

Ltd, UK) was used as a surfactant; this lowered the fluid surface tension and allows for 

the dissolution of polar molecules enabling a homogenous suspension of Orgasol® 

particles in the fluid. Benzalkonium chloride (Sigma-Aldrich, USA) functioned as an 

anti-fungal agent, increasing the shelf-life of the BMF. Glycerol (Sigma-Aldrich, USA) 

was used as a plasticiser, which controlled the speed of sound in the fluid as well as fine 

tuning the viscosity. 
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Table 4.4: Constituent materials and concentrations used in the production of 1.82% 

Orgasol® BMF 

Component %(W/V) Mass per 1L (g) 

Orgasol® particles (5μm)  1.82 18.2 

Dextran  3.42 34.2 

Synperonic A7 detergent  0.92 9.2 

Benzalkonium Chloride  0.46 4.6 

Glycerol  10.25 102.5 

Deionised water 83.13 831.3 

  

The BMF was produced in two stages; first the fluid was produced using each component 

without the Orgasol®. The deionised water, glycerol, Synperonic A7 detergent, and 

benzalkonium chloride were mixed together in a 1L high-density polyethylene (HDPE) 

container with a screw top. The dextran was added to the HDPE container which was then 

sealed and shaken to combine. The container was then left in a warm place for a minimum 

of 3 hours. The second stage of production was the addition of the Orgasol® particles. 

Orgasol® was stored as an ultrafine powder and dry Orgasol® posed a significant health 

risk if inhaled or from skin or eye contact, therefore it was handled through a rigorous 

safety protocol. A small quantity of Orgasol® powder required for producing BMF was 

stored in a double sealed Tupperware and plastic zip lock bag inside an airtight 

Tupperware container to allow for ease of transport. The Orgasol® container was never 

opened outside of a fume hood. Using nitrite gloves, laboratory PPE, and a fume hood 

the Orgasol® powder could be weighed out and placed into the HDPE containers which 
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were then sealed. The work area was wiped down with alcohol wipes which were 

disposed of in a zip lock plastic bag along with the gloves used to prepare the Orgasol®.  

Once the Orgasol® transfer was safely completed, the HDPE containers had to be shaken 

vigorously to wet the Orgasol® particles and thoroughly dissolve them in the solution. 

The resulting mixture was then passed through a fine mesh sieve (38 µm) and shaken in 

its container repeatedly until it could pass through the sieve without any residue remaining 

behind. The BMF was then ready for use in flow experiments. Prior to running any 

experiments, it was prudent to shake the BMF again to ensure the Orgasol® was in 

solution. This often resulted in the formation of air bubbles which would saturate the 

Doppler signal so care was taken to pour the BMF into the flow system reservoir slowly 

and the reservoir was connected to the flow system so as to draw BMF from the bottom 

of the reservoir and deposit BMF at the top of reservoir. Even after taking these 

precautions, significant air would often remain in the BMF as it passed through the flow 

system; the only remedy for this was to run the system at a high flow rate for 

approximately 1 hour to remove the bubbles.  

4.2.7. Geometric accuracy  

In order to assess the reproducibility of the VMM fabrication method used to produce the 

phantom lumens, the geometric accuracy was determined. Five LMA lumen moulds were 

produced and the diameter was measured at three locations along the moulds. The 

locations measured were 10 mm from the inlet, 10 mm from the bend and 10 mm from 

the outlet. All measurements were made using a Vernier callipers and repeated three 

times. The diameters of the models were compared across the three locations and between 

models using a one-way analysis of variation (ANOVA) test. The five LMA moulds were 

then used to make 5 vessels which were implanted in phantoms and the LMA was 

removed. The phantoms were then connected to the flow system, filled with a 9.5% 
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glycerol water solution which had a speed of sound of 1540 m s-1 and scanned in B-mode 

with an ultrasound system (Aixplorer, Supersonic Imagine, France) using a SL15-4 linear 

transducer at central transmission frequency of 5 MHz. Longitudinal images of the vessel 

were acquired for each specified diameter measurement location with the transducer 

positioned to place the focus of the transducer at the measurement location. The locations 

were specified using acoustic markers in the form of echogenic fishing line with diameter 

of 1 mm imbedded in the phantom perpendicularly to the vessel at the locations to be 

measured. These threads produced a strong reflected ultrasound signal allowing the 

locations to be found easily. For each measurement position three B-mode images were 

acquired. 

The images were exported to MATLAB and analysed using a line profile tool. The line 

profile identified the pixel intensity versus distance of a user specified region of interest 

which allowed for the clear differentiation of the vessel edges. An example of a line 

profile extracted from a B-mode image is shown in Figure 4.5. The pixel distance of the 

vessel diameter was converted to distance (mm) by multiplying the pixel distance by the 

pixel spacing of the scanner. A one-way ANOVA test was carried out on the diameters 

in each phantom and between each phantom. A paired t-test was carried out between each 

LMA mould and its corresponding phantom for the three locations. The null hypothesis 

for each statistical test was that there was no difference between any of the diameters 

measured. If p < 0.05 then the null hypothesis was rejected and the alternative hypothesis 

was that there was a statistical difference between the diameters. All statistical tests were 

carried out in MATLAB.   
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Figure 4.5: An example B-mode image (left) of the phantom lumen and the line profile 

(right) extracted from it. The diameter of the vessel was calculated by multiplying the 

number of pixels across the lumen with the pixel spacing of the ultrasound scanner. 

4.3. Results 

4.3.1. Acoustic characterisation 

The results of the acoustic characterisation are presented in Figures 4.6 and 4.7. As the 

number of freeze thaw cycles was increased, a corresponding increase in speed of sound 

was found, varying in the range of 1556 – 1567 m s-1 for 2 – 6 f/t cycles.   The values for 

the speed of sound were found to be within one standard deviation of the in vivo value for 

speed of sound for all freeze thaw cycle values, with the exception of 2 freeze thaw cycles. 
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Figure 4.6: The effect of increasing freeze thaw cycles on speed of sound measurements 

for PVA-c. The error bars correspond to one standard deviation. The dashed black line 

indicates the in vivo value for arterial speed of sound [4]. 

Similarly, the attenuation was found to increase with increasing numbers of freeze thaw 

cycles. The measured values of attenuation varied in the range 0.520 – 0.575 dB cm-1 

MHz-1. Again, these values were all within one standard deviation of the in vivo value for 

arterial attenuation with the exception of 2 freeze thaw cycles. 
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Figure 4.7: The effect of increasing freeze thaw cycles on attenuation measurements 

for PVA-c. The error bars correspond to one standard deviation.  The dashed black line 

indicates the in vivo value for arterial attenuation. 

 

4.3.2. Mechanical characterisation 

The results of the mechanical characterisation are presented in Figure 4.8. For each 

number of freeze thaw cycle, the Young’s moduli of the vessel-like samples were 

comparable to the Young’s moduli values of the dumbbell test samples produced in 

accordance with ISO 37. The Young’s modulus values with analysed using Pearson 

correlation, which gave an R2 value of 0.9767. The p-value for this analysis was p = 

0.0013, indicating that the R2 value was highly significant and the alternative hypothesis 

was accepted. 
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Figure 4.8: Comparison of Young’s modulus values for increasing freeze thaw cycles 

between ISO 37 dumbbell test samples and the vessel-like test sample. The error bars 

correspond to one standard deviation. 

4.3.3. Geometric Accuracy 

The measured mean diameter (in mm) of the 5 LMA cores at 3 measurement positions as 

compared to the diameters measured using the line profile analysis of the phantom lumens 

at equivalent positions are presented in Table 4.5. A one-way ANOVA statistical test 

carried out for the populations of diameters between the measurement locations and 

between the LMA cores indicated that the diameters were the same at each measurement 

location and for each LMA core (p = 0.3368). An additional ANOVA test was carried out 

on the diameters measured using the line profile analysis procedure, with no significant 

difference in measured diameter detected (p = 0.1763). 
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Table 4.5: Comparison of mean diameters at three measurement locations across five 

LMA cores and five phantom lumens. LMA cores were measured using a Vernier 

calliper and the lumens were measured in B-mode. 

Location Mean Diameter LMA core 

[mm] 

Mean Diameter phantom 

lumen [mm] 

Inlet 7.61 ± 0.04 7.77 ± 0.04 

Bend 7.58 ± 0.04 7.69 ± 0.05 

Outlet 7.61 ± 0.04 7.66 ± 0.053 

 

4.4. Discussion 

When modelling a complex anatomical feature in vitro using non-biological materials, an 

important advantage gained over using, for example, excised biological tissue, is the 

ability to consistently produce an identical test environment to a high degree of precision 

across multiple phantoms, allowing for modification of individual geometric parameters 

while keeping the rest of the phantom design identical. It was important, therefore, to 

ensure that the procedure utilised demonstrated a high degree of repeatability. This meant 

that the ideal phantom material would be one which could be reliably reproduced to a 

high degree of anatomical realism. 

Utilising a newly developed formulation of PVA-c to mimic arterial tissue, a technique 

for producing a range of anatomically realistic renal artery flow phantoms featuring 

varying degree of vessel stiffening was developed. This material was selected as the 

vessel mimicking material due to its unique crosslinking properties that allow its stiffness 

to be precisely controlled. The formulation of PVA-c can be complex and some 
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constituent materials, specifically particulate materials, commonly used elsewhere in 

TMM manufacturing are not suitable due to the relatively long set times of PVA-c.  

The procedure used in the production of the PVA-c material was outlined. The vessel 

mimics were implanted horizontally at a depth of 7 cm, analogous to the depth of the 

renal artery in the abdomen [110].  Previous work using PVA-c has focused on its 

potential use in the design of late stage CVD phantoms in the formation of stenoses [108] 

or in liver perfusion phantoms [89]. A similar phantom construction procedure was 

carried out Qian et al. [111] for the purpose of particle image velocimetry; the authors 

utilised a similar formulation of PVA-c to produce a range of straight walled flow 

phantoms for the purposes of measuring the velocity profiles and calculating the wall 

shear rate. The primary difference between this work and that of Qian et al. is the use of 

anatomically realistic vessel geometries based on real patient data. These complex 

geometries required a more rigorous and novel means of confirming the mechanical 

properties of the material and, in combination with the varying wall stiffnesses modelling 

progressing CVD, these phantoms presented a novel testbed design that provides a clear 

and reproducible model of atherosclerosis in vivo.    

The geometric accuracy of the phantom lumen was assessed with respect to the clinical 

data of a healthy renal artery. The two sets of diameter measurements were compared 

using a one-way ANOVA statistical test, first on the LMA core population between the 

three measurement locations and second as a comparison between the LMA core 

diameters and the phantom lumen diameters. The ANOVA tests indicated that the LMA 

cores reliably produced vessels of the correct diameter consistently (p = 0.3368, p = 

0.1763). 
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To ensure that the materials used in the construction of these flow phantoms were an 

accurate facsimile of the tissues in vivo, the acoustic properties of the vessel mimicking 

material were evaluated using a scanning acoustic macroscope. The speed of sound of the 

material varied between 1556 ± 5 to 1567 ± 6 m s-1 and the attenuation varied between 

0.52 ± 0.02 to 0.58 ± 0.04 dB cm-1 MHz-1. For 3 – 6 freeze thaw cycles, the values 

recorded were within one standard deviation of the in vivo value given in the literature 

for both the speed of sound and the attenuation of the material [4]. Research into arterial 

acoustic properties in the later stages of arterial disease indicate a potential change in the 

properties of tissue; for example, Saijo et al. [112] studied excised human coronary 

arteries featuring advanced atherosclerosis to determine their acoustic properties using a 

scanning acoustic macroscope. The results showed that the intima showed significantly 

increased speed of sound values in regions with collagen fibre present and where the 

vessel had become calcified (1680 ± 30 m s-1 and 1810 ± 25 m s-1 respectively). This 

indicates that as CVD progresses a more thorough modelling of the situation in vivo 

would include a corresponding increase in speed of sound. This is not entirely unexpected 

as the speed of sound and Young’s modulus are related according to the equation: 

𝑐 =  √
𝐸(1 −  𝜎)

𝜌(1 + 𝜎)(1 −  2𝜎)
 ⋯ 

(4.3) 

 

where c is the speed of sound, E is the Young’s modulus, ρ is the density of the material, 

and σ is the Poisson’s ratio which can be taken as approximately 0.5 for soft tissue, and 

the […] denotes higher order terms which can be neglected [112]. Considering that the 

rest of Equation 4.3 is approximately constant for soft tissue, the relationship between 

speed of sound and Young’s modulus can be exploited using ultrasound to allow for a 

more direct measurement of mechanical properties, this is the underlying mechanism to 
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shear wave elastography; the acoustic radiation force of the incident ultrasound beam can 

be used to produce shear waves through the medium which can be detected using 

ultrasonic tracking methods. This allows for the generation of tissue maps where the shear 

modulus of tissue acts as the contrast mechanism [78]. The velocity of these shear waves 

is then used to determine the local stiffness in the imaging region.  

Similarly, for measurements of the speed of sound, an increase in attenuation was 

observed as a function of increasing freeze thaw cycles. This was also an expected result 

as the attenuation is proportional to the density of the material which increases as 

additional crosslinking takes place. Although the increase in speed of sound and 

attenuation appears to be linear in Figure 4.6 and Figure 4.7, it was expected that this 

steady increase would begin to reach an asymptotic limit as the absolute number of PVA 

molecular strands become crosslinked [56]. 

To ensure that the phantoms were accurately modelling the increase in vessel stiffness as 

an indication of progression of CVD, the mechanical properties of the PVA-c material 

were measured for a number of freeze thaw cycles. Some previous mechanical 

characterisation of PVA-c has relied on the use of compression testing as outlined in ISO 

7743, working under the assumption that a large cylindrical test sample would have 

broadly equivalent mechanical properties to the much smaller vessel [56,57,98,103,113]. 

As discussed earlier there are a number of limitations to this assumption, and a more 

direct comparison of mechanical properties was investigated using tensile testing, as 

outlined in ISO 37. The tensile testing was carried out using a dumbbell-shaped sample 

and compared directly to the vessel using a hollow cylindrical vessel-like test sample. It 

was believed that this would allow for a more direct comparison because the elastic 

properties of PVA-c are strongly related to the rate of thawing, which will take place over 

a longer timescale for a larger sample volume. The Young’s modulus values for the 
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dumbbell samples varied in the range 62 – 119 kPa for the 10% w/v PVA-c material for 

2 – 6 freeze thaw cycles, and a single 15% w/v PVA-c batch was found to have a Young’s 

modulus of 320 kPa for 2 freeze thaw cycles.  

For each freeze thaw cycle, the vessel-like sample showed very similar results to the 

dumbbell sample. The two sample times were correlated (R2 = 0.9767). This indicated 

that the dumbbell samples were extremely accurate in their modelling of the true stiffness 

values of the vessels produced for the phantoms. This further indicates that tensile testing 

carried out in accordance with ISO 37 is a more useful quantitative tool for the mechanical 

characterisation of PVA-c. This has provided a means of quantitatively assessing the 

Young’s modulus for unorthodox vessel geometries through comparison with the 

dumbbell samples produced in accordance with ISO 37. The validity of this comparison 

was further strengthened through the use of an extremely precise production and freeze-

thaw process. In effect, we have ensured that the mechanical characteristics of the PVA-

c used in this work were highly tuneable with reproducibility precise values and we have 

provided a clear demonstration of the correlation between an industrial standard sample 

and our vessels instead of relying on there being an implicit correlation. 

It is worth noting, however, that as the number of freeze thaw cycles increases, a stiffness 

maximum will gradually be achieved. This can be seen in Figure 4.8 where the increase 

in Young’s modulus is less as the number of freeze thaw cycles increases. This would 

indicate that if the number of freeze thaw cycles is sufficiently large, the difference in rate 

of thawing due to sample volume becomes less significant as the material approaches its 

stiffness maximum regardless.  

The Young’s modulus values measured closely followed the literature values for 

approximate tissue stiffness. The most recent literature regarding vessel stiffness 
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estimated an upper bound for healthy arterial stiffness of 34.9 – 83 kPa [65,67] and an 

estimated range of diseased vessel stiffness of 116 – 751 kPa [66,67]. This indicates that 

for the samples produced, the 10% w/v PVA-c demonstrated an ideal healthy vessel 

stiffness for 2 – 3 freeze thaw cycles while the lower bound of typical diseased vessel 

stiffness was achieved for 4 – 6 freeze thaw cycles. There is a limit to the achievable 

vessel stiffness for a given percentage of PVA-c which, in addition to the inconvenience 

of the relatively long production times, preclude the use of 10% w/v PVA-c from suitably 

mimicking the higher stiffnesses recorded in diseased arteries. For this, 15% w/v PVA-c 

can be used as low as 2 freeze thaw cycles to mimic the more developed stages of the 

disease. In order to mimic an advanced form of atherosclerosis, the 15% w/v PVA-c 

solution could be tested for suitability as a vessel mimic at higher freeze thaw cycles, 

although the value is well within its range of possible stiffnesses as 15% w/v PVA-c has 

been observed with Young’s modulus values as high as 1840 kPa [98]. This means that 

our vessel phantom can be accurately produced with the range of stiffnesses which 

correspond to a broad classification of early stage atherosclerosis, providing a strong and 

reliable testbed for measuring the flow characteristics of blood during disease 

progression. This allowed for the comparison of flow characteristics between different 

vessel stiffness values which can be taken as approximating stages of the disease. This 

meant that the phantom model could provide an insight into the role of WSS as a 

diagnostic tool in the diagnosis of CVD. 

4.5 Conclusion 

The purpose of this chapter was to describe the development of a technique for producing 

consistent flow phantoms to provide a reliable testbed for Doppler flow experiments. It 

was important that the phantoms could be produced with: acoustically analogous 
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properties to human tissue in vivo; precisely controlled stiffness values; and consistent 

geometric accuracy.  

This study provided a formulation of PVA-c that did not suffer from issues such as 

constituent settling or issues that would otherwise threaten the homogeneity of the 

material. 

The results of this study indicated that PVA-c can be reliably produced with known 

acoustic properties. Previous work with this material has often opted to utilise 

compression testing to mechanically characterise it, however, this may not be a reliable 

method of ascertaining the mechanical behaviour of PVA-c. This work provided a method 

to verify the true stiffness of PVA-c vessels and showed a correlation between these data 

and a reliable benchmark to assess stiffness using tensile testing according to ISO 37. 

This study tested the geometric reproducibility of this procedure and showed that the 

dimensions of the model used translated to the final vessels with a high degree of 

precision.   

Phantoms are a useful resource in the validation of many diagnostic techniques. One of 

the best ways to test new and ground-breaking techniques is through the use of 

multimodality phantoms. Using the procedure outlined in this chapter, a multimodality 

phantom could be produced. This could be achieved by replacing the deionised water 

used in the PVA-c vessel production with a 10% w/v manganese chloride solution to 

allow for MRI imaging. Additionally, the use of attenuators in the production of the tissue 

and vessel mimicking materials could allow for adaption to CT imaging through minor 

modification of the Hounsfield units. This relatively simple adaption would allow for 

additional testing using CT and MRI imaging and a direct comparison between new 

techniques and established diagnostic methodologies. The addition of either of these 
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modifications of the production would likely result in an increase in Young’s modulus, 

speed of sound, and attenuation, therefore the addition should be carried out with rigorous 

acoustic and mechanical analysis to ensure that the expected ultrasound properties are not 

significantly perturbed by this process. This is beyond the scope of this work, however, 

and is one possible avenue for further exploration in this area. 

This chapter provided a bedrock of validity to the rest of this work by establishing the 

consistency and accuracy of the production methods. This allowed for the production of 

a series of Doppler flow phantoms which could be used for further experimentation.

Commented [AM24]: Added based on Kumar’s comment 
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Chapter 5: Development of multifrequency 

UltraFast Doppler spectral analysis 

(MFUDSA) algorithm 

5.1. Introduction 

As stated previously, in order to measure WSS it is necessary to address several key 

imaging limitations associated with the technique as it currently stands, namely, the 

Signal-to-Noise ratio (SNR), the temporal resolution and the velocity resolution all need 

to be improved. The temporal resolution can be dramatically increased through the use of 

UltraFast Doppler acquisitions which utilises a series of tilted plane waves to allow for 

the measurement of velocity for each point in the vessel segment within the imaging plane 

in a single time point. The remaining limitations to the WSS measurement, namely SNR 

and velocity resolution, can be addressed by applying additional post processing steps to 

extract additional information from the full bandwidth of transmitted frequencies. The 

purpose of this chapter is to outline the approach and methods which were implemented 

as part of this project to make further improvements to the SNR and velocity resolution 

of the Doppler signal using digital spectral analysis.  

5.1.1. Doppler processing 

In order to develop an algorithm for the 2D Fourier analysis of Doppler data, it was first 

necessary to understand the requisite steps and define the criteria for optimum Doppler 

analysis and then develop an algorithm which incorporates each of those steps, in addition 

to performing the required analysis. A simplified block diagram of a standard pulsed 

Doppler system is given in Figure 5.1. 
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Figure 5.1: A simplified pulsed Doppler system. The pulse is defined by the master 

oscillator. The received echoes are demodulated using a reference from the master 

oscillator. I and Q are the resulting in-phase and quadrature outputs of such a system. 

The principle of operation of a pulsed Doppler system is as follows [5]: the desired 

ultrasound pulse is specified by the master oscillator, this pulse is amplified and sent to 

the transducer for insonation of the medium of interest. The returning echoes are received 

and amplified before passing through a bandpass filter. A sharp low pass filter is used to 

remove the sampling frequency of the signal while retaining the lower Doppler shift 

frequencies, a high pass filter (wall filter) is also employed to remove the high amplitude, 

low frequency tissue clutter signal. The filtered signal is then demodulated, although the 

demodulation is commonly performed prior to the application of filters on modern digital 

ultrasound scanners. A more detailed schematic of a typical demodulator is illustrated in 

Figure 5.2. 
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Figure 5.2: A typical demodulation block diagram used for pulsed wave Doppler signal 

analysis [5] 

The most commonly used method of demodulation is phase-quadrature demodulation. 

This method uses two signals acquired from the master oscillator, φA and φB, which are 

an identical copy of the transmitted pulse and the transmitted pulse phase shifted 90°. By 

creating two out-of-phase signals, it is possible to determine the directionality of the 

recorded Doppler shifts. This can be carried out using a complex Fourier transform. This 

process can only be carried out on a digital system, unlike earlier analogue analysis 

methods, but its implementation is very simple. A complex signal is made by combining 

the IQ data as in Equation 5.1. 

𝑆(𝑡) = 𝐼 + 𝑄𝑖 (5.1) 

When the signal, S(t), undergoes a complex Fourier transform, due to the symmetry 

properties of frequency space, the real part of Fourier spectrum will contain only the 

Doppler shifts corresponding to motion towards the transducer, whereas the imaginary 

part of the Fourier spectrum will contain those moving away from the transducer [5].  
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5.1.2. 2D Fourier analysis 

Traditionally, when analysing Doppler pulses, the demodulated IQ signal, S(t), would 

undergo a 1D complex Fourier transform to produce a 1D frequency spectrum 

corresponding to the central transmission frequency. In the idealised case, where S(t) is a 

pure sine wave reflected from a line of particles of uniform velocity, the resulting 

frequency spectrum would resemble a delta function with a peak at the Doppler shift 

frequency corresponding to the velocity of the scatterers. As additional velocities are 

added, this delta function will spread into a Gaussian peak with a width dependent on the 

range of velocities present, if a sufficiently different velocity (greater than the velocity 

resolution of the system) is present it would result in a secondary peak in the frequency 

spectrum. By repeating this Fourier analysis over the entire time window, a sonogram can 

be produced which is commonly referred to as the Doppler spectrum. This spectrum is 

displayed as a column of greyscale values for each time point where the vertical axis 

represents the axial velocity derived from the Doppler frequency shift. Doppler spectra 

produced using discrete Fourier transforms tend to exhibit random fluctuations due to the 

stochastic nature of the ultrasound scatterers (red blood cells). These fluctuations are the 

cause of the typical granulation of the spectra which is known as Doppler speckle, and is 

regarded as a major limitation of discrete Fourier transform based spectral analysis [3,5]. 

A number of approaches have been proposed to counteract this limitation such as 

parametric spectral estimators and various smoothing functions [50,114]. Spectral 

estimators reduce spectral variance by limiting the influence of significant outliers to the 

data. For example, a moving average estimation method, such as the Blackman-Tukey 

transform, will provide this improvement by defining a subset size for a certain data 

series. The initial subset will consist of the first N values of the series, where N is the 

subset size; the first digit of the processed data series will be the average of the initial 
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subset. The subset will then shift forward by one, encapsulating the second element of the 

original data series onwards and generate the second digit of the processed data series as 

the average of the new subset. A moving average estimator, therefore, works as a kind of 

low pass filter, removing high frequency fluctuations from the data at the expense of 

frequency resolution [50]. Similarly, smoothing functions can be applied directly to the 

Doppler spectrum with the goal of reducing local variations at the cost of frequency 

resolution [114]. These methods provide a reduction in variance, allowing for a more 

qualitative view of the bulk trends in data over larger ranges, but they come at the expense 

of a strict decrease in quantitative information. An alternative approach to improve the 

quality of the generated sonogram through more rigorous analysis procedures such as 2D 

Fourier analysis which can provide similar improvements to the Doppler spectrum 

through the analysis of additional information and for no commensurate loss in resolution. 
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Figure 5.3: Visualisation of the frequency space produced from a 2D complex 

Fourier transform (adapted from Evans & McDicken  [5].)  

(a) The ideal case of a pure sine wave results in a delta peak at coordinates (ft, fd).  

(b) A range of transmission frequencies results in radial broadening of the spectrum.  

(c) Finite sample volume length and finite observation time lead to broadening of the 

spectrum. 

(d) The combination of these effects produces an ovular spectral distribution. 

Returning to the ideal case of a pure reflected sine wave of uniform velocity, a 2D Fourier 

analysis would produce a frequency space where the delta function would be centred with 

coordinates of (ft, fd) where ft and fd are the transmitted and Doppler shift frequencies 

respectively (Figure 5.3(a)). It should be noted that in this idealised case, where the 

received pulse is a pure sine wave, all the information about the Doppler signal is 

contained in the 1D spectrum and no additional information can be gained from 2D 
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analysis. In practice, however, a pulsed wave Doppler system necessarily will transmit a 

range of frequencies which results in a broadening of the function along a radial line 

passing through the origin (Figure 5.3(b)). It has been shown that the slope of the radial 

line is proportional to the velocity of the scatterers [115], which makes intuitive sense 

considering that different velocities would lie on different points on the y axis, 

necessitating differing slopes to pass through the origin, with greater velocities resulting 

in larger slopes. An additional practical effect is the broadening of the spectrum in both 

the RF direction and the Doppler frequency direction due to a combination of finite 

sample volume length and finite observation time. This results in a smearing of the signal 

in both axes (Figure 5.3(c)). By combining all of these effects, the resulting frequency 

space display of a uniform velocity will resemble ellipses with the slope of the major axis 

of an ellipse being proportional to the velocity it represents [5]. Additionally, it is worth 

noting that the intensities of the 2D Fourier space representation of the signal can be 

extracted along the line x = ft to give the 1D Fourier spectrum, as seen in Figure 5.4. 
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Figure 5.4: By evaluating the 2D Fourier space representation of a reflected 

ultrasound signal at the central transmitted frequency, the standard 1D Fourier 

spectrum emerges.- adapted from Evans & McDicken [5].  

There is, therefore, additional information to be gleaned from the 2D Fourier space that 

can be used to improve the precision of Doppler ultrasound. Two potential methods to 

extract this information are presented here. 

The first method to utilise the additional 2D Fourier data is ‘velocity matched spectrum’ 

analysis first proposed by Torp et al. [6]. The mechanism behind this analysis approach 

is that the slope of the frequency space signal can be used to evaluate its corresponding 

velocity. This could be done by “scanning” with a certain expected velocity, for which 

the correlation length will be maximised when the true velocity matches the expected 

velocity. In principle, this could be done by manually drawing a line of best fit in the 

frequency space and measuring its slope and repeating this procedure for each time point 

of interest. It is mathematically equivalent to, instead, simultaneously processing several 
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data samples from different depths, allowing the movement of scatterers along the 

ultrasound beam to be measured between pulses. This results in a so-called range/time 

space which can be much more readily analysed using this method. By scanning through 

the range/time space with a number of predetermined velocity vectors, the magnitude of 

the correlation for each velocity can be recorded as the intensity of the velocity spectrum 

at that velocity. An example of this procedure is illustrated in Figure 5.5. This is 

effectively equivalent to integrating the 2D Fourier spectrum along a series of radial lines 

through the origin corresponding to pre-defined velocity values. One significant 

advantage of this procedure is that it can potentially supress the effect of aliasing in the 

Doppler spectrum. This is possible due to the fact that additional Fourier transform 

replicas in frequency space appear repeated infinitely along the Doppler frequency axis. 

And while the replicas are shifted in the Doppler frequency axis, they are not shifted in 

the RF axis, meaning that it maintains the same gradient. Torp et al. used this feature of 

the velocity matched spectrum analysis to supress the effect of aliasing for a Doppler 

signal from the subclavian artery which had a peak velocity at 4.5 times the Nyquist limit. 

Torp et al. could not remove the aliasing completely, but demonstrated that the Doppler 

spectrum could be extracted manually, indicating that with modern technology an 

automatic method could potentially be developed [6].  
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Figure 5.5: An example of the procedure used in velocity matched spectrum analysis 

to produce a velocity spectrum using 2D Fourier data – adapted from Evans & 

McDicken / Torp [5,6]. 

The second method which can be used to extract additional information from the 2D 

Fourier transform is multifrequency Doppler analysis, first proposed by Loupas et al. 

[7,116,117]. It can be shown that it is possible to reduce the spectral variance of the power 

spectral density spectrum of a Doppler signal by averaging several uncorrelated Doppler 

spectra from different frequencies transmitted simultaneously [118]. The principle of 

multifrequency Doppler is a variation on this method where, instead of transmitting 

additional frequencies, the additional spectral information is derived instead by utilising 

the entire transmitted bandwidth of an ultrasound pulse. This can be thought of as though 
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the bandwidth of transmitted frequencies were individual transmitted pulses of zero 

bandwidth at a number of varying frequencies. In order to properly compute a spectral 

average of these uncorrelated spectra, it is first necessary to provide the appropriate 

spectral scaling before integrating the 2D frequency spectrum across the bandwidth of the 

pulse. Using this method, an expression for the power spectral estimate of the 2D Doppler 

spectrum, �̂�𝑀𝐹(𝑓𝑑), may be written as: 

�̂�𝑀𝐹(𝑓𝑑) =  
∫ 𝑃(𝑓𝑅𝐹 ,

𝑓𝑑𝑓𝑅𝐹

𝑓𝑐
)

𝑓𝑐+𝐵𝑊/2

𝑓𝑐−𝐵𝑊/2
𝑑𝑓𝑅𝐹

∫ |𝑈(𝑓𝑅𝐹 − 𝑓𝑐)|2𝑓𝑐+𝐵𝑊/2

𝑓𝑐−𝐵𝑊/2
𝑑𝑓𝑅𝐹

 

(5.2) 

Where, fc is the central transmitted frequency, BW is the bandwidth of the 

pulse, |𝑈(𝑓𝑅𝐹 − 𝑓𝑐)|2 is the Fourier transform of the pulses complex envelope, and 

𝑃(𝑓𝑅𝐹 ,
𝑓𝑑𝑓𝑅𝐹

𝑓𝑐
) is the 2D frequency spectrum with the spectral scaling applied. Note that in 

the numerator, the contribution to the integral at fRF = fc is the standard 1D Fourier 

transform and that RF frequencies greater than fc will be compressed while frequencies 

less than fc will be expanded [7]. An alternative way of viewing Equation 5.2 is as an 

integration along radial lines of the frequency plane passing through the origin. In this 

sense, the computation carried out is mathematically analogous to the procedure of 

velocity matched spectrum analysis, albeit computationally distinct. If this integral was 

computed without the spectral scaling present, it would be equivalent to integration of the 

2D frequency spectrum along the RF axis which would result in significant spectral 

broadening.  

The multifrequency Doppler showed considerable promise when first proposed with 

Loupas & Gill [7] finding a relative improvement in SNR of between 70 – 360%. The 

technique was also compared to another method for reduction of spectral noise; Welch’s 

method. A comparison between a 1D Fourier analysis with no additional processing, a 
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1D Fourier analysis incorporating Welch’s method, and a 2D Fourier analysis 

incorporating multifrequency Doppler is given in Figure 5.6. It can be seen in Figure 5.6 

that out of the three Fourier analysis techniques presented, the multifrequency Doppler 

approach resulted in the lowest spectral variability while the standard 1-dimensional 

Fourier analysis had the greatest spectral variability. Welch’s procedure exhibited an 

intermediate level of spectral variance which is expected as this procedure is a well-

known method for the improvement in spectral estimates. It follows from this illustration 

therefore that multifrequency Doppler has the potential to provide an even greater 

improvement to spectral estimates. 

 

Figure 5.6: A comparison between 8 Doppler spectra computed using (a) 1D Fourier 

analysis with no additional processing, (b) 1D Fourier analysis incorporating Welch’s 

method, and (c) 2D Fourier analysis incorporating multifrequency Doppler – adapted 

from Loupas & Gill [7]. 

5.2. Methodology 

5.2.1. Multifrequency UltraFast Doppler spectral analysis (MFUDSA) 

algorithm 

The data used for the analysis in this work was acquired using a dedicated research 

package installed on the Aixplorer ultrasound scanner (Supersonic Imagine, France) 
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which allowed extraction of raw in-phase quadrature (IQ) data. These data were intended 

by the manufacturer for use in autocorrelation computation for colour Doppler and sample 

code was included with the research package, written in MATLAB (Mathworks, USA) 

for this computation. This data format was suitable to undergo multifrequency Doppler 

analysis and with some modifications to the sample code it would then be possible to 

perform multifrequency Doppler analysis on UltraFast Doppler data. This required a new 

processing algorithm to be developed which could be used in conjunction with UltraFast 

data, the multifrequency UltraFast Doppler spectral analysis (MFUDSA) algorithm, 

which was developed and evaluated in this project, the details of which are provided in 

the following paragraphs. 

The MFUDSA algorithm was designed to take raw IQ Doppler data from the Aixplorer 

system and perform the necessary post-processing to produce a velocity output. A block 

diagram of the new developed MFUDSA algorithm is illustrated in Figure 5.7. 
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Figure 5.7: A block diagram of the steps in the MFUDSA algorithm. The diagram is 

colour coded to correspond to the different stages in the cycle: blue items are processing 

operations taken on the data in the time domain; green items are processing steps taken 

in the frequency domain; yellow items are signal filtering; and purple corresponds to 

the output information sent to the user. 

The raw data was exported from the Aixplorer as a .DATA file format. This file included 

not just the measurement data but also the header data with information about the 

transducer and transmission settings for code optimisation. The first step was to extract 

the raw IQ data from this file. The IQ data would consist of a 1D vector of alternating 

pulses which would be reshaped into two matrices of dimensions x*y*t where x and y are 

the horizontal and vertical resolutions of the imaging field in pixels and t is the number 

of frames of the acquisition. These two matrices, I and Q, were the demodulated received 

signals from the imaging field. As the demodulation took place using on board processing, 

it was not necessary to perform that procedure in the algorithm. The I and Q matrices 
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were then linearly combined in the form IQ = I + Qi where i was the imaginary number. 

A representation of this new matrix, IQ, is given in Figure 5.8.  

 

Figure 5.8: A representation of the combined IQ data form exported from the scanner 

in the form cos(S) + i*sin(S) where S is the original received signal and i is the 

imaginary number. This data was then analysed using in-house developed MATLAB 

code. 

This data matrix was considerable in size, often approaching 1 GB, and had to be held in 

RAM for use in computations. However, a large portion of it was not significant for the 

purposes of Doppler processing as only the signal from inside the vessel was important. 

An improvement in processing speed was achieved by discarding unnecessary 

components as early in the procedure as possible. This was achieved by displaying a 

single frame of the acquisition and having a user input the start and end points of the 

vessel in the field of view. The vessel lumen diameter was 7 mm which corresponded to 

70 pixels in the matrix, it could therefore be assumed that if the user specified points 
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within the vessel for the start and end points, the program could automatically discard any 

data with an index number 70 pixels lower than the lowest y co-ordinate specified and 

any data with an index number 70 pixels greater than the highest y co-ordinate specified. 

This assumption would be valid provided that the imaging region did not shift 

significantly during the acquisition, which in itself, would be grounds to discard a dataset, 

so this was taken as a reasonable assumption. The segmentation of the data was also used 

to isolate individual “pulse lines” to continue the processing of the algorithm. While these 

vertical lines were not true “pulse lines” as in traditional pulse wave Doppler (due to the 

plane wave acquisition utilised in UltraFast Doppler) they were taken to be analogous to 

pulse lines for ease of computation. The vessel was split into a number of vertical vectors 

and each vector was treated as a single pulsed wave Doppler acquisition. For each vector, 

there was a number of vectors each holding a range of ultrasound echoes where each 

vector represented a time point. The total number of frames in the acquisition determined 

both the frequency/velocity resolution of the output spectrum and the temporal resolution 

of the sonogram that would be produced (i.e. the product of number of frames used in the 

Fourier transform and the number of time points in the resulting sonogram could not 

exceed the total number of recorded frames). This section assumes a steady flow regime 

so that every acquisition frame can be utilised for generating the Fourier spectrum for 

now, generating sonograms which will be described later in this chapter. The range gate 

was digitally specified by selecting a pixel width of the gate and it was then iteratively 

moved through each vector using a “for” loop. The process of data segmentation is 

illustrated in Figure 5.9. 
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Figure 5.9: The segmentation process for the IQ data matrix. Considerable memory 

savings were made by discarding irrelevant data corresponding to areas of the imaging 

region outside the vessel lumen. This sectioning was also used to extract individual 

“pulse lines” for processing. 

This data was then windowed in the time domain. This is a standard computation 

performed in signal analysis before implementing a Fourier transform. The purpose of 

this step was to truncate the signal close to the start and at the endpoints, as leaving them 

intact would have led to the formation of sidelobe artefacts in the frequency domain. An 

example of a typical time domain window is presented in Figure 5.10. Four different 

windowing functions were tested to determine the most appropriate function to use: 

Gaussian, Hamming, Triangular, and Bartlett. Using a windowing function results in a 

decrease in amplitude of the sidelobes while increasing the FWHM of the main peak in 

the frequency space. A comparison was made to qualitatively determine which filter 

provided the best reduction in sidelobe amplitude while preserving the frequency 

resolution of the main peak. Commented [AM27]: Added based on Kumar’s comment 
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Figure 5.10: An example of a simple time domain windowing process. This procedure 

truncates the signal and reduces the effect of sidelobe artefacts in the frequency space. 

The data then underwent a 2D discrete Fourier transform. As discussed previously, the 

2D Fourier transform generates a frequency space bounded by the transmitted 

radiofrequency in MHz and the Doppler shift frequency in kHz. The spectrum forms in 

the shape of an ovular dispersion where the slope of the major axis is proportional to the 

velocity of the scatterers and the dispersion repeats infinitely in the frequency space. Once 

in the frequency domain, a low pass filter was applied on the data to remove the PRF. In 

traditional ultrasound processing architecture, the low pass filter would be applied prior 

to the signal demodulation, however the raw research mode data does not pass through 

any form of filtering prior to export so the filter had to be applied after importing to the 

programme. The reason why the filtering was carried out at this step and not earlier in the 

process is a matter of convenience as frequency-based filtering was trivial when the signal 

was converted to frequency space. Once the filter was applied, the Doppler spectra was 
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ready for multifrequency processing. The spectrum at this point resembled the illustration 

of a typical spectrum in Figure 5.11. 

 

 

Figure 5.11: A typical Doppler spectrum produced by a 2D discrete Fourier transform 

after low pass filtering was used to remove the PRF. 

The spectral scaling was then applied to the data. The purpose of this step was to “realign” 

the spectrum so that the integration would correctly sum the individual spectra. Previous 

experiments had been carried out to determine the bandwidth of a particular pulse for a 

number of transmission properties (see Chapter 3). Using the known bandwidth of the 

pulse, a scaling factor could be applied such that a frequency could be scaled according 

to the ratio fRF/fc. This process could be thought of as moving a spectrum of a given 

radiofrequency up or down proportionally to its value relative to the central transmitted 

frequency so that a horizontal integration would pass through all the spectra without 

broadening the velocity spectrum. The integration was then applied using the bandwidth 

of the pulse as the limits of integration. This produced a velocity spectrum that 
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represented the entire acquisition period, this was not a concern for steady flow but for 

pulsatile flow temporal resolution would have to be added.  

5.2.2. Simulation Doppler data for algorithm validation 

In order to fully validate each step of the newly developed technique, the algorithm was 

tested at different points. A block diagram of this procedure is included in Figure 5.12. 

The first validation point was testing the algorithm using simulated flow data and to this 

end a script was written in MATLAB to generate simple simulated flow data. The script 

was designed so that it could generate steady and pulsatile flow data and would output a 

matrix of IQ data which could be read by the MFUDSA algorithm.  

 

Figure 5.12: Validation steps of the MFUDSA algorithm 

The resulting data contained only a single Doppler shift frequency (which could vary in 

time) which was not suitable for Multifrequency analysis. In order to introduce the extra 

data associated with a bandwidth of frequencies two for loops were constructed which 

would calculate the appropriate Doppler shift frequency for a range of frequencies in the 

pulse bandwidth and then superimpose the signals onto one another. Despite its relatively 

short length, this code required a considerable amount of memory and time to run. As 

such, the resulting simulated signal was only generated for one velocity setting and saved 

to avoid running this code if possible. 
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5.2.3. Experimental data 

The second validation point was carried out using the raw Aixplorer Doppler data 

generated and acquired using an in vitro set-up utilising a set of flow phantoms, the design 

of which was specified in Chapter 3. These phantoms were connected to a magnetically 

driven cavity style pump head (Cole Parmer, Walden, UK) used to pump the blood 

mimicking fluid through the flow circuit coupled to a direct current servo motor 

(McLennan Servo Suppliers Ltd., Surrey, UK).  The motor was driven by a servo 

amplifier (Aerotech Ltd, Berkshire, UK), multifunctional I/O board (National 

Instruments, Austin, TX, USA) and a computer controller program developed in 

LABVIEW (National Instruments, Austin, TX, USA) was used to output the required 

velocities (calibrated using timed weight collection). The BMF was degassed and was 

pumped through the phantoms and flow circuit for 1 hour prior to measurements to ensure 

no air bubbles remained. 

In order for fully developed laminar flow to be present, the flow must follow a straight 

path for a certain distance known as the inlet length, L, defined as: 

𝐿 = 0.04 ∗ 𝑑 ∗ 𝑅𝑒 (5.3) 

where d is the diameter of the vessel, and Re is the Reynolds number defined as:  

𝑅𝑒 =  
𝜌𝑑𝑣

𝜂
 

(5.4) 

 

where ρ is the density of the BMF, v is the mean velocity of the flow, and η is the viscosity 

of the BMF. Taking ρ = 1.037 g cm-3 and η = 0.041 g cm-1 s-1 for the BMF from previous 

work [108], and taking the mean velocity as half the maximum velocity, v = 24 cm s-1 

with a diameter of d = 0.7 cm, this gives a required inlet length of L = 11.90 cm. To ensure 
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these conditions were met, the inlet length used was twice the minimum required inlet 

length; for all flow experiments the phantoms were set up to have an inlet length of 24 

cm.  

A flow resistor was connected to the outlet of the flow circuit to replicate the resistance 

of the vascular bed and thereby, damp out any reflections from the tubing connections. A 

steady flow velocity was specified at 30 cm s-1 and was determined to have a systematic 

uncertainty of ± 1.3 cm s-1. Doppler data were acquired from the Aixplorer scanner with 

a range of transmission parameters to determine the optimal settings for the MFUDSA 

algorithm. The transmission parameters which can be controlled in research mode are: 

transmit frequency, pulse length (transducer half-cycle), PRF, and data length (number 

of frames). The depth could also be specified although this quantity was always 

minimised to reduce the data file size as much as possible. 

5.2.4. Optimisation of MFUDSA algorithm 

The performance of the MFUDSA algorithm could be optimized depending on the desired 

application and this was achieved through a number of factors, of which the transmission 

parameters played a key role. It was previously established that the best improvement in 

velocity resolution and SNR was achieved with a pulse length setting of 4 half cycles. 

Therefore, this value was used for all optimisation acquisitions. For each varying 

transmission parameter, experimental data was acquired using flow phantoms as 

described previously. The data was analysed in MATLAB. The values for transmit 

frequency tested were: 5 MHz, 5.6 MHz, 6.4 MHz, 7.5 MHz, 9.5 MHz, and 11.25 MHz, 

as these were the only transmission frequencies available for the SL15-4 transducer in 

research mode. In principle, it was expected that the higher the transmit frequency was, 

the better the velocity interrogation would be which would improve results. The 

bandwidth of the transmit pulse also depended on the transmit frequency, with higher 
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transmit frequencies having greater absolute bandwidths; however, the bandwidths were 

proportionally smaller compared to their transmit frequency. The PRF had a known effect 

on of velocity spectra. It was not expected to have an effect on the MFUDSA algorithm 

provided it was above the Nyquist threshold, but for completeness it was varied across 

the range of possible frequencies of the scanner (0.5 – 12 kHz). The data length was also 

varied across the total possible range (500 – 2000 data points). It is worth noting that, 

while not important for generating a single velocity output for steady flow, the data length 

is very important for generating time-varying sonograms and for variable velocities in 

general. This is because the total time of the acquisition is equal to the data length divided 

by the PRF which means that in order to resolve a full cardiac cycle the PRF must be 

decreased or the data length increased. 

Another optimisation process was the windowing function as applied in the time domain. 

There were a variety of functions to choose from depending on the desired application 

and for the purposes of this optimisation, 4 functions were tested. The functions tested 

and their specific profile and features are outlined in Table 5.1. To test the effect of the 

windowing functions on the Doppler spectra, 5 datasets were acquired using a Doppler 

string phantom with a set maximum velocity of 10 cm s-1 so as to ensure there would be 

no spread in velocity and for each dataset, each windowing function was applied. The 

effect of the windowing function was taken as the amplitude of the first side lobe relative 

to the main lobe.   
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Table 5.1: Windowing functions and their respective profiles and features 

Function Approximate 

shape 

Features 

Gaussian Gaussian Based on the Gaussian distribution. The signal is truncated 

based on its position relative to the target section filtered.  

Hamming Gaussian Similar to the Gaussian window but the coefficients are 

specified to specifically target the nearest sidelobe 

preferentially. 

Triangular Triangular The signal is truncated linearly based on its position 

relative to the target section filtered.  

Bartlett Triangular Similar to the triangular window but with preferential 

discrimination of the first sidelobe. 

 

Once this optimisation procedure was completed, the performance of the MFUDSA 

algorithm was assessed using research data. A flow phantom was connected to the pump 

system as described previously and data was acquired for flow velocities of 10, 20, 30, 

40, and 50 cm s-1 using the optimised parameters. The IQ data was then analysed using 

1D Fourier analysis, 1D Fourier analysis incorporating Welch’s method, and 2D Fourier 

analysis with the MFUDSA algorithm. For each method, the SNR and the FWHM of the 

main peak were measured. 

Finally, the MFUDSA algorithm was modified to produce a sonogram as its output. This 

was achieved by splitting the total signal in time into a number of segments, where each 

segment would be treated as a separate signal by the algorithm. The resulting velocity 

spectra would then form the time points of the sonogram.  
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The sonogram was tested first with simulated data. Two simulated datasets were 

generated, the first featured a linearly increasing Doppler frequency corresponding to a 

velocity range from -20 cm s-1 to 20 cm s-1. The second set of simulated data had the 

Doppler shift varying as a cosine wave with peak Doppler shifts corresponding to 

velocities of -40 cm s-1 to 40 cm s-1 and was simulated to feature the reflections of a 

bandwidth of transmitted frequencies to test the multifrequency analysis of the algorithm. 

The sonogram function was then tested using real data acquired from a Doppler string 

phantom (CIRS, USA). A string phantom was used to eliminate the velocity gradient 

associated with a fluid flowing in a finite vessel so the sonogram could be tested in a 

simple environment prior to phantom testing. The string phantom was set with a pre-

generated pulsatile waveform corresponding to paediatric umbilical blood flow. This 

waveform was selected as it had a peak velocity of 45 cm s-1 which closely resembles the 

renal artery peak velocity of 50 cm s-1. The string phantom data was acquired in research 

mode with a transmit frequency of 5 MHz, a pulse length of 4 half cycles, a PRF of 4 

KHz, and a data length of 2000. 

5.3. Results 

5.3.1. Transmission parameters 

The results for the investigation into the effect of transmit frequency are presented as 

boxplots in Figure 5.13, so that the range of velocity output can be visualised. As the 

transmit frequency increased, there was a slight increase in SNR which peaked at 5.6 

MHz, followed by a steep decline in the frequencies above this level. The effect of PRF 

on the MFUDSA algorithm was also investigated and found to have no effect on the 

velocity output, other than affecting the scale of the Doppler frequency axis. A greater 

PRF resulted in the Doppler frequency axis lengthening corresponding to an increase in 
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the maximum detectable velocity according to the Nyquist criterion. The data length of 

the pulse did not have a detectable effect on the velocity output. 

 

Figure 5.13: MFUDSA algorithm SNR with respect to transmit frequency  

5.3.2. Windowing functions 

The windows used for this analysis are presented in Figure 5.14. Each window was tested 

to determine its effect on the Doppler spectra. The results are included in Table 5.2. 

The results demonstrated that while there is a significant decrease in sidelobe amplitude 

as the windowing functions are applied, there was a trade-off with decreasing velocity 

resolution as more aggressive windowing functions were applied. 
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Table 5.2: Results of the analysis of windowing functions effect on sidelobes 

Function First side lobe amplitude 

(dB) 

Main peak FWHM (cm 

s-1) 

No Window -15 ± 2 0.76 ± 0.04 

Gaussian -53 ± 7 2.18 ± 0.06 

Hamming -38 ± 4 1.57 ± 0.06 

Triangular -30 ± 3 1.27 ± 0.05 

Bartlett -26 ± 2 1.21 ± 0.03 

 

 

 

Figure 5.14: The windows used in this analysis 

5.3.3. Performance of the optimised MFUDSA algorithm 

Following the optimisation of the MFUDSA algorithm, the performance relative to other 

analysis methods was tested. An example of the typical output for this test is included in 

Figure 5.15. It was found that the overall improvement to SNR from the MFUDSA 
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algorithm compared to the 1D analysis approach was a factor of 6.21 ± 0.79 compared to 

the improvement from the Welch’s method of a factor of 1.38 ± 0.65. It was also found 

that the overall reduction in the main peak FWHM (which was taken as a measure of the 

velocity resolution) was 1.26 ± 0.0014, compared to Welch’s method which showed a 

typical reduction in velocity resolution by a factor of 1.04 ± 0.003 due to the spectral 

averaging it employs. The improvements in SNR and velocity resolution brought about 

by the MFUDSA algorithm were found to be independent of velocity and were tested for 

significance using a paired t-test (p < 0.05). The null hypothesis of the tests was that the 

improvement of the parameters was not significant and the alternative hypothesis was that 

the improvements were significant. For the improvement in SNR and velocity resolution, 

it was found that these results were statistically significant (p = 0.0217 and p = 0.028 

respectively).  
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Figure 5.15: An example comparison between 1D Fourier analysis (a), 1D Fourier 

analysis using Welch’s method (b), and MFUDSA analysis (c). 
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5.3.4. Generation of Doppler sonogram from velocity outputs of the 

MFUDSA algorithm 

The simulated data was utilised to construct sonograms to test the algorithms ability to 

detect temporally varying velocity.  The sonogram outputs for the linearly varying 

velocity and the cosine varying velocity data are presented in Figures 5.16 and Figure 

5.17. Additionally, a sonogram was produced using the research data acquired from a 

Doppler string phantom with a paediatric umbilical waveform with peak velocity of 45 

cm s-1. The resulting sonogram is presented in Figure 5.18.  

Figures 5.16 and Figure 5.17 show well produced Doppler spectra and clearly illustrated 

the time varying nature of the simulated data. Conversely, Figure 5.18 does not represent 

a coherent Doppler spectrum, likely due to the extreme limitation in data length imposed 

by the Aixplorer scanner. While the simulated data could have extremely long data 

lengths, the research mode data was limited to 2000 points which had to be budgeted 

between the Fourier transforms and the sonogram. By comparison, the sonogram in 

Figure 5.17 had a data length over 10 times greater than the maximum limit imposed by 

the Aixplorer. To verify this was the cause, another sonogram was made from simulated 

data with the data length limited to 2000 points. This sonogram is displayed in Figure 

5.19. The sonogram displayed a similar level of incoherence as was seen in Figure 5.18. 

It can be more clearly seen in Figure 5.19 that at shorter data lengths, the Doppler spectra 

suffered from considerable aliasing and loss of velocity information. This seemed to 

confirm that when the data length is too small, a coherent sonogram cannot be generated. 
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Figure 5.16: Sonogram made using linearly varying simulated Doppler data. The data 

length was 15000 and the PRF was 5 kHz. 

 

 

Figure 5.17: Sonogram made using cosine varying simulated Doppler data analysed 

with the MFUDSA algorithm. The data length was 21000 and the PRF was 7 kHz. 
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Figure 5.18: Sonogram made using research mode data. The data length was 2000 and 

the PRF was 4 kHz. 
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Figure 5.19: Sonogram made using cosine varying simulated Doppler data analysed 

with the MFUDSA algorithm. The data length was 2000 and the PRF was 4 kHz. 

5.4. Discussion 

It was found that as the transmission frequency increased, the SNR of the MFUDSA 

algorithm outputs reached a peak at 5.6 MHz before rapidly falling off. As the frequency 

increased, so did the level of velocity interrogation. Furthermore, the pulse was 

increasingly attenuated by the phantom material to the point where the resulting spectrum 

was not separable from the background noise. Additionally, the higher transmit 

frequencies have been observed to feature broader frequency bandwidths leading to more 

Doppler spectra, which can be combined using the MFUDSA algorithm leading to a 

reduction in the spectral variance. This would indicate that the ideal frequency setting is 

one which is high enough to produce the gain in SNR associated with both additional 

velocity interrogation and greater application of the MFUDSA algorithm while not being 
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so high as to suffer from attenuation. This is similar to what was found by Loupas & Gill 

[7]. In their work on multifrequency Doppler, they propose a quality factor for the 

analysis, Q, defined as in Equation 5.5. 

 

𝑄 =  
𝑓𝑐

𝐵𝑊√ln (2)
 

(5.5) 

Where fc is the central transmitted frequency, and BW is the pulse bandwidth. It was found 

by Loupas & Gill that for a 1D Fourier analysis, the SNR of the output spectrum was 

independent of Q factor, while the 2D Fourier analysis exhibited an inverse relationship 

between the SNR and the Q factor. Based on these results, it would be more accurate to 

state that the ideal transmission frequency for use in the MFUDSA algorithm should be 

sufficiently low while providing the broadest possible bandwidth for analysis. Based on 

the results of this study, this value was taken to be 5.6 MHz.  

The PRF and the data length of the pulse at first appeared not to be significant in the 

generation of Doppler spectra (provided the PRF was sufficient to avoid signal aliasing). 

However, it was found that they played an important role in the generation of sonograms. 

The sonogram could be thought of as a 2D matrix, where the rows corresponded to 

velocity data and the columns corresponded to different Fourier transforms representing 

different times. Therefore, the data length of a pulse was divided between these 

dimensions such that the product of the velocity spectrum length and the number of time 

points in the sonogram was less than the data length. In addition, the total time that the 

sonogram could cover was limited to the data length divided by the PRF. This meant that 

using the MFUDSA algorithm with the Aixplorer research mode to analyse pulsatile flow 

is effectively not possible with the current limitations imposed on the data length.  
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The windowing functions tested for use in the MFUDSA algorithm were selected on the 

basis of the least interference in the velocity resolution as possible. This was an important 

consideration because more aggressive suppression of sidelobes can result in spectral 

broadening. Of the windows tested, the Gaussian window had the largest effect on the 

reduction of sidelobes, it also had a correspondingly large effect on the velocity 

resolution. The Hamming, Triangular, and Bartlett windows had similar levels of sidelobe 

suppression. Of these, the Bartlett window had the smallest effect on the velocity 

resolution of the spectra. Based on these results, the Bartlett window was selected as the 

ideal windowing function due to its relatively large sidelobe suppression while 

maintaining as high a velocity resolution as possible. This was seen as an important 

quality as, ultimately, the WSS measurement would rely on a high degree of velocity 

resolution. 

The performance of the MFUDSA algorithm was tested against the performance of a 1D 

Fourier analysis with and without applying Welch’s method. It was found that the 

MFUDSA algorithm had an overall improvement relative to a standard 1D Fourier 

analysis of a factor of 6.21 ± 0.79 for SNR and an improvement of a factor of 1.04 ± 0.003 

for the velocity resolution. Loupas & Gill found a relative improvement of between 70% 

and 360% for their multifrequency method relative to 1D Fourier analysis. A potential 

reason for the discrepancy in these results was the difference in bandwidth size. Loupas 

and Gill tested a series of pulse bandwidths for multifrequency analysis with the largest 

bandwidth being equal to half the corresponding transmit frequency. In this work, the 

bandwidth for the optimised transmission settings was equal to 0.72*ft. This means that 

for this analysis there was a larger range for integration in the frequency domain.  

The code written for the generation of sonograms produced accurate time varying velocity 

representations when utilising simulated data, however, it was unable to generate a 
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coherent Doppler spectrum for the research data. This was determined to be due to a 

limitation of the Aixplorers research mode where the maximum data length of a single 

acquisition is 2000 points. This 2000 data point limit did not provide enough Doppler 

data to have both a coherent Doppler spectra for each time point in the sonogram and 

avoid aliasing of the velocity data. This is likely due to a hardware limitation where only 

a certain amount of data can be held in the buffer at once. As stated previously, despite 

not being long enough for a sonogram to be generated, a 2000 point raw IQ data file from 

the Aixplorer was very large (on the order of 1GB). In order to match the length of the 

simulated data, the maximum storage of the memory buffer on the Aixplorer would have 

to be an order of magnitude larger. A potential solution to this issue would be acquiring 

multiple acquisitions through the use of triggering. While it would not be possible to 

acquire each set of IQ data sequentially as the buffer needs to be emptied between 

acquisitions, it could be possible to acquire each dataset such that the acquisition time of 

each dataset is known and the trigger position is moved forward in the cardiac cycle by 

that time interval between acquisitions. However, if this procedure was implemented, it 

may still be difficult to concatenate the resulting data files as they are not in a standard 

text readable format. This means that it may be necessary to manually concatenate the 

data files or otherwise perform this step during analysis. This would put considerable 

strain on off-board processing hardware with at least 10GB of RAM required just to hold 

the data being concatenated. However, were this method built into the scanner itself, 

considerable memory savings could be made through the use of a similar object to the 

colour box used in colour flow imaging mode whereby the total area of the imaging region 

being processed could be limited to just the vessel and its immediate surroundings.  

Other methods in the literature to achieve spectral improvements in Doppler 

measurements include the work carried out by Loupas et al. with 2-dimensional 
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autocorrelation [116,117]. This work followed on from the multifrequency Doppler work 

proposed in [7] which formed the basis of the MFUDSA algorithm, but unlike in the 

current study, which focuses on spectral Doppler, the further work by Loupas et al. 

focused on improvements in colour Doppler in the form of a 2D broadband autocorrelator.  

The first study, [117], provided a comparison between the proposed 2D autocorrelator 

and two other established velocity estimators, namely; the conventional 1D autocorrelator 

and crosscorrelator. These techniques were taken as representative of the standard 

implementations of phase-domain velocity estimation techniques and time-domain 

velocity estimation techniques respectively. Loupas et al. describes the 1D autocorrelator 

as averaging the frequency estimates along the ensemble axis (i.e. slow time or the axis 

of the Fourier space associated with the PRF) while the 2D autocorrelator averages the 

frequency estimates along both the ensemble axis and the depth axis (i.e. fast time or the 

axis of the Fourier space associated with transmission frequency). Loupas et al. goes on 

to describe the crosscorrelator, which for some ideal cases (e.g. a single velocity 

component with a backscatter signal free of phase discontinuities) is mathematically 

equivalent to the 2D autocorrelator. However, the crosscorrelator differs from the 

autocorrelators in that it operates on successive RF returns and not the same signal line at 

a later time. The three techniques were compared using simulations to document 

differences caused by varying velocity spread, range gate length, ensemble length, noise 

level, and transmission bandwidth. The 1D autocorrelator had the poorest performance 

with extremely low precision and accuracy compared to the other techniques. While the 

2D autocorrelator and the crosscorrelator behaved similarly under low-noise conditions, 

the 2D autocorrelator provided more precise results under high noise conditions. 

The second study, [116], analysed the performance of the 2D autocorrelator relative to 

the 1D autocorrelator using experimentally derived data in vitro. However no comparison 
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was made to the crosscorrelator with these data as the procedure could not be 

implemented due to the system having an insufficient sampling rate to allow for time-

domain RF processing. This study presented similar conclusions to the previous study, 

with the 2D autocorrelator provided increased accuracy and precision over the 1D 

autocorrelator. This was concluded to be due to the 2D autocorrelators ability to 

compensate for random fluctuations in the Doppler spectrum through spectral averaging. 

5.5. Conclusion 

This chapter focused on the optimisation of the various transmission parameters for the 

acquisitions in the Aixplorer research mode as well as their effect on the output of the 

MFUDSA algorithm. It was determined that the ideal transmission parameters are as 

follows: The transmit frequency had an optimal value of 5.6 MHz with a pulse length of 

4 transducer half cycles, the optimal PRF was the minimum value possible without 

causing aliasing and the optimal data length was the maximum possible value.  

Even when using these optimised settings, a time varying sonogram may not be possible 

to generate due to the extreme limitations in data length imposed by the Aixplorer. This 

was attributed to a hardware limitation and a potential solution was proposed through 

triggering, although this resolution was not without its own limitations. Despite this, the 

improvements made to the velocity output were considerable, with an improvement of a 

factor of 6.21 ± 0.79 for SNR and an improvement of a factor of 1.04 ± 0.003 for the 

velocity resolution. This indicated that the MFUDSA algorithm provided a significant 

reduction in spectral variance which resulted in higher precision for all velocity outputs. 

The reason why the multifrequency Doppler approach was not adopted on a wide scale 

was mainly an issue of computational complexity. Loupas & Gill determined that for an 

N point fast Fourier transform, the time available for calculations to generate a real-time 
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display is N/PRF, this implies that each N point Fourier transform must be completed 

within 1/(2*PRF) seconds [7]. For small values of N this is reasonably achievable but 

rapidly becomes unreasonable on integrated circuits. When further developing this 

technique, Loupas et al. instead branched into autocorrelation methods to allow for real 

time display of a wide variety of Doppler conditions [116,117]. With new digital 

technology and the incredible processing speeds of cutting edge scanners, such as the 

Aixplorer, the computation of 2D Fourier analysis becomes trivial. Additionally, the 

advent of UltraFast scanning on the Aixplorer allows for full quantification of velocity 

in the entire imaging region instantaneously. This dramatically improves the potential of 

the MFUDSA algorithm for a wide variety of Doppler conditions but, in particular, it 

makes it an ideal candidate for the evaluation of WSS.  
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Chapter 6: Comprehensive flow 

experimentation 
Some aspects of the methodology of this chapter have been accepted for publication in Physica 

Medica [119].  

6.1. Introduction 

This chapter describes the culmination of the previous chapters. The chapter will outline 

the use of the multifrequency UltraFast Doppler spectral analysis (MFUDSA) algorithm 

on a calibrated and optimised Aixplorer ultrasound scanner (Supersonic Imagine, France) 

for examining the wall shear stress (WSS) of a number of walled renal artery flow 

phantoms of varying vessel wall stiffness.  

It has been previously discussed that using parabolic or Womersley profile assumptions 

to simplify the calculation of WSS can lead to errors due to the assumptions of 

axisymmetric and fully developed flow which is not necessarily the case for all vessels. 

In order to validate the proposed WSS calculation technique, it was tested in comparison 

to a standard pulsed wave (PW) Doppler approach and the parabolic estimation method 

outlined by Katritsis et al. [13]. Phantoms of three characteristic vessel stiffnesses were 

connected to a pump network containing blood mimicking fluid and examined using the 

three methods for measuring WSS.  

Previous works in the literature have approached the problem of the validation of new 

diagnostic techniques in a number of ways. Methods which model the complex flow 

behaviour of blood in regions of irregular vessel geometry are common, typically utilising 

numerical predictions of scatterer behaviour through computational fluid dynamics [120]. 

Once established, the moving scatterers can be used to generate simulated backscattered 

ultrasound  signals through software such as Field II [121,122]. Intuitively, the 

advantages of simulation are clear: the reduced time and financial costs over construction 
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of a complex experimental apparatus, the ease of alteration of test parameters, and the 

perfect reproducibility between experiments. A simulation cannot provide ground truths, 

however, as it limited by the assumptions and pre-existing experimental knowledge of 

the user. A comprehensive phantom study, while costly, can provide a level of certainty 

in its results which is absent in simulations. For this reason, when simulations are utilised, 

it is common to verify the results using experimental methods [123,124]. In the previous 

chapter, simulations were used to verify the effectiveness of the MFUDSA algorithm, 

however this chapter will explore the use of robust anatomically realistic flow phantoms 

to verify with certainty if the algorithm is capable of providing an improved measurement 

of WSS in vitro. 

6.2. Methodology 

6.2.1. Phantoms 

The phantoms used for this work were produced using the methods outlined in Chapter 

3. As stated previously, the most recent literature has estimated healthy arterial stiffness 

to be in the range of 34.9 – 83 kPa [65,67] and in the 116 – 751 kPa range for diseased 

vessels [66,67]. Three characteristic vessel stiffnesses were selected for the phantom 

production using the PVA-c freeze thaw cycling technique. These included: 60 kPa which 

corresponds to a healthy artery; 110 kPa which corresponds to an early disease state; and 

320 kPa which corresponds to an intermediate diseased artery. A higher “late-stage” 

vessel stiffness was not selected as it was believed that the impact of the WSS technique 

largely lies in its potential as a screening tool prior to the formation of other disease 

indicators such as arterial stenoses. 

Initially, 3 vessels were produced of each characteristic stiffness and embedded in TMM, 

yielding 9 phantoms. As the experiments progressed, the phantoms were found to burst 
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under extended use. As a result, a number of additional phantoms were produced to ensure 

a reserve was available in the case of phantom failure. In total, 5 additional phantoms 

were produced for the 110 kPa and 320 kPa stiffnesses and 3 additional phantoms were 

produced for the 60 kPa stiffness, bringing the total to 22 phantoms. The geometric 

accuracy was tested for each vessel produced. For each batch of PVA-c produced, in order 

to ensure the batch was within expectations, test samples were produced and set aside for 

acoustic and mechanical testing. The procedures for each of these tests are outlined in 

Chapter 3. 

6.2.2. Pump network 

The phantoms were connected to the pump network using PVC tubing and plastic 

couplers. The pump network was perfused with blood mimicking fluid and driven as 

described in Chapter 2. As described previously, the pump head was controlled using a 

custom programme written in LABVIEW (National Instruments, Austin, TX, USA). This 

code was modified to allow for custom waveforms to be inserted in place of a single 

constant voltage, allowing for a transition from steady flow to pulsatile flow. The 

waveform used in pulsatile flow experiments was recorded using Doppler ultrasound 

from a healthy volunteer and had a corresponding peak systolic centreline velocity of 48 

cm s-1. When used in steady flow mode, the pump was set to a constant voltage 

corresponding to a continuous centreline flow rate of 50 cm s-1. 

In order for fully developed laminar flow to be present, the flow must follow a straight 

path for a certain distance known as the inlet length, L, defined in Equation 5.3. As 

discussed previously, to ensure these conditions were met, the inlet length was set to 24 

cm for all flow experiments. Data was acquired for steady state and pulsatile flow 

regimes, which was necessary as the MFUDSA algorithm was incapable of generating a 

sonogram with research data due to the data point length limit of the Aixplorer scanner, 
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as described in Chapter 4. This meant that the MFUDSA algorithm could be used to 

examine constant flow velocities but not time-varying flow.   

6.2.3. Data collection 

The data required to perform a comparative analysis between the three techniques to be 

tested was collected using the Aixplorer ultrasound scanner (Supersonic Imagine, 

France). For the steady flow regime, 3 forms of data were taken. Standard PW Doppler 

data was acquired using range gates to quantify the velocity profile, UltraFast data using 

on-board processing and research mode UltraFast data which could be used for the 

MFUDSA algorithm. For the pulsatile flow regime, the same data was taken with the 

exception of the research mode data which could not be used, as previously stated. 

For each form of data acquisition, two regions of interest were examined, the so-called 

“linear” region and the “curvature” region, which are illustrated in Figure 6.1. These two 

regions were out of plane with each other and, thus, could not be imaged simultaneously, 

it was therefore necessary to reposition the transducer between acquisitions to record all 

the velocities in both regions. The replacement of the transducer was done only once per 

dataset, to reduce set up errors, carried out according to the procedure outlined in Chapter 

2. 

A total of 75 datasets were acquired, 25 acquired for each vessel stiffness, as outlined in 

Table 6.1. Each dataset was analysed individually. 
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Table 6.1: Number of flow datasets acquired for WSS analysis for each vessel 

Data type Steady flow Pulsatile flow 

PW Doppler 5 5 

UltraFast Doppler 

(standard) 

5 5 

Ultrafast Doppler 

(research) 

5 n/a* 

* Analysis of UltraFast data in research mode was not possible due to the data length 

limit of the research mode buffer 

 

Figure 6.1: The “linear” and “curvature” regions of interest and the velocity 

measurement positions of the vessels 
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6.2.4. Analysis 

The Aixplorer produces 2 different types of datasets for each acquisition. These include 

the standard imaging mode data and the research mode data. In this work, data analysis 

was carried out on each dataset with an additional post processing step required for the 

analysis of the research mode data. The research mode data required additional post 

processing to determine the velocities whereas the standard mode data was already in the 

form of blood velocities. For the research mode data, the MFUDSA algorithm was applied 

with a velocity spectrum produced for each point in the vessel. A flow chart of the typical 

data analysis procedure is given in Figure 6.2. Following this step, all data could be 

treated identically. 

 

Figure 6.2: Flowchart of the data analysis procedure for standard and research mode 

Aixplorer data. 

The velocity data were loaded into MATLAB (Mathworks, USA) as matrices where the 

columns were the radial co-ordinates of the vessel and the rows were the longitudinal co-

ordinates. For the standard imaging mode data, the velocity at each matrix element was 

the average velocity recorded at the point for five points in the Doppler spectrum (in the 

case of pulsatile flow, these points were all peak systolic velocities), for the research mode 

data, the velocity displayed at each element was time averaged over the entire acquisition 

time by utilising the entire time interval in the Fourier analysis. These matrices could be 
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outputted in the form of velocity maps of the vessel for qualitative checks; however they 

did not provide direct quantitative data until further analysis was performed.  

At this point, the parabolic WSS measurement could be made using the centreline 

velocities of the velocity map matrices according to Equation 2.4. The rows of the 

velocity map matrices were then analysed using the MATLAB in-built curve fitting tool 

with a 2nd order polynomial fit. The output of this step was a series of equations 

corresponding to the velocity flow profile at each longitudinal position in the vessel. Each 

equation was differentiated using the symbolic differentiation function in MATLAB to 

get an expression for the gradient of the velocity profile. This gradient could be evaluated 

at each side of the vessel for two expressions of the wall shear rate, which was multiplied 

by the viscosity of the BMF to produce the WSS measurement. This meant that the 

parabolic WSS estimation method yielded one measurement for each longitudinal 

position while each other method yielded two measurements, one for each vessel wall. 

The WSS were analysed for the linear and curvature regions of interest with the 

expectation that flow disturbances would change the behaviour of the WSS in and after 

the curvature region. An area of particular interest was a position approximately 10 mm 

distal to the curvature which has been noted as the region where 60% of renal artery 

stenoses form [125]. For each vessel stiffness value and WSS estimation technique a 

graph of WSS with respect to longitudinal vessel position was produced. A sample value 

was taken at the same vessel position for each dataset, at the position of stenosis formation 

10 mm distal to the vessel curvature. The WSS values at this position was extracted from 

each dataset and collated. This allowed the WSS values to be averaged across all the 

datasets of each estimation technique. These WSS values were compared using a boxplot, 

which allowed for delineation between vessel stiffnesses for each WSS estimation 

technique. Finally, for each estimation technique the differences in WSS values between 
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the three vessel stiffness were analysed using a paired t-test. First a comparison between 

the low (60 kPa) and intermediate (110 kPa) vessel stiffnesses and then a comparison 

between the low (60 kPa) and high (320 kPa) vessel stiffnesses. For each test, the null 

hypothesis was that there was no significant difference in WSS values as the vessel 

stiffness increased and the alterative hypothesis was that there was a detectable difference 

in WSS values as the vessel stiffness increased.    

The WSS values were analysed to calculate the sensitivity, specificity and accuracy of 

each technique using the following formulae: 

𝑆𝑒𝑛𝑠 =
𝑎

𝑎 + 𝑏
 (5.3) 

 

𝑆𝑝𝑒𝑐 =  
𝑑

𝑐 + 𝑑
 

(5.4) 

 

𝐴𝑐𝑐 =  
𝑎 + 𝑑

𝑎 + 𝑏 + 𝑐 + 𝑑
 

(5.5) 

where Sens, Spec, and Acc are the sensitivity, specificity, and accuracy respectively, a is 

the true positive rate, b is the false negative rate, c is the false positive rate, and d is the 

true negative rate. For the purposes of this analysis, the 60 kPa vessel was considered to 

be healthy, the 110kPa vessel was considered to be in a pre-disease state, and the 320 kPa 

vessel was considered to be in a diseased state. The cut off thresholds for the detection 

rates are given in Table 6.2. It was decided that the threshold of 0.4 Pa would be used for 

a fully diseased state, while a threshold of 1.0 Pa would indicate the presence of disease 

and 3.0 Pa would indicate its absence based on values recorded in the literature [27,33].  
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Table 6.2: Specifications of diagnostic detection rate thresholds 

 WSS Value 

True positive (320 kPa detected as diseased) ≤ 0.4 Pa 

False negative (320 kPa not detected as 

disease) 

≥ 0.4 Pa 

False positive (110 kPa detected as diseased) ≤ 1.0 Pa 

False positive (60 kPa detected as diseased) ≤ 3.0 Pa 

True negative (110 kPa detected as not 

diseased) 

≥ 1.0 Pa 

True negative (60 kPa detected as not 

diseased) 

≥ 3.0 Pa 

 

6.3. Results 

The results from the range of experiments completed are represented graphically in the 

proceeding section. Figure 6.3 shows an example velocity map matrix assembled from 

sequentially moving the Doppler range gate in PW mode to acquire a map of velocities. 

Conversely, Figure 6.4 shows an example velocity map assembled for the same data using 

a single UltraFast acquisition in research mode. Note that in Figure 6.4 there is an 

approximate factor of 5 increase in radial resolution. This increase is due to the IQ data 

used in the MFUDSA algorithm which has a finer degree of resolution than the Doppler 

range gate (0.1mm compared to 1mm).  
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Figure 6.3: Example velocity map assembled using velocities recorded in PW mode by 

sequentially moving the Doppler range gate (± 0.3 cm s-1). The vessel curvature 

extended from the longitudinal position 24 – 30 mm which is indicated in red on the y-

axis. 
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Figure 6.4: Example velocity map produced using exported IQ data in with the 

MFUDSA algorithm (± 0.14 cm s-1). The vessel curvature extended from the 

longitudinal position 24 – 30 mm which is indicated in red on the y-axis. 

Using these velocity matrices, a WSS value could be calculated at each longitudinal 

position in the vessel.  Figures 6.5 – 6.8 show examples of the WSS calculated for a single 
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high stiffness dataset using the each of the techniques for the steady flow regime. The 

error bars in these figures represent 1 standard deviation of WSS variation between 

different data acquisitions for the same vessel stiffness. For each WSS curve, there is a 

section of relatively stable WSS corresponding to the linear region of the vessel, followed 

by a steep decline in WSS values at the curvature region. It is worth noting that while the 

curves all demonstrated a similar trend, the parabolic estimation technique consistently 

overestimated the WSS relative to the other techniques, by as much as a factor of 3.5. 

The area of particular interest for examining WSS, as mentioned earlier, is the point 

approximately 10 mm distal to the vessel curvature as indicated by the magenta dashed 

lines in Figure 6.5 – 6.8. To evaluate this region completely, a sample of WSS values 

from a range of longitudinal positions (35 mm – 45 mm) were taken. These WSS values 

were saved for each dataset and values of equivalent vessel stiffness and WSS estimation 

technique were grouped together. Using these data, a series of boxplots were produced 

which showed the concentration of WSS at this location in the vessel with respect to 

vessel stiffness and estimation technique used. Figure 6.9 shows the boxplots for each of 

the techniques used in the steady flow regime and Figure 6.10 shows the boxplots for 

each of the techniques used in the pulsatile flow regimes.   
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Figure 6.5: Example WSS curve using a PW velocity map 

 

Figure 6.6: Example WSS curve using a parabolic velocity map 
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Figure 6.7: Example WSS curve using an UltraFast velocity map in diagnostic imaging 

mode 
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Figure 6.8: Example WSS curve using an MFUDSA velocity map in research imaging 

mode 

 

Figure 6.9: Boxplots of WSS values for a range of vessel stiffnesses in the steady flow 

regime grouped by estimation technique. 
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Figure 6.10: Boxplots of WSS values for a range of vessel stiffnesses in the pulsatile 

flow regime grouped by estimation technique. 

Figure 6.9 shows that for each estimation technique there was a general trend of 

decreasing WSS with increasing vessel stiffness. The values were tested using a paired t-

test to determine if the change in WSS was significant. The results of this test for each 

technique are presented in Table 6.3. The results indicated that for each technique 

investigated, there was a significant change in WSS values as the vessel stiffness 

increased with one exception, namely the parabolic estimation method for the comparison 

between low and medium stiffnesses. While the majority exhibited significant changes, 

the largest degree of separability was noted for the MFUDSA algorithm which showed 

strong performance at determining the precise changes in WSS which were detectable as 

the vessel stiffness increased which also resulted in reduced uncertainty in the 

measurement. 
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Table 6.3: Results of the paired t-tests into the significance of the change in WSS with 

respect to vessel stiffness for each estimation technique (steady flow) 

Estimation technique P-value 

 Low to medium stiffness Low to high stiffness 

PW Doppler 0.045 0.032 

Parabolic Doppler 0.161 0.041 

UltraFast Doppler 

(standard) 

0.051 0.039 

MFUDSA Doppler 

(research) 

0.003 0.001 

 

Figure 6.10 shows a similar trend across the estimation techniques for pulsatile flow as 

Figure 6.9 shows for steady flow, with a clear downward trend in WSS as the vessel 

stiffness increases. There are two important distinctions, however. Firstly, the maximum 

values of WSS for the lowest vessel stiffnesses in Figure 6.10 are less than half the 

observed maximum WSS values in Figure 6.9, likely indicating that the flow does not 

reach a fully parabolic profile for the pulsatile flow regime, resulting in a flatter velocity 

profile and a lower WSS value. The second feature of note in Figure 6.10 is that the WSS 

values seem qualitatively less separable than the values in Figure 6.9. To investigate this, 

these values were also subject to a series of paired t-tests to determine the significance of 

the decrease in WSS with increasing vessel stiffness. The results of these t-tests are 

presented in Table 6.4.  

 



187 
 

Table 6.4: Results of the paired t-tests into the significance of the change in WSS with 

respect to vessel stiffness for each estimation technique (pulsatile flow) 

Estimation technique P-value 

 Low to medium stiffness Low to high stiffness 

PW Doppler 0.084 0.041 

Parabolic Doppler 0.201 0.062 

UltraFast Doppler 0.097 0.032 

 

These results show that, unlike Table 6.3, in the pulsatile flow regime, there was no 

significant difference detectable between the low and medium vessel stiffnesses. 

Although both PW Doppler and UltraFast Doppler were suggestive of significance with 

p-values only marginally above the 0.05 significance threshold. This change in 

significance between techniques was likely due to the flow regime itself, with a pulsatile 

flow producing a more fluctuating flow profile. Of the three techniques, again parabolic 

proved the weakest technique as it was unable to detect a significant difference in WSS 

values between the low and high stiffness vessels while the other two techniques could. 

This is to be expected because, as stated previously, if the flow was not fully developed 

and parabolic that would necessarily disqualify the assumptions underpinning the 

parabolic estimation technique.  

The WSS results were then tested using equations 5.3, 5.4, 5.5 to determine the 

sensitivity, specificity, and accuracy of each assessment technique. The results are 

included in Table 6.5. 
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Table 6.5: Sensitivity, specificity, and accuracy for each estimation technique for steady 

and pulsatile flow 

Technique Sensitivity Specificity Accuracy 

PW Doppler    

Steady 60% 100% 87% 

Pulsatile 40% 30% 33% 

Parabolic Doppler    

Steady 20% 100% 73% 

Pulsatile 20% 40% 33% 

UltraFast Doppler    

Steady 60% 100% 87% 

Pulsatile 60% 40% 47% 

MFUDSA Doppler    

Steady 80% 100% 93% 

 

6.4. Discussion 

The results of this work indicated that there is a clear, measurable difference in WSS 

values for different vessel wall stiffnesses corresponding to different stages of CVD. The 

first noticeable improvement of the MFUDSA algorithm over PW Doppler analysis is the 

improvement in the resolution of the generated velocity maps. This improvement can be 

seen in Figure 6.3 and Figure 6.4 which show example velocity maps generated using 

PW and MFUDSA data. In Figure 6.4 there is an increase in radial resolution by a factor 

of 5 over Figure 6.3. In principle, this degree of radial resolution is theoretically 

achievable in PW Doppler as the Doppler gate can be reduced to as low as 0.1 mm, 
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however this would not be achievable in practice as it would dramatically increase the 

scan time and would allow for the introduction of significant errors in vivo due to the 

respiratory motion of the patient. This is not a problem for UltraFast acquisitions 

however, as the full velocity information can be acquired near instantaneously in a single 

acquisition. The MFUDSA algorithm provided an additional advantage as it was possible 

to automate the process and achieve the same data at a considerably faster rate.   

The values recorded at the region of interest for the low wall stiffness value of 60 kPa, 

analogous to values seen in healthy arteries, varied in the range 3.4 – 6.2 Pa for steady 

flow and 1.3 – 2.9 Pa for pulsatile flow. These values fall within the range of what is 

considered to be normal artery WSS as determined by Malek et al. [27] who stated that 

low risk WSS values in arteries cover the range of 1 – 7 Pa while at risk WSS values are 

in the range of -0.4 – 0.4 Pa. The values calculated by Malek et al. for atherosclerosis 

prone flow conditions are also in line with the values calculated in this study with a range 

of -0.8 – 0.9 Pa for steady flow and 0.1 – 0.6 Pa for pulsatile flow. The MFUDSA 

algorithm had significantly improved performance over the other techniques and if it is 

considered alone, the values recorded for the high stiffness vessel of -0.2 – 0.3 Pa lie 

precisely within the region of at risk WSS values reported by Malek et al.  

Chatzizisis et al. [33] reported similar values of WSS for regions at risk of developing 

atherosclerosis to Malek et al., with WSS values above 3 Pa considered to be high and 

WSS ≤ 1 Pa considered to be low and at risk. Using this metric, the MFUDSA algorithm 

again performs well, clearly delineating the three stiffness levels with the low stiffness 

not at risk, the medium stiffness potentially ‘at risk’, and the high stiffness estimated to 

be at risk. By combining the values of WSS risk from Chatzizsis et al. and Malek et al. a 

metric for sensitivity, specificity, and accuracy could be developed based on the “worst-

case” scenarios of each range of WSS values [27,33]. The results of this analysis are 
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included in Table 6.5. The results indicated that for the parabolic and UltraFast 

techniques, there was no difference in sensitivity between steady and pulsatile flow 

regimes, while there was a reduction in sensitivity for PW Doppler. The analysis also 

showed that there was a significant decrease in specificity for all techniques between 

steady and pulsatile flow regimes. This was likely due to the pulsatile regimes not 

presenting fully developed flow, which would result in lower overall WSS values which 

would result in an increased risk of false positives over fully developed parabolic flow. 

Out of all the techniques, the MFUDSA algorithm performed the best with a calculated 

sensitivity and specificity of 80% and 100% respectively. It is likely that had it been 

possible to test the MFUDSA algorithm in a pulsatile flow regime, a drop in specificity 

would have been observed as with the other techniques. Despite this, the value of 

sensitivity recorded indicates a high likelihood of detecting the presence of at risk WSS 

values in arteries. This can be compared with techniques utilised later in the disease 

progression such as techniques used to detect arterial stenosis. PW Doppler has been 

widely utilised to determine the presence of arterial stenosis based on the presence of 

disturbed flow caused by the narrowing of the vessel lumen. This assessment technique 

has had reported sensitivity of between 67% to 97% and specificity between 54% to 92% 

while the former gold standard technique for detecting renal arterial stenosis, DSA, 

reportedly had a sensitivity between 94% to 100% and a specificity of 65% to 97% 

[18,19,126–128]. Based on these reported values, the MFUDSA algorithm was calculated 

to have a sensitivity on par with the current gold standard in the assessment of arterial 

stenosis and a slightly reduced sensitivity compared to the former gold standard. 

However, the MFUDSA algorithm can be applied significantly earlier in the development 

of the disease as it doesn’t require the presence of a stenosis, indicating its power as a 

diagnostic tool. 
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Blake et al. [9] utilised a Womersley based estimation technique for wall shear rate in a 

number of vessel phantoms and a healthy volunteer. WSS can be calculated from the wall 

shear rate by multiplying by the dynamic viscosity of the fluid. Blake et al. did not state 

the dynamic viscosity of the BMF used in this phantom study, but did mention the 

kinematic viscosity (3.3 mm2 s-1) and the density (1033 kg m-3). These values can be used 

to calculate the dynamic viscosity as 3.4 x 10-3 Pa s. Using this value, the WSR results 

reported for the study can be converted to WSS values. Doing this, the average peak WSS 

value is given for each artery in Table 6.6. 

Table 6.6: Average peak WSS values calculated from wall shear rates measured by 

Blake et al.[9] (units: Pa). 

Artery Phantom Human 

Brachial 4.08 4.76 

Carotid 2.89 4.08 

Femoral 2.72 2.72 

 

These results are in excellent agreement with the previously discussed literature and the 

results of the present work, indicating that healthy arteries seem to display characteristic 

WSS values within the 1 – 6 Pa range.  

It can be seen in these results that the assumptions inherent in the parabolic estimation 

technique appear to break down for more complex flow regimes, Figure 6.6 shows that 

the parabolic method consistently overestimated WSS at all points in the vessel. While 

examining the region of interest 10 mm distal to the curvature, the parabolic method 

miscategorised high stiffness vessels as not being high risk for atherosclerosis formation 

and provided less clear information into the state of the disease to the other techniques 



192 
 

utilised. Parabolic methods may be useful in other WSS related assessments such as 

detected arterial stenosis which results in significantly increased WSS [119].  

The MFUDSA algorithm consistently outperformed the other techniques assessed with 

the highest degree of significance detected and clearly delineating each of the vessel 

stiffnesses into the appropriate categories of disease progression. As discussed in Chapter 

4, it was not possible to perform an assessment of the performance of the MFUDSA 

algorithm in the pulsatile flow regime due to limits on the Aixplorer scanner’s research 

data buffer size. It is likely that a similar improvement to the PW measurements would 

be demonstrated in the pulsatile flow regime when using the MFUDSA algorithm as in 

the steady flow regime, allowing for a more precise measurement to be made while 

significantly decreasing the scan time and lessening the influence of user proficiency as 

the system can be made to be highly automated. 

6.5. Conclusion 

This purpose of this chapter was to assess each of the potential WSS estimation 

techniques under as ideal insonation conditions as possible to allow for a direct 

comparison in performance between the techniques. The results indicated, that the PW 

Doppler imaging mode, which would constitute the “traditional” method to determine 

WSS in ultrasound, performed within expectations and was able to successfully delineate 

the different vessel stiffnesses used. 

The UltraFast Doppler mode behaved similarly to the PW Doppler mode, with no 

significant improvement in assessment accuracy or precision. However, the sensitivity 

and specificity of the UltraFast mode was increased over the PW Doppler mode for 

pulsatile flow. This was considered a significant improvement as the UltraFast mode can 

acquire the same velocity information as the PW Doppler mode in a fraction of the time 
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and with much less reliance of operator skill, as the transducer would not have to be held 

still for long periods of time and the relative short plane wave insonation would limit the 

effect that respiratory and abdominal movement would have on the results. 

The main benefit to using the parabolic or Womersley assumptions is to decrease the 

scanning time over traditional PW Doppler methods; although this comes at the cost of 

accuracy. With the advent of UltraFast scanning technologies, this trade off may no 

longer be necessary as the UltraFast mode could complete an insonation faster than either 

estimation method could be performed when using PW Doppler. The UltraFast data 

would be used to calculate the WSS using a parabolic of Womersley method but as this 

data would need to be analysed off-line from the scanner the increased accuracy of 

utilising the full velocity profile may be worth the additional time this analysis would 

take.  

Finally, the MFUDSA algorithm performed exceptionally well in the steady flow 

experiments, showing the greatest level of significance in the differences between WSS 

values detected at the stenosis formation region. The technique was also more precise, 

with the highest measured sensitivity and accuracy of any technique. This indicated that 

the MFUDSA algorithm provided the best method for the assessment of WSS among the 

techniques examined, although it could not be compared in terms of performance for the 

pulsatile flow regime as previously stated. This could potentially be rectified by moving 

the MFUDSA algorithm to an on-board post-processing procedure. This would allow the 

large amounts of unutilised IQ data to be discarded by only focusing on a user specified 

region of interest, similar to a colour box used in colour flow imaging. This means that 

significantly less space would need to be used on the data buffer and allow for a longer 

acquisition time and, potentially, the generation of a coherent sonogram necessary for 

determining time-varying WSS.  
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Despite the limitation of being unable to test the MFUDSA algorithm in pulsatile mode, 

it displayed a high level of diagnostic sensitivity, comparable to methods used in the 

assessment of CVD at a much later disease stage. This indicated that the MFUDSA 

algorithm could provide the same level of diagnostic power as methods currently utilised 

in CVD assessment while having the advantage that it could be applied much earlier, prior 

to any stenosis formation. This is of significant clinical benefit as it could provide 

dramatically safer treatment options for patients who would otherwise have to undergo 

surgery when the disease has progressed further. 

Chapter 7: Conclusions and Suggestions for 

Future Work 
A comprehensive Doppler ultrasound analysis procedure combined with an UltraFast 

acquisition modality was developed in the form of the novel MFUDSA algorithm. The 

aim of this thesis was to develop this algorithm and evaluate it using a robust, 

anatomically realistic phantom testbed with the novel capability of precisely mimicking 

different stages in the progression of CVD in the form of vessel stiffness. 

This involved the following implementation steps: firstly, the Aixplorer scanner was 

characterised in terms of its transmission parameters and display capabilities. This was 

important to ensure that the information recorded from the scanner was accurate to a high 

degree of reproducibility, namely that the system was capable of reliably displaying the 

full range of Doppler echoes expected from the study as well as correcting the errors 

associated with intrinsic spectral broadening and misalignment of the transducer. 

Secondly, a geometrically reproducible, anatomically realistic phantom testbed was 

developed for use in the flow experiments. The phantom constituents were acoustically 

and mechanically characterised to a high degree of precision and the vessel design was 

shown to be highly geometrically consistent. Thirdly, the MFUDSA algorithm was Commented [AM36]: Fixed typo 
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developed which combined the multifrequency analysis procedure with the raw UltraFast 

data acquired from the Aixplorer system. This required the development of custom code 

in MATLAB (Mathworks, USA) which could accept IQ data in the form exported from 

the Aixplorer scanner and perform the necessary analysis procedures to implement 

spectral averaging across the entire transmitted frequency bandwidth. Finally, a series of 

comprehensive flow experiments were carried out to test the effectiveness of the 

MFUDSA algorithm against other commonly used techniques.  

7.1. General conclusions 

Chapter 3 outlined the steps taken for calibration and characterisation of the Aixplorer 

system and the flow network. The most important conclusion from this work was based 

on the characterisation of the transmitted frequency bandwidth of the SL15-4 transducer 

which concluded that the optimal transducer half cycle for use with the MFUDSA 

algorithm was 4 half cycles. This allowed for the greatest improvement in velocity 

resolution while simultaneously providing a sufficient increase in SNR. Another 

important conclusion of this chapter was the finding that the ISB cancellation method 

proposed by Osmanski et al. [1] was highly effective when used in conjunction with the 

MFUDSA algorithm and provided a reduction in ISB by an approximate factor of 7. This 

meant that the cancellation method could be applied to all future MFUDSA velocity 

estimations, greatly improving the precision of the velocity profiles produced. The 

calibration and characterisation of ultrasound systems is an often overlooked and 

underreported aspect of quantitative ultrasound research, as evidenced by the dearth of 

literature on quantification of the Doppler dynamic range which was calculated to be 16.7 

± 0.28 dB for the Aixplorer system. 
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Chapter 4 outlined the protocol for the construction of the anatomically realistic flow 

phantoms. The chapter concluded that a consistent formulation of PVA-c that did not 

suffer from sedimentation was achievable with the utilisation of silicone emulsion as an 

attenuator and aluminium oxide particles of different sizes to act as scatterers. Further, an 

important conclusion of this chapter was that there was a measured correlation between 

the Young’s modulus of the vessel sample geometry and the dumbbell testing sample 

geometry specified by ISO 37 [105]. While this may seem intuitive, the literature suggests 

that assuming this would not have been prudent as the elastic properties of PVA-c depend 

highly on the rate of thawing which in turn is proportional to its SA:V. The chapter 

discusses the potential implications of using the cylindrical samples specified by ISO 

7743 [104] as well as directly comparing the SA:Vs of the cylindrical and dumbbell test 

samples to those of the vessel samples themselves. 

Chapter 5 detailed the development and optimisation of the MFUDSA algorithm for use 

in conjunction with the flow network and the Aixplorer system. The most important 

conclusion of this chapter was that despite its potential usefulness as a diagnostic 

technique, the MFUDSA algorithm could not be applied to pulsatile flow data. This was 

due to the memory size limit on the Aixplorer buffer which limited the total number of 

data points which could be exported in a single insonation. The time covered by a certain 

acquisition was equal to the ratio of the data length to the PRF and acquisition time was 

then further subdivided into time points to generate the sonogram. This meant that, to 

generate a sonogram, the system required that the velocities were low enough to not be 

aliased by a low PRF and that the temporal resolution of the sonogram was low enough 

that coherent Doppler spectra could still be generated. These limitations proved 

insurmountable in the current research mode architecture of the Aixplorer and would 

require a significant hardware and/or software update to the system to remedy. 
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The purpose of Chapter 6 was to test the performance of the MFUDSA algorithm in 

comparison to a number of other techniques which can be utilised for WSS estimation. 

The primary conclusion of this chapter was that the MFUDSA algorithm had the strongest 

performance out of the techniques tested in steady flow, with the highest sensitivity out 

of each technique tested and the greatest significance in delineation between disease 

levels. The algorithm could not be applied to pulsatile flow, but the results indicated that 

the transition to pulsatile flow does not appear to affect the sensitivity of techniques 

significantly and only lowers their specificity. By comparing the PW Doppler and 

UltraFast techniques between the two flow regimes, a partial comparison between PW 

Doppler and the MFUDSA technique can be established. The PW Doppler and the 

UltraFast techniques had similar performances in steady flow but the performance of the 

UltraFast technique in pulsatile flow was greater in terms of both sensitivity and 

specificity. When taken into account with the result that the MFUDSA technique had the 

highest sensitivity in steady flow, this indicates that it likely would have also had the 

greatest performance in pulsatile flow. It was also concluded that the sensitivity of the 

MFUDSA algorithm in steady flow put it as being broadly equivalent with PW Doppler 

and DSA in the diagnosis of arterial stenoses the formation of which typically takes place 

much later in the development of CVD than vessel wall stiffening. This indicates, 

therefore, that should the MFUDSA algorithm be applied in pulsatile flow it would 

provide an equivalent standard of diagnostic power while also being applicable much 

earlier in the progression of CVD. 

7.2. Future work 

The phantoms used in this work represented a novel approach in the mimicking of the 

progression of arterial disease as they accurately exhibited the stiffness values seen in 
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vivo to an unprecedented degree of certainty. However, a limitation of this work was that 

the phantoms were only produced for use with ultrasound. With minor alterations to the 

phantom production protocol, the phantoms could be produced to enable a multi-modality 

analysis approach. This could be achieved by replacing the deionised water with a 10% 

solution of manganese chloride in deionised water. Manganese is a widely used contrast 

agent in MRI imaging [129] and the use of manganese chloride will increase the MR 

response of the phantom. The phantom production could further be adapted for use in CT 

imaging by varying the phantom attenuation coefficient to be in line with the appropriate 

Hounsfield units for human tissue. The Hounsfield units of the formulation of the tissue 

and vessel mimicking materials in the current study were not measured and therefore it is 

unknown how much modification would be required. This would be particularly 

important for the vessel mimic as if the density of the material is varied significantly, for 

example, with the goal of changing the Hounsfield units, the Young’s modulus of the 

material will also change, potentially limiting its ability to model stages in the progression 

of CVD.  

The current study did not feature the use of microbubble contrast agents; however, 

calibration experiments were carried out for the use of contrast agents in further 

experiments. The first set of experiments investigated the pulse pressures exerted by the 

Aixplorer under a variety of transmission parameters. It was found that the largest pulse 

pressure exerted by the system was 806.59 kPa. De Jong et al. [74] established, in the 

case of the SonoVue contrast agents, the pulse pressure should not exceed 150 kPa to 

avoid the alteration of bubble characteristics and pressures above 300 kPa would lead to 

bubble destruction. With these results in mind, further experiments utilising microbubble 

contrast agents would have been carried out with an acoustic power setting of -8 dB in 

order to ensure the behavio+ur of the contrast agents was not altered. Further, the use of Commented [AM40]: Fixed typo 
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contrast agents may cause saturation of the Doppler spectrum, as discussed previously, 

the Doppler dynamic range of the system was measured to be approximately 17 dB. This 

means that relatively small concentrations of  contrast agents may lead to complete 

saturation of the spectrum with some contrast agent techniques providing up to 16 dB 

more contrast than standard imaging [130]. 

A significant limitation of this work was the inability to utilise the MFUDSA algorithm 

in pulsatile mode. As discussed previously, the product of the PRF, the Fourier data 

length, and the number of time points in the sonogram cannot exceed the total data point 

length of the acquisition. This means that even for low velocities, a coherent sonogram 

could not be produced without aliasing of the spectrum and vice versa. When the 

sonogram was generated for the simulated Doppler data, the coherent sonogram could be 

produced for data point lengths as low as 10,000 data points. This value is still 5 times 

greater than the maximum length possible in an acquisition from the Aixplorer research 

package. Two methods could be utilised to circumvent this problem. The first proposed 

solution is that triggering could be used to enable multiple acquisitions to begin at 

different points in the cardiac cycle and these acquisitions could be stitched together using 

post-processing. This is possible because the memory buffer on the Aixplorer research 

package only works to limit the file size of individual acquisitions and not the total size 

of an experimental data set. For example, if a user desired an acquisition of 5 seconds of 

a pulsatile flow, with a PRF of 4 kHz, and the maximum data length of 2000 was used 

for each acquisition, the total time of each acquisition would be 0.5 seconds meaning 10 

total acquisitions would be required, and each acquisition would need to have a time delay 

of 0.5 seconds applied to its trigger. However, this would not provide coherent sonograms 

as there would not be enough data in each acquisition to form a coherent sonogram. This 

could be rectified by increasing the PRF, thus requiring more acquisitions and an 
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increasingly large exported file, especially considering that the resulting file would only 

lead to a single acquisition. The problems with this solution are further compounded by 

the fact that the distribution package of the research package used in the current study did 

not support input trigger signals for the UltraFast acquisition mode. 

The second proposed solution to this problem would be to directly implement the 

MFUDSA algorithm to the scanner and do the processing in real time. This would reduce 

the file size dramatically as a region of interest could be set, such as with colour flow 

imaging, which would discard excess data from other parts of the field of view. While the 

file sizes would still be quite large, the processing speed could be improved dramatically 

and there would be less risk of the data buffer filling completely. This method would 

require the direct modification of the on-board processing of the Aixplorer which is 

currently inaccessible to the average researcher. This solution, therefore, is only suitable 

as a commercial development or on a similar scanner with UltraFast equivalent 

functionality yet to be released. 

The final limitation of this work was that the WSS values analysed were only viewed as 

a 2-dimensional slice of the vessel. A more complete analysis of the WSS would require 

a 3D time varying mapping of the velocity flow profile. This is important as interest in 

WSS has recently begun to move towards analysing not just the linear flow based WSS 

but also WSS arising from the vorticity of the flow [131]. 

 

Appendix: Code excerpts 

Simulated Doppler data code 

In Section 5.2.2, the methodology described the simulation of Doppler data for testing 

of the MFUDSA algorithm. This code is included here. The script was designed so that 
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it could generate steady and pulsatile flow data and would output a matrix of IQ data 

which could be read by the MFUDSA algorithm. This was achieved as follows: 

L = 21000;                      % Length of signal (datapoints) 
f = 700.*M;                     % Doppler shift in Hz 
W = 6.2832*f;                   % Doppler shift in radians (2*pi*f) 
Amp = 0.5;                      % Normalised amplitude 
Fs = 7000; 

 

S1 = Amp*cos(W) + 1i*Amp*sin(W); 

 

In this code f, the frequency in Hz, was specified as an integer (determined through the 

Doppler equation) multiplied by some vector. The integer represented the maximum 

Doppler frequency shift to be simulated and the vector, M, could be set to steady flow 

(equal to 1) or pulsatile mode (varying between -1 and 1). The simulated signal was 

then sampled according to the sampling frequency which was equivalent to the PRF in 

Hz. The resulting data would contain only a single Doppler shift frequency (which 

could vary in time) which is not suitable for Multifrequency analysis. In order to 

introduce the extra data associated with a bandwidth of frequencies two for loops were 

constructed which would calculate the appropriate Doppler shift frequency for a range 

of frequencies in the pulse bandwidth and then superimpose the signals onto one 

another. These data were generated as follows: 
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L = 21000;                      % Length of signal (datapoints) 
freqs = zeros(L,1); 
S = zeros(L,1);     % Pre-allocate memory  

 

 

BW = linspace(2.9e3,7.1e3,L);   % 4HC bandwidth for 5MHz was 2.1 MHz 
Amp_left =linspace(0,1,L/2); 

Amp_right = fliplr(Amp_left); 

Amp = [Amp_left, Amp_right];   % Amplitude varying linearly across bandwidth  

 
velocity = 0.2;                 % m/s 
c0 = 1540;                      % m/s 
thetaDeg = 60;                  % Insonation Angle 
theta = thetaDeg*pi/180;        % Radians 
 
for j = 1:L 
     freqs(j,1) = (2*velocity*cos(theta)*BW(j))/c0; 
end 
 

 

for k = 1:L 
     f = freqs(k,1).*M;         % Doppler shift in Hz 

W = 6.2832.*f;             % Doppler shift in radians (2*pi*f) 
 

S = S + Amp(k)*cos(W(k)) + 1i*Amp(k)*sin(W(k)); 
end 
 

 

Note that now S was generated as a superposition of L signals with Doppler frequencies 

corresponding to the whole bandwidth of transmitted frequencies. Despite its relatively 

short length, this code required a considerable amount of memory and time to run. As 

such, the resulting simulated signal was only generated for one velocity setting and 

saved to avoid running this code if possible. Similarly to the previous code, the vector 

M could be specified to set steady or pulsatile flow. 

The code used to generate the segments is as follows: 

Fs = 7000;                      % Sampling Frequency in Hz 
Time = L/Fs;     % Total time = data length / PRF 
NSegment = Time/0.01;    % Number of segments = time / temporal     

    resolution 
 

LSegment = L/NSegment; 
  
for k = 0:NSegment-1 
    S2(1:LSegment,k+1) = S1(((k*LSegment)+1:(k+1)*LSegment)); 
end 
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Note that the temporal resolution of the sonogram can be specified in line 3 (in this 

case, it was set to 0.01 seconds).  

MFUDSA Algorithm Outline 

The first step was to import the IQ data from the Aixplorer (when using simulated data, 

this step was skipped and a manual importation method was used). The following code 

reads in a user specified address and opens the IQ data, which is currently a 1-

dimensional variable which alternates between I and Q data. The next step in the code is 

to reshape this data. A matrix, I, is created with size Ni * Nj * Nt where Ni * Nj is the 

pixel resolution of the field of view and Nt is the number of insonations. 

fid = fopen([pathname,'/',filename '.' dataextension]); 
data = fread(fid,Ni * Nj * Nt * NbSamples ,TypeData); 
 

    I = reshape(data(1:2:(Ni*Nj*Nt*2)),[Ni,Nj,Nt]); 
    Q = reshape(data(2:2:(Ni*Nj*Nt*2)),[Ni,Nj,Nt]); 
    IQ = I + sqrt(-1) * Q;  

The next step was to segment the data into the appropriate form. This was done inside 

two nested for loops and reiterated across the width and length of the vessel which was 

specified by the user. 

   IQSeg = IQ(Ry1:Ry2,Rx,:);   

Ry1 and Ry2 were axial co-ordinates which define the range gate. These values were 

controlled by a for loop and moved the range gate radially across the vessel. Rx is the 

longitudinal vessel position; this was controlled by a for loop and iterated to move the 

range gate longitudinally when all radial velocity values were recorded for the current 

position. For each radial and longitudinal combination, a matrix called IQSeg was 

produced which was windowed in the time domain using a Hamming window: 

   w = hamming(length(IQSeg), 'periodic'); 
   w_IQSeg = w'.*IQSeg;  
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The windowed signal then underwent a 2D Fourier transform to convert the IQ data to 

the frequency space: 

   fun = fft2(w_IQSeg); 
   fun1 = fftshift(fun); 

 

   fun2 = fun1.^(Scaling_factor_matrix);  

   P1 = abs(fun2./Comp_env'); 

 

   Periodogram = trapz(Bandwidth,P1,1);  

The function fftshift here is used to centre the zero-frequency component. The resulting 

periodogram is scaled and normalised using the functions Scaling_factor_matrix and 

Comp_env which refer to the spectral scaling process and the complex envelope 

described in Equation 5.2. Finally, the spectrum is integrated using the trapezoidal 

integration function with the frequency bandwidth acting as the limits of integration. 

The resulting periodogram can be displayed but usually it was not as it slowed down the 

processing of the full vessel. Instead the maximum value was selected and saved as the 

Doppler frequency shift at that position in the vessel. The shift was converted into a 

velocity using the Fourier space limits and the Doppler equation. 

fshift = (-Nt/2:Nt/2-1)*(Fs/Nt); 
Vel = (fshift.*c0)./(2*f0*10e6*cos(theta))*10e-2;  

The first line of this code specifies the frequency axis of the periodogram using the 

number of data points and the sampling frequency (the PRF). The second line is the 

Doppler equation with the addition of a scaling factor to produce the velocity output in 

cm s-1. 
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